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Abstract

This thesis investigates sensorimotor adaptation (SA) in speech production: how
speakers alter their speech production to compensate for distortions of their normal
auditory feedback. Two studies were conducted that exhibit the existence and prop-
erties of speech SA and demonstrate its potential for examining phonetic structure
in speech production.

In both studies, auditory feedback was distorted by an apparatus that shifts speech
formant frequencies with minimal (16ms) processing delay. Via a microphone, sub-
jects whispered into this apparatus, and it produced a formant-shifted version of their
whispered speech that was fed back to them via earphones. Subjects whispered to
minimize bone conduction of their actual speech feedback.

Study 1 exhibited the basic speech SA phenomenon. It found that subjects ad-
justed their productions of [¢] in CVC utterances to compensate for altered feedback.
They subsequently retained these adjustments when whispering while masking noise
blocked their feedback. These retained adjustments are called adaptation.

Study 2 revealed other properties of speech SA. It found that compensating pro-
duction changes were apparently retained for more than a month. It also found that,
although subjects differed greatly in how much they compensated, none reported
noticing that their feedback was altered. This suggests that subjects’ vowel percep-
tions may have adapted.

Study 2 also investigated how adaptation of [e] in one CVC word context affected
other words’ productions. Subjects’ production of [e] in other words was affected,
showing that these words share a common representation of the production of [g].
Subjects’ productions of other vowel were also affected, showing that the vowels’
production representations are not independent, possibly because they share common
features. These investigations showed how speech SA can be used to examine phonetic
structure in speech production.

Thesis Supervisor: Michael I. Jordan
Title: Professor
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Chapter 1

Introduction

This thesis investigates sensorimotor adaptation in speech production. This investiga-
tion consists of a series of studies that (1) exhibit existence of the basic phenomenon,
(2) investigate some of its properties, and (3) demonstrate its potential for examining

phonetic structure in speech production.

1.1 Sensorimotor Adaptation in Reaching

Sensorimotor adaptation (SA) is the modification of motor task performance result-
ing from exposure to altered sensory feedback. To illustrate the SA phenomena, a
hypothetical experiment exhibiting SA in reaching is described. SA in reaching has
been shown in numerous experiments (see [Welch, 1978] and [Welch, 1986] for re-
views). This hypothetical experiment is chosen for it’s close analogy to the speech
SA experiments used in this thesis.

Consider an apparatus that allows a subject’s view of his hand to be blocked, or
to be viewed through a prism that shifts the image of his hand. Using this apparatus,
we can exhibit reaching SA with an experiment consisting of three phases: a baseline
phase, a training phase, and a testing phase. Figure 1-1 illustrates these phases.

In the baseline phase, the subject’s visual feedback is blocked and he is directed
to reach “straight ahead”. Where he reaches is marked. (Note: the subject cannot

see this mark.)
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Training
Baseline f early late \ Testing

feedback shift compensation adaptation

Figure 1-1: Phases of a hypothetical reaching SA experiment. The leftmost panel
shows the baseline phase. In this phase, a subject makes a straight-ahead reach with-
out visual feedback (as suggested by the gray hand picture in the gray background).
An “x” shown in the top of the panel marks the position he reaches. For reference,
this mark is shown in each panel. The middle two panels show the training phase.
In the training phase, the subject sees a shifted image of his actual hand position.
In both training phase panels, actual hand position is shown as a gray hand picture
in the gray background, while the shifted hand position image is shown as the white
hand picture. The arrow below the early training phase panel shows the magnitude
and direction of the hand image shift. The arrow below the late training phase panel
shows the subject’s shift of hand position that partially compensates for the hand
image shift. The rightmost panel shows the testing phase. This phase is a repeat of
the baseline phase. The arrow below this panel shows the amount of compensation
gained in the training phase that the subject retains in subsequent reaches without
visual feedback - i.e., his adaptation.
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In the training phase, the subject is directed to continue to make straight-ahead
reaches, but now he is permitted to see his hand through a prism that introduces a
visual feedback shift. Early in the training phase, when the subject reaches straight
ahead, his hand image appears shifted to one side. Depending on the size of this shift,
he may or may not be aware of this image shift.

Regardless of his awareness, as he continues to make reaches, he gradually adjusts
them so that, by late in the training phase, his “straight ahead” reaches are shifted
from their original position. This shift is in the direction opposite to that of the
feedback shift, and brings the subject’s hand image closer to his baseline straight-
ahead position. This shift will be called the subject’s compensation for the feedback
alteration.

In the subsequent testing phase, the subject’s visual feedback is blocked and he is
once again asked to reach straight-ahead, Now, under the same conditions he expe-
rienced in the baseline phase, the subject’s straight-ahead reaches are shifted. Thus,
even with feedback blocked, the subject has retained some of the compensation he
developed in the training phase. This retained compensation will be called adaptation.

This adaptation of a motor task performance resulting from altered sensory feed-

back exposure is called sensorimotor adaptation.

1.2 Sensorimotor Adaptation in Speech

This thesis investigated SA in a different motor task — speech production. It was
hypothesized that speech production, like reaching, would exhibit adaptation in re-
sponse to altered sensory feedback — in this case, altered auditory feedback.

Within this potentially broad domain of SA in speech, this thesis focused specif-
ically on SA in vowel production. This is because there exists a convenient rep-
resentation of vowel sounds which lends itself to sensory feedback alteration - the
representation of vowels in terms of their formant frequencies.

If one looks at a spectrogram of an utterance containing a vowel, one sees iso-

lated bands of spectral energy. The bands are called formants, and their frequencies
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generally correspond to the principal resoiiances ot the vocal tract. (An example spec-
trogram can be seen in Figure 1-2.) During the vowel portion of this utterance, the
formants hold steady-state values whose frequencies are characteristic of the vowel.
The frequencies of F3 and higher formants show little variation across vowels; the
frequencies of the first two formants (F1 and F2) have the largest role in determining
vowel identity. This is shown in Figure 1-3.

Thus by altering formants of a speaker’s speech feedback, it should be possible to
alter the speaker’s auditory perception of what vowel he was producing.

The principal hypothesis examined in this thesis is that the speaker will compen-
sate for such perceivable alterations of his normal auditory feedback. Furthermore,
it is hypothesized that some of this compensation will not be achieved solely by
an immediate correction response, but will instead involve longa-term adjustment of
parameters controlling speech. This long-term adjustment will be revealed by com-
pensating production changes persisting in the absence of auditory feedback - i.e.,
adaptation as defined above.

The motivation for investigating speech SA extends beyond confirming that SA
exists in other motor tasks besides reaching. Speech SA would provide a tool for
examining issues of phonetic structure in speech producticn.

We know that producing speech sounds is part of the larger task of communicating
words. There are also theories and other lines of evidence suggesting intermediate-
sized representations in the production of words (e.g., syllables, phonemes - see
[Levelt, 1989] and [Meyer, 1991] for reviews). There are thus a number of testable hy-
potheses concerning word production that we can design SA experiments to examine.
To give a concrete example, consider the following hypothetical situation: we might
observe adaptation of the production of a specific vowel in a specific word context (for
example [e] in “get”). We can then design experiments to investigate the following

questions:

e Do we find this vowel’s production is adapted in other words? If so, it suggests
that words do not independently specify their complete productions as indi-

visible units. Rather, their productions would appear to be constructed from
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intermediate units of speech production (e.g., phonemes).

e Do we also find that other vowels’ productions are adapted? If so, it suggests
that, not only do intermediate units of speech production exist, but that their
representations are not independent, perhaps because they share some common

features.

These types of questions cannot be investigated in studies of reaching SA, since,
unlike the production of speech sounds, it’s not as clear what the larger tasks are that
specify reaches.

In this thesis, the general experimental design used to investigate SA in the pro-
duction of vowels is the same as that described above for reaching SA. It consists of

the following three phases:

1. A Baseline Phase, in which a subject’s produced vowel formants are measured

with and without auditory feedback.

2. A Training Phase, in which a formant-shifting feedback transformation is

introduced

3. A Testing Phase, in which the feedback transformation is maintained and the

baseline phase formant measurements are repeated.

The experimental results of principal interest are changes in formant frequencies
(testing phase - baseline phase) of a subject’s vowels. Two versions of this change

were looked at:

1. Compensation: formant change in vowels produced while the subject hears

altered feedback of his speech.

2. Adaptation: formant change retained when these vowels are produced while the

subject is prevented from hearing his speech.
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1.3 Thesis Overview

In the rest of this thesis, the apparatus, methods, and experiments used to exhibit

speech SA are discussed:

o Chapter 2 develops a more detailed description of the speech SA experimental

design.

e Chapter 3 provides an overview of the apparatus used to shift the formants of
the subject’s speech feedback. It also describes the utterance data collection

and analysis methods.

o Chapter 4 describes Study 1 — the preliminary study of speech SA in vowel

production.

e Chapter 5 describes Study 2 — a more complete investigation of the properties

of speech SA in vowel production.

o Finally, Chapter 6 summarizes aad discusses the major findings of this thesis.
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Figure 1-2: Spectrogram of the word “guess”. In this plot, each vertical slice repre-
sents the utterance’s magnitude spectrum at succeeding moments in time. (For any
pixel in the slice, the pixel’s vertical position represents a frequency, while the pixel’s
blackness represents spectral energy at that frequency.) Up to about 300ms (where
the production of [s] begins) the spectrogram exhibits a regular pattern consisting
of four dark bands. These bands are consistent peaks in the utterance’s spectrum
over time. These bands are called formants and are labeled F1, F2, F3, and F4,
from lowest to highest frequency. The formants move as the articulators move (as in
the [g]-[e]transition between 0 and 150ms), but maintain steady-state values as the
articulators hold position to produce the vowel (between 150 and 300 ms). (Verti-
cal striations during the vowel are from excitatory pulses of air passing through the
vibrating vocal folds.)
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Figure 1-3: An (z,y) plot of vowel (F1,F2) frequencies. (The vowel formant data
are averages from a study of 33 male speakers done by [Peterson and Barney, 1952].)
Each vowel’s £ and y position is determined by its F1 and F2 frequencies, respectively.
Each vowel occupies a unique position in the plot, and the distribution of vowel
positions forms a roughly triangular region called the vowel triangle (shown as the

shaded region).
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Chapter 2

Design of the Speech SA

Experiment

In this chapter, the general speech SA experiment design is described in more detail.

2.1 Defining the Task and Feedback Transforma-
tion

The objective of an SA experiment is to assess how performance of a task is affected
by a feedback transformation that alters sensory feedback. Thus, before designing an

SA experiment, the task and feedback transformation must be defined.

2.1.1 The Similarity Between Vowel Production and Reach-
ing
The choice of task and transformation in the speech SA experiment was facilitated

by describing vowel production in terms that reveal its similarity with reaching. This

description is based on the following two observations:

1. If vowel productions are sustained long enough, vowel formant frequencies attain

steady-state values. Figure 1-2 shows an example of this for the vowel [e].
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2. F1 and F2 determine most vowel identities; higher formants show little relative

variation when compared across vowels. Figure 2-1 illustrates this for F1, F2,

and F3.

ee ih eh ae ah au uu oo uh er

Figure 2-1: The results of the Peterson and Barney study, showing the average F1,
F2, and F3 frequencies for a number of vowels, averaged over 33 male speakers. The
data show that F1 and F2 vary greatly, but for all but two of the vowels, F3 does
not change much [Peterson and Barney, 1952]. Due to font limitations, the following
two-letter abbreviations were used, with their IPA symbol in parentheses: “ee” ([i]),
“ih” ([d]), “eh” ([e]), “ae” ([z]), “ah” ([a]), “aw” ([2]), “00” ([0]), “uu ([u]), “ub”
([a]), “er” ([2]).

Thus, if vowels are plotted in a 2D plane with z and y axes determined by F1 and
F2, they occupy unique positions in the plane, as shown in Figure 2-2. This plane
will be referred to as either formant space, (F1,F2) space, or vowel space. Repre-
senting vowels in this manner gives a geometric interpretation to vowel production
and perception: production of a desired vowel sound can be viewed as achieving a
desired position in (F1,F2) space, while perception of a vowel sound can be viewed
as perception of position in this space.

To enhance the analogy between vowel production and reaching, the vowel produc-
tion task was restricted to the production of vowels in monosyllabic, (stop consonant)-

vowel-(stop consonant) (CVC) utterances (which will be referred to as “words”).
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Figure 2-2: The vowels of Figure 2-1, where the x and y position of each vowel is
determined by its F1 and F2 values, respectively. A dotted line connecting the points
corresponding to the vowels links them in the same order in which they appear in
Figure 2-1. These points are considered to form a roughly triangular region in (F1,F2)
space, as indicated by the solid line, which is called the vowel triangle. (The two-letter
vowel name abbreviations are defined in the caption of Figure 2-1.
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Thus, the articulators move from the initial consonant’s target configuration, to the

vowel’s, and back to the final consonant’s, much as the hand moves from some initial

position, to a target, and back again in a reaching movement.

2.1.2 Perceivability and Compensatability Requirements

In order to permit the modification of task performance by feedback, the feedback

transformation must satisfy the following two requirements:

1. Perceivability: The feedback transformation must alter the subject’s percept.
For example, in reaching experiments, shifting a subject’s perception of (x,y)

position can alter his perception of having reached to the correct position.

2. Compensatability: It must be physically possible for the subject to compensate
for the perceived error in task performance created by the feedback transfor-
mation. For example, in reaching experiments, a subject can compensate for a
shift of perceived (x,y) position in one direction by shifting his reaching in the

opposite direction.

Shifting the visually perceived (x,y) gosition produces SA in a reaching task. The
parallel in vowel production might be agift in auditorily perceived (F1,F2) position.
What restrictions must be placed on vowel production and the (F1,F2) shift to insure
that the shift can be perceived and compensated for? This is determined by the
physical limitations on vowel production.

Studies have shown that F1 and F2 reflect the (high « low) and (front < back)
position of the tongue body in vowel production [Borden et al., 1994]. Since there are
limits to these articulatory dimensions, there are also limits to the range of (F1,F2)
combinations a speaker can produce. The limited range restric'ts vowel productions
to a region in formant space called the vowel triangle (as shown in Figure 2-2).

These limitations constrain which feedback transformations can be perceived and
compensated for. Figure 2-3 illustrates these limits. The figure is a re-plotting of

the 33-speaker data of Figure 2-2, but here we assume it represents formants of the

vowels produced by a single hypothetical subject.
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Figure 2-3: Examples of a non-compensatable feedback transformation (shiftl)
and the proposed perceivable, compensatable transformation (shift2). compl and
comp2 are the compensation positions for these transformations. The gray region
indicates the range of producible vowel sounds. See text for further explanation.
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In the figure, the solid arrow labeled shiftl shows the effect of a hypothetical
feedback transformation on the vowel [€]. The arrow base represents the formants of
the actual vowel produced by the subject, in this case [¢]. The arrow tip represents
the perceived formant values of [¢] after the feedback transformation. The effect
of such a feedback transformation on [e] is likely to be perceived, since it shifts
the [€] formants to a point within the vowel triangle. Could a speaker compensate
for this shift? If this transformation is assumed to act on all other points in the
(F1,F2) plane in the same way that it is shown acting on [¢], then the answer is
probably no. Consider the the vowel sound whose formants, after being shifted by
this transformation, would sound like [¢]. The point corresponding to this vowel
sound is called the compensation position: it is labeled as compl and is shown as
the tip of a dashed arrow whose base is at [¢]. Since this point is outside the vowel
triangle, it is probably not producible by the speaker. This would prevent the subject
from compensating for this transformation of [¢].

Suppose the direction of the feedback transformation’s formant shift was rotated
180 degrees, so that now compl represents its action on [¢]. In this case, the com-
pensation position would be at the point labeled shiftl. Since this point is within
the vowel triangle, it is likely the subject could produce this sound. Less clear is
whether the effect of such a transformation is still perceivable. Recall that compl
now represents the perceived formants of [¢] after the feedback transformation. Since
the point is outside the vowel triangle, it is in a region of (F1,F2) space where the
subject does not hear himself producing vowel sounds. The subject therefore may not
be sensitive to vowel sound differences in this region. If this were true, the formants
of comp1 might not be perceived as being significantly different fromn those of [e].

To resolve these problems of perceivability and compensatability, task and trans-

form were restricted in the foilowing way:

e The task was limited to the production of CVC words in which the vowel was

[i), {c), [e], [z}, or [al].
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o The feedback transformation was restricted to shifts of position along the path

in formant space which connects these vowels.

To understand why this choice of task and transform satisfies the perceivability
and compensatability requirements, consider the path connecting the vowels [i], [¢],
[€], [], and [a]. Figures 2-2 and 2-3 show that it forms an edge of the vowel triangle.
This path will be called the [i]--[a] path, and the vowels along it will be called path
vowels.

The distribution of vowels along this path suggests that speakers can produce
vowel sounds anywhere along it. This hypothesis is supported by the fact that the
formant trajectory of the diphthong [ai] is roughly along the [i]-[a] path. This suggests
that shifts of perceived path position in one direction could be compensated for by
shifts in produced vowel formants in the opposite direction along this path.

Note also that position along this path distinguishes five different vowels. This
suggests that speakers would be highly sensitive to changes in perceived path position.
Thus, the effects of a feedback transformation which shifts perceived path position
would be expected to be quite salient to a speaker.

The arrow labeled shift2 in Figure 2-3 shows a hypothetical example of such a
path-shifting feedback transformation. The arrow shows the supposed action of this
transform on the perceived formants of [¢]: they are shifted along the path towards
[a], as indicated by the tip of the arrow labeled shift2. If this transformation is
assumed to act on all path positions with the same amount of path shift, then there
would be a compensation position for the action of shift2 on [e]: i.e., there would
be some path point between [¢] and [i] whose perceived formant values, after the
feedback transformation, would sound like [e]. This point is labeled comp2 in the
figure. Thus, by shifting the formants of his production of [¢] towards [i], a subject
could compensate for the effect of the transformation and restore his original percept

of a correctly produced [e].
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2.2 Design of the SA experiment

There are two questions that any SA experiment must address:

1. Does the subject compensate? Does he adjust his task performance to compen-

sate for the perceptual shift produced by the feedback transformation.

2. Does the subject adapt? Does he retain his adjusted performance, even when

denied sensory feedback?

An appropriate methodology for answering these questions is to record task per-

formance in an experimental procedure consisting of:

e A baseline phase, in which the subject is prompted to perform specific tasks

with sensory feedback blocked.

e A training phase, in which the subject is exposed to the feedback transfor-

mation.
e A testing phase, identical to the baseline phase.

The logic of this design is: by comparing task performance in the baseline and
testing phases, task performance change due to exposure to the feedback transfor-
mation can be assessed. To illustrate this point more concretely, let us consider a

reaching experiment.

2.2.1 Design of a Reaching SA Experiment

Held ev al. [Held and Gottlieb, 1958] studied adaptation to shifts of perceived hand
position (earlier work had already established that subjects could compensate for

such shifts). This experiment involved three phases:

1. A baseline phase in which reaching performance without visual feedback was

recorded.

2. A training phase in which the subject was exposed to a transformation of the

visual feedback.
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3. A testing phase, identical to the baseline phase, in which reaching performance

without visual feedback was again recorded.

The experimental methodology involved blocking visual feedback and prompting
for reaching movements. This was achieved by a mirror positioned between the sub-
ject’s eyes and his hand. This mirror blocked the subject’s view of his hand, but
allowed him to see the reflected image of crosshairs in the same virtual plane as his
hand. He could then be prompted to reach to specific crosshair intersections (target
points) without being allowed to see his hand (see Figure 2-4).

The subject was subsequently exposed to a feedback transformation that was
designed to minimize awareness of targeting errors. In the training phase, the mirror
was removed. The subject could no longer see the crosshair target points, but could
now see his hand. The action of removing the mirror also positioned a prism in front
of the subject’s eyes. The prism shifted the perceived location of his hand by 11lcm.
The subject then viewed his hand motion through the prism for some amount of time.

The datum of interest in the Held et al. experiment was the subject’s hand po-
sition. Subjects were prompted to reach to a target point and the (x,y) coordinates
of the resulting hand position were recorded. For each target point, mean hand posi-
tion of reaching movements in the testing phase was subtracted from mean position
of reaching in the baseline phase. The difference was then compared with the shift
of the feedback transformation to assess whether the change in reaching position

compensated for the effect of the transformation.
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Figure 2-4: The apparatus used by Held et al. for investigating the effect of visual
shifts on reaching. (a) Mirror M’s reflections of targets T created virtual images T’
of the targets in the plane of the subject’s hand (and also prevented the subject from
seeing his hand). M was connected via bar B to prism P; B could be pushed (along
with surface S on which the subject had marked targets) so that the subject could see
his hand through prism P, but not the targets nor his marking of them. (b) illustrates
the visual shifting action of prism P. (Figure from [Held and Gottlieb, 1958).)
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This description of the experiment design of Held et al. highlights four key design

issues:
1. Prompting the subject to perform a specific task.
2. Exposing the subject to the feedback transform.
3. Intercepting the subject’s feedback.
4. Recording task performance.

Each of these issues will now be discussed in more detail in the context of speech

production.

2.2.2 Prompting the Subject to Perform a Specific Task

Assessing adaptation in an SA experiment requires comparing how a subject performs
a task before and after being exposed to a feedback transformation. An SA experiment
thus needs some method of prompting a subject to perform the same task at different
times in the experiment. One such method involves showing the subject the desired

sensory outcome for the task.

2.2.2.1 Task Prompting in Reaching SA Experiments

There is a difficulty associated with providing subjects with desired sensory outcomes.
In particular, if a subject can see both his hand and the target, he can see directly
any errors he makes in reaching to the target. In their reaching SA experiment, Held
et al. were able to avoid this problem by using a training phase in which the subject

sees only his hand and no target points.

2.2.2.2 Task Prompting in Speech SA Experiments

In a speech SA experiment, subjects could be prompted to produce a specific speech
sound by letting them hear the speech sound they should produce. Unfortunately, this

would be analogous to the presentation of visual targets in reaching SA experiments,
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and would thus create the same methodological problem described above. However,
with speech the problem can be avoided via the use of printed words.

For a gi*  language accent group, there are rules that relate the sounds and
spellings of utterances, even if they are not meaningful words in the language
[Ladefoged, 1982). Since these rules are known by speakers of that accent group,
spellings can be devised that will prompt the pronunciation of the desired speech
sounds. For example, in the eastern North American accent group of the English
language, the spellings:

{“peep”, “pip”, “pep”, “pap”, “pop”}
prompt CVC utterances with the vowels:

{{il, [¢], [¢], [}, [a]}

By prompting for vowel targets in this fashion (as opposed to acoustically), there
is no explicit prompting for specific positions in formant space, and thus no exter-
nal reference available for a subject to judge the correctness of his produced vowel
formants.

For this reason, the CVC utterances were prompted visually using spelled words
that elicit the desired speech sounds. This imposed the modest limitation that all
subjects must come from the same language accent group. Because of the large
numbers of speakers from the eastern North American accent group at MIT (where

the studies were carried out), subjects were restricted to be from this accent group.

2.2.3 Exposing the Subject to the Feedback Transform

In an SA experiment, the purpose of altering the feedback delivered to the subject
is to alter what he perceives to be the sensory outcomes of his motor actions. To do
this, the altered feedback must be provided in a veridical way to the subject. In other
words, the subject must believe that this feedback arises causally and immediately
from his motor actions.

One key factor in determining veridicality is the amount of delay introduced by
the feedback alteration. It has been found, for example, that subjects will not exhibit

reaching SA if there is a delay in visual feedback of more than 300ms
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[Held and Durlach, 1991]. In speech, minimal feedback delay is also important be-
cause studies have shown that feedback delays of as little as 30ms begin to disrupt
speech production [Lee, 1950, Yates, 1963].

Another factor is fidelity of the altered feedback. Fidelity refers to how artifi-
cial the subject perceives the feedback to be. For reaching SA, low fidelity feed-
back appears to suffice; in particular, experiments have shown that a dot on a video
screen showing only the subject’s hand position is sufficient to induce adaptation
[Welch, 1972]. Since speech SA has not been investigated previously, it was not known
how impoverished the feedback could be and still induce adaptation. Thus, the fi-
delity criterion adopted in this study was that the subject should not perceive any
significant difference between the output of the feedback transformation apparatus

and normal acoustic feedback of his whispering.

2.2.4 Intercepting the Subject’s Feedback

In an SA experiment, intercepting the sensory feedback the subject would normally
receive is necessary for two reasons: (1) in the training phase, the subject should be
exposed to the altered sensory feedback, not the normal, unaltered feedback; (2) in
the baseline and testing phases, the subject should receive no sensory feedback.

In reaching SA experiments, blocking visual feedback is relatively easy. In a speech

SA experiment, blocking auditory feedback is difficult. Two reasons for this are:

1. The source of light energy for exhibiting arm movements is external to the
subject and under the control of the experimenter. The source of acoustic
energy for exhibiting speech movements is internal (the glottis) and not directly

controllable by the experimenter.

2. The bones and tissues of the body conduct acoustic energy fairly well; they do
not conduct light energy well. For these (and other) reasons, acoustic speech
feedback reaches the cochlea internally via the skull and soft tissues of the head
as well as externally via the air, while visual feedback reaches the eyes only via

the easily blockable external pathway.
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As discovered by Von Békésy, the ratio of the acoustic energy transmitted to
the cochlea internally via the head (commonly called “bone conduction”) to that
transmitted by air (called the “side tone”) is about 5dB [Békésy, 1949]. Thus the
internal pathway is nearly as efficient as the external one. Since there is no feasible
way to interrupt the bone conduction signal,! there appeared to be only one option:
mask out the bone conduction signal with adequate noise.

There are two problems with this option. First, the level of noise necessary to do
this for voiced speech is quite high. Second, even assuming sufficiently loud masking
noise to block a subject’s hearing, it is not easy to introduce a feedback substitute
in the presence of a mask; the substitute feedback must be provided at a higher
amplitude level than the masking noise.

The solution chosen was to restrict the subject to using whispered speech. The
overall amplitude of whispered speech is much less than that of voiced speech
[Schwartz, 1970]. Indeed, we found in pilot experiments that very weak masking
noise could block out most of a subject’s hearing of his own whispered speech. This
allowed a mildly amplified version of the substitute acoustic feedback to be mixed
with the noise and fed to the subject’s ears, thus avoiding high sound amplitude lev-
els. Somewhat stronger, but still mild, masking noise could also be used by itself to

block all of a subject’s hearing of his own whispered speech.

2.2.5 Recording Task Performance

In an SA experiment, some aspect of the performance is recorded to assess whether
the subject has compensated for the effects of the feedback transformation.

In the case of the Held et al. experiment, the feedback transformation shifted
perceived hand position. The recording of task performance was limited to record-
ing endpoint hand position (i.e., the (x,y) point the subject’s hand arrived at in a
reach to a target). For each experimental phase, mean endpoint hand position of

all reaches to a target could then be calculated and compared. Mean hand position

! Air conducted signals can be attenuated by earphones.

46



in the testing phase could be subtracted from mean hand position in the baseline
phase. Any observed difference could then be compared with the shift of the feed-
back transformation to assess whether the hand position change compensated for the
transformation.

In the vowel SA experiment, the same compensation assessment procedure was

adopted, with vowel formants being recorded instead of hand positions.

2.3 Summary of the Speech SA Experiment De-
sign

In this chapter, the key elements of an experimental design for investigating SA in
vowel production were identified, leading to the following general outline:

(1): The task of subjects is to whisper CVC utterances, where the C’s are stop
consonants and V is a vowel from the set of [i]-[a] path vowels: {[i],[¢],[e],[z],[a]}.
These utterances are prompted orthographically with appropriately spelled words.
(2): The feedback transformation shifts perceived position along the [i]-[a] path in
formant space. The apparatus that accomplishes this transformation has to introduce
less than 30ms of feedback delay, and the fidelity of its output has to be such that the
subject notices no significant difference between it and his normal acoustic feedback.
(3): The purpose of the experiment is to determine if F1 and F2 of a subject’s vowel
production can be affected by experience with the feedback transformation. The

design of the experiment therefore consists of the following sequence:

e A baseline phase, in which the subject is prompted visually to whisper CVC
utterances while the formant values of his utterances are recorded. For some of
the utterances, he hears (unaltered) feedback of his whispering. For others, he

is prevented from hearing his whispering by masking noise.

e A training phase, in which the feedback transformation is introduced. In
this phase, the subject is prompted visually to whisper a limited number of

utterances while the feedback transformation alters the perceived formants of
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his whispering.

e A testing phase, in which the subject is again prompted visually to whisper
CVC utterances while the formant values of his utterances are recorded. For
some of the utterances, he hears altered feedback of his whispering. For others,

he is prevented from hearing his whispering by masking noise.
(4): The subject’s responses during the experiment are grouped into two types:

1. Compensation responses: Utterances the subject produces while he hears

feedback (unaltered or altered) of his whispering.

2. Adaptation responses: Utterances the subject produces while masking noise

prevents him from hearing his whispering.

For both types of responses, vowel production changes are assessed. To do this,
the steady-state vowel portions of each utterance are extracted, and mean formant
values computed. For each vowel, a comparison is made between mean formant values
in the testing phase and those of the baseline phase. The resulting formant difference
is compared with the formant shift of the feedback transformation. This comparison
is used to assess whether the vowel production change compensated for the feedback
transformation.

Compensatory vowel production changes seen in a subject’s compensation and

adaptation responses exhibit different phenomena:

e Such changes seen in his compensation responses exhibit compensation: they
show he attempted to restore how he heard his vowel formant frequencies before

feedback was altered.

e Such changes seen in his adaptation responses exhibit retained compensation:
they show he retained his compensatory vowel production changes even when
denied acoustic feedback. This retention of compensation is called adaptation:

if it occurs, speech is said to exhibit SA.
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Chapter 3

Apparatus and Methods

In the previous chapter, the general outline of an experiment to investigate SA in vowel
production was developed. This was the basis for the actual vowel SA experiments
described in later chapters. In this chapter, the apparatus, procedures, and data

analysis methods used in these experiments are discussed.

3.1 Overview

. PC monitor on which
transformed eamzi?les; ..... x.\\StImUh are presented
speech signal P N h

---------- |
DSP board
inPC \ J
intercepted ; ™ noise cancelation
speech signal whispered speech microphone

Figure 3-1: Overview of the experimental apparatus.
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Figure 3-1 shows an overview of the key components of the apparatus used in the
experiments. The subject sits ir: front of a PC video monitor wearing a head-mounted
microphone and earphones. Words are presented on the monitor screen for the subject
to pronounce. He whispers his pronunciations of these words, and his speech is
transduced by the microphone and fed as input to a digital signal processing board
(called the DSP system) inside the PC. The DSP system implements the formant
shifting acoustic transformation and returns the altered feedback to the subject via
the insert earphones. It also records the formants of subject’s utterances.

In the following sections, the process of conducting the experiments using this

setup will be described. These sections will explain the four major aspects of this

process:

¢ Transforming the Acoustic Feedback: The signal processing done by the
DSP system to alter the formants of a subject’s whisper feedback.

e Constructing the Feedback Transformation: The precise definition of the

formant alterations used, as well as the general method for constructing them.

e Utterance Data Acquisition: How the experiments prompted subjects to

whisper the desired utterances.

e Utterance Data Analysis: How data collected in an experiment was ana-

lyzed.
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Figure 3-2: Overview of the signal processing that implements the acoustic transfor-
mation.
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3.2 Transforming the Acoustic Feedback

Figure 3-2 shows an overview of the key signal processing steps running on the DSP
which implements the acoustic transformation. It is an analysis-synthesis process

which repeatedly:

(2) Captures from the microphone an 8ms frame of the subject’s whispered speech

(64 time samples at an 8KHz sampling rate).

(b) Performs a 64-channel spectral analysis of this frame, retaining only a smoothed

magnitude spectrum of it.
(c) Estimates the first four formants from the magnitude spectrum.
(d) Alters the frequencies of the three lowest formants via a lookup table.

(e) Resynthesizes a new 8ms frame of whispered speech from the altered formants.

This process incurred a feedback delay of only 16ms.
A more complete description of the signal processing done in these steps can be
found in Appendix B. Here we discuss further only those aspects which affect the SA

experiment design.

Step (a): Acquisition Time samples of the subject’s whispering were acquired
from the microphone at a rate of 8KHz. 64 time samples constituted an 8ms frame
of whispered speech data. Once a frame of data was collected, it was passed on to
the spectral analysis step.

The 8KHz rate at which time samples were acquired from the microphone limited
the bandwidth of the spectral processing to 4000 Hz. To improve fidelity, it was
desirable to retain F4 in the synthesized feedback returned to the subject. For female
and child speakers, F4 is usually above 4000 Hz, so only male speakers were used in

the experiments.
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Step (b): Spectral Analysis A 64-channel magnitude spectrum was computed for
the current frame. This spectrum was averaged with the previous frame’s spectrum

and then smoothed in frequency.

Step (c): Formant Estimation From the smoothed magnitude spectrum, the
frequencies and amplitudes of the first four formants were estimated.

In voiced speech, it is conventional to estimate formants from peaks in the en-
velope of the magnitude spectrum [Peterson and Barney, 1952]. However, complica-
tions were found in the spectrum of whispered speech which prevented this simple
estimation approach. In particular, it was found that F1 was best estimated as the
centroid of spectral amplitudes within a limited range of frequencies. This range was
subject-specific and was called the F1 range. The higher formants - F2, F3, and F4
- were estimated as the three lowest frequency spectral peaks above the F1 range.

This estimation procedure is illustrated in Figure 3-3. Further discussion of this
approach to formant estimation can be found in the appendices: Section A.l dis-
cusses the characteristics of whispered speech that motivated the approach, while
Appendix B discusses the signal processing details involved in implementing the ap-

proach.
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Figure 3-3: An illustration of the formant estimation procedure. The solid line shows
the spectrum of one frame of the author’s whispering of [i]. The circle-terminated
vertical lines display the formants estimated from this spectrum. The gray region
highlights the F1 range. As these lines indicate, F1 is estimated as the centroid of
spectral amplitudes within the F1 range, while outside of this range, F2, F3, and F4
are estimated from the spectrum’s peaks, just as they would be in a voiced spectrum.
(In this range, the dashed line is a peak-enhanced version of the spectrum used to
facilitate peak finding. Note also that, for display purposes, the spectra and estimated
formant amplitudes have been offset vertically from each other by magnitude scaling.)
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Step (d): Formant Alteration To implement the feedback transformation, a
lookup table was used to shift the frequencies of F1, F2, and F3.!
In this approach, the desired feedback transformation was stored in a table as a

finite number of transformation pairs of the form:

((FlaFQ’F3)original’ (Fl’Fz’F3)transformed)

The process of altering the formant frequencies was thus a two step process in-

volving:

1. Finding in the table the transformation pair whose (FI’F2vF3)original entry
matched the frequencies of F1, F2, and F3.

2. Replacing the frequencies of F1, F2, and F3 with the values found in the
(F1,F2,F3) ransformed €ntry of this transformation pair.

It was possible to use a lookup table because the number of possible (F1,F2,F3)

formant frequency combinations was limited. This was due to several factors:

1. The spectral analysis was discrete: only 64 frequency values between 0 and
4KHz were represented. Thus, each formant frequency could take on only one

of 64 possible values.

2. Because the experiments involved CVC words restricted to the vowels i], [¢],
€], [], and [a], only a limited region of (F1,F2,F3) space around these vowels

needed to be considered.

By reducing the formant alteration process to a table lookup operation, it could
be implemented with minimal computational overhead, which was essential given the
time constraints on the signal processing. The result was that the actual computations
involved in creating the table could be done off line in advance of the experiment,

using a process that will be described below.

In the previous chapter, the feedback transformation was specified as needing only to shift F1
and F2. However, because the DSP had sufficient processing speed and memory, the implemented
feedback transfcrmation also shifted F3 to enhance the fidelity of the shifted feedback.
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Step (e): Synthesis The process of synthesizing substitute acoustic feedback
for the subject from the altered peak representation was based on an approach
called formant synthesis, which is a method used in many current speech synthe-
sis systems.[Klatt, 1980, O’Shaughnessy, 1987]

The approach is based on the idea that speech can be modeled as a source-filter
process in which the vocal tract is seen as a time-varying linear filter, and speech is the
response of this filter to the glottal source function. For any one time instance, this
response is the convolution of the glottal source function with the impulse response
of the vocal tract filter.

The speech synthesis process based on this therefore involved two steps:

1. Computing the filter impulse response from the formant frequencies and ampli-

tudes.

2. Convolving this impulse response with a random impulse sequence representing

the whispered glottal source function.

The synthesized speech frame was fed back to the subject via the earphones.
Thus, by controlling how the lookup table altered formant frequencies, we could
control how much the synthesized feedback differed from the subject’s original acous-

tic output.

3.3 Constructing the Feedback Transformation

As described above, feedback transformations were implemented on-line using lookup
tables. For each feedback transformation used, a table was needed that specified
the formant shifts of every (F1,F2,F3) combination a subject could produce. This
approach off-loaded a considerable computation burden: the table could be pre-
computed prior to its use in the experiment.

In this section, the method used to construct these feedback transformation tables
will be described. This is followed by a discussion of the specific feedback transfor-

mation tables actually used in the experiments,
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3.3.1 Defining the Feedback Transformation

The transformation of a given (F1,F2,F3) combination was based on the general
concept discussed in Section 2.1.2. There it was explained that a shift of [i/-[a]
path position should produce a perceivable feedback alteration that a subject could
compensate for. (The arrow labeled shift2 in Figure 2-3 shows an example of such
a feedback alteration.) This concept was based on the idea that movement along the
[i]~[a] path changes phonemic value, while movement perpendicular to the path does
not,.

In the discussion which follows, the feedback transform definition developed from

this general idea is explained.?

3.3.1.1 Defining [i]-[a] Path Position

Defining a transformation based on the above concept required a precise definition of

[i]-[a] path position. This required specifying:
1. The precise definition of the [i}-[a] path.

2. How position along it would be measured.

2In this explanation, most concepts are illustrated in (F1,F2) formant space. However, it should
be kept in mind that these concepts are meant to apply equally well to (F1,F2,F3) formant space.
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Figure 3-4: Definition of a subject’s [i]-[a] path (see next page).

(a) shows how the path was extended beyond [i] and [a]. (1) At the [i] end of the path,
the difference vector D1 between [i] and [i} was added to [i]. The resulting position
was designated the path beginning (shown as “beg” in the plot). (2) At the [a] end of
the path, the difference vector D2 between [z] and [a] was added to [a]The resulting
position was designated the patl: end (shown as “end” in the plot).

(b) shows how the path reference points were numbered. Path reference points are
shown as white symbols: path vowels as white diamonds; path extensions as white
circles. The complete [i]-[a] path is shown as the gray line linking the path reference
points.
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Defining the [i]-[a] Path One problem with the concept of a feedback transfor-
mation that shifted perceived [i]-[a] path position was defining how it should act on
the ends of the path: [i] and [a]. The chosen solution was to extend the path at both
ends so that [i] and [a] were no longer the path ends. Figure 3-4(a) shows how this
was done.

Next, the points corresponding to path beginning, path vowels, and path end were
numbered from 0 to 6 as shown in Figure 3-4(b). These numbered points are called
path reference points. The actual curve corresponding to the [i]-{a] path was created

by connecting, in the numerical order, these path reference points.

Measuring Path Position In reaching SA studies, a fixed prism shifts perceived
position of every (x,y) point by the same amount. There is thus a uniformity in the
prism’s effect on a subject’s perception of (x,y) position. In the vowel SA studies,
the intent was to design feedback transformations with this same uniformity of effect
on a subject’s perception of path position. That is, we wanted equal shifts in path
position, no matter where on the path they occurred, to be equally salient to the
subject.

Path position, thus, was to be measured such that equal changes in its value
anywhere along the path were always equally salient to the subject. To gauge this
saliency, it was assumed that shifts of path position from one path vowel to the next
were all equally salient to the subject. In other words, shifting path position from [i]
to [¢] was as salient as shifting from [¢] to [¢] or from [g] to [] or from [e] to [a]. This
assumption was based on the hypothesis that all such changes in vowel identity had
equally significant linguistic consequences.?

Thus, position along the path was specified in relation to the path vowels. For

any point on the path, its position was calculated as follows:

o If the point was a path reference point (a path vowel, or the path beginning or

end point), its position was simply the number corresponding to that point.

3Consider, for example, how changing path vowel V in bVd changes the word from “beet” to
“bit” to “bet” to “bat” to “bought”.
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o For any point between between two path reference points, position was expressed
as a fraction of the total curve length between these path reference points.

Figure 3-5 illustrates how this was done for a path point P between [¢] and [z].

F2
E
/ :
i
8"

F1

Figure 3-5: Showing how the path position of path point P between [€] and [z] was
calculated as the path position of [¢]plus the ratio of path lengths lio¢/lpars.

By this measure, from any path vowel, a 1.0 unit path position change is a single
change in vowel identity. For this reason, the units in which path position is measured
are called “vowel-units”.

Using this measure, each feedback transformation was defined by single number:
the amount of path shift it added to each path position.*

This deﬁni;,ion is consistent with the original concept described in Section 2.1.2.
This is illustrated in Figure 3-6, which is a re-description of Figure 2-3 using the

ahove transform definition.

4Obviously, sensible additions to this definition were needed to specify what to do when adding
the shift resulted in a path position less than 0 or greater than 6 (i.e., off the path). These additional
specifications were: if the resulting path position was less than 0, limit it 0; if it was greater than 6,
limit it to 6.
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Figure 3-6: Redescription of Figure 2-3 using the transform definition and the terms
defined in this section. In the figure, shift2 represents a +2.0 feedback transforma-
tion: it adds 2.0 vowel units to the perceived position of any point on the [i]-[a] path.
It’s action on [¢] increases [¢]’s path position 2.0 vowel units to [a). To compensate
for a 2.0 vowel unit increase in perceived path position, a subject must decrease his
path position by 2.0 vowel units. Thus comp2 represents complete compensation for
shift2’s effect on [e]: a path position shift of -2.0 vowel units to [i]. This restores
the subject’s untransformed percept of [¢], since the transform’s effect on [i] shifts [i]
+2.0 vowel units to [g].
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3.3.1.2 Path Projectionrr and Deviation

To compleie the definition of the feedback transformations, their actions on points
near, but not actually on, the [i]-[a] path needed to be specified. This was done by

representing each point F in formant space in terms of two quantities (see Figure 3-7):
1. The position P on the [i]-[a] path nearest this point.

2. A vector D representing the difference between the nearest path position and

this point.

Quantity 1 was called a point’s pati. piajection: it functioned as the path position
of the point.

Quantity 2 was called a point’s path deviation: it represented how much the point
actually deviated from its path projection.

Figure 3-7 shows how F’s path projection and deviation were calculated in two-

and three-dimensional formant spaces.
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Figure 3-7: Showing (in two- and three-dimensions) how points in formant space were
represented in terms of path projection and deviation.

(a) shows path projection and deviation of point F in (F1,F2) space. In this figure, a
limited segment of the [i]-[a] path is show as a gray line. The path point P nearest F
is found by dropping perpendicular D from F to the [i]-[a] path. The path position of
P (see Figure 3-5) is called F’s path projection. It is a scalar quantity. Perpendicular
D is called F’s path deviativn. In (F1,F2) space, D is a scalar quantity: D’s magnitude
represents the perpendicular distance from F to P; D’s sign represents whether F is
above (+) or below (-) the path. (In the figure, F is shown above the path.)

(b) shows path projection and deviation of the same point F in (F1,F2,I'3) space. In
this figure, the light gray (F1,F2) plane is the same plane shown in figure (a) (we
assume point F and the [i]-[a] path all have the same F3 values.). The F3 axis is
shown rising obliquely out of the page. The path point P nearest F is still found by
dropping perpendicular D from F to the [i]-[a] path. F’s path projection (the path
position of P) is still a scalar. However, in (F1,F2,F3) space, I'’s path deviation D
is a vector: D’s magnitude still represents the perpendicular distance from I’ to P,
but D’s direction can’t be specified with just a number sign. With the added F3
dimension, F could be anywhere on circle C and still have the same perpendicular
distance to P. Thus, to uniquely specify point F, D’s direction must be specified as a
rotation angle.
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3.3.1.3 The Complete Transform Definition

By representing points near the [i]-[a] path in this fashion, each feedback transfor-
mation could still be defined by a single number: the amount of pauh shift it added
to each point’s path projection. Feedback transformations defined this way shifted a
point’s path projection but left its path deviation unaltered.

This feedback transform definition also specifies what subjects must do to com-
pensate. As defined above, a feedback transform shifts perceived path projection by
some amount and in some direction along the path. To cancel this perceived effect, a
subject must shift path projection of his vowels by the same amount in the opposite
direction. However, since the transform leaves path deviation unaltered, the subject’s
compensating production change must also leave path deviation unaltered.

Figures 3-8 and 3-9 illustrate these concepts. Each shows a magnitude 2.0 feedback
transform and a subject’s compensation for it: Figure 3-8 shows a +2.0 transform;
Figure 3-9 shows a -2.0 transform. For reasons discussed below, these particular trans-
forms were used repeatedly throughout the experiments. As a result, they warrant

further discussion here:
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Figure 3-8: Action of the +2.0 feedback transformation and compensation for its
perceived shift of F.

The 42.0 Feedback Transformation Figure 3-8(a) shows how the +2.0 feedback
trausformation shifts what a subject hears: if he whispers vowel sound F-, he hears
sound F; if he whispers F, he hears F+.

This action of the transformation is best explained in terms of path projections and
deviations. The figure shows that F-, F', and F+ have path projections P-, P, and P+,
respectively. All have the same path deviation D. The transformation increases by 2.0

the path projection of all vowel sounds, but leaves their path deviations unaltered:

e Suppose the subject whispers F-. F- has a path projection of 0.5 (point P-) and
a path deviation D. The transformation adds 2.0 to P- and leaves D unchanged.

Thus, the subject hears F- shifted to a point with path projection 2.5 (point P)
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and the same path deviation D - this is point F.

e Suppose the subject whispers F. F has a path projection of 2.5 (point P) and a
path deviation D. The transformation adds 2.0 to P and leaves D unchanged.
Thus, the subject hears F shifted to a point with path projection 4.5 (point
P+) and the same path deviation D - this is point F+.

From this description, it is easy to see how a subject compensates for the trans-
formation. Figure 3-8(b) shows complete compensation for the transformation’s per-
ceived effect on F. In this figure, the large dark arrow shows the compensating pro-
duction change and the hollow arrow shows how the subject hears this production
change.

Normally, if a subject wishes to hear F, he whispers F. However, if he does this
with feedback altered by the +2.0 transformation, he hears F+ instead. To hear F
in this case, he must shift his whispering from F to F- (dark arrow): doing so shifts
the sound he hears from F+ back to F (hollow arrow).

This compensation is more precisely described in terms of path projections. The
transformation adds 2.0 to the path projection of the subject’s vowel sounds, but
does not alter their path deviations. To compensate, the subject must subtract 2.0
from his vowel sound path projections without changing their path deviations. F
has a path projection of 2.5 and a path deviation D. Subtracting 2.0 from F’s path
projection without changing F’s path deviation shifts F to F-.
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Figure 3-9: Action of the -2.0 feedback transformation and compensation for its
perceived shift of F.

The -2.0 Feedback Transformation Figure 3-9(a) shows how the -2.0 feedback
transformation shifts what a subject hears: if he whispers vowel sound F+, he hears
sound F; if he whispers F, he hears F-. This is just the reverse of the previous
situation.

The transformation subtracts 2.0 from the path projections of all vowel sounds,

but leaves their path deviations unaltered:

e Suppose the subject whispers F+. F+ has a path projection of 4.5 (point P+)
and a path deviation D. The transformation subtracts 2.0 from P+ and leaves D
unchanged. Thus, the subject hears F+ shifted to a point with path projection
2.5 (point P) and the same path deviation D — this is point F.
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e Suppose the subject whispers F. F has a path projection of 2.5 (point P) and
a path deviation D. The transformation subtracts 2.0 from P and leaves D
unchanged. Thus, the subject hears F shifted to a point with path projection
0.5 (point P-) and the same path deviation D - this is point F-.

Figure 3-9(b) shows a subject’s complete compensation for the transformation’s
perceived effect on F. To hear F in this case, he shifts his whispering from F to F4
(dark arrow): this shifts the sound he hears from F- back to F' (hollow arrow).

In terms of path projections, the subject compensates by adding 2.0 to his vowel
sound path projections without changing their path deviations. Adding 2.0 to F’s
path projection without its path deviation shifts F to F+.

3.3.2 General Construction Procedure

As described in Section 3.2, a feedback transformation was stored as a table with a

finite number of transformation pairs of the form:

((FI’FZ’F3)original’ (F1,F2,F3)¢ransformed)
Using the above feedback transformation definition, a feedback transformation
table for a subject was constructed as follows:
1. Define the subject’s [i]-[a] path in (F1,F2,F3) formant space.

2. Specify a region R around the path large enough to include the subject’s normal

path vowel production variations.

3. Specify the desired amount of path projection shift for the feedback transfor-

mation.

4. Discretize each formant’s frequency range to 64 values between 0 and 4KHz.
Doing this matches the frequency resolution of the DSP spectral analysis (de-
scribed in Section 3.2).

5. For every (F1,F2,F3) combination in region R:
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(a) Store it as (Fl,F2,F3)0riginal.
(b) Determine its (path projection, path deviation) representation.
(c) Shift the path projection by the amount specified for the transforination.

(d) Convert the resulting (path projection, path deviation) representation back
into an (F1,F2,F3) combination.

(e) Store the result as (F1,F2,F3); . oformed:

3.3.3 Transformations Used

In an effort to elicit detectable compensating responses, subjects were exposed to

large feedback transformations in the experiments.

In order to do this, the experiments restricted subjects to hearing the effect of the
feedback transformation only when they were producing []. Because of [¢]’s central
[i]-[a) path position, large feedback transformations of £2.0 vowel units could be

applied to [g]without the perceived result extending beyond the range of path vowels:

e A +2.0 transform makes [¢] sound like [a], which a subject can compensate for

by producing [i] (as shown in Figure 3-6).

e A -2.0 transform makes [¢] sound like [i], which a subject can compensate for

by producing [a].

Thus, 2.0 vowel unit transformations of [¢] always produced large, perceivable
vowel sound differences that a subject could, in theory, completely compensate for.

Since these transformations were so commonly used, they were given names:

e The +2.0 transformation was called the 2p feedback transformation.

e The -2.0 transformation was called the 2m feedback transformation.

The effects of these transformation on vowel sounds and the production changes
necessary to compensate for them were shown in figures 3-8 and 3-9. Figure 3-10
shows the actions of these transforms on actual vowel formant data collected from a

subject.
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Figure 3-10: Effects of the 2p and 2m transformations on vowels produced by subject
MB. In both (a) and (b), the arrow base represents the (F1,F2) formar t values of one
of the subject’s vowel productions. The arrow tip represents how the transformation
shifted the perceived values of these formants. (a) shows the effect of the 2p trans-
formation on his renditions of [i]and [e], showing that the resulting perceived shift of
[i]is to [¢], and that of [e]is to [a]. (b) shows the effect of the 2m transformation on
his renditions of [a]and [a], showing that the resulting perceived shift of [a]is to [g],
and that of [¢]is to [i].
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3.4 Utterance Data Acquisition

As described at the end of chapter 2, each speech SA experiment had structure

consisting of a sequence of at least three phases:

1.

ro

A baseline phase, in which the subject was visually prompted to whisper CVC
utterances while the formant values of his utterances were recorded. For some
of the utterances, he heard unaltered feedback of his whispering. For others, he

was prevented from hearing his whispering by masking noise.

A training phase, in which the feedback transformation was introduced. In
this phase, the subject was visually prompted to whisper a limited number of
utterances while the feedback transformation altered the perceived formants of

his whispering.

. A testing phase, in which the subject was again visually prompted to whisper

CVC utterances while the formant values of his utterances were recorded. For
some of the utterances, he heard altered feedback of his whispering. For others,

he was prevented from hearing his whispering by masking noise.

Thus, as experienced by the subject, each experiment was simply a series of

promptings to whisper words under different feedback conditions. In this section,

we explain this prompting process in more detail by describing the general script of

how all the experiments were conducted.

3.4.1 Initial Setup

All experiments began with the subject sitting in front of the PC’s video monitor,

putting on the insert earphones, and having the head-mounted noise canceling micro-

phone put on his head. This was followed by a test of the two modes of feedback he

heard throughout the experiment:

o Mized feedback: a mixture of mild (40 dB SPL) masking noise (that impeded

hearing of bone conducted whispering), and, at a louder level (=50dB SPL),
synthesized feedback of his whispering.
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e Noise feedback: 60 dB SPL masking noise that completely prevented him from

hearing his whispering.

The first feedback mode test was prompted on the video screen by the phrase:

( mixed feedback test ]

Simultaneous to this, the mixed feedback mode of the DSP system was turned

on, allowing the subject to hear feedback of his whispering. The formant frequencies
of the synthesized feedback were, at this point, unaltered. The subject was then
instructed to whisper the words “beed’, “bid”, “bed”, “bad”, and “bod”, while both

he and the experimenter listened to the DSP output. This had two purposes:

1. It allowed the experimenter to determine if the subject is whispering loud

enough so the DSP could properly process the whispered speech.

2. It allowed both experimenter and subject to verify that the synthesized feedback

was a sufficiently good reproduction of the subject’s whispered speech.

The DSP remained in mixed feedback mode until the experimenter clicked any of the
buttons on the PC’s mouse, at which point the second feedback mode test began.

The second feedback mode test was prompted on the video screen by the phrase:

[ noise feedback test J

Simultaneous to this, the noise feedback mode of the DSP system was turned on,

blocking the subject’s hearing. The subject was instructed to again whisper the words
‘beed’, “bid”, “bed”, “bad”, and “bod”. He was also instructed to pay attention to
whether he could hear his own whispered speech. The experimenter then switched
off the DSP output amplifier and asked the subject if he could hear his whispered

speech. If he said yes, the positioning of the insert earphones and the output volume
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of the DSP output amplifier were checked, the DSP output amplifier switched back
on, and the test was repeated. With proper earphone positioning, a masking noise
amplitude of 60 dB SPL (still rated by all subjects as not uncomfortably loud) was
sufficient to prevent all subjects from hearing their whispered voices. Another click
by the experimenter ended this test, turned off the noise output from the DSP, and
prompted the subject with displayed phrase:

ready to start?

At which point the experiment halted until the subject was ready to proceed,

which he signaled by pressing any mouse button.

3.4.2 Data Acquisition

Past this point, the experiment was a series of utterance data acquisition epochs. Each
epoch began with an epoch progress report: a display of how many more epochs there

were in the experiment. A typical display was:

indicating 170 epochs left to go. The experiment also halted at these points to
allow the subject to take a brief break and/or drink water provided. The experiment
re-commenced when the subject hit any mouse button, at which point the words to
be pronounced in that epoch were prompted for.

Each word prompting prompted for a desired word and a desired utterance dura-

tion. A typical prompting was:
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where the line terminated by the horizontal bar indicated the desired duration (in
this case about 500ms).

Simultaneous to this prompting, the DSP output was in either mixed or noise
feedback mode. When the subject began whispering the word, an input amplitude
threshold was exceeded, causing the DSP system to begin recording the utterance
data, and also causing dots to be printed on the screen. These dots continued to
be printed as long as the subject continued whispering. Subjects were instructed to
whisper sufficiently long to make the dots end approximately where the horizontal
line was. A typical display after a subject responded to the above shown prompting

was:

oooooooooooo

Subjects were encouraged to exceed the horizontal mark, rather than undershoot
it. The subject’s completed whispering of one word triggered the prompting of the
next word. After 10-20 prompted words, the end of the epoch was reached. At the
epoch’s end, a progress report was displayed, and the experiment would again wait
for a mouse button push to continue to the next epoch. This process continued until

all epochs of the experiment were completed.
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3.5 Utterance Data Analysis

All the experiments were designed to investigate SA in the production of vowels in

CVC words. For a specific vowel in a specific CVC word, this involved repeatedly

prompting a subject to whisper that word in each experiment phase.

The data analysis averaged a word’s repeated productions in an experiment phase

to determine its mean production in that phase. Mean productions of the word in

different phases were then compared to exhibit overall production changes. Overall

production changes in the word’s vowel portion were then assessed for compensation:

i.e., how much they compensated for the feedback transformation effects.

In this section, this analysis process is described in more detail. In brief, it was a

sequence of the following analyses:

1.

o

Formant timecourse analysis using avgrams. Avgrams were spectrogram-like
plots of a word’s mean formant timecourses. These plots exhibited a word’s
mean production in an experiment phase. Comparing avgrams of the same word

from different phases exhibited any overall changes in the word’s production.

Vowel formant analysis using vowel plots. These plots showed, in formant space,
(F1,F2) of a word’s vowel portion, averaged over an experiment phase. Plots
from different phases were combined to exhibit vowel production change in rela-
tion to a subject’s [i]-[a] path. This provided a visual assessment of how much

the vowel production change compensated for the feedback transformation.

Vowel (path projection, deviation) analysis. The feedback transformations al-
tered perceived path projections (but not deviations) of a subject’s formants.
Thus, resolving a vowel’s production change into its path projection and devi-
ation components allowed compensation to be quantified. The path projection
component measured the amount of production change directly counteracting
(or worsening) the feedback alteration. The path deviation component mea-
sured the amount of production change having no effect on the feedback alter-

ation.
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These three analysis steps are explained in more detail in the following sections.

3.5.1 Formant Timecourse Analysis: Avgrams

Formant timecourse analysis was done to exhibit how a subject’s entire production of
a word (or set of words) was affected by exposure to altered feedback.® This analysis
was based on comparing avgrams of the word in different experiment phases. An
avgram is a way of looking at a word’s production, averaged over an experiment

phase. It shows in spectrogram-form the word’s mean formant timecourses.

3.5.1.1 Avgram Creation

Creating an avgram involved selecting an utterance data set, averaging formant fre-

quency timecourses of the set, and plotting the results.

Selecting the Utterance Data Set The utterance data set was determined by
which word and experiment phase were of interest. For example, an avgram of the
word “get” in the baseline phase would use the utterance data records of all baseline-

phase productions of “get”.

Averaging Formant Frequency Timecourses Recall that formants were esti-
mated for each 8ms frame of a subject’s whispered speech. When a subject’s utter-
ance was recorded, the (F1,F2,F3,F4) estimates of each frame of the utterance were
stored. An utterance’s data record (which we will call an utterance record) was thus
a sequence of these (F1,F2,F3,F4) estimates (which we will call frames®).

Since utterances have different durations, their data records have different frame
lengths (numbers of frames). Thus, a special method was needed to average formant

timecourses of an avgram’s utterance data set.

5For the rest of these sections, the term “word” can also mean “set of words”, with the distinction
being made when important.

5Thus, depending on the context, the term “frame” means different things: in discussing signal
processing, “frame” refers to a 64-sample chunk of speech data; in discussing data analysis, “frame”
refers to the (F1,F2,F3,F4) estimate of that chunk of speech data.
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The first step of this method was to find the frame length L of the minimum
duration utterance record. The next step was to create separate time bins for frames
1 to L. Each time bin contained formant data frames from the same position in each

utterance record. Thus:
e Frame 1’s time bin contained frame 1 of all utterance records.

e Frame 2’s time bin contained frame 2 of all utterance records.

e Frame L’s time bin contained frame L of all utterance records.

For each time bin, mean formant frequencies were then estimated from its formant

data frames.”

Displaying the Results The time bins’ mean formant estimates were then dis-

played in a spectrogram-like plot where:
e the horizontal axis represents time, and
o the vertical axis represents frequency.

In such a plot (see Figure 3-11), each vertical slice represents a time bin’s mean
formant frequency estimates. The horizontal position of the slice corresponds to the
time represented by the time bin (i.e., 8ms times the the frame number of time bin).
Within each slice, vertical positions of black pixels mark the time bin’s mean formant
frequencies.

If a formant frequency estimate doesn’t change too quickly over successive time
bins, its marked position over successive time slices forms a curve. This curve is called
the “track” of the formant and represents the formant’s timecourse.

In this way, the formant tracks in an avgram represent the mean formant time-

courses of a word, averaged over an experiment phase. Avgrams of the same word in

"The process of estimating mean formants from a set of formant data frames is explained in detail
in Section A.2.
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different experiment phases are combined to show mean changes in the word’s pro-
duction (usually resulting from exposure to a feedback transform). An example of

this is shown in Figure 3-11.
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Figure 3-11: Avgrams of subject SR’s production of the word “bep” in the baseline
and test phases of Study 2 (to be discussed in full later). The baseline phase avgram
is shown as solid lines, the testing phase avgram as dashed lines.

The plot shows all formant frequencies rise between 0 and about 80ms, but past this
point maintain approximately steady-state values. This indicates transition from the
initial [b] took about 80ms, which was followed by production of the steady-state
vowel [¢] lasting about a quarter of a second.

The plot also shows how the subject has adjusted his production to compensate for
a feedback transformation he was exposed to.

The strength of the feedback transformation (introduced between the baseline and
testing phases) was -2.0, which pushes [e] towards [i] effectiv:ly making F1 and F2
sound farther apart. The plot shows the subject compensates for this by bringing F1
and F2 closer together.

3.5.1.2 Time Alignment

An important limitation to the avgram plotting method concerns how a word’s mean
production is represented. Because of how they are constructed, avgrams are a good

representation of a word’s beginning, but a poorer representation of its end.
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As described above, constructing a word’s avgram involves essentially overlaying
and averaging formant timecourses of each production of the word in an experiment
phase. Because each production has a different duration, their data records can be
aligned to either their starting points or their ending points, but not both. A time-
stretching technique could have been used to normalize utterance duration and line
up both ends, but it was unclear what technique would be appropriate to use.

A linear time stretch of utterances was considered, but this would stretch the
formant transitions of the consonant as much as the vowel. Such time stretching
misrepresents how speakers vary CVC utterance duration: normally, the consonant
duration is kept constant and the duration of the steady-state vowel portion is varied
[Peterson and Lehiste, 1960].
~—-Some other variable ~stretching technique, such as Dynamic Time Warping
[Rabiner and Levinson, 1981], could have been used, but it was decided instead to
simply align the data records to their beginnings, and concentrate analysis on the
word beginning. This was found to be sufficient for exhibiting formant changes due

to altered feedback exposure.

3.5.1.3 Other Avgram Limitations

Another limitation of avgrams is that confidence intervals on the mean formant esti-
mates are not shown. Adding confidence intervals around the formant tracks made
avgrams overly cluttered and difficult to interpret. This limitation was offset by
displaying confidence intervals in all other types of data plots.

A final avgram limitation is that the subject’s response to a feedback transfor-
mation is not seen in formant space, which is where the transformation was defined.

This was the motivation for the vowel plots described in the next section.

3.5.2 Vowel Formant Analysis: Vowel Plots

The experiments mainly focused on how feedback transformation exposure affected
steady-state vowel productions. For this reason, vowel formant frequency changes

were analyzed in a number of ways. These changes were quantified by path projection
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and deviation analysis, but they were visualized using vowel plots.

A vowel plot is a way of looking at production of the vowel portion of a word in an
experiment phase. It was a plot of the vowel portion’s mean F1 and F2 frequencies
as a location in (F1,F2) formant space. This location was called the position of the
vowel’s production. Vowel plots from different experiment phases were combined to
exhibit how a subject changed a vowel’s production after exposure to a feedback
transform.

Before discussing how vowel plots were made, their neglect of F3 is explained.
Recall that the feedback transformations shifted F1, F2 and F3.

In whispered productions of the [i]-[a] path vowels, F3 does exhibit some frequency
change - as opposed to F4, which exhibits almost none (see Figure A-1). Thus, it made
sense to include F'3 in the formants shifted by the feedback transformation. However,
it is unclear what role F3 plays in determining perceived path vowel identity. Thus,
the vowel formant analyses were restricted to examining the frequencies of F1 and
F2, whose role in determining vowel identity (as discussed in Chapter 2) is better

understood.

3.5.2.1 Creating a Vowel Plot

The first step in creating a vowel plot was finding the the steady-state vowel portion
of the selected word’s mean production. This was done by determining where in
the word’s avgram the formants attained steady-state values. An example of this
was discussed in Figure 3-11. Next, a time interval was selected that contained the
steady-state vowel portion. This was called the selected vowel interval of the word.
Mean F1 and F2 of this vowel interval was then determined and plotted in (F1,I2)

formant space.

Determining Mean (F1,F2) of the Selected Vowel Interval To determine
mean (F1,F2) of the word’s selected vowel interval, separate formant estimates were
made from this interval within each production of the word in an experiment phase.

The resulting set of estimates were averaged. This was done in the following manner:
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1. Mean formants were estimated for the selected vowel interval in each production
of the word in the selected experiment phase. For each word production’s

utterance record:

(a: T'he set of formant data frames corresponding to the selected vowel interval

was identified.

(b) Mean formants of these frames were estimated (again, using the the method

discussed in Section A.2).

In this way, a mean (F1,F2,F3,F4) estimate was calculated for each utterance

record.

2. Statistics were calculated from the set of utterance record (F1,F2,F3,F4) esti-

mates. These were:

(a) Mean and Variance of F1.
(b) Mean and Variance of F2.

(c) Covariance of F'1 and F2.

Plotting Mean (F1,F2) of the Selected Vowel Interval These statistics were

then plotted in formant space in the following way (see Figure 3-12):

e A point F was plotted whose position represented mean (F1,F2).

e An ellipse E was plotted around this point that represented the standard error

of the mean (F1,F2) statistic.

e For reference, the subject’s [i]-[a] path was included in the plot.

3.5.2.2 Combined Vowel Plots

In this way, a vowel plot represents in formant space both the mean production of
a vowel and its production variations. Vowel plots from different experiment phases
were combined to exhibit mean vowel production changes. Two types of combined

vowel plots were used:
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Figure 3-12: A vowel plot. Position F represents mean (F1,F2) of a selected vowel
interval of a word in an experiment phase. The ellipse E around it represents the
standard error of this mean (F1,F2) estimate. (The ellipse axes are the eigenvectors
of the (F1,F2) covariance matrix.) For reference, a limited portion of the subject’s

[i]-[a] is also plotted (gray line in the figure).
1. Vowel difference plots, which displayed the change in a vowel’s mean produc-
tion between two experiment phases (usually the baseline and testing phases).

This mean change was shown as an arrow between the vowel’s position plots in

the two phases.

2. Vowel sequence plots, which displayed a sequence of a vowel’s production
changes over more that two experiment phases. This mean change sequence was

shown as a line linking the vowel’s position plots from successive experiment

phases.

For both of these plots, a plot of the subject’s [i]-[a] path was also included.

Examples of these plots are shown in Figure 3-13.
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Figure 3-13: Vowei plots of subject SR’s production changes for [¢] in “bep” during
study 2 (to be discussed later).

(a) shows a vowel difference plot of the change the subject’s production of [¢] between
the baseline and testing phases. The arrow base represents mean (F1,F'2) of the
baseline phase production, while the arrow tip represents mean (F1,F2) of the testing
phase production. The dotted line is the subject’s [i]-[a] path. The plot indicates
significant compensation for the 2m feedback transformation used in the experiment
(compare this plot with Figure 3-9(b)).

(b) shows a vowel sequence plot of how the subject’s production of [¢] changed over
the 10 stages of the training phase. The strength of the feedback transformation was
linearly changed from 0.0 to -2.0 over these 10 stages. The vowel plots of [¢] in each
stage are labeled with stage numbers and linked with a dashed line. The progression
of mean (F1,F2) positions shows the subject roughly compensated for each increase
in transformation strength.

In both plots, the ellipses indicate the standard error confidence intervals around the
mean measurements.
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3.5.3 Path Projection and Path Deviation Analysis

The above-described plotting methods were important for visualizing a subject’s re-
sponse to a feedback transformation. However, they allowed only indirect, approxi-
mate estimates of how much the subject compensated for the feedback transformation.
Since the feedback transformations specifically altered path projection, quantifying
a subject’s compensation involved analyzing path projection and deviation of a sub-
ject’s vowel productions.

The first step in doing this was converting the vowel plot fo. mant data into (path

projection, deviation) data.

3.5.3.1 Vowel (Path Projection, Deviation) Data

As described above, a vowel plot showed mean (F1,F2) of a selected vowel interval of
a word in an experiment phase. The first step is its creation was generation of a set

of utterance record (F1,F2,F3,F4) estimates. This was done by:
1. Identifying all utterance records of the word from that experiment phase.

2. Estimating (F1,F2,F3,F4) for the selected vowel interval in each utterance

record.

To make the vowel plot, (F1,F2) statistics were then calculated from the set of utter-
ance record (F1,F2,F3,F4) estimates.

To compute (path projectit;n, deviation) data for this selected vowel interval, the
set of utterance record (F1,F2,F3,F4) estimates was converted into a set of utter-
ance record (path projection, deviation) estimates. Each (F'1,1'2,[F3,F4) estimate was
converted by computing path projection and deviation of F1 and F2.2 This compn-

tation was similar to that shown in Figure 3-7(a). However, in this case, a smoother,

8The computation of path projection and deviation was restricted to (F1,F2) space for two
reasons. First, for reasons explained in the last section, all vowel formant analysis considered only
F1 and F2. Second, Because, (as explained in Figure 3-7(a)) in (F1,F2) space, path deviation
is a scalar. Scalar representations of both path projection and deviation facilitated cross-subject
comparisons of these quantities.



spline-curve version of the [i]-[a] path was used.’

Via this process, each word production’s vowel interval formant estimates were
converted into vowel interval (path projection, deviation) estimates. The set of these
estimates constituted the vowel interval’s (path projection, deviation) data for the
experiment phase.

(path projection, deviation) data for the same word’s vowel in different experi-
ment phases were then compared to measure how much a subject compensated for a

feedback transformation. Several types of such comparisons were computed.

3.5.3.2 ANOVAs

ANOVAs determined statistical significance of the effect of experiment phase (baseline
vs. testing) on a vowel’s production. This was done by computing separate ANOVAs

on the path p:ojection and on the path deviation data for a vowel.

3.5.3.3 Mean Path Projection and Path Deviation Change

Mean path projection for a vowel in an experiment phase was computed as mean of
the vowel's (path projection, deviation) data for that experiment phase. Mean path
deviation was computed similarly.

Changes in these mean estimates between two experiment phases (usually baseline
and testing) quantified the amount a subject compensated for a feedback transfor-
mation. The feedback transformation definition in Section 3.3.1.3 specified that, to
compensate, a subject must shift a vowel’s path projection. However, to avoid intro-
ducing additional distortion, he must not alter the vowel’s path deviation. Thus, by
measuring a vowel's mean path projection and deviation change, how well a subject

compensated could be quantified as follows:

o Mean path projection change was the difference in mean path projection of a

vowel produced in two different experiment phases (usually testing phase minus

9The feedback transformation tables were constructed using a line-segment [i]-[a] path definition.
The advantages of instead using a spline-based [i]-[a] path definition are discussed in Appendix C.

4
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baseline phase). It measured how much a subject directly compensated for a

feedback transformation’s shift of perceived path projection.

e Mean path deviation change was the difference in mean path deviation of a
vowel produced in two different experiment phases (usually testing phase minus
baseline phase). It measured how much non-compensating additional distortion

a subject added to a vowel’s production.

3.5.3.4 Mean Compensation

To derive a number representing what fraction of a feedback transformation’s per-
ceived effect a subject compensated for, a normalized version of mean path projection

change was computed. This was called mean compensation, and was computed as:

(mean path projection change)

mean compensation =
path projection shift of the

feedback transformation

This formula is based on the fact that, for complete compensation, a subject must
shift his vowel path projection by an amount equal to the feedback transformation
magnitude, but opposite in direction. Its range of values represent the degree to
which a subject compensates for the feedback transformation he was exposed to. If

a subject’s mean compensation is M:
e M > 1.0 means he over-compensated
e M = 1.0 means he completely compensated
e 0.0 < M < 1.0 mean he partially compensated
e M = 0.0 means he showed no compensating change
e M < 0.0 means he showed anti-compensating change

Consider, for example, figures 3-8(a) and 3-9(a) above. Both figures show exam-

ples of complete compensation. In both cases, mean compensation is 1.0 because:
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e In Figure 3-8(a), the path projection change is —2.0 vowel units in response to
a +2 0 feedback transformation.

This is a mean compensation of (—2.0)/(—(+2.0)) = 1.0.

e In Figure 3-9(a), the path projection change is +2.0 vowel units in response to
a —2.0 feedback transformation.

This is a mean compensation of (+2.0)/(—(—2.0)) = 1.0.

A final point about mean compensation is that its name depends on what response

data of a subject it's computed from:

e If it’s computed from his compensation response data - from words productions
made when the subject could hear feedback of his whispering!® - it’s still called

mean compensation.

e If it’s computed from his adaptation response data — word productions made
when the subject was prevented from hearing his whispering by masking noise

- it’s called mean adaptation.

In this way, mean adaptation measures how much of a subject’s compensating
production changes are retained in productions made when he can’t hear himself.

This conforms to the definition of adaptation specified in the introductory chapter.

3.6 Chapter Summary

In this chapter, the apparatus, procedures, and data analysis methods used in these
experiments were discussed.

First, an overview of the setup used in the experiments was described, the key
element of which was the DSP system that transformed the subject’s acoustic feed-
back. The transformations were based on pre-computed tables of formant shifts of

the subject’s vowel sounds.

10The dennitions of compensation and adaptation responses were given in Section 2.3.
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Next, the method of constructing these feedback transformation tables was de-
scribed. Here, feedback transformation were defined based on the [i}-[a] path shift
concept described in the previous chapter. They were defined as shifts of perceived
path projection of a subject’s vowel sounds.

Following this, the process of acquiring subjects’ utterance data in the experiments
was described. The description showed that, from the subject’s point of view, each
experiment was simply a series of visual promptings to whisper words under different
feedback conditions.

Finally, the methods of analyzing a subject’s utterance data from these experi-

ments were described. These analysis methods included:

e Formant timecourse analysis based on Avgrams. Avgrams plotted, in spec-
trogram-like form, the mean formant timecourses of all productions of a word

within an experiment phase.

e Vowel formant analysis based on vowe! plots. A vowel plot was an (F1,F2)
formant space plot of mean (F1,F2) of a selected vowel interval of all productions

of a word within an experiment phase.

e Vowel path projection and path deviation analysis, based on a vowel’s
(path projection, deviation) data from different experiment phases. These anal-

yses involved computing:

— ANOVAs testing the effect of experiment phase on path projection and

path deviation.

— Mean path projection change between two experiment phases, to measure
how much a subject’s vowel production change compensated for a feedback

transformation.

— Mean path deviation change between two experiment phases, to measured
how much non-compensating distortion a subject added to a vowel’s pro-

duction.
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— Mean compensation, to measure what fraction of a feedback transforma-

tion’s perceived effect a subject compensated for.

— Mean adaptation, to measure how much compensatory production change

the subject retained when he was prevented from hearing his whispering.

The studies based on the apparatus, procedures, and data analysis methods dis-

cussed here are the subject of the next two chapters.

89



90



Chapter 4

Study 1: Existence of Speech

Sensorimotor Adaptation

The purpose of Study 1 was to determine if the production of vowels exhibited the pre-
dicted sensorimotor adaptation (SA) effect. The study examined how the production

of [¢] was affected by exposure to the -2.0 feedback transformation.

4.1 Introduction

As discussed in chapters 1 and 2, the principal questions concerning the effect of

altered feedback on a subject’s vowel production are:

1. Does he compensaie? Does he adjust his vowel productions to compensate for

the perceived formant shift produced by the feedback transformation?

2. Does he adapt? Does he retain his adjusted vowel productions, even when

denied acoustic feedback?

As described in Chapter 2, an SA experiment that addresses these questions con-

sists of the following three phases:

1. A baseline phase, in which a subject’s vowel productions are measured with and

without acoustic feedback. The feedback is unaltered.
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2. A training phase, in which a feedback transformation is introduced that alters
the subject’s acoustic feedback. The subject is given experience producing

vowels while hearing the altered feedback.

3. A testing phase, in which a subject’s vowel productions are again measured
with and without acoustic feedback . The feedback that the subject does hear

is still altered.

By comparing the vowel formant frequencies produced in the baseline and testing
phases, vowel production change due to exposure to the feedback transformation can
be assessed. Formant changes in vowels produced while the subject hears feedback (his
compensation response) allows us to determine compensation. Formant changes in
vowels produced while the subject hears only masking noise (his adaptation response)
measure the retention of compensation — what we have called adaptation.

Compensation and adaptation responses were analyzed using the techniques de-

scribed in Section 3.5, and summarized here:

o Avgrams were used to examine changes in formant timecourses and to identify

the steady-state vowel portions of the utterances.

o Vowel plots were used to examine changes in mean (F1,F2) within the steady-

state vowel portions.

o Path projection and path deviation values for these steady-state vowel portions
were computed. These provided scalar measures of how much subjects com-
pensated for the feedback transformation. These measures were then compared

across subjects.

Study 1 also examined subjects’ capacity to compensate and adapt. Studies of
reaching SA have found that mean adaptation generally reaches a limit of about
30% [Held, 1996]. To determine if vowel SA shows similar limitations, an additional
training and testing phase were added to the experimental design. The principle

phases of the experiment therefore were:
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1. A baseline phase.
2. A first training phase.
3. A first testing phase.

4. A second training phase.

[$)

. A second testing phase.

To summarize, study 1 sought to answer the following questions:

e Do subjects adjust their vowel productions to compensate for altered acoustic

feedback?

e Do subjects retain this production adjustment when subsequently prevented

from hearing feedback?

e Do subjects have a limited capacity to compensate and adapt?

4.2 Methods

Each subiect was run in a single experimental session consisting of:

1. Measurement of the formant frequencies of his path vowels ([i], [¢], [¢], [&], and
[a))-

2. Generation of a -2.0 formant transformation table based on these measurements.

3. Exposure, in an SA experiment, to the feedback transformation based on this

table.

Steps 1 and 2 too.: 30 minutes. Running the SA experiment (step 3) required
an additional 30 minutes. The procedures for measuring path vowel formants and
generating the -2.0 formant transformation table were described in the previous chap-
ter. Here, it is important only to recall that the -2.0 feedback transformation shifts

perceived [i]-[a] path position 2.0 vowel units towards [i].
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The experiment assessed how exposure to this feedback transformation affected
the subject’s production of the vowel [¢]. The complete experimental session consisted
of 48 epochs, each consisting of 10-20 word promptings. Each prompted word was

chosen randomly from the set:

Wtrain = { “bed”, “bet”, “red”, “head”,
“med”, “met”, “ned”, “net”,

“dead”, “debt”, “led”, “let” }

For each word prompting, the subject whispered the displayed word while the

DSP was in one of two feedback modes:

o Mized feedback mode, in which the subject was provided a mixture of mild

masking noise and, at a louder level, synthesized feedback of his whispering.

o Noise feedback mode, in which the subject was provided masking noise that

completely blocked his hearing of his whispering.
The 48 epochs of the experiment were divided into the following phases. These

were:

1. A 5 epoch warmup phase. In each of these epochs, the subject whispered 10
W ain Words while hearing feedback (mixed feedback mode). This feedback

was unaltered and no utterance data were recorded.
2. A 1 epoch baseline phase. This epoch consisted of a sequence of two periods:

e baselm: in which the subject whispered 10 Wy .., words while hearing

feedback (mixed feedback mode). All utterance data were recorded.

e baseln: in which the subject whispered 10 Wy ..:,, words while his hearing

was blocked by noise (noise feedback mode). All utterance data were

recorded.

At this point, the -2.0 feedback transformation table was loaded into the DSP,

so that all subsequent feedback was altered.
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3. A 20 epoch first training phase. In these epochs, the subject whispered 10
Wi rain Words while hearing the altered feedback (mixed feedback mode). No

utterance data were recorded.

4. A 1 epoch first testing phase. This epoch consisted of a sequence of two

periods:

e testIm: in which the subject whispered 10 Wy ... words while hearing

altered feedback (mixed feedback mode). All utterance data were recorded.

e testin: in which the subject whispered 10 Wy ...\ words while his hearing

was blocked by noise (noise feedback mode). All utterance data were

recorded.

5. A 20 epoch second training phase. In these epochs, the subject whispered
10 Wy ain words while hearing the altered feedback (mixed feedback mode).

No utterance data were recorded.

6. A 1 epoch second testing phase. This epoch consisted of a sequence of two

periods:
e test2m: in which the subject whispered 10 Wy ..., words while hearing
altered feedback (mixed feedback mode). All utterance data were recorded.

o test2n: in which the subject whispered 10 Wy ..., words while his hearing
was blocked by noise (noise feedback mode). All utterance data were

recorded.

4.3 Subjects

The subjects were 14 MIT undergraduate male native speakers of North American
English who were naive to the purpose of the study. Five of the subjects were subse-

quently excluded from the analysis of results for the following reasons:
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Subject EM was excluded because, unlike the other subjects, his path vowels
formants were not measured on the same day in which the SA experiment was

run.

Subject JO was excluded because he diphthongized his production of several of

the Wtrain words.

Subject KL was excluded because he had trouble maintaining a consistent vol-

ume of his whispering.

Subjects WW and AC were excluded because the second testing phase of the

experiment was not run on them.

4.4 Results and Discussion

Each subject’s results were analyzed using the following two methods:

1. Compensation analysis, which analyzed production changes seen during condi-
tions in which the subject heard feedback of his whispering (the baselm, testIm,
and test2m periods of the experiment). These production changes are called the

subject’s compensation response to the altered feedback.

2. Adaptation analysis, which analyzed production changes seen during conditions
in which the subject was prevented from hearing his whispering by masking noise
(the baseln, testin, and test2n periods of the experiment). These production

changes are called the subject’s adaptation response to the altered feedback.

Both analyses involved examining word and vowel production changes using the
methods described in Section 3.5.

Word production changes were examined using an avgram of the subject’s mean
utterance formant tracks. From the avgram, a time interval was determined that
contained the mean utterance’s steady-state vowel portion. Data from this time

interval in each utterance were used to analyze vowel production changes.
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Vowel production changes were examined by first making a vowel plot of the
subject’s mean vowel formant changes. These formant changes were quantified by
computing mean compensation and mean path deviation change. These two quantities
were then used in across-subject assessments of vowel production change.

In the next section, we discuss plots of the individual subject results. This is

followed in Section 4.4.2 by an examination of the results seen across subjects.

4.4.1 Individuval Subject Results

Figures 4-1 through 4-9 show the avgram and vowel plots used in the analysis of
each subject’s results. Each figure shows the analysis plots for a single subject. In
each figure, the left side labeled “(a) compensation” shows the compeusation analysis
plots, while the right side labeled “(b) adaptation” shows the adaptation analysis

plots.

In the avgrams, mean utterance formant tracks from different experiment phases

are shown in different line styles:
e Baseline phase formants are shown as solid lines.
o First testing phase formants are shown as dashed lines.
e Second testing phase formants are shown as dotted lines.

The gray region in each avgram indicates the time interval used to analyze vowel
production changes. As suggested by the brace and downward arrow, utterance data
from this time interval was processed into the vowel plot shown below the avgram.

Within the vowel plots, mean (F1,F2) values in each testing phase are compared

with mean (F1,F2) values in the baseline phase:
o The first testing phase comparison is shown as the arrow labeled “testl”.
e The second testing phase comparison is shown as the arrow labeled “test2”.

In the following sections, the figures showing the subject results are discussed.

The first five sections discuss (in order of decreasing adaptation) the five subjects
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showing the most adaptation. The last section discusses, as a group, the remaining

four subjects who showed the least adaptation.

4.4.1.1 Subject MB Results

Figure 4-1 shows plots of subject MB’s compensation and adaptation responses to
exposure to the -2.0 feedback transformation. MB’s large responses provide good
illustrations of how the measures of path projection, path deviation, and mean com-
pensation are derived. For this reason, his results will be described in greater detail

than those of other subjects.

Compensation Analysis Consider first the compensation plots (box (a) in the
figure). The avgram has three clear groups of formant tracks, showing that the
amplitudes of F'1, F2, and '3 were above plotting threshold for each of the experiment
phases analyzed (the baseline, first testing, and second testing phases).

All three formants appear to have attained steady-state values. For F1, there is
little difference between its value in the baseline phase (solid line) and in the first
and second testing phases (dashed and dotted lines, respectively). In contrast to this,
F2 values are consistently lower in the testing phases than in the baseline phase. On
the other hand, F3 valaes are consistently higher in the testing phases than in the
baseline phase.

The gray region of the avgram shows the time interval used to analyze vowel
production changes. As suggested by the brace and downward arrow, utterance data
from this time interval was processed into the vowel plot shown below the avgram.

The vowel plot shows MB’s F'2 response more clearly. The arrows show change
in mean (F1,F2) of his productions of the vowel [¢]. The position of the arrows’
common base indicates mean (F1,F2) of his vowel productions in the baseline phase.
As indicated by the labeling (“testl” and “test2”), the positions of the arrow tips
indicate mean (F1,F2) of his vowel productions in the first and second testing phases,
respectively. Both arrows show changes in mean (F1,F2) that are almost completely in

the negative F2 direction. The stability of these production changes are shown by the
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small standard error ellipses around the mean (F1,F2) positions for each experiment
phase.

The vowel plot also shows MB’s [i]-[a] path. This allows graphical estimation of
the changes in mean path projection and mean path deviation corresponding to the
vowel production changes.

The plot shows that mean (F1,F2) values of his baseline vowel productions were
quite close to [€]. This point has minimal path deviation and projects to a position
on the [i]-[a] path that is close to [¢]. Thus, since [¢] has a path position of 3.0, MB’s
baseline vowel productions have a mean path projection of about 3.0 and a mean
path deviation close to 0 Hz.

On the other hand, mean (F1,F2) of his first and second testing phase productions,
respectively, are two points deviating by about 100 Hz below his [i]-[a] path. Both
points project to path positions near [e]. Since [] has a path position of 4.0, MB’s
testing phase vowel productions both have mean path projections of about 4.0 and
mean path deviations of about —100 Hz.

Thus, in averaging MB’s testing phase results, we see he has changed mean path
projection of his vowel productions by about +1.0 vowel unit and changed mean path
deviation by about —100 Hz. This means he has compensated for about half of the
-2.0 vowel unit path projection shift produced by the feedback transformation. We
therefore estimate his mean compensation to be about 0.5.

These estimates closely agree with the calculated values: the calculated mean
compensation (averaged over the two testing phases) is 0.47+0.08, and the calculated

mean path deviation change is —105 & 12 Hz.

Adaptation Analysis The adaptation plots (box (b) in the figure) show essentially
the same results as seen in the compensation plots. The avgram and vowel plots both
show that the F2 lowering seen in MB’s compensation response has carried over to
his adaptation response. This is again seen in the avgram plot: the testing phase F2
formant tracks (dashed and dotted lines) are both visibly lower in frequency than the

baseline F2 formant track (solid line). There is also less F3 increase apparent in this
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avgram.

The F2 lowering is again more easily seen in the vowel plot. The arrows labeled
“testl” and “test2” show that the change in mean (F1,F2) from the baseline to
the first and second testing phases is again almost completely in the negative 2
direction. Note that the “test]1” and “test2” arrows have switched positions from their
arrangement in the compensation vowel plot. Note also that mean baseline (F1,F2)
is close to its position in the compensation vowel plot. Because of this, average path
projection and deviation values for MB’s adaptation response are nearly the same as
those of his compensation response.

Mean compensation and path deviation change for MB’s adaptation response are
thus predicted to be close to the values for his compensation response. This prediction
is borne out by the the calculated values for his adaptation response: calculated mean
compensation is 0.4540.08, and calculated mean path deviation change is —103 27
Hz.

In sum, it appears that exposure to the -2.0 feedback transformation has had
substantial effect on MB’s production of [¢]. The compensation analysis shows that he
compensated for approximately half of the path shift produced by this transformation;
the adaptation analysis shows that he retained this compensation even when his
hearing was blocked by noise. There is also no consistent difference in (F1,F2) position
between the two testing phases, suggesting that the extra exposure to the altered

feedback in the second training phase had little effect on MB.
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Figure 4-1: Subject MB avgram and vowel plots.
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4.4.1.2 Subject BM Results

Figure 4-2 shows plots of subject BM’s compensation and adaptation responses to
exposure to the -2.0 feedback transformation. Like subject MB, BM’s responses are
large. However, BM’s compensation results show an F1 estimation instability that
ultimately affects calculation of mean compensation and path deviation. These results

illustrate how formant estimation problems can cause errors in these calculations.

Compensation Analysis Consider first the compensation plots (box (a) in the
figure). In the avgram, the formant tracks for F1 and F2 are clear for all three
experiment phases, but the formant track for F3 is visible only for the second testing
phase (dotted line). This indicates low F3 amplitudes and suggests that all formant
amplitudes may be low. Within the time interval used to analyze vowel production
changes (gray region), F1, F2, and F3 all attain steady-state values. There is, however,
an apparent instability in F1 estimation just prior to this interval. This instability
may be due to low F1 amplitude. In the results analysis, this causes F1 to be resolved
into two peaks: one at approximately 600 Hz and the other varying between 300 to
400 Hz.! This resolution of F1 into two peaks is most pronounced for the baseline
phase data (solid lines).

F1 occasionally being erroneously resolved as two peaks in the vowel analysis
interval would fool the vowel formant analysis routines: the lower F1 peak would be
considered F1, while the upper F1 peak would be considered F2. F2 would appear to
have an occasional large drop in frequency, and F1 would appear to have an occasional
moderate drop. This would cause the mean F2 standard error to be very large and
the mean F1 standard error to be moderately large.

In the vowel plot, the the unusual position and huge standard error ellipse for

baseline mean (F1,F2) suggests that this F1 measurement error did occur within

1t’s important to note the difference between formant estimation and formant data analysis.
During the experiment, the DSP’s formant estimation routine always produces a single F1 estimate.
However, low formant amplitudes could cause this estimate to be unstable. After the experiment,
such unstable F1 estimates could cause the formant data analysis routine to resolve two or more
peaks in the F1 region. See Appendix A.
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the vowel analysis interval. The plot shows mean (F1,F2) for the baseline phase
to be the same as mean (F1,F2) for the two testing phases. However, the avgram
shows this is not the case: baseline F2 is clearly higher than F2 for the two testing
phases. The baseline standard error ellipse shows very large mean F2 uncertainty
and moderately large mean F1 uncertainty. This is the predicted outcome if F1 is
occasionally erroneously resolved into two peaks.

Thus, although it is not visible in the avgram, baseline F1 is probably briefly
resolved into two peaks within the vowel analysis interval. The likelihood that this
F1 measurement problem occurred within the vowel analysis interval is also supported
by the visible occurrence of it in the avgram prior to the vowel analysis interval.

This F1 measurement problem also affects calculation of mean path projection
and deviation. Because baseline mean (F1,F2) values have large standard errors and
appear close to the testing phase values, baseline mean path projection and deviation
values have large standard errors and to appear close to the testing phase values. This
should make mean compensation and path deviation change small compared to their
standard errors. This prediction is borne out in the calculated values: calculated
mean compensation is 0.22 + 0.14, and calculated mean path deviation change is

—20 + 44 Hz.

Adaptation Analysis The adaptation plots (box (b) in the figure) show results
that are more robust. The avgram plot exhibits three clear groups of baseline phase
formant tracks. This shows that the amplitudes of F1, F2, and F3 were always above
the plotting threshold during this phase. The testing phase formant tracks show
no gaps that would indicate low formant amplitudes. (However, it’s possible that
unseen gaps exist, because the baseline formant tracks overlay much of the testing
phase formant tracks,)

Because of this more robust data, the adaptation vowel plot shows clearly what
was obscured in the compensation vowel plot: a noticeable lowering of F'2 in response
to the feedback transformation. This result is consistent with the formant tracks

visible in the avgram. It is also similar to subject MB’s adaptation response.
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Resolution of BM’s adaptation response into its path projection and deviation
components shows it also to be similar to MB’s adaptation response. Baseline mean
(F1,F2) position is close to [¢], while the testing phases’ mean (F1,F2) positions are
nearly equal and appear to deviate by about —100 Hz from the [i]-[a] path. Both
positions also appear to project to a path point near [z]. Since all the standard error
ellipses are small, the mean path projection and deviation estimates should have
minimal variance.

Mean path projection change is thus about +1.0 vowel unit, while mean path
deviation change is about -100 Hz. Both have minimal standard errors. The mean
path projection change should translate to a mean compensation of about +0.5. These
graphical estimates again closely agree with the calculated values: the calculated
mean compensation is 0.42 4 0.07 and the the calculated mean path deviation change
is —69 £ 24 Hz.

In sum, it appears that, like subject MB, exposure to the -2.0 feedback trans-
formation caused BM to partially compensate. In the compensation analysis, the
avgram clearly shows this response. However, in the vowel plot and (path projection,
deviation) calculations, this response is obscured by an F1 estimation instability. Also
like subject MB, there was little difference in mean (F1,F2) between the two testing
phases. This suggests that the extra exposure to the altered feedback in the second
training phase also had little effect on BM.
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Figure 4-2: Subject BM avgram and vowel plots.
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4.4.1.3 Subject MF Results

Figure 4-3 shows plots of subject MF’s compensation and adaptation responses to
exposure to the -2.0 feedback transformation. Unlike the previous subjects, MF shows
evidence of production change in both F2 and F1. This makes his vowel production
changes more aligned with his [i]-[a] path, resulting in minimal path deviation change.
MPF’s results are therefore a good illustration of efficient compensation for the altered

feedback.

Compensation Analysis In the compensation plots, the avgram shows noticeable
jitter in the resolution of the F1 and F2 formants.? Nevertheless, it does appear that
the F1 and F2 formant tracks are closer together in the testing phases (dashed and
dotted lines) than they are in the baseline phase (solid lines). The F3 formant tracks
appear stable, and F3 is consistently lower in the second testing phase than in the
other phases.

The convergence of F1 and F2 is also seen in the vowel plot. The “testl” and
“test2” arrows show that mean (F1,F2) is nearly the same in both testing phases.
The arrows also show that the change in mean (F1,F2) from the baseline to the
testing phases is is aligned with the [¢]-[z] path segment and is about half its length.
This creates minimal change in path deviation and causes a path projection change
of about +0.5 vowel units. Mean compensation is thus estimated to be about +0.25.
The calculated values are in close agreement: mean compensation is 0.25:4:0.08, while

mean path deviation change is 6 + 16 Hz.

Adaptation Analysis In the adaptation plots, the avgram shows retention of most
of the production changes seen in the compensation plots. The F1 and F2 formant
tracks are again closer together in the testing phases than they are in the baseline
phase. The F3 formant tracks again appear stable, but F3 lowering in the second test

phase does not appear as consistent as it is in the compensation avgram.

2The apparent discrete steps in this jitter are the result of the discretization of the frequency
by the 64-channel spectral analysis done by the DSP; they do not reflect actual discrete production
changes by the subject.
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Further comparison of the adaptation and compensation avgrams reveals an over-
all production difference. For all three experi'ment phases, F1 appears lower in the
adaptation avgram than in the compensation avgram. Since this F'1 lowering is ap-
parent in the baseline phase, the lowering may have been caused by the masking noise
conditions under which the adaptation data was acquired. This suggests that hearing
the masking noise caused the subject to lower his production of F1.

In the vowel plot, this general F1 lowering shifts the “testl” and “test2” arrows
to the left of their compensation vowel plot positions. This is because, for all three
experiment phases, mean F1 has decreased. However, the plot shows that each phase
exhibits a different F1 decrease. The baseline phase shows the most F'1 decrease (and
thus the largest left shift), the second testing phase shows the least, and the first
testing phase is between these two.

The larger left shift of the baseline mean (F1,F2) position slightly enlarges the
difference between it and the mean (F1,F2) positions for both testing phases. This
makes the adaptation baseline - testing phase mean path projection changes slightly
larger than they were in the compensation plot. The larger baseline left shift also
brings the average baseline - testing mean (F1,F2) difference into even more par-
allel alignment with the subject’s [i]-[a] path than it is in the compensation vowel
plot. This makes the average mean path deviation change smaller than it was in
the compensation vowel plot. However, the larger left shift of the first testing phase
(as compared to the second testing phase) increases the standard error of the aver-
age mean path deviation change. These graphically estimated differences between
the subject’s adaptation and compensation responses are confirmed by the calculated
values: for the subject’s adaptation response, mean compensation is 0.35 + 0.11 and
mean path deviation change is 1 + 19 Hz.

In sum, there are two interesting aspects of MF’s response to the altered feedback.
First, compared with subjects MB and BM, MF’s compensation is more aligned with
his [i]~[a] path. This makes his compensation more efficient, in the sense that it shows
minimal path deviation change. Second, MF appears to lower his production of F1 in

response to hearing the masking noise. This F1 lowering is most pronounced in the
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baseline phase, less so in the first testing phase, and least pronounced in the second

testing phase.
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Figure 4-3: Subject MF avgram and vowel plots.




4.4.1.4 Subject JK Results

Figure 4-4 shows plots of subject JK’s compensation and adaptation responses to
exposure to the -2.0 feedback transformation. JK exhibits the same F1 lowering
in response to hearing masking noise that subject MF exhibited. For MF, this F1
lowering made his adaptation appear larger than his compensation. For JK, however,
it appears possible that he exhibits no compensation, and that his adaptation is

completely explained by the F1 lowering.

Compensation Analysis In the compensation plots, the avgram shows gaps and
jitter iu the formant tracks, suggestive of low-amplitude formants. F1 appears nearly
the same for all experiment phases until near the end of the vowel analysis interval
(gray region). At this point, F1 shows a large burst of jitter in the baseline phase
(solid line). F2 appears similar for all experiment phases until about a third of the
way into the vowel analysis interval. At this point, the testing phase F2 values begin
descending below the baseline values. F3’s formant tracks appear stable, but they
show a gap in the baseline phase. Testing phase F3 values look consistently lower
than the baseline values — the opposite of subject MB’s results.

The vowel plot shows that, averaged over the vowel analysis interval, F1 and F2
show little change over the course of the experiment. The almost non-existent "c.st1”
and “test2” arrows indicate that mean (F1,F2) is about the same for the baseline,
first, and second testing phases. Thus, from the plot, mean compensation and path
deviation change are predicted to be small compared to their standard errors. The
calculated values show this is the case: mean compensation is 0.09 £ 0.08 and mean

path deviation change is —18 + 20 Hz.

Adaptation Analysis In the adaptation plots, the avgram shows more formant
track gaps and jitter than those seen in the compensation avgram. Like subject MF,
when JK’s compensation and adaptation avgrams are compared, F'1 in his adaptation
avgram is seen to be lower across all experiment phases. Also like subject MF, JK’s

baseline F1 appears to exhibit the most lowering, although this trend is obscured
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by the large jitter in F1’s baseline formant track. On the other hand, F2 in the
adaptation avgram looks generally more stable than in the compensation avgram.
Little change is seen in its value across the experiment phases. F3 apparently has
such low amplitude that it falls below plotting threshold by at least midway through
the vowel analysis interval.

The F1 lowering seen in the adaptation avgram has a large effect in the adaptation
vowel plot. As was true with subject MF, the F1 lowering left shifts the mean (F1,F2)
positions of all experiment phases, as compared to their positions in the compensation
vowel plot. The testing phase positions, which are nearly equal, are shifted least and
the baseline phase position is shifted most. This creates a large mean (F1,F2) change
vector between the baseline and testing phases. Because of the orientation of JK'’s
[i}-[a] path, this change vector is in close alignment with the [i)-[¢] path segment
and appears to be roughly half of the segment’s length. Thus, from the plot, mean
compensation is predicted to be about 0.25 and path deviation change is predicted to
be small compared to its standard error. The calculated values show this is the case:
mean compensation is 0.27 + 0.07 and mean path deviation change is 25 4 20 Hz.

In sum, one possible interpretation of JK’s results is that the calculated value of
0.09 + 0.08 may represent JK’s true amount of compensation, while the calculated
value of 0.27 + 0.07 may only be a result of his lowering of F1 in response to the

masking noise.
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Figure 4-4: Subject JK avgram and vowel plots.
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4.4.1.5 Subject JG Results

Figure 4-5 shows plots of subject JG’s compensation and adaptation responses to
exposure to the -2.0 feedback transformation. Like subject BM, JG’s compensation
results show an F1 estimation instability that ultimately affects calculation of mean
compensation and path deviation. But whereas BM’s estimation instability causes
F1 to be resolved into two peaks, JG’s estimation instability causes F1 to be missed.
This F1 dropout causes brief formant mislabeling that makes JG's path deviation

change in his compensation response to appear large and have a large standard error.

Compensation Analysis In the compensation plots, the avgram shows evidence of
low formant amplitudes. At the utterance’s beginning, baseline F1 is briefly resolved
into two peaks, Thereafter, F1 appears stable and slightly lower in the baseline phase
than in the testing phases. F2 appears stable throughout the mean utterance and
higher in the baseline phase than in the testing phases. Thus, in the testing phases,
F1 and F2 appear to approach each other. F3 has such low amplitude that it is rarely
above the plotting threshold for any experiment phase.

The vowel plot exhibits the F1 dropout effect. Baseline mean (F1,F2) is close to
[€] and first testing phase mean (F1,F2) is practically on the subject’s [i]-[a] path,
halfway between [¢] and [e]. Both mean (F1,F2) positions have small standard er-
ror ellipses. The resulting mean (F1,F2) change vector (the arrow labeled “testl”),
appears reasonably well aligned with the [¢]-[e] path segment and is somewhat less
than half of the segment’s length. From this, we would estimate a corresponding mean
compensation of somewhat less than 0.25, and small mean path deviation change.

However, the second testing phase mean (F1,F2) position is far from the [i]-[a]
path. This appears to be caused by a brief formant mislabeling (F2's peak being
labeled as F1, F3’s peak being labeled as F2) resulting from F1 dropout.? Both testing

3F1 dropout as the likely cause is suggested by inconsistencies between the avgram and the vowel
plot. The vowel plot shows that mean F2 in the second testing phase is slightly higher than in
the baseline phase. It also shows that mean F1 in the second testing phase is much higher (by
about 200 Hz) than in the baseline phase. Neither of these things are evident in the avgram plot.
However, if F1 amplitude momentarily fell below analysis threshold, it would be missed. F2's peak
would then be the lowest spectral peak, and F3 would be the second lowest. This would cause
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phase positions appear to project to the same path position, but the second testing
phase position appears to have a large mean path deviation with a large standard
error. When the first and second testing phase positions are averaged together, the
mean compensation estimate is unchanged, but mean path deviation is now estimated
to be large with large standard error. This is confirmed in the calculated values: mean

compensation is 0.20 & 0.05 while mean path deviation change is 65 & 81 Hz.

Adaptation Analysis In the adaptation plots, the avgram shows evidence of
higher overall formant amplitudes in the subject’s adaptation responses. F'3, which
was hardly visible in the compensation avgram, shows complete formant tracks for all
three experiment phases. F3 in the testing phases appears lower than in the baseline
phase. The F1 and F2 formant tracks also appear complete, although F1 is still re-
solved into two peaks at the beginning of the mean utterance. F1 and F'2 also appear
closer together in the testing phases than in the baseline phase.

The vowel plot shows that the stronger formant amplitudes have apparently elim-
inated the F1 dropout. Neither the baseline nor the first testing phase mean (F1,F2)
positions are very different from their compensation vowel plot positions (although the
first testing phase mean (F1,F2) position now visibly deviates from the {i]-[a] path)}.
The prominent difference between the adaptation and compensation vowel plots is
that, in the adaptation vowel plot, the second testing phase mean (F1,F2) position no
longer affected by F1 dropout. It now has a small standard error ellipse and is close
to the first testing phase position. The net result is that mean compensation in JG’s
adaptation response should be similar to mean compensation in his compensation
response. However, mean path deviation change of his adaptation response should be
smaller and have much smaller standard error. These predictions are confirmed by

the calculated values: for JG's adaptation response, mean compensation is 0.19+0.06

F2 to be mislabeled as F1 and F3 to be mislabled as F2. It would then appear that both F1 and
F2 experienced momentary huge frequency increases. This would significantly raise the mean and
standard error of both F1 and F2 within the vowel analysis interval. In the vowel plot, this would
be seen as a diagonal shift of mean (F1,F2) up and to the right. The standard error ellipse would
also be large and diagonally oriented. This exactly describes the second testing phase mean (F1,F2)
position.
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and mean path deviation change is 44 + 26 Hz.
In sum, it appears that JG produced moderate compensations with minimal path
deviation changes, but this is obscured in the compensation analysis by F1 dropout.

It is also clear that he retained much of his compensations in his adaptation response.
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Figure 4-5: Subject JG avgram and vowel plots.




4.4.1.6 Subject BK, MK, JD, And ST Results

Figures 4-6 through 4-9 show the avgram and vowel plots of the rest of the subjects.
These subjects all showed smaller compensation and adaptation responses than sub-
jects MB, BM, MF, JK, and JG. In many cases, these responses look non-significant
- as evidenced by the comparable sizes of the mean (F1,F2) change arrows and stan-
dard error ellipses in the vowel plots. The responses which do look possibly significant,
are all consistent with the trends seen more clearly in the plots of subjects with larger
responses.

For these reasons, each of the remaining four subjects’ plots will be discussed only

briefly.

Subject BK Results Figure 4-6 shows plots of subject BK’s response to the altered
feedback. Overall, the plots show evidence of compensation and adaptation. In
both the compensation and adaptation avgrams, F1 and F2 appear closer together
in the testing phases than in the baseline phase. In the compensation avgram, F3
appears lower in the testing phases than in the baseline phase. However, in the
adaptation avgram, F3 appears approximately the same for all three experiment
phases. Both vowel plots show mean (F1,F2) changes that are roughly aligned with
the subject’s [i]-[a] path. All changes appear to compensate for the path projection
shift of the feedback transformation. Curiously, the magnitude of these changes
in the two testing phases reverse between the compensation and adaptation vowel
plots. In the compensation vowel plot, the first testing phase exhibits greater mean
(F1,F2) change than the second testing phase. In the adaptation plot, the situation
is reversed. It is possible, however, that this reversal is an artifact of the generally
small mean (F1,F2) changes: note, for example, that in the adaptation vowel plot,
the mean (F1,F2) change vector for the first testing phase is smaller that the first

testing phase’s standard error ellipse.

Subject MK Results Figure 4-7 shows plots of subject MK’s response to the

altered feedback. Overall, the plots show evidence of slight compensation and adap-
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tation. MK’s results exhibit three prominent features. First, there is little trace of
F3 in either of the avgrams, possibly indicating low formant amplitudes. Second, in
the compensation vowel plot, mean (F1,F2) »ositions for all three experiment phases
are near each other and centered around [z] on MK’s [i]-[a] path. This is odd since
the subject was supposedly whispering words containing the vowel [¢]. It suggests
possible problems measuring MK’s path vowel formants, or that MK has less accu-
rate perception of the vowel sounds in his synthesized feedback. The third prominent
results feature is the difference between the baseline mean (F1,F2) positions in the
compensation and adaptation vowel plots. Relative to the compensation plot, base-
line mean (F1,F2) position in the adaptation plot is shifted diagonally down and to
the left. It also has a huge standard error ellipse. As explained in the discussion of
subject BM’s results, these effects are likely caused by F1 being resolved into two

peaks somewhere within the vowel production analysis interval.

Subject JD Results Figure 4-8 shows plots of subject JD’s response to the altered
feedback. The compensation plots show slight evidence of a compensating response:
in the avgram, F1 and F2 appear closer together in the testing phases, while in
the vowel plot, the mean (F1,F2) change vectors are both small but oriented in the
compensating direction. The adaptation plots, however, show little evidence of any

retention of this compensation in JD’s adaptation response.

Subject ST Results Figure 4-9 shows plots of subject ST’s response to the altered
feedback. For this subject, neither the compensation plots nor the adaptation plots

show evidence of any significant production changes.
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4.4.2 Across-Subject Analysis

In the analyses of individual subject results, the following consistent trends are seen:

¢ In the compensation analyses, it appeared that subjects compensated to varying

degrees for the perceived effects of the -2.0 feedback transformation.

e In the adaptation analyses, it appeared that subjects retained most of their
compensation, even when whispering with feedback blocked by masking noise.

That is, subjects appeared to adapt.

¢ In both analyses, there did not appear to be a significant difference between
the first and second testing phases in subject’s responses, suggesting that the

second training phase had no effect.

In addition, these trends appear to be reflected accurately by the calculated mea-
sures of path projection and deviation. This allows us to examine these trends further

by collaps.ing results across subjects.

4.4.2.1 Across-Subject Plots

Consider first Figure 4-10, which plots, for each subject, mean compensation and
path deviation change averaged over the first and second testing phases.

The figure is composed of two columns:

e The left column shows plots of subjects’ compensation responses. Within this

column:

— The top plot (Figure 4-10{a)) shows mean compensation.

— The bottom plot (Figure 4-10(b)) shows mean path deviation change.

e The left column shows plots of subjects’ adaptation responses. Within this

column:

— The top plot (Figure 4-10(c)) shows mean adaptation - i.e., mean com-

pensation seen in subjects’ adaptation responses.
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— The bottom plot (Figure 4-10(d)) shows mean path deviation change.

In each plot, the same ordering of subjects is used and a line is shown connecting
subjects’ mean values. This line is used to make more salient the pattern of results

across subjects; it does not imply any dependencies among the subjects.

Mean Compensation The main feature of Figure 4-10(a) is consistent with the
trend seen in the individual subject data: mean compensation of all but one subject is
positive, showing that all but one subject adjusted his production of [¢] to compensate
for the feedback transformation.

The plot also shows some discretization of compensation values across subjects.
The plot shows subjects BM, MF, JG, BK, MK, and JD all appear to exhibit approx-
imately the same mean compensation of 0.2. However, analysis of BM’s individual
plots suggests that F1 measurement errors (F1 being briefly resolved into two peaks)
make BM’s mean compensation appear lower than it really is; BM’s true Tean com-
pensation is probably closer to MB’s mean compensation. In addition, the confidence
intervals of JK’s mean compensation show it is not significantly different from zero. If
these adjustments are made to BM’s and JK’s results, it appears all subjects exhibited

one of approximately three mean compensations:
e Subjects MB, BM: mean comp. =~ 0.5

e Subjects MF, JG, BK, MK, JD: mean comp. ~ 0.2

e Subjects JK, ST: mean comp. =~ 0.0

Mean Path Deviation Change in Compensation Responses Figure 4-10(b)
shows that for all subjects but MB, mean path deviation change in their compensation
responses is not significantly different from zero. However, these values should be

adjusted to reflect two F1 measurement errors seen in the individual subject plots:

e In the vowel analysis of BM’s results, F1 was probably briefly resolved into

two peaks. This made BM’s mean path deviation change look smaller and its
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standard error look larger. It appeared that BM’s true mean path deviation

change is closer to MB’s and has a smaller standard error.

o In the vowel analysis of JG’s results, F1 was probably briefly missed. This made
JG’s mean path deviation change as well as its standard error look larger. It
appeared that JG’s true mean path deviation change is closer to zero has a

smaller standard error.

Taking into account these adjustments leaves the overall pattern largely unchanged:
most subjects still show approximately zero change in path deviation in response to
the feedback transformation.

This pattern is consistent with the hypothesized response of subjects to the feed-
back transformation. Since the transformation shifts perceived path projection, sub-
jects were expected to compensate by shifting path projections of their productions
of [¢]However, since the transformation does not alter perceived path deviation, the
hypothesis predicts no influence on subjects’ path deviations. The near-zero or in-
consistent path deviation changes seen across subjects are in agreement with this

prediction.

Mean Adaptation Figure 4-10(c) plots mean adaptation. Mean adaptation of all
but one subject is positive, showing that all but one subject retained his compensatory
productions when auditory feedback was blocked by masking noise. This is again
consistent with the trend seen in the individual subject data:

In the plot, subjects are ordered by decreasing amount cf adaptation (this same
ordering was used in all the plots of Figure 4-10). This ordering shows the pattern of
adaptation to differ from that seen in the compensation plot: here, the distribution
of subjects’ mean adaptation almost uniformly covers the range from 0.0 to 0.5.
The distribution of actual adaptation values is probably slightly less uniform than it

appears, since JK’s actual adaptation was probably zero.* Taking this into account,

4JK’s calculated mean adaptation was probably not due to true adaptation. Instead, it was
probably an artifact of his lowering of baseline F1 in response to the masking noise. See the discussion
of his individual results for more details.
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however, there is still no evidence of groupirg ir.t » three distinct compensation values,
as seen in the compensation plot.

There is no apparent theoretical basis for predicting (1) quantization of the com-
pensation values, (2) the uniform distribution of adaptation values, or (3) the differ-
ence between the two distributions. In the next chapter, we will discuss further the
distributions of compensation and adaptation values. Here, we note that the stan-
dard error bars around each mean value are big enough that random variation may

partially explain the observed shapes of their distributions.

Mean Path Deviation Change in Adaptation Responses Figure 4-10(d)
shows that, like the compensation responses, path deviation change is not signifi-

cantly different from zero for most subjects’ adaptation responses.
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Figure 4-10: Compensation and adaptation responses for each subject, averaged
across the first and second testing phases. (a) and (b) are mean compensation and
path deviation change for each subject’s compensation response. (c) and (d) are mean
compensation and path deviation change for each subject’s adaptation response. In
each plot, mean values are indicated by dots. Small bars around each dot indicate
confidence intervals. (Note that mean compensation of a subject’s adaptation re-
sponse is called “mean adaptation”. Note also mean compensation is a dimensionless
ratio, while mean path deviation change is measured in Hz (see Section 3.5.3).
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4.4.2.2 Statistical Tests

To test the statistical significance of the trends seen in the plots, two measures of

across-subject path projection and deviation change were tabulated:
e F ratios and p values derived from ANOVA tests.

e Mean compensation and path deviation change, averaged across subjects.

ANOVA Tests The ANOVA tests determined if subjects’ path projection and devi-
ation values changed significantly between experiment phases. Table 4.1 summarizes

the F ratios and p values of these tests.

response type | experiment phases significance of changes in
compared path proj. path dev.
F(1,8) p< |F(1,8) p<
compensation base vs. testl 33.338 0.000 | 0.862 0.380
base vs. test2 13.947 0.006 | 0.018 0.896
testl vs. test2 0.279 0.612 | 0.508 0.496
adaptation base vs. testl 23.782 0.001 | 1.731 0.225
base vs. test2 13.218 0.007 | 0.000 0.991
testl vs. test2 0.205 0.663 | 1.793 0.217

Table 4.1: Path projection and deviation ANOVA tests.

Each row of the table reports a specific ANOVA test, done separately on path

projection and path deviation of subjects’ results. In each row:

o The first column indicates which subject responses were tested (compensation

or adaptation).

e The second column indicates the experiment phases that the test compared
(“base” means baseline phase, “testl” means first testing phase, and “test2”

means second testing phase).

e The third and fourth columns (F ratio and p value) indicate the path projection

test results.
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e The fifth and sixth columns indicate the path deviation test results.

The table values demonstrate the statistical significance of the trends seen in
the plots. Consider first path projection (columns 3 and 4). Across all subjects’

compensation and adaptation responses:

o First and second testing phase path projection values differed significantly from

their baseline phase values (p values of 0.000, 0.006, 0.001, and 0.007).

o First and second testing phase path projection values did not differ significantly

from each other (p values of 0.612 and 0.663).

In contrast to these results, none of the tests of path deviation change (columns
5 and 6) evidenced any significant change: the best p value seen in any test is 0.217.

In sum, the ANOVA tests show:

e Significant path projection change, but insignificant path deviation change, be-

tween either testing phase and the baseline phase.

o Insignificant change in either path projection or deviation between the two

testing phases.

These results indicate exposure to altered feedback has a significant effect on
subjects’ path projections but not on their path deviations. This reinforces the results
seen in the data plots and is the expected result if subjects compensate.

The results also indicate subjects’ compensations reach limits within the first
testing phase. Additional altered feedback exposure (of the second training phase)

does not significantly improve subjects’ compensations.

Mean Compensation and Path Deviation Change Table 4.2 summarizes mean
compensation and path deviation change measurements averaged across subjects.
As indicated by column 1, the first three rows of the table show mean measure-

ments of subjects’ compensation responses. In these rows:

e Row 1 shows mean measurements calculated from comparing subjects’ baseline

and first testing phase productions.
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response type | experiment phases | compensation | path dev. change (Hz)
compared I oy @ o,
compensation base vs. testl 0.21 0.04 |-15 16
base vs. test2 0.20 0.05 3 23
average: | 0.20 0.04 | -6 15
adaptation base vs. testl 0.23 0.05 |-17 13
base vs. test2 0.22 0.06 0 20
average: | 0.22  0.05 -8 16

Table 4.2: Mean compensation and path deviation changes, averaged across subjects.

e Row 2 shows the same measurements calculated from comparing subjects’ base-

line and second testing phase productions.
e Row 3 averages the measurements made for rows 1 and 2.

Rows 4,5, and 6 show similar mean measurements of subjects’ adaptation re-
sponses.

The last four columns of the table show the mean measurements: columns 3 and
4 show mean compensation (x) and its standard error (o,), while columns 5 and 6
show mean path deviation change and its standard error.

Consider first the mean compensation results (columns 3 and 4):

e The average mean compensation (row 3) is 0.20 - five times its standard error
of 0.04. This suggests an overall compensating production response of subjects

to the feedback transformation.

o The average mean adaptation® (row 6) is 0.22 — more than four times its stan-
dard error of 0.05. This suggests an overall retention of subjects’ compensating

production response even when acoustic feedback is blocked.

e The difference in mean compensation between the first and second testing phases

(rows 1 and 2) is 0.21 — 0.20 = 0.01, which is small compared to either testing

5Recall again that mean compensation of subjects’ adaptation response is called “mean adapta-
tion” and represents the amount of compensation retained when subjects’ feedback was blocked.
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phase’s standard error (0.04 or 0.05). This suggests there was no effect of the

second training phase on amount of compensation.

e The difference in mean adaptation between the first and second testing phases
(rows 4 and 5) is 0.23 — 0.22 = 0.01, which again is small compared to either
testing phase’s standard error (0.05 or 0.06). This suggests there also was no

effect of the second training phase on amount of retained compensation.

Next, consider mean path deviation change (columns 5 and 6 in the table): mean
path deviation change between either testing phase and the baseline phase was never
significantly bigger than its standard error.

In sum, the table’s mean compensation-and path deviation change results are
consistent with trends seen in the previous plots and ANOVA tests. They also com-

plement the ANOVA test results in two ways:

1. The ANOVA tests indicated significant change in subjects’ path projection
values between the baseline and testing conditions. The positive mean com-
pensation values of Table 4.2 show that this change was in the direction that

compensated for the feedback alteration.®

2. The ANOVA tests suggested that subjects’ compensations reached limiting val-
ues with the first testing phase. The mean compensation results show that
the average compensation limit reached by subjects was about 0.2 - reughly

comparable to the average compensation seen in reaching SA [Held, 1996].

4.5 Summary and Conclusions

Recall that Study 1 investigated several questions concerning the effect of the -2.0

feedback transformation on subjects’ production of the vowel [¢]:

1. Do subjects compensate for the perceived effects of the feedback transformation?

6See Section 3.5.3.4 for an explanation of mean compensation.
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2. Do they retain this compensation even when denied acoustic feedback of their

whispering - i.e., do they adapt?

3. If subjects do adapt, what is their maximum degree of adaptation?

4.5.1 Do Subjects Adapt?

In Study 1, auditory feedback provided to the subject was altered by the -2.0 feedback
transformation. This transformation shifts perceived vowel sound path projections
along a subject’s [i]-|a] path towards [i]. To compensate, the subject had to shift the
path projections of his vowel productions towards [a]. However, to avoid introducing
additional distortion, he had to leave unchanged the path deviations of his vowel
productions.”

Thus, to provide strong evidence of compensation, Study 1 should find that ex-
posure to the feedback transformation caused the following changes in subjects’ pro-

duction of [e]:
1. A significant compensating change in path projections.
2. A non-significant change in the path deviations.

To provide evidence of adaptation, these same changes should persist when auditory
feedback is blocked.

The results show that these were in fact the findings of Study 1. The implica-
tion is that exposure to the feedback transformation caused a retained adaptation of
subjects’ production of [¢]. Not only did they produce compensatory articulations
of [€] when they could hear how its sound was altered, they persisted in produc-
ing these compensatory articulations when they were subsequently prevented from

hearing their whispering.

7See Section 3.3.1.3 for a more detailed explanation of the action of the -2.0 feedback transfor-
mation and the vowel production changes that compensate for its effects.
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4.5.2 How Much do Subjects Adapt?

If subjects do adapt, does their compensation and/or adaptation achieve a maximum
value less than complete adaptation?

Study 1 included a second training and testing phase to investigate this. If sub-
jects continued to increase their compensation for the feedback transformation in the
second training phase, then they should exhibit significantly more compensation (and
possibly more adaptation) in the second testing phase than in the first testing phase.
No such significant differences were found. The implication is that subjects achieved
a maximum compensation and adaptation within the first testing phase. Since this
maximum was always substantially less than 1.0, it appears that subjects do not
completely compensate or adapt to the feedback transformation.

This result is consistent with studies of reaching SA, which also find subjects
incompletely adapting to a feedback transformation [Welch, 1986, Kornheiser, 1976,
Held, 1996].

4.5.3 Methodological Issues

Certain methodological limitations of Study 1 influenced the design of later experi-
ments. The most important of these is the lack of a control experiment. Without a
control experiment, Study 1 does not definitively show that it is precisely exposure
to the feedback transformation that causes the observed adaptation. It could be, for
example, that merely amount of time spent in the experiment caused the observed
responses.

Another potential problem with the experiment design is the way the feedback
transformation was introduced. Because the -2.0 feedback transformation was intro-
duced abruptly at the start of the training phase, it is likely that subjects were aware
of the sudden feedback change. Thus, it is likely that during the experiment sub-
jects were aware that their feedback was being altered. This complicates the picture
of what cognitive processes were involved in causing subjects tc adapt. A cleaner

experimental design would avoid making the subject aware of the altered feedback.
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In spite of these methodological issues, however, the results of Study 1 did provide
evidence for the existence of speech SA. This evidence was strong enough to warrant

conducting more extensive investigations of speech SA.
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Chapter 5

Study 2: Timecourse and
Generalization of Speech

Sensorimotor Adaptation

The results of Study 1 strongly supported the existence of speech sensorimotor adap-
tation (speech SA), which warranted a more detailed investigation of speech SA that

was carried out in Study 2.

5.1 Introduction

The investigations of Study 2 had the following objectives:
1. Confirmation of the existence of speech SA in a controlled experiment.

2. Examination of the timecourse of speech SA - examining how compensation

and adaptation develop during an speech SA experiment.

3. Investigation of how speech SA generalizes — investigating how adapting a
vowel’s production in one word affects its production in other words and the

production of other vowels.
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5.1.1 Confirming the Existence of Speech SA

Study 1 provided strong evidence of the existence of SA in speech, but it had several
methodological weaknesses. Study 2 sought to confirm the existence of speech SA
with an experiment design that avoided these weaknesses.

One shortcoming of Study 1 was the lack of a control experiment. This left open
the possibility that the observed SA effect was not due to adaptation to the feedback
transformation, but rather to unrelated factors. Study 2 therefore included use of a
control experiment to isolate the cause of the production changes exhibited in Study
1.

Another shortcoming of Study 1 was that the feedback transformation was intro-
duced abruptly at the start of the training phase. It is likely that this sudden feedback
change was noticed by subjects, which raises the possibility that subjects used some
conscious strategy to compensate — a possibility we wished to avoid in Study 2.

In reaching SA experiments, this problem is avoided by gradual introduction of
the feedback alteration [Howard, 1968]. In Study 2, this same technique was used:
the feedback alteration was introduced in a series of unnoticeable increments. Sub-
jects were also interviewed, post-experiment, to assess their awareness of the altered

feedback.

5.1.2 Examining the Timecourse of Speech SA

Gradual introduction of the feedback transformation allows several questions to be
examined concerning the SA effect’s timecourse.

The first question concerns whether categorical perception affects subjects’ com-
pensation. Several studies of vowel perception have exhibited poorer sensitivity to
vowel sound changes within vowel category regions! than between them [Kuhl, 1991].

A possible consequence of this poor within-category sensitivity is that subjects would

In forced-choice experiments, subjects can be made to categorize vowel sounds. If these catego-
rized sounds are plotted in formant space, they can be seen to divide the space into regions: within
each region, all sounds are classified as the same vowel. Each vowel, therefore, has a category region
associated with it.
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only compensate when vowel sounds were shifted to different category regions. This
predicts the timecourse of subjects’ compensation response to an increasing feedbaclk
alteration would exhibit steps. Such steps would occur when the feedback alteration
had increased to a point where it shifted vowels into the next category.

The other timecourse question concerns adaptation. Study 1 showed that com-
pensation was, in general, greater than adaptation. This difference suggests different
mechanisms may underlie compensation and adaptation. One testable characteris-
tic of these mechanisms is whether they have different responses to the increasing

feedback alteration.

5.1.3 Generalization of Speech SA

Speech SA can be used to examine phonetic structure issues in speech production.
If a vowel’s production has been adapted, then the process controlling its produc-
tion has been altered. If a vowel’s adaptation generalizes — i.e., its adaptation in
one utterance causes production changes in different utterances, then the vowel’s al-
tered control process must also used in the production of other utterances. In this
way, speech SA generalization can be used to observe organization of the processes
controlling utterance productions. This allows inferences to be made about what
phonetic representations could underlie the observed organization.

This ability to use speech SA to analyze phonetic structure issues in speech pro-
duction was cited in Chapter 1 as a key motivation for studying speech SA. In Chap-
ter 1, two speech SA generalization experiments were proposed, each investigating a
different type of generalization. A major vbjective of Study 2 was to carry out these

proposed experiments.

5.1.3.1 Context Generalization

The first proposed experiment was an investigation of contezt generalization: how a
vowel’s adaptation in one word context affects its production in other word contexts.
The purpose of investigating context generalization is to examine the mechanisms

underlying word production.
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Suppose adaptation of a vowel in one word does not affect its production in other
words. Then the process which controls the vowel’s production in one word must not
be used in other words. This suggests that words have independent, direct means of
controlling their productions.

On the other hand, suppose adaptation of a vowel in one word does affect its
production in other words. Then the process controlling the vowel’s production in
one word must be also used in other words. This sharing of the vowel’s control
process suggests that a common vowel representation is used to access the shared
control process. This suggests, more generally, that words specify their productions
indirectly via shared, intermediate production unit representations {e.g. phonemes).

Thus, in an investigation of context generalization, different word production

mechanisms are implied by the possible experiment outcomes.

5.1.3.2 Target Generalization

The second proposed experiment was an investigation of target generalization: how
one vowel’s adaptation affects the production of other vowels. The purpose of inves-
tigating target generalization is to examine the structure of vowel representations.

Suppose adaptation of one vowel does not affect the production of other vowels.
Then the process controlling the adapted vowel is not used in the production of the
other vowels. This suggests vowels may have independent representations.

On the other hand, suppose adaptation of one vowel does affect the production of
other vowels. Then the adapted vowel’s altered control process must be used in the
production of other vowels. This shows that vowel representations are not indepen-
dent: that they do not specify entirely different vowel production control processes.
This dependence of vowel representations would suggest the representations share
some set of common features.

Thus, in an investigation of target generalization, different vowel representations

are implied by the possible experiment outcomes.
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5.2 Methods

The purposes of Study 2 were served by a single experiment. This experiment con-
sisted of 422 epochs, where each epoch consisted of 10 word promptings. For the
average subject, this meant the experiment had a duration of about 2 hours.

Each word prompting included prompting for a target duration of 300ms. In
whispering the target word, the subject attempted match this target duration. While

whispering, the subject heard one of the following in his earphones:
¢ unaltered feedback (0.0 feedback transform),
e altered feedback (-2.0 or +2.0 transform, depending on the subject), or

e masking noise to prevent him from hearing his whispering.?

5.2.1 Prompted Words

In Study 2, subjects were prompted to whisper words from a set of training words
and from a set of testing words. These word sets were called W,..., and Wyegy,
respectively. They differed in the type of feedback the subject heard while whispering

them:

e Training words (Wypai) Were whispered while the subject heard feedback of
his whispering or while his hearing was blocked by noise. Data from these word

productions were used to assess compensation and adaptation.

o Testing words (W¢egt) were whispered only while the subject’s hearing was
blocked by noise. Data from these word productions were used to assess gener-
alization of adaptation.

5.2.1.1 Training Words

The set of training words (W .a:,) Was a set of four CVC [e] words:

2Both the altered and unaltered feedback also included low-level masking noise. This was done
to hamper the subject’s ability to hear his actual whispering. See Section 3.4 for more details.
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Wirain = { “pep”, “peb”, “bep”, “beb” }

These words were chosen for several reasons. First, both the beginning and ending
consonants are bilabials (produced with the lips meant less interfering coarticulation
with the vowel (produced with the tongue body). This tended to result in longer,
cleaner steady-state vowel portions of the utterances.

The second reason for choosing these words was that their whispered productions
are acoustically similar, but their phonetic representations and spellings are noticeably
different. This, it was hoped, would allow collection of nearly identical utterance data
while providing a sufficiently varied task to hold the subject’s attention.

These words are acoustically similar in whispered speech because their only differ-
ing feature is the voicing of their consonants. [p] and [b] are both articulated with the
lips the same way, they differ only in their voicing features such as voice onset time
and amount of prevoicing. Considering only the upper vocal tract, the articulations
of the Wy ..., words are almost identical, producing nearly identical utterance data.
It was hoped, however, that the phonetic, orthographic, and conceptual differences
between these words, (along with their random presentation) would force the subject

pay attention to which word he was whispering.

5.2.1.2 Testing Words

The set of testing words (Wyegt) consisted of two subsets: Wy oq¢-context and

Wiest-target.

The Wiggt-context subset was used to assess context generalization. This con-
sisted of four CVC words, one of which was “pep” - a member of W i), and the
rest in which the vowel [¢] was retained but the consonant context was varied. This

subset specifically contained:

Wiest-context = { “pep”, “peg”, “gep”, “teg” }
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The W yqin Word “pep” was included in this set so that there would be a Wiy
word prompted for during the same part of each epoch as the other Wegt words.
This allowed production changes of Wiegt words to be compared with production
changes of a Wy ... word whispered under the same conditions.

The other Wegt-context words were chosen to assess how context-specific the
adaptation of [¢] in the training words was. The questions of interest were: does
adaptation of [¢] in the bilabial CVC training words affect only the production of [e]
in other words with the same bilabial CVC context, or will it also affect [¢] in (1)
words sharing only the same initial CV, (2) words sharing only the final VC, or (3)
all words with the same V ([¢])? The set of words besides “pep” that were chosen to

be in the W agt-context subset were designed to answer these questions:

e No Wi gt-context word besides “pep” shared the same complete bilabial CVC
Wi ain Word context. Thus, if no Wyiegi-context word besides “pep” is
affected by Wy ai, word adaptation, then the adaptation of [e] is specific to
the complete bilabial CVC Wy ..;;, word context.

o “peg” is the only Wiegt-context word (besides “pep”) that shares the same
initial bilabial CV syllable of the Wy ..:,, words. However, its final consonant
is not bilabial. If only “peg” is affected by Wy .. word adaptation, then the

adaptation of [e] is specific to the initial CV context.

o “gep” is the only Wegt-context word (besides “pep”) that shares the same
final bilabial VC syllable of the Wy ..., words. However, its initial consonant
is not bilabial. If only “gep” is affect~d by Wy ... word adaptation, then the
adaptation of [e] is specific to the final VC context.

e “teg” was chosen because neither of its consonants are the bilabial; it shares
only the same vowel as the Wy ... words. This provides an important control
condition to compare with the generalization results seen in “peg” and “gep™:
if adaptation generalization is selective to either the CV or VC context, then

W rain 2daptation should not affect “teg”.
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The Wiegt-target subset was used to assess target generalization. This consisted
of four CVC words which shared the same bilabial consonant context of the W ..ip)
words but varied the vowel:

Wiest-target = { “peep”, “pip”, “pap”, “pop” }

Besides allowing for simultaneous testing for context and target generalization, the
inclusion of the Wiegt-target word set made a more varied distribution of speech
sounds for the subject to produce. This variety, along with the four-word Wy ...,

set, was intended to minimize the chance of articulatory changes resulting from over-

repetition of any one speech sound.

5.2.2 Timecourse of the Experiment

The experiment consisted of 422 epochs, where each epoch consisted of 10 word
promptings. As mentioned above, for the average subject this meant the experiment’s
duration was about 2 hours.

5.2.2.1 Timecourse of Each Epoch

The timecourse of each epoch is shown in the following table:

part [ words  word set subject data
prompted heard  collected

1. 4 Wirain feedback

2. 1 Wirain feedback o

3. 1 Wirain  Doise .

4. 4 Wiest noise )

The table shows that each epoch was divided into four parts. In Part 1, the subject
whispered 4 W ..+, words while he heard feedback of his whispering. No utterance

data were collected. In Part 2, the subject whispered 1 Wy ..., word, again while he
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heard feedback. This time, the subject’s utterance data were collected. In Part 3, the
subject whispered | Wy ..:,, word, this time with feedback blocked by masking noise.
Again, his utterance data was collected. Finally, in Part 4, the subject whispered 4
Wiest Words, again with feedback blocked by masking noise, and again his utterance
data was recorded.

This timecourse gave each epoch the following features:

e It consisted of 10 word promptings, the first 6 of which were randomly selected

from Wipain, while the last 4 were randomly selected from Wegt.

e The subject whispered the first 5 words (all from Wy, ..:,.) while he heard
feedback of his whispering. He whispered the last 5 words (1 from Wy,..:,
followed by 4 from Wgegt) while prevented from hearing his whispering by

masking noise.

e To minimize the space used to store data, only the last of the Wy ..., words
whispered while the subject heard feedback was recorded. All other utterances

produced by the subject were recorded.

Thus, over any sequence of epochs, promptings to produce Wy¢,..:, words were
interleaved with promptings to produce W qogt words. Since the Wiegt words had
different consonants and vowels, this insured there were no long intervals where the
subject repeatedly whispered the same vowel or word. Also, over any sequence of
epochs, what the subject heard switched every five words between feedback of his
whispering and masking noise. This insured that there were no long intervals where
the subject repeatedly whispered words under the same feedback conditions.

In sum, the epoch timecourse was designed to keep the whispering task and whis-

pering conditions as varied as possible throughout the experiment.

5.2.2.2 Epoch Sequence

The experiment’s 422 epochs were divided into a sequence of five phases, as shown

by the following table:
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phase time (epochs) feedback was
Warmup | 10min  (36) unaltered
Baseline | 17min (60) unaltered
Ramp 20min (66) altered
Train 1 hour  (200) altered
Test 17min (60) unaltered

The warmup phase consisted of 36 epochs, which, for the average subject, had
a duration of 10 minutes. In this phase, when the subject heard feedback of his
whispering, the feedback was unaltered (i.e., the 0.0 feedback transformation was
used).

The purpose of the warmup phase was to provide time for the subject to acclimate
to the experimental conditions. It was expected that 10 minutes would be sufficient
time for this acclimation to occur and the subject’s whisperings to stabilize.

The baseline phase consisted of 60 epochs, which, for the average subject, had
a duration of 17 minutes. In this phase, when the subject heard feedback of his
whispering, the feedback was unaltered (i.e., the 0.0 feedback transformation was
used).

The purpose of the baseline phase was to collect baseline data of the subject’s whis-
perings before his feedback was altered. Utterance data collected in this phase was
compared with data collected in later phases to assess whether the subject changed
his whispering in response to the altered feedback.

The ramp phase consisted of 66 epochs, which, for the average subject, had a
duration of 20 minutes. This phase was further subdivided into 11 stages, each of
which was 6 epochs long (approximately 2 minutes in duration).

Within each stage, the amount of feedback alteration was held constant. In the
first stage (Stage 0), when the subject heard feedback of his whispering, it was un-
altered (i.e., the 0.0 feedback transformation was used). Over the next 10 stages,
however, the amount of feedback alteration was incremented between stages. In this

way, the amount of feedback alteration was linearly increased to its maximum magni-
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tude in 10 stages. Thus, in the last stage (Stage 10), when the subject heard feedback
of his whispering, it was maximally altered. This maximum feedback alteration was
either -2.0 or +2.0 vowel units, depending on the subject (see discussion of subjects
below).

The purpose of the ramp phase was to gradually introduce the feedback alteration
to which the subject would be exposed for the rest of the experiment. As discussed
in Section 5.1 above, the main reason for gradual introduction was to minimize the
subject’s awareness of the altered feedback. A second reason was to allow analysis of
how a subject’s compensation and adaptation developed in response to an increasing
feedback alteration.

The train phase consisted of 200 epochs, which, for the average subject, had
a duration of 1 hour. In this phase, when the subject heard feedback of his whis-
pering, the feedback was altered by either the -2.0 or +2.0 feedback transformation
(depending on the subject).

The purpose of the train phase was to give the subject roughly one hour of expo-
sure to the full-strength feedback transformation.

The test phase consisted of 60 epochs, which, for the average subject, had a
duration of 17 minutes. In this phase, when the subject heard feedback of his whis-
pering, the feedback was altered by either the -2.0 or +2.0 feedback transformation
(depending on the subject).

Except for the altered feedback, the test phase was essentially a repeat of the
baseline phase. The purpose of the test phase was to collect utterance data that could
be compared with utterance data from the baseline phase. Formant changes seen in
this comparison were used to assess whether the subject changed his whispering in

response to the altered feedback.

5.2.3 Post-Experiment Interview

At the end of the experiment, the subject was interviewed briefly. In this interview,
the subject was asked a variety questions about his experience in the experiment. The

questions concerned different aspects of the experiment (e.g. “Were the prompted
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words readable on the video monitor?”).
The purpose of asking a variety of questions was to disguise the importance of

questions concerning the subjects feedback. These questions were:
e Did the feedback sound correct?

e Were there any problems with how it sounded?
e Was the feedback too loud?

These questions were posed to determine if the subject noticed anything unusual

about the feedback or any change in his vowel productions.

5.2.4 Subjects

The experiment was run on 8 male native speakers of North American English who
were either undergraduate or graduate students at MIT. All were naive to the purpose
of the study, and none was a subject in study 1.

Each subject passed the pretest and screening procedure described in Section A.3.
This pretest was performed on a separate day. The pretest measured formants of sub-
jects [i]-[a] path vowels, which were needed to construct the feedback transformations.
The pretest’s screening also insured that all subjects had strong formants for most
vowels, and that the -2.0 and +2.0 transformations of their vowels sounded correct.

Two experiments were performed with each subject: a real experiment with either
the -2.0 or 4+2.0 transformation, and a control experiment. This control experiment
was identical to the real experiment except that a strength 0.0 feedback transforma-
tion (no feedback alteration) was used throughout the experiment.

In the real experiment, half the subjects were run with the +2.0 transformation,

and half were run with the -2.0 transformation:
e Subjects RS, CW, TY, and VS were run with the +2.0 transformation.

e Subjects AH, OB, RO, and SR were run with the -2.0 transformation.
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5.3 Results and Discussion

The results of Study 2 are discussed in two sections: in this section, the overall
experiment results are discussed. If individual subject results are of interest, they
can be found in Section 5.4, which compiles plots and descriptions of each subject’s
individual results.

Discussion of the overall experiment results is divided into three sections, each

analyzing a different aspect of the experiment data:

e Compensation and adaptation results: analysis of subjects’ overall com-

pensation and adaptation.

e Timecourse results: analysis of how subjects’ compensation and adaptation

developed in response to gradual introduction of altered feedback.

e Generalization results: analysis of how adaptation of the training words

affected production of the testing words.
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5.3.1 Compensation and Adaptation Resnlts

We begin by considering those results pertinent to the fundamental characteristics of
the speech SA effect. This discussion is divided into three sections. First, measures
of mean compensation, adaptation, and path deviation change are discussed. Second,
the path projection measures from which compensation and adaptation are computed
are examined in more detail. Third, the results concerning subjects’ awareness of the
altered feedback are discussed. Finally, the findings of these sections are summarized

and explained in a theory of speech SA.

5.3.1.1 Mean Compensation, Adaptation, and Path Deviation Change

The mean compensation, adaptation and path deviation change results are analyzed
in two ways. First, plots displaying these response measures for each subject are
discussed. The significance of the trends seen in these plots are then assessed in

statistical tests of the results collapsed across subjects.

Across-Subject Plots Figure 5-1 shows mean compensation and path deviation
change for each subject’s response to the altered feedback. The figure’s layout is the
same as that of Figure 4-10. The left column shows plots of subjects’ compensation
responses: vowel production changes observed when subjects could hear feedback of
their whispering. The right column shows plots of subjects’ adaptation responses:
vowel production changes that subjects retained when prevented from hearing their
whispering by masking noise. In each column, the top plot shows mean compensation
while the bottom plot shows mean path deviation change.

Results from both the real experiments (in which feedback was altered by either
the +2.0 or -2.0 transformation) and control experiments (in which only the 0.0
transformation was used) are shown for each subject. In each graph, a solid line
links subjects’ results from the real experiment and a dotted line links the control
experiment results.

Considering first the real experiment results (solid lines linking filled circles), we
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see they are similar to those of Study 1. For subjects’ compensation responses (left

side of the figure):

e Mean compensation (Figure 5-1(a)) is consistently positive, but its amount

varies widely across subjects.

e Mean path deviation change (Figure 5-1(b)) is inconsistent across subjects in

its direction.
For subjects’ adaptation responses (right side of the figure):

¢ Mean adaptation (Figure 5-1(c)) appears highly correlated with mean compen-
sation, and is positive for all but one subject.* For each subject, it also appears

that adaptation is generally less than compensation.

e Mean path deviation change (Figure 5-1(d)) is again inconsistent across subjects

in its direction.

The differences between these results and those of Study 1 are largely a matter of
scale: In Study 2, mean compensation is generally greater, while mean path deviation
change is generally smaller. This is likely due to the much longer training phase of
study 2.

In Study 1, two conclusions were drawn from the results pattern: (1) subjects
selectively alter path projections of their vowel productions to compensate for the
altered feedback; (2) they retain their altered productions when whispering with
feedback is blocked with masking noise. These conclusions are equivalent to stating
that speech exhibits SA, as defined in Chapter 1.

Study 2 manipulated more experimental factors than Study 1, and the effects of
these factors on subjects’ performance provide stronger and more detailed support of

the Study 1 conclusions.

3For the analogous plot of Study 1’s results, see Figure 4-10
4Recall that mean adaptation is the term used to refer to mean compensation of a subject’s
adaptation response.
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In Study 2, half the subjects were exposed to the -2.0 feedback transformation,
and half to the 4+2.0 transformation (see Section 5.2.4). Mean compensation is mea-
sured relative to the direction of the feedback transformation. The measure is posi-
tive for compensating production changes, independent of the transformation’s shift
direction.® The plots show that this measure is generally positive across all subjects.
This indicates subjects generally altered their production so as to oppose the shift of
the transformation, regardless of the direction of that shift. It is therefore unlikely
that the observed compensatory behavior is the result of some drift in subjects’ vowel
productions not related to altered feedback exposure.

Study 2 also included running each subject in a control experiment in which no
feedback transformation was applied (i.e. the 0.0 transformation was used). The
results from the control experiments provide further evidence that subjects compen-
sate.

For mean compensation and adaptation, subjects showed a consistent difference
between the real and control experiments. Figure 5-1(a) shows that, for most subjects,
mean compensation is significantly larger in the real experiment than in the control
experiment. Figure 5-1(c) shows the same is true for mean adaptation.

For mean path deviation change, subjects showed no consistent difference between
the real and control experiments. Some subjects show no significant difference be-
tween real and control experiments (RS, RO, and AH in Figure 5-1(b); RS, OB, RO,
TY, VS, and AH in Figure 5-1(d)). For others, path deviation change in the real
experiment was greater that in the control experiment (CW, OB and VS in Figure 5-
1(b), CW in Figure 5-1(d)). For still others, path deviation change in the control
experiment was greater (SR, TY in Figure 5-1(b), SR in Figure 5-1(d)).

These control experiment comparisons show that the only aspect of subjects’ re-
sponses consistently affected by exposure to altered feedback is mean compensation
and adaptation. This is exactly the predicted effect, since the feedback transforma-
tions selectively alter only path projections. The results of Study 2 therefore offer

strong evidence that subjects change vowel productions specifically to compensate for

5For the definition of mean compensation, see Section 3.5.3.4.
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alterations of their feedback.
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Figure 5-1: Mean compensation and path deviation change for each subject. Plots
(a) and (b) show mean compensation and path deviation change for each subject’s
compensation response. Plots (c) and (d) show the same for each subject’s adaptation
response. In each plot, black dots linked by a solid line indicate real experiment data,
while white dots linked by a dotted line indicate control experiment data. Small bars
around each dot indicate confidence intervals. (Note that mean compensation of a
subject’s adaptation response is called mean adaptation. Note also mean compensa-
tion is a dimensionless ratio, while mean path deviation change is measured in Hz.
See Section 3.5.3 for further explanation.)
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Tabulated Statistics As with Study 1, statistical significance of the trends dis-
cussed above was tested with two measures of across-subject path projection and

deviation change:

¢ F ratios and p values derived from ANOVA tests.

e Mean compensation and path deviation change, averaged across subjects.

ANOVA Tests Table 5.1 summarizes the F ratios and p values of ANOVA tests
of subjects’ responses. As indicated by column 1 of the table, subjects’ compensation
and adaptation responses were analyzed separately. The table’s first three rows report

tests of subjects’ compensation responses:

e Row 1 tests significance of the experiment phase factor in the real experiment.
This test determined if subjects’ path projections (columns 4 and 5) and path
deviations (columns 6 and 7) changed significantly between the baseline and
testing phases. The test shows the path projection change to be highly signifi-
cant (p < 0.002) and the path deviation change to be insignificant (p < 0.877).

e Row 2 tests significance of the same factor in the control experiment. In this
case, neither path projections (p < 0.951) nor path deviations (p < 0.681)

showed significant change.

e Row 3 tests significance of the interaction between the experiment and phase
factors. This test determined if response changes in the real experiment differed
significantly from those in the control experiment. The test shows there was
a significant difference in subjects’ path projection responses between real and
control experiments (p < 0.006), but there was an insignificant difference in

subjects’ path deviation responses (p < 0.772).
Rows 4, 5, and 6 report results of the same tests of subjects’ adaptation responses:

e Row 4 shows that, in the real experiment, there was highly significant path
projection change (p < 0.011) and insignificant path deviation change (p <
0.290).
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e Row 5 shows that, in the control experiment, there was marginally significant

path projection change (p < 0.047) and insignificant path deviation change
(p < 0.411).

e Row 6 shows that, there was a significant difference in subjects’ path projection
responses between real and control experiments (p < 0.023), but there was an

insignificant difference in subjects’ path deviation responses (p < 0.215).

response type | experiment factor effect on
path proj. path dev.
F1,7) p< |F(L,7) p<
compensation real phase 22.325 0.002 | 0.026 0.877
control phase 0.004 0.951 | 0.184 0.681
both expr-phase | 15.362 0.0086 | 0.091 0.772
adaptation real phase 11.590 0.011 | 1.307 0.290
control phase 5.819 0.047 | 0.764 0.411
both expr-phase | 8.369 0.023 | 1.858 0.215

Table 5.1: Path projection and deviation ANOVA tests.

In sum, the ANOVA tests show two characteristics of subjects’ path projection

changes:

1. In the real experiment, these changes were significant.

2. The changes seen in the real experiment were significantly different from those

seen in the control experiment.

These characteristics are seen in subjects’ compensation and adaptation responses.

On the other hand, none of the ANOVA tests showed any significant path devia-

tions changes.

Mean Compensation and Path Deviation Change Table 5.2 summarizes
the values of mean compensation (columns 3 and 4) and mean path deviation change
(columns 5 and 6), averaged across subjects. Rows 1 through 3 in the table show

average values for subjects’ compensation responses. Row 1 shows average values for
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the real experiment, while row 2 shows average values for the control experiment.
Row 3 shows the average difference per subject in mean values between real and
control experiments. Rows 4 through 6 show these same average values for subjects’

adaptation responses.

response type | experiment | compensation | path dev. change (Hz)
H Ou M Ty
compensation real 0.55 0.12 |18 19
control | 0.00 006 | 9 7
diff/subj [ 0.55 0.05 | 9 13
adaptation real 0.32 0.10 |31 24
conrol 0.08 003 |10 10
diff/subj 10.25 0.05 |21 14

Table 5.2: Mean compensation and path deviation changes, averaged across subjects.

The values seen in the table are consistent with the ANOVA results. In subjects’
compensation responses, average mean compensation in the real experiment is large
compared to its standard error (0.55+0.12), while average mean compensation in the
control experiment is small compared to its standard error (0.32 +0.10). In addition,
the difference between a subject’s mean compensation in the real experiment and
his mean compensation in the control experiment is, on average, large compared to
its standard error (0.55 + 0.05). This same pattern is seen in subjects’ adaptation
responses.

On the other hand, all measured mean path deviation changes are all the same
order of magnitude as their standard errors.

In sum, the statistical tests confirm the significance of the key trends seen in
Figure 5-1. In both compensation and adaptation responses, rmean compensation was
significant across subjects and significantly greater in the real experiments than in the
control experiments. However, in no case was mean path deviation change significant
across subjects.

From the mean compensation and path deviation analysis, we conclude therefore

that subjects changed vowel productions specifically to compensate for alterations of
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their feedoack. We also conclude that these production changes are strong enough
to be partly retained when feedback is blocked by noise. The results of Study 2 thus

provide strong confirmation that speech exhibits SA.

5.3.1.2 Path Projection Analysis

More aspects of this SA effect can be seen by separately examining baseline and
testing phase path projection values. The results are shown in figures 5-2 and 5-3.

Figure 5-2 shows subjects’ mean path projections for the baseline and testing
phases of both the real experiment (solid lines) and control experiment (dotted lines).®
The left plots show mean path projection for subjects’ compensation responses: the
top plot shows testing phase values; the bottom plot shows baseline phase values.
The right plots show the same for subjects’ adaptation responses.

In each plot, comparison of subjects’ path projections is facilitated by a normaliza-
tion that makes path projection increases indicate compensation for all subjects. This
normalization is needed because, depending on the feedback transform he is exposed

to, a subject compensates by either increasing or decreasing vowel path projections:

e Subjects AH, OB, RO, and SR were exposed to the -2.0 feedback transforma-
tion in the real experiment and are referred to as the -2.0 subjects. The -2.0
transformation decreases perceived path projection by 2 vowel units, and the

-2.0 subjects compensated for it by increasing their vowel path projections.

e Subjects RS, CW, TY, and VS were exposed to the +2.0 feedback transforma-
tion in the real experiment and are referred to as the +2.0 subjects. The +2.0
transformation increases perceived path projection by 2 vowel units, and the

+2.0 subjects compensated for it by decreasing their vowel path projections.

To make the -2.0 and +2.0 subjects’ responses comparable, the +2.0 subjects’ path

projections were calculated using an [i]-[a] path with reversed numbering (i.e., with

6Recall that path projection is measured in inter-vowel intervals along the subject’s [i]-[a] path.
Normally, on this scale, 1.0 corresponds to [i}, 2.0 to [¢], 3.0 to [e], 4.0 to [z}, and 5.0 to [a]. Path
projection and the [i]-[a] path are discussed in detail in Section 3.3.
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5.0 corresponding to [i], 4.0 to [¢], 3.0 to [¢], 2.0 to [z], and 1.0 to [a]). Reversing the
numbering converts the +2.0 subjects’ compensation responses from path projection
decreases to path projection increases. This makes all subjects’ results comparable
in the plots: for all subjects, an increase in path projection indicates compensation.

These plots display several striking features. First consider Figure 5-2(b), which
shows baseline mean path projections of subjects’ compensation responses. For all
subjects but TY, VS, and AH (the poorest adaptors), mean path projections are
higher in the control experiment than in the real experiment. Of the remaining
subjects, all but SR show this same difference in their baseline adaptation responses
(Figure 5-2(c)). ANOVA tests show that this baseline difference is significant across
all subjects for both responses (p < 0.014 for compensation responses; p < 0.043 for
adaptation responses).

The reverse of this situation is true for the testing phase: in this case, path
projection seen in the real experiment is generally higher than that seen in the control
experiment. The observed difference is significant for compensation responses (p <
0.020) and marginally insignificant for adaptation responses (p < 0.080). However,
if subjects VS and AH (the poorest adaptors) are excluded, the difference is also
significant for adaptation responses.

These differences are summarized in Figure 5-3, which shows the path projections
of Figure 5-2 averaged across subjects. As with Figure 5-2, increasing path projection
values represent path projection changes in the compensating direction.

The figure shows subjects’ compensation and adaptation in the real experiment.
The solid line in Figure 5-3(a) shows subjects’ compensation responses in the real
experiment. These responses have an average baseline path projection close to 3.0
(the path position of [¢]) However, by the test phase, this average has shifted about
1.0 vowel unit in the compensating direction. Table 5.1 showed this shift is highly
significant (p < 0.002). The solid line in Figure 5-3(b) shows subjects’ adaptation
responses in the real experiment. These responses have an average baseline path
projection that is slightly higher than that of the baseline compensation responses.

By the test phase, this average has shifted in the compensating direction, though not
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by as much as the shift seen in subjects’ compensation responses. As reported in
Table 5.1 this shift is also significant (p < 0.011).

Figure 5-3 also shows that, although no appreciable production changes occur in
the control experiment, baseline responses are shifted in the compensating direction.
The dotted line in Figure 5-3(a) shows subjects’ compensation responses in the con-
trol experiment. These responses have an average baseline path projection close to
3.4. Relative to the same responses in the real experiment, this represents a signif-
icant shift in the compensating direction (p < 0.014 in the ANOVA tests discussed
above). The figure also shows an insignificant shift in average path projection from
the baseline to the test phase (p < 0.951 in Table 5.1). The dotted line in Figure 5-
3(b) shows subjects’ adaptation responses in the control experiment. These responses
have an average baseline path projection that is slightly lower than that of the base-
line compensation responses. By the test phase, however, average path projection has
increased to equal the compensation response value. Table 5.1 showed this increase
was marginally significant.

Several notable features of subjects’ control experiment responses warrant further

discussion.

Baseline Path Projection Lowering The first feature is the slight lowering of
baseline average path projection in subjects’ adaptation responses, as compared to
their compensation responses. In the test phase, subjects’ adaptation responses have
recovered from exhibiting the lowered path projection: test phase average path pro-
jection equals the compensation response value. This recovery makes subjects appear
to exhibit marginally significant adaptation in the control experiment.

One explanation for these results involves priming: in the control experiment sub-
jects were primed to respond the same way they did in the real experiment. For each
subject, the control experiment was performed many days after the real experiment.
In the real experiments, subjects shifted path projections in the compensating direc-
tion, both when they heard feedback and when they heard masking noise. Subjects

may have retained a tendency to make these path projection shifts that was primed
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by being in the same experimental setup for the control experiment. Such priming
effects of context have been well documented in studies of implicit memory (for a
review, see [Schacter, 1995]).

This explanation would predict path projection shifts in both compensation and
adaptation responses. However, no such shifts were seen in subjects’ compensation
responses. Thus, we must modify the explanation by supposing that the tendency
to shift path projections was inhibited when subjects could hear feedback of their
whispering.

Another explanation for these results comes from the analysis of Study 1’s re-
sults. There, a similar results pattern was seen in for subjects MF and JK and
was attributed to FI lowering.” Both subjects showed apparently greater adaptation
than compensation (subject JK showed no compensation). This resulted from the
lowered baseline path projection of their adaptation responses, as compared to their
compensation responses. For both subjects, it was clear that this baseline path pro-
jection lowering resulted from F'1 lowering: baseline F'1 had a lower frequency in their
adaptation responses than in their compensation responses. Hearing the masking
noise apparently caused the subjects to initially lower their normal productions of
F1. Over the course of the experiment, subjects reduced how much they lowered F1,
which could be explained by their habituating to the presence of masking noise.

Of the two suggested explanations, the F1 lowering hypothesis appears more likely
because it explains more of the results with fewer added assumptions. It not only ex-
plains the adaptation response path projection increase, but also explains the lowered
baseline path projection, as well as the recovery in the test phase to the compensation

response path projection value.

Lack of a Compensation Response Subjects do not show a compensation re-
sponse in the control experiment. Average path projection is approximately 3.4 in

the baseline phase and remains unchanged by the end of the experiment. Table 5.1

"For detail on F1 lowering beyond this paragraph’s summary description, see sections 4.4.1.3
and 4.4.1.4.
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confirms the lack of significant change in this case (p < 0.951).

On one hand, the lack of compensation response seems predictable because feed-
back was not altered in the control experiment. Thus, there were no feedback alter-
ation effects to compensate for.

On the other hand, the lack of compensation response seems surprising. In the
subject pretest and in the real experiment, subjects produced [¢] with a path projec-
tion of 3.0 vowel units. However, in the control experiment, baseline path projections
differed, on average, by 0.4 vowel units from 3.0. Below, we will discuss possible
explanations for this difference. Herc, we consider why subjects apparently feel no
compulsion to reset their [¢] path projections to 3.0 during the control experiment.

One explanation for the results is that subjects are insensitive to path projection
differences of only 0.4 vowel units. However, as will be seen in below in Section 5.3.2,
at least half the subjects showed compensations for feedback alterations of only 0.2
vowel units.

Another explanation for the results is that subjects don’t retain long-term mem-
ories of their whispered vowel sounds. Without such memories, they would not have
an absolute reference from which to judge correctness of the sounds of their vowel
productions. In this explanation, subjects’ initial articulations of [¢] would set their
reference memory of what [¢] should sound like. This memory would be used for the
rest of the experiment to judge sound corrertness of subsequent articulations of [g].
If, as during the real experiment, a feedback transform made the perceived sound of
[e] differ from the reference memory, compensating productions would be induced.
However, during the control experiment, the sounds of articulations of [¢] were not
altered. In this case, these [¢] sounds would not differ from the reference memory,

and no production alterations would be induced.

The Baseline Shift The most striking feature of subjects’ control experiment re-
sponses is the shift of baseline path projection in the compensating direction. For
subjects’ compensation responses, this shift is, on average, about 0.4 vowel units. For

their adaptation responses, the shift is slightly less (as discussed above).
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The shift suggests a partial retention of the productions changes in [¢] that were
induced in the real experiment. As noted above, this is theoretically possible because,
for each subject, the control experiment was performed after the real experiment.
However, it is useful to be more specific about the time interval between real and
control experiments for each subject. Table 5.3 tabulates this information: the last
column of the table shows the number of days between the real experiment and the

control experiment for each subject. The table shows the following features:

e For all subjects but one, the time interval between real and control experiment

was greater than 30 days.

o For the one subject whose interval was less (subject RS), the interval was only
two days. Yet figures 5-2(b) and 5-2(d) show his control baseline shift was about

the same as that of other subjects.

subject | when expr. run (month/day, time) | time diff.

real exp. control exp. (days)
CW |4/06, 1:12PM |5,/27, 9:05 AM 51
RS |5/28, 11:41 AM |5/30, 9:01 AM 2
OB |4/03, 3:16 PM |5/21, 2:50 PM 48
SR |4/16, 2:30 PM |5/16, 1:31 PM 30

RO |4/10, 1:06 PM |5/17, 1258 PM | 37
TY |4/15, 12:43 PM |5/20, 12:55 PM | 35
VS |4/13, 1:16 PM |5/16, 9:33 AM 33
AH |4/04, 3:36 PM |5/14, 1259 PM| 40

Table 5.3: Dates on which subjects were run in the experiments of Study 2. All
subjects were run in 1996.

It therefore appears that most subjects’ compensating production changes, in-
duced in the real experiment, were retained over a period of more than a month.

That production changes could be retained long-term in absence of feedback re-
quires only the assumption of stability of the speech production system. Such sta-
bility is evident in the speech of post-lingually deafened speakers: such speakers re-
tain intelligible speech for decades after deafening [Cowie and Douglas-Cowie, 1983,

Lane and Webster, 1991).
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However, during the month between the real and control experiment, the subjects
presumably were not denied feedback of their speech. Why didn’t this month of
hearing unaltered feedback of their vowels reset the subjects’ productions of [¢]?

One explanation is that the speech SA experimental conditions are sufficiently
novel that subjects develop representations of their vowel productions that are specific
to the experiment. In this account, during the real experiment, these experiment-
specific vowel representations are initially set to produce correct-sounding vowels with
no feedback alteration. Later, these representations are altered to compensate for
the effects of the feedback alteration that is introduced. After the experiment, these
representations are sufficiently independent of their normal vowel representations that
they are not completely affected by speech feedback under normal conditions. Thus,
the experiment-specific vowel representations are able to retain much of their induced
alterations over the month between the real and control experiments.

Another explanation is a generalization of the previous one: subjects have rep-
resentations governing the control of their whispered vowels that are somewhat in-
dependent of their voiced vowel representations. To some extent this must be true:
control of the glottis for whispered speech is necessarily different from glottal control
for voiced speech [Titze, 1994, O’Shaughnessy, 1987].

But suppose control of other vowel tract articulators was also represented sep-
arately for voiced and whispered vowels.® If this were the case, whispered vowel
representations would not be completely affected by voiced vowel feedback. In this
account, during the real experiment, whispered vowel representations are altered to
compensate for the effects of the altered feedback. After the experiment, these whis-
pered vowel representations remain altered because: (1) they are not completely
affected by feedback of voiced vowel productions and (2) whispering is an infrequent
mode of speech, not likely to be used much by subjects during the month between
the real and control experiments.

From the data available, it is not possible to distinguish between the above two

8There may be some justification for this given the differing spectral envelopes of voiced and
whispered vowels (see Section A.1.2 for more detailed discussion of these spectral differences).
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explanations of the retention of production changes. However, both explanations
underscore the importance of studying the generality of the vowel production changes
observed in the speech SA experiments of this thesis. Experiments must be designed
to examine the extent to which induced vowel production changes in the experiment
affect vowel productions (whispered and voiced) under normal conditions.

Thus, because it was performed after the real experiment, the control experiment
may not have been as clean a control as one would want. But the results it exhibited

suggest the design of future experiments to look specifically at stability and generality

of the SA effect.
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Figure 5-2: Path projections of each subject’s vowel productions in the baseline and
testing phases. Plots (a) and (b) show path projections for each subject’s compensa-
tion response. Plots (c) and (d) show the same for each subject’s adaptation response.
In each plot, black dots linked by a solid line indicate real experiment data, while
white dots linked by a dotted line indicate control experiment data. Small bars around
each dot indicate confidence intervals.
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Figure 5-3: Path projections of Figure 5-2 averaged across subjects. Plot (a) shows
average path projections for subjects’ compensation responses. Plot (b) shows the
same for subjects’ adaptation responses. In each plot, the filled and open dots above
the “base” label are the average path projections seen in the baseline phase of the
real and control experiments, respectively. The dots above the “test” label are the
average path projections seen in the test phase. The solid and dotted lines connecting
the dots highlight the average path projection changes seen in the real and control
experiments, respectively. (Note: confidence intervals for each average are shown but
are so small that the bars representing them are obscured by the dots.)
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5.3.1.3 Subjects’ Awareness of the Altered Feedback

As discussed in Section 5.1.1, a key goal of Study 2 was to minimize the chance of
subjects using conscious strategies to compensate for the altered feedback. For this
reason, its design included (1) gradual introduction of feedback transforms and (2)
post-experiment interviews to assess subjects’ awareness of the altered feedback.

The results of these interviews were that no subject reported being aware of either
the altering of his feedback nor his own compensatory responses to it. This suggests
that the compensations and adaptations produced by subjects were not the result of
conscious strategies.

However, the amount of compensation seen varied widely across subjects, with
some showing little or no compensation. This raises interesting questions about the
poor compensators — the subject’s exhibiting little compensation: (1) why did they
not compensate more, and (2) why did they not report noticing the altered feedback?

One possibility is that these subjects were somehow unable to compensate, and
that the post-experiment interview was an unreliable assessment of whether subjects
were consciously aware of the altered feedback. The experiment is roughly two hours
long and the feedback alteration was ramped up to full strength within the first hour.
During the post-experiment interview, subjects may therefore have forgotten their
initial percept of altered feedback, which would have occurred minimally one hour
earlier. However, it must be noted that all subjects expressed significant curiosity
about the purpose of the experiment. This suggests that they were disposed to
remember any unusual aspects of tne experiment as clues to its purpose. Altered
auditory feedback is arguably an unusual experimental aspect subjects would be likely
to remember.

It is also possible that there existed some problem in feedback transform fidelity
for the poorly compensating subjects.® However, it should be noted that (1) during

subject pretest, subjects were specifically screened out whose transformed vowels had

9As discussed in Appendix C, there were resolution and stability problems inherent to the method
of generating the feedback transformations. The magnitude of these effects depends on the geometry
of a subject’s path vowels in formant space. Perhaps the poorly compensating subjects’ path vowels
were so arranged as to exacerbate these effects.
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poor fidelity, and (2) during the experiment, fidelity of the altered feedback was
subjectively monitored by the experimenter. No significant transform anomalies were
reported.

A second set of explanations concern speech perception. The first of these is that
the poor compensators may be insensitive to the whispered vowel sound differences
created by the altered feedback. Note however, that it’s unlikely the subjects had a
general insensitivity to these vowel sound differences: the experiment’s feedback al-
terations were large enough to change the phonetic identity of [¢] (e.g., “pep” changed
to “peep”). Insensitivity to such differences in voiced speech can sometimes be seen
in non-native speakers of English, but seem unlikely in the subjects of Study 2, who
were native speakers of North American English.

The second perceptual explanation for the poor compensators is that the altered
feedback induced adaptation of their speech perception, not their speech production.
Adaptation of speech perception has been shown in other types of experiments -
specifically the selective adaptation experiments of Cooper [Cooper, 1979]. Cooper’s
experiments investigated shift of subjects’ VOT category boundary in the perception
of voiced/voiceless consonants. He found this shift could be induced by repetitive
listening to one or the other of two consonants differing only by VOT. The conditions
of these experiments were thus very different from the speech SA experiments of this
thesis, but the existence of one type of adaptation in speech perception suggests the

possibility of other types of perceptual adaptation.

5.3.1.4 Discussion

In Study 1, we concluded only that speech appeared to exhibit SA: that subjects com-
pensate for feedback alterations, and that part of their compensation is accomplished
by production changes sufficiently persistent to be observed in speech produced while
their speech feedback is blocked by noise.

From the compensation and adaptation results of Study 2, we were able to confirm
these basic conclusions. However, these results also revealed many more character-

istics of speech SA. To summarize these characteristics, we formulate the following
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theory concerning subjects’ response to altered auditory feedback in a speech SA

experiment:

1. Perception of the altered feedback is partially offset by perceptual adapta-

tion. The capacity to adapt perception is limited and subject-specific.
2. The perceived feedback alteration is compensated for.

3. Compensation is partly achieved by a temporary correction mechanisin (ac-
tive only while exposed to the altered feedback), and partly achieved by

long-term adjustment of speech control.

The rationale for each hypothesis in this theory is considered in the discussion

that follows.

1. Subjects’ perception adapts. The perceptual adaptation hypothesis can ac-
count for two seemingly contradictory findings of Study 2: (1) the amount of com-
pensation varied widely across subjects, yet (2) no subject reported noticing any
alteration of their feedback.

The hypothesis accounts for these findings by postulating that each subject has
a different capacity to adapt his perception of the altered feedback. This perceptual
adaptation reduces his perception of the true amount of feedback alteration. He
then produces compensations only for the perceived amount of feedback alteration.
Subjects who produced large compensations are assumed to have small capacities to
adapt perception, while subjects who produced small compensations are assumed to
have large capacities to adapt perception.

Perceptual adaptation was not directly investigated in Study 2, so currently there
is only indirect evidence of its existence. However, the perceptual adaptation hypoth-
esis makes a testable prediction: altered feedback exposure should change a subject’s
perception of vowel sounds — not just those produced by the subject himself. This

prediction will be tested in future experiments.
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2. Subjects compensate for perceived feedback alterations. The compen-
sation hypothesis is that subjects make production adjustments specifically to com-
pensate for perceived feedback alterations. This hypothesis is strongly supported by
three lines of evidence in Study 2 concerning subjects’ compensation responses.'°

First, across all subjects’ compensation responses in the real experiment, signifi-
cant changes were observed in path projections but not path deviations. This suggests
subjects were compensating because the feedback transformations altered only per-
ceived path projections, not path deviations.

Second, all significant path projection shifts were in the direction that compen-
sated for the feedback alteration. This result is most significant because the compen-
sating direction was not the same for all subjects. Half the subjects were exposed
to the -2.0 feedback transform, which is compensated for by positive path projec-
tion shifts. The other subjects were exposed to the +2.0 feedback transform, which
is compensated for by negative path projection shifts. This arrangement insured
that any bias for path projections to shift in one direction could not be mistaken as
compensation in all subjects.

Thiid, across all subjects’ compensation responses in the control experiment, no
significant changes were observed in either path projections or path deviations. The
control experiment differed from the real experiment only in that no feedback alter-
ations occurred. Thus, the lack of significant path projection shifts in the control

experiment imply that the shifts observed in the real experiment were caused by the

presence of altered feedback.

3. Compensation is achieved by both temporary and long-term speech con-
trol adjustments. In both Study 1 and Study 2, it appeared that altered feedback
exposure caused subjects not only compensate, but to adapt - i.e., to retain com-

pensating production changes in speech produced while speech feedback was blocked

10Recall that the term “compensation response” refers only to the feedback condition under which
vowel productions were observed. The term means changes in a subject’s vowel produced while he
could hear feedback of his whispering - conditions when compensation for altered feedback could
(but not necessarily would) occur.
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by noise. Such retained compensation could be explained by supposing that altered
feedback exposure induced long-term changes in subjects’ control of their speech pro-
duction. This explanation is supported by the path projection analysis, which showed
significant retention of compensating production changes during the month between
the real and control experiments.

It was also seen in both Study 1 and Study 2 that compensation was generally
greater than adaptation for all subjects.!! One possible explanation for this difference
is that the presence of masking noise somehow causes subjects to whisper differently.
This account, however, does not specify why compensation would be greater than
adaptation.

Instead we hypothesize that some portion of each subject’s compensation was ac-
complished by some temporary correction mechanism, active only in the presence of
the altered feedback. The additional compensation provided by this mechanism ex-
plains why subjects’ compensation responses (when they hear feedback) are generally
bigger than their adaptation responses (when they hear only noise).

This explanation suggests that vowel production may be partly under auditory
feedback control - a hypothesis first proposed for speech production in general by
Grant Fairbanks in 1954 [Fairbanks, 1954]. Auditory feedback control has also been
proposed as an explanation of subjects’ compensating responses in pitch perturbation
experiments [Kawahara, 1993]. In these experiments, subjects hear feedback of their
speech in which the pitch is occasionally perturbed. These pitch feedback pertur-
bations generally induce compensating changes in subjects’ pitch production within
100-200ms of the onset of perturbation.

There are, however, several arguments that auditory feedback plays no direct role
in the control of speech.

The first argument is that it isn’t necessary to suppose auditory feedback control
since speech is producible without auditory feedback. Speakers deafened in adult life

retain intelligible speech [Cowie and Douglas-Cowie, 1983, Lane and Webster, 1991).

For subjects in which this was not true, it was usually because of other anomalies in their
adaptation responses, or because they exhibited insignificant compensation or adaptation.
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Many other experiments (including those of Study 1 and Study 2) have shown that
speech remains intelligibie even when hearing is blocked by masking noise
[Lombard, 1911, Lane and Tranel, 1971]. However, this argument does not rule out
the possibility that, when available, auditory feedback control is used in speech pro-
duction.

The other major argument against auditory feedback control is that it is too slow:
the neural delays in processing auditory feedback probably make it unusable for the
control of fast speech movements [Perkell, 1996]. But maintaining a pitch frequency
or steady-state vowel does not necessarily require such fast speech adjustments. For
these tasks, it therefore seems plausible their control could be partially based on
auditory feedback.

We will return to the issue of auditory feedback and the hypothesized temporary

correction mechanism in the next section’s discussion.
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5.3.2 Timecourse Results

As described in Section 5.2.2.2, in the real experiments (but not control experiments),
a feedback transformation was introduced gradually over the 11 stages of the ramp
phase. Within each stage, the feedback transformation’s strength was held constant.
Between each stage, it’s strength was increased by a fixed amount. In this way, the
feedback transformation’s strength was linearly increased to it’s maximum value over
the course of the ramp phase. It’s strength was held at this maximum value for the
rest of the experiment.

The primary motivation for gradual alteration of feedback in the ramp phase was
to minimize subjects’ awareness of it. However, it also allowed examination of how
subjects’ compensation and adaptation developed in response to increasing feedback
alterations. In Section 5.1.2, several questions concerning the timecourse of these

responses were pOSCdZ

1. Would subjects’ compensation responses be modulated by categorical percep-

tion?
2. Would their adaptation and compensation timecourses differ?

In addition, the experiment’s extended (one hour) training phase allowed examination
of another timecourse question: would subjects’ compensating responses stabilize
after extended exposure to the maximum-strength feedback alteration?

These questions are considered in the following sections.

5.3.2.1 Timecourse Plots

Only four subjects produced compensations large enough to permit analysis of their
timecourses. These are shown in Figure 5-4. Each plot shows how a subject’s mean
compensation and adaptation developed over the experiment’s timecourse.!? This

timecourse is represented on the x-axis of each plot as a succession of labeled intervals.

2In considering the plots of these responses, note that for each interval mean compensation and
adaptation were computed relative to the baseline phase. For this reason, in every subject’s plot,
mean compensation and adaptation in the baseline phase (the “base” interval) is zero Ly definition.
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Figure 5-4: Mean compensation and adaptation timecourses for the subjects showing
the four largest mean adaptations. Each plot’s x-axis lists the intervals in the exper-
iment’s timecourse: “base” is the baseline phase; “1”-“9” are stages 1-9 of the¢ ramp
phase; “trainl”, “train2”, and “train3” are the 1st, 2nd, and 3rd 20-minute intervals
of the train phase; “test” is the test phase. For each interval, mean compensation
and adaptation are shown as black and white dots, respectively, on the y-axis. Small
bars around each dot indicate confidence intervals.
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It is important to note that these labeled intervais represent differing amounts of

time:
e The interval labeled “base” represents the entire 17-minute baseline phase.

e The intervals labeled “1” - “9” represent ramp stages 1 - 9, which were each

about 2 minutes long.

The intervals labeled “trainl™, “train2”, and “train3” represent successive 20-

minute time intervals of the train phase.

The interval labeled “test” represents the entire 17-minute test phase.

The differing interval durations have two consequences. First, there is less data to
average in each ramp stage interval than in the other intervals. Thus, the confidence
intervals of the ramp stage measurements are larger than those of the other intervals.
Second, there is a timescale discontinuity at ramp stage 9: up to this point, each
ramp stage interval represents another 2 minutes in the experiment; past this point,
each interval represents roughly another 20 minutes in the experiment. Any apparent
jumps in compensation or adaptation between ramp stage 9 and the trainl interval
(as seen in subject CW’s plot) are thus possibly due to the timescale discontinuity.

This timescale discontinuity is acceptable because data from the ramp phase and
the rest of the experiment (the train and test phases) are analyzed separately. These
separate analyses differ in purpose. The ramp phase analysis investigates how sub-
jects’ compensating responses increased in response to the increasing feedback al-
teration. The train and test phase analysis investigates whether subjects’ responses
stabilized after extended exposure to the maximum-strength feedback alteration. The
train and test phase analysis is presented first because it is less extensive than the

ramp phase analysis that is the main focus of timecourse analysis.

5.3.2.2 Train and Test Phase Analysis

During the train and test phase intervals (“trainl”, “train2”, “train3”, and “test”),

the strength of the feedback transformation was held at its maximum value. The
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plots show that, within these intervals, all but one subject’s responses appeared to

stabilize:

e Subject CW'’s plot (Figure 5-4(a)) shows both his compensation and adaptation
were still increasing in the first 20 minutes of the train phase, but thereafter

appeared to stabilize. His mean compensation stabilized at a higher value than
his mean adaptation. Subject OB and SR’s plots (Figures 5-4(c) and 5-4(d))

exhibit the same basic pattern.!®

e Subject RS’s plot (Figure 5-4(b)) shows both his compensation and adaptation

were still increasing throughout the train and test phases.

The results show that, for all but one subject, the test-phase compensation and adap-
tation measures analyzed in Section 5.3.1 are good measures of the subjects’ complete
potential to compensate. Not so, however, for subject RS: his results imply that, if
the experiment were continued, he would continue to increase his compensation and

adaptation.

5.3.2.3 Ramp Phase Analysis

Over the stages of the ramp phase, alteration of subjects’ feedback was linearly in-
creased. The basic analysis question was therefore whether subjects’ compensation
and adaptation linearly increased in response to it. In other words: did each feedback
alteration increase induce the same amount of compensation and adaptation increase?

Qualitative examination of Figure 5-4’s plots suggests this may be true for com-
pensation but not for adaptation. Taking into account the confidence intervals, it ap-
pears plausible that each subject’s compensation increased linearly during the ramp
phase. However, there is much less consistency across subjects in their ramp-phase

adaptation timecourses:

e Ramp stage 1 is the first experiment interval with a non-zero feedback alteration

and subject RS’s adaptation shows an immediate response to this. The rest of

13GQubject SR’s adaptation appears to show a slight dip in the testing phase, but, within the limits
of the confidence intervals, this dip does not appear significant.
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his ramp phase adaptation timecourse looks quite similar to his compensation

timecourse.

e On the other hand, subjecte CW, OB, and RS all exhibit delayed adaptation
responses. Their responses remain at zero for several ramp stages and then
suddenly increase. These sudden increases (onsets) occur between stages 3 and
4 for subjects CW and OB, but between stages 8 and 9 for subject SR. However,
for each subject, the onset brings his adaptation to a value roughly equal to his

compensation (taking into account the confidence intervals).

These differences between compensation and adaptation are reflected in the linear
regression analysis tabulated in Table 5.4. The table shows that the linear fit of
each subject’s compensation is highly significant, whereas the significance results for

adaptation are much more variable.

subject compensation adaptation

R F(Q,7) p< R F(1,7) p<
CW [0.850 18.257 0.004 |0.725 7.760 0.027
RS 0.852 18.649 0.004 | 0.814 13.741 0.008
OB |0.913 35.294 0.001 |0.909 33.119 0.001
SR 0.961 85.004 0.000|0.58 3.651 0.098

Table 5.4: Ramp phase compensation and adaptation timecourse regression results.
Each row of the table shows regression analysis of a subject’s ramp-phase compensa-
tion and adaptation. Each regression analysis is summarized by a correlation R, and
a test of the significance of this correlation: F(1,7) and p.

We conclude from these results that no effects of categorical perception are ap-
parent in the subjects’ compensation timecourses. As discussed in Section 5.1.2, the
testable effect would be a delay in a subject’s compensation response to the increasing
feedback alteration. A subject would delay compensating his production of a vowel
until the feedback alteration grows large enough to change the perceived phonetic
identity of that vowel. No such delay is evident in the compensation results. The
linearity of subject’s compensation timecourses imply that, on average, subjects com-

pensate for each feedback alteration increase, and that each increase is compensated
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for by the same amount.

On the other hand, many subjects do exhibit delayed adaptation responses. How-
ever, it appears unlikely that these delayed responses are caused by categorical per-
ception. If these delayed responses resulted from failure to perceive the feedback
alteration until it reached a certain magnitude, then the subjects should have delayed
all responses. But no delay was evidenced in subjects’ compensation responses.

One consistent feature of the adaptation onsets has already been noted: the onset
brings adaptation to a value roughly equal to compensation. However, careful exam-
ination of the plots in Figure 5-4 reveals another consistent feature: where the onset
occurs, mean compensation has value approximately equal to the subject’s final com-
pensation — adaptation difference. Figure 5-3 quantifies this relationship. Each point
in the plot represents a different subject’s results. The y-value of each point is mean
compensation at the time of the subject’s adaptation onset - i.e., where adaptation
first exhibits a noticeable increase. The point corresponding to subject RS thus has
a y-value of zero, since his adaptation begins to increase right from the beginning of
the ramp phase, when both adaptation and compensation are zero. The x-value of
each point is the difference between mean compensation and adaptation exhibited by
the subject in the final, (test) phase of the experiment.

As indicated in the figure caption, these points fit significantly well to a straight
line, and this line is quite close to the the line y = z. Thus, for the four analyzed
subjects, amount of compensation at the onset of adaptation is nearly equal to the

amount by which compensation exceeds adaptation at the experiment’s end.
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Figure 5-5: Analysis of the adaptation onsets seen in Figure 5-4. Each subject is
represented by a labeled point. The point’s x-value shows how much the subject’s
mean compensation exceeded his mean adaptation in the iinal (test) phase of the
experiment. The point’s y-value shows the subject’s mean compensation at the onset
of his adaptation increase. The regression line for these points (dashed line) has a
y-intercept of —0.056 and a slope of 1.065, which is quite close to the line y = z (solid
line). The significance of the fit of the points to the regression line is: r = 0.989,r% =
0.980, F(1,2) = 95.339,p = 0.010.

178



5.3.2.4 Discussion

A key hypothesis of the speech SA theory proposed in Section 5.3.1.4 concerned the
mechanism of compensation. It hypothesized that compensation is achieved partly by
a temporary correction mechanism (active only in the presence of auditory feedback)
and partly by long-term speech control adjustments. In this account, adaptation is
explained as evidence of these long-term speech control adjustments.

The major results of the timecourse analysis could be explained by a slight addition
to this hypothesis: supposing that subjects have a preference to compensate using the
temporary correction mechanism. Only when this mechanism’s capacity is reached
do subjects make long-term speech control adjustments.

Thus, based on the timecourse results, we expand the speech SA theory of Sec-

tion 5.3.1.4 to the following:

1. Perception of the altered feedback is partially offset by perceptual adapta-

tion. The capacity to adapt perception is limited and subject-specific.
2. The perceived feedback alteration is compensated for.

3. Compensation is preferentially achieved by a temporary correction mecha-
nism (active only while exposed to the altered feedback). The capacity of
the temporary correction mechanism to compensate is limited and subject-

specific.

4. When required compensation exceeds the capacity of the temporary cor-
rection mechanism, long-term speech control adjustments must be made -

i.e., adaptation occurs.

This theory explains the subjects’ timecourse results in the following way:

e Subject RS has no capacity for temporary correction. For him, all compensation

for the feedback distortion must be accomplished by adjustment of long-term
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speech control - i.e., adaptation. This is why his adaptation response exhibits
no delayed onset, and why its timecourse is so similar to his compensation

timecourse: both timecourses reflect adjustment of the same mechanism.

e Subject SR, however, has a large capacity for temporary correction. For him,
this capacity is not exceeded until he is induced to increase compensation be-
yond about 0.6. At this point (between ramp stages 8 and 9), he adapts long-

term speech control enough to compensate for the feedback distortion.

e Subjects CW and OB’s responses to the increasing feedback distortion are inter-
mediate between these two extremes: Both exhibit some temporary correction

capacity, which, when exceeded, triggers long-term speech control adjustment.

The above theory, however, is preliminary and will require further experiments to
confirm. It also leaves unexplained some aspects of the results seen in Figure 5-4.
One unexplained aspect is why adaptation rises quickly after its onset to account
for all compensation. (l.e., why does the step in adaptation bring it equal to the
current amount of compensation?) Another unexplained aspect is what happens to
adaptation after onset. For subject OB, it appears to linearly increase after its onset,
while for subjects CW and SR, it appears to stabilize.!* These unexplained aspects

will need further investigation to be understood.

Y4In subject CW’s plot, both compensation and adaptation also significantly increase between
ramp stage 9 and the trainl interval. As explained in Section 5.3.2.1 above, it’s unclear whether
these increases are rapid onsets (i.e., within one ramp stage) or more gradual increases because of
the plot’s timescale discontinuity at this point.

180




5.3.3 Generalization Results

In Section 5.2.2.1, we described how, in each epoch, the subject was prompted to
produced ten different words. For the first five words, he could hear feedback of his
whispering, but for the last five words, masking noise prevented him from hearing his
whispering. The first six words the subject produced were randomly selected from a
word set called the training words (abbreviated symbolically as Wy ... ). The last
four words were randomly selected from a set called the testing words (abbreviated
as Wiegt). With this design, subjects produced training words under both feedback
conditions: they heard feedback of their first five Wy .,i;, word productions but
produced the sixth Wy ..., word while the masking noise blocked their hearing. On
the other hand, they produced all testing words while the masking noise blocked their
hearing.

Thus, when their feedback was altered, subjects only heard errors in their training
word productions. Training word production changes were therefore used as direct
measures of compensation and adaptation. The previous two sections (sections 5.3.1
and 5.3.2) focused on analyzing these measurements.

In contrast to this, testing word productions were not directly affected by ex-
posure to altered feedback — they were always produced while the subject’s hearing
was blocked by noise. Testing word production changes therefore measured how the
training word adaptations generalized. In this section we analyze these testing word

production changes.

5.3.3.1 The Testing Word Set

As discussed in Section 5.2.1.2, the Wy gt word set was composed of two subsets,
each designed to assess a different type of generalization.

The Wiegt-context subset was designed to assess contexrt generalization: how
the adaptation of [¢] in the training words affected the production of [¢] in other

words. This subset was composed of the following words:
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Wtest-context — { “pep”’ upegn’ “gep”’ .«tegn }

The Wiegt-target subset was designed to assess target generalization: how the

adaptation of [¢] in the training words affected the production of other vowels. This

subset was composed of the following words:

Wtest'target — { “peep”’ “piP”, chapsa, “pop” }

A key feature of these word sets is that the word “pep” is also a training word.
This was done to allow more accurate assessment of generalization. One way to assess
generalization would be to compare testing word production changes with training
word production changes. However, this makes word order a confounding factor in
the comparison: training words were always the first six words produced in an epoch,
while testing words were always the last four. Including “pep” in the testing words
insured that one training word was produced under the same word-order conditions
as the other testing words. We will refer to these productions of “pep” as Wiagt
“pep”. Generalization was assessed by comparing production changes of the other
testing words with those seen in W¢egt “pep”. This avoided the word-order confound

inherent to the direct comparison of training and testing words.

5.3.3.2 Assessing Generalization

Assessing generalization requires quantifying the influence of training word adapta-
tions on testing word productions. Because adaptations are shifts of path projection.
we conservatively assume that training word adaptation primarily influences testing
word path projections. We therefore represent testing word productions in terms of

path projections and deviations, and assess generalization in the following ways:

1. We test. generalization by assessing whether presence of altered feedback selec-

tively affects testing word path projections.
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2. We measure generalization as a comparison of testing and training word path

projection changes.

To see how these assessments are made, consider figures 5-6 and 5-7, which show
subject OB’s generalization results.

Figure 5-6 shows avgrams of OB’s testing word productions in the real experiment.
In each avgram, the solid lines show formant tracks of the mean utterance in the
baseline phase, while the dashed lines show formant tracks of the mean utterance in
the test phase. The gray regions show the interval in each utterance that was used
for vowel analysis.

Figure 5-7 shows vowel plots of subject OB’s generalization results. The figure’s
left plot (Figure 5-7(a)) shows OB’s context generalization results. Black arrows show
mean vowel (F1,F2) changes (test phase - baseline phase) for his context generalization
word productions in the real experiment. White arrows show the same changes in
the control experiment. In a similar fashion, the figure's right plot (Figure 5-7(b))
shows OB’s target generalization results. It shows mean vowel (F1,F2) changes for
his target generalization word productions. (Note that, to facilitate comparisons, the

vowel production change arrow for “pep” appears in both the left and right plots.)

Technical Limitations Consider first some of the technical problems with gener-
alization assessment illustrated by OB’s results.

The vowel plot and avgrams of the context generalization words illustrate the
effects of coarticulation. The vowel plot shows that, in both real and control ex-
periments, the bases of the “gep” and “teg” arrows are noticeably shifted towards
[i], relative to the “peg” and “pep” arrow bases. Thus, baseline production of [¢] in
“gep” and “teg” is different from [¢] in “peg” and “pep”. These baseline differences
confound interpretation of the context generalization results. Differences in [¢]'s path
projection change in different words might result from differences in how [e]’s adap-
tation generalizes to different words, or they may simply result from the baseline
differences. In the avgrams, examination of baseline F2 timecourses show that the

baseline differences in the vowel plot are likely due to coarticulation of the initial stop
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consonant with the vowel.!®

The Wy egt-targetword avgrams exhibit problems in formant estimation. In the
avgram of “peep” there is no baseline F2 track, while in the avgram of “pop” there
is no F2 track for either the baseline or the test phases.'® Because of this, vowel
production changes for [i] and [a] could not be measured. Thus, the arrows for

“peep” and “pop” are absent from the target generalization vowel plot.

Quantifying Generalization Now consider how path projection changes are used
to quantify the generalization seen in subject OB’s results. Figure 3-8 shows mean
path projection changes (test phase - baseline) of OB’s testing word vowel produc-
tions: Figure 5-8(a) shows mean path projection changes in the real experiment, while
Figure 5-8(b) shows the same for the control experiment.

Figure 5-8(a) shows that, in the real experiment, all testing words exhibit signifi-
cant mean path projections changes between 0.5 and 1.0. This is consistent with the
production changes seen in the vowel plots (Figure 5-7). In these plots, recall that
the black arrows represent mean (F1,F2) change for all testing word vowel produc-
tions in the real experiment. These arrows all have similar lengths, which shows that
all testing word vowels exhibited similar formant change magnitudes. Becausc these
arrows are all aligned with the [i]-[a] path, the similar formant change magnitudes
should result in similar path projection change magnitudes.

Figure 5-8(b) shows that, in the control experiment, all testing words except “pip”

exhibit much smaller mean path projection changes. Again, this is consistent with the

15Consider the baseline F2 formant track in avgrams of “gep”, “peg”, and “teg”. The timecourse
of F2 in “peg” is similar to that of “pep”. Since [p] is a bilabial stop, F2 is initially low but quickly
transitions to a steady-state value that it holds for the rest of the utterance. This quick F2 transition
is possible because the articulation of [p] does not need the tongue, so the tongue can be preset to
its position for [¢]. In “gep”, however, since [g] is a velar stop, F2 is initially high. It then takes time
for the tongue to move from its position for {g] to its position for []. This makes the F2 transition to
the steady-state vowel much slower: only by the utterance’s end has F2 dropped to its steady-state
value in “peg”. Thus, within the vowel analysis interval, average F2 in “gep” is higher than it is
in “peg” or “pep”. In “teg”, since [t] is an alveolar stop (and thus articulated with the tongue),
F2 also starts high and makes a slow (barely visible) downward transition. Thus, again, within the
vowel analysis interval, average F2 in “teg” is higher than it is in “peg” or “pep”. These differences
in average F2 account for much of the baseline differences seen in the vowel plot.

'SFormant estimation problems are discussed in depth in Section A.1.2.
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production changes seen in the vowel plots. In these plots, the white arrows show that
the vowels of all testing words except “pip” exhibit only small mean (F'1,F2) changes.
For “pip”, its vowel production change arrow in the control experiment appears large
and aligned with the [i]-[a] path - essentially a slightly shifted version of its vowel
production change arrow in the real experiment. Thus, mean path projection for
“pip” in the control experiment is similar to its mean path projection in the real
experiment.

These path projection plots illustrate the necessity of comparing production chan-
ges seen in both real and control experiments. The plots show that, for most testing
words, mean path projection changes seen in the real experiment are large while
those seen in the control experiment are small. For these words, real experiment path
projection change appears to be a good measure of change resulting from adaptation of
the training words. However, this is not the case for “pip”. The plots shows that mean
path projection for “pip” is equally large in both the real and control experiments.
Thus, for “pip” it becomes doubtful whether its vowel production change in the real
experiment is due specifically to adaptation of the training words.

Because of this, both testing and measuring generalization were done as compar-
isons between real and control experiment results.

Two tests of generalization were u"sed. One test was an ANOVA of testing word
vowel path projections in the real and control experiments. This test evaluated
whether path projection changes differed significantly between the real and control
experiments. The other test of generalization was an ANOVA of testing word vowel
path deviations in the real and control experiments.

Measurement of generalization was based on calculating mean generalization.
Mean generalization, in turn, was based on first calculating mean relative path projec-
tion change. For any testing word, mean relative path projection change is defined as
the word’s mean path projection change in the real experiment minus its mean path
projection change in the control experiment. Figure 5-8 shows mean relative path
projection changes for the testing word vowels of subject OB’s results. This figure

is essentially the difference between figures 5-8(a) and 5-8(b). The figure shows that
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mean relative path projection quantifies our doubts about whether “pip” has been
affected by adaptation of the training words. For all other testing words, their control
experiment mean path projections are small. Thus, when these are subtracted from
their larger real experiment mean path projection changes, the resulting mean rela-
tive path projection changes are still substantial. However, for “pip”, its similar path
projection changes in both real and control experiments cancel each other, resulting
in an insignificant mean relative path projection change.

Mean generalization was then calculated as a ratio of a subject’s mean relative
path projection changes. For every testing (Wtegt) word, this ratio compared the

word’s mean relative path projection change with that of Wiegt “pep”:

(mean rel. path proj. change, Wiag¢ word)

mean gen. = —
8 (mean rel. path proj. change, Wiagt “pep’)

The key property of mean generalization computed in this fashion is that it mea-
sures the influence of training word adaptation. Since “pep” is also a training word, it
is assumed that its mean relative path projection change is a direct result of training
word adaptation. Because of this, the above ratio is assumed to gauge how much
training word adaptation influences testing word production changes.

This method of computing mean generalization has the following three properties:

1. It is not influenced by word order effects. In each epoch, the training words
come before the testing words. Thus, if generalization was measured by direct
comparison with the training words, word order could influence the measure-
ment. By instead measuring generalization with respect to Wyeagt "pep”, this

word-order influence is avoided. (This is also discussed in Section 5.3.3.1 above.)

o

It normalizes the directions of subjects’ path projection changes. For any sub-
ject, as long as path projection changes for his testing words and Wy g4 “pep”
are all in the same direction, mean generalization will always be positive. This
facilitates comparison of -2.0 and +2.0 subjects (which generally exhibit oppo-

site path projection changes).
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3. It normalizes subjects’ acaptations: for all subjects, mean generalization of
Wiest “pep” is 1.0. This allows mean generalizations of different subjects to

be averaged, since their adaptation differences have been normalized away.
)
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5.3.3.3 Overall Generalization

In the previous section it was hypothesized that training word adaptation would
primarily affect path projections of testing word productions. This hypothesis makes

the following two predictions about testing word vowel productions:

1. Their path projection changes should differ significantly between the real and

control experiments but their path deviation changes should not.

o

Their path projections changes should be in the same direction as those of the

training words.

Hypothesis prediction 1 was evaluated using a test of overall generalization. This
test was actually two separate ANOVA tests: one which evaluated whether path
projection changes differed significantly between the real and control experiments,
and one which evaluated the same for path deviation changes.

Ideally, the overall generalization test would be done using all the Wiagt word
vowel productions of all subjects’ results. However, a number of factors restricted
which results could actually be used. One factor is the amount of adaptation sub-
jects exhibited. Subjects VS and AH had mean training word adaptations that were
very small and did not differ significantly between the real and control experiments.
Consequently, these subjects were excluded. For the remaining six subjects, formant
estimation problems (like those described in Section 5.3.3.2 above) prevented the
analysis of the vowel productions for certain subjects’ words. A summary of these
words is shown in Table 5.5. In the table, an “X” shows, for each subject, which
words’ vowel productions were not analyzable. Crossing out the columns for “peep”
and “pop” and the row for subject SR halances the table: for each remaining subject,
the same testing words’ resu.ts are available; for each remaining testing word, the
same subjects’ results are available. Thus, because the ANOVA tests require bal-
anced tables of results, subject SR and the words “peep” and “pop” were excluded
from the tests. Finally, “pep” was excluded from the tests because it is also a training

word.
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context gen. words target gen. words

subject | pep | peg | gep | teg || peep | pip | pap | pop

CwW X

RS X X

OB X X

SR X | X

RO X X

TY X X

Table 5.5: Showing, for each subject, which words’ vowel formants could not be prop-
erly estimated. These words are marked with an “X”. (For more detailed descriptions
of the problems estimating these words’ formants, see the individual subject result
plots of Section 5.4.)

As a result of these exclusions, the test of overall generalization was performed
on the vowel production results of six subjects (CW, RS, OB, RO, and TY') and five
testing words (“pip”, “pap”, “gep”, “peg’, and “teg”). When the test is run with
these restrictions, its results match the prediction of the hypothesis: path projection
changes in the real experiment are significantly different from those of the control
experiment (F = 8.981, p < 0.040) but path deviation changes are not (f' = 0.362,p <
0.574).

To evaluate hypothesis prediction 2, mean generalization was calculated for each
subject used in the above generalization test. Hypothesis prediction 2 is that, for
each subject, testing word path projection changes should be in the same direction
as those of the training words. This is equivalent to predicting that, for each subject,
mean generalization averaged across testing words is non-negative.

Figure 5-9 shows mean generalization for each subject used in the overall general-
ization test. For each subject, the value shown is mean generalization averaged over
the testing words used in the overall generalization test (“pip”, “pap”, “gep”. “peg’.
and “teg”). The figure shows that mean generalization is zero for subject RO and
positive for all other subjects. Thus mean generalization is always non-negative, as

predicted by the hypothesis.



Since the results agree with the hypothesis predictions, it appears that training
word adaptation does selectively affect testing word productions. The success of these
predictions also shows they are useful conservative criteria for assessing generalization
in speech SA. By applying these criteria to different groups of testing words, we can

assess whether speech SA exhibits different types of generalization.
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Figure 5-9: Mean generalization for all subjects used in the overall generalization
test.

5.3.3.4 Context Generalization

Entries in the first four columns of Table 5.5 show subjects’ analyzable productions
of the context generalization words. The entries show that all productions were
analyzable except subject SR’s productions of “gep” and “teg”. Thus, context gener-
alization was assessed for all four context generalization words (“pep”, “peg”, “gep”,
and “teg”), but this assessrnent used results from only five subjects (CW, RS, OB,
RO, and TY).

To test for context generalization, several ANOVA tests of path projection change
were performed. First, separate tests for each context generalization word were per-
formed. This was followed by an overall test across all context generalization words
except “pep”’. Fach test examined path projection changes observed across subjects.

Table 5.6 summarizes the results of these tests. In the table, the F and p values show
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how significantly different path projection changes in the real experiment were from

those in the control expcriment.

word F p <
pep |44.104 0.001
peg 8.180 0.046
gep 2.250 0.208
teg 1.390 0.304
overall | 7.617 0.040

Table 5.6: ANOVA tests of path projection change for the context generalization
words.

The table shows first of all, that path projection changes of Wiegt “pep” seen
in the real experiment were extremely different from those seen in the control exper-
iment. This is consistent with the fact that “pep” was also a training word.

For the other testing words, the table shows that, as a group, their path projec-
tion changes differed significantly between the real and control experiments. This
shows that training word adaptations did significantly affect vowel productions in the
context generalization words.

In the individual word tests, besides “pep”, only “peg” appeared to exhibit path
projection changes that differed significantly between the real and control experi-
ments. This suggests that training word adaptations may only generalize to words
sharing the same initial C'V. However, as discussed in Section 5.3.3.2 above, these
results could also be attributed to the differing coarticulatory influences of [g], [t],
and [p] on the following vowel.

To measure context generalization, mean generalization values for all context gen-
eralization words except “pep” were calculated. These values are shown in Figure 5-
10. For each word, the values were averaged across all subjects used in the context
generalization tests.

The figure shows that, for all three words, mean generalization is positive and
exhibits roughly the same amount of variability. This agrees with the overall context

generalization test results. It also aliows a more specific conclusion to be drawn: that
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Figure 5-10: Mean generalization for the context generalization words.

adapting the production of [¢] in the training words causes similar production changes
in [¢] in the testing words.

The figure also shows that mean generalization for “peg” (& 0.75) is noticeably
larger than mean generalization for “gep” or “teg” (= 0.4 for both). This may suggest
that adapting [e]’s production in the training words causes similar [g] production
ch-.ages only in words with the same initial CV. Again, however, this conclusion is
confounded by the coarticulation differences discussed above.

In sum, this section’s results allow only general conclusions regarding context
generalization. The results suggest that adapting a vowel’s production in one word
context generalizes only to words sharing the same initial CV. However, this conclu-
sion will have to be substantiated by future experiments that avoid the confounding
influences of coarticulation. A more reliable conclusion to be drawn {rom the cur-
rent results is that, overall, speech SA exhibits context generalization. In particular,
when [e] is adapted in training words with a common characteristic (CVC where
both C’s are bilabial), this adaptation generalizes to [¢] in testing words lacking this

characteristic (CVC where at least one C is not bilabial).
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5.3.3.5 Target Generalization

Entries in the last four columns of Table 5.5 show subjects’ analyzable productions of
the target generalization words. The entries show that, for most subjects, productions
of “peep” and “pop” were not analyzable. Thus, target generalization was assessed
for only two target generalization words (“pip” and “pap”), but this assessment used
results from all six available subjects (CW, RS, OB, SR, RO, and TY).

The methods used to assess target generalization were similar to those used for
context generalization. To test for target generalization, separate ANOVA tests for
each target generalization words were performed, followed by an overall test across
both target generalization words. Each test examined path projection changes ob-

served across subjects. Table 5.7 summarizes the results of these tests.

word F p<
pip 6.734 0.049
pap 5.155 0.072
overall | 14.439 0.013

Table 5.7: ANOVA tests of path projection change for the target generalization words.

The table shows that, as a group, the target generalization words exhibited path
projection changes that differed significantly between the real and control exper-
iments. This shows that training word adaptations did significantly affect vowel
productions in the target generalization words.

In the individual word tests, however, significance levels are noticeably poorer.
“pip” shows a marginally significant difference in its real and control experiment
path projections changes, while “pap” shows a marginally insignificant difference.
This suggests a lack of statistical power: the experiment contained enough word
repetitions to confirm overall target generalization, but not enough repetitions to
clearly establish generalization to particular target generalization words.

Figure 5-11 shows mean generalization values for the two target generalization
words. For each word, the values were averaged across all subjects used in the target

generalization tests.
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Figure 5-11: Mean generalization for the analyzable target generalization words.

The figure shows that, across both words, mean generalization is positive but ex-
hibits different amounts of variability. This is consistent with the target generalization
test results. It also allows us to specifically conclude that adapting [¢]’s production
in the training words causes similar production changes in other vowels.

In this figure mean generalization for “pap” appears bigger than that of “pip”.
However, this difference does not appear significant because of the large confidence
intervals for mean generalization of “pap”. In fact, mean generalization of “pip”
appears larger in comparison to its confidence intervals than does “pap”. Thus, like
the test results, the mean generalization results do not reliably indicate a difference
in generalization between “pip” and “pap”.

In sum, like the context generalization results, this section’s results allow only
general conclusions regarding target generalization. Future experiments using more
test word repetitions will be needed to examine pattern of target generalization across
vowels. But, from the current results, we can reliably conclude that, overall, speech
SA exhibits target generalization: adaptation [e] does affect the production of other

vowels.
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5.3.3.6 Discussion

As discussed in Section 5.1.3, the motivation for investigating speech SA general-
ization is its potential to reveal organization of the speech production system. In
the generalization investigations of Study 2, two aspects of this organization were
revealed.

The investigation of context generalization showed that adapting [€]’s production
in the training words causes similar production changes in [e] in the testing words.
Thus, part of the process controlling the [€]’s production in the training words must
be also used in the testing words. This sharing of [€]’s control process rules out the
possibility that training and testing words have independent means of controlling
their productions. It suggests instead the possibility that the words use a common
vowel representation to access the shared control process. This, in turn, suggests the
more general conclusion that words specify their productions indirectly via shared,
intermediate production unit representations (e.g. phonemes).

The investigation of target generalization showed that adapting the production
of [¢] causes similar production changes in other vowels. Thus, part of the process
controlling production of [€] must also be used in the production of the other vowels.
This rules out the possibility that these vowels have independent means of controlling
their productions. It suggests instead a similarity of the representations used to access
control of their productions. This suggests the possibility that their representations
may share some common set of features.

Technical limitations prevented making more detailed conclusions concerning con-
text and target generalization. However, many of these limitations appear to be solv-
able, allowing future experiments to examine in more detail the organization of the

speech production system.
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5.3.4 Summary

In this chapter, the results of Study 2 were presented and discussed. Study 2 was
designed to confirm and characterize more fully the speech SA effect seen in Study 1.
It was also designed to investigate the timecourse and generalization of speech SA. A

key part of this design was the use of separate sets of words for training and testing.

e Training words were used to assess compensation and adaptation. Subjects
were prompted to produce training words while hearing either (1) feedback of

their whispering or (2) masking noise which blocked their hearing.

e Testing words were used to assess generalization of the adaptation of the training
words. Subjects were prompted to produce testing words only while masking

noise blocked their hearing.
Analysis of the diverse results of Study 2 was organized into three categories:

e Compensation and adaptation results.
e Timecourse results.

e Generalization results.

Compensation and Adaptation Results Analysis of the compensation and
adaptation results confirmed the speech SA effect seen in Study 1. Comparison with
control experiment results showed that subjects altered their vowel productions specif-
ically to compensate for altered feedback. These compensations were also partially
retained in productions where their feedback was blocked by masking noise (and in
fact, appeared to be partially retained for the month between the real and control
experiments). Thus, subjects compensated and adapted, although the amounts they
exhibited varied widely, with adaptation less than (or, in one case, equal to) com-
pensation. In spite of this range of compensations, no subject reported noticing any
feedback alteration. In one sense, this was the desired result: feedback was altered
gradually to reduce subjects’ perception of it. In another sense, it was a surprising

result given how little some subjects compensated.
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Timecourse Results Analysis of the timecourse results assessed how subjects in-
creased their compensations and adaptations in response to the increasing alteration
of their feedback. This analysis showed that, on average, subjects compensated for
each increase in feedback alteration. However, they did not adapt until their com-
pensation reached a certain value. This value differed across subjects. However, for
each squect, this value was approximately equal to the final amocunt by which the
subject's compensation exceeded his adaptation. This suggested subjects may have
a preference for temporarily compensating for altered feedback, but their capacity to

do so is limited; once it is exceeded, they must make long-term adaptations.

To summarize the above findings, the following theory was proposed for subjects’

response to altered feedback:

1. Perception of the altered feedback is partially offset by perceptual adapta-

tion. The capacity to adapt perception is limited and subject-specific.
2. The perceived feedback alteration is compensated for.

3. Compensation is preferentially achieved by a temporary co. ction mecha-
nism (active only while exposed to the altered feedback). The capacity of
the temporary correction mechanism to compensate is limited and subject-

specific.

4. When required compensation exceeds the capacity of the temporary cor-
rection mechanism, long-term speech control adjustments must be made -

i.e., adaptation occurs.
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Generalization Results Finally, analysis of the generalization results showed the
potential for using speech SA to investigate phonetic issues in the organization of
speech production.

Context generalization assessment showed adaptation of [¢] in the training words
caused similar production changes in [¢] in the testing words. This rules out the
possibility that subjects used independent processes to control training and testing
word productions. It suggests instead that a common representation of [e] is shared
in the production of words containing [€]. This is consistent with the idea that words
specify their productions via intermediate representations such as phonemes.

Target generalization assessment showed adaptation of [¢] in the training words
caused similar production changes in other vowels in the testing words. This rules
out the possibility that subjects used independent processes to control their different
vowel productions. It suggests that vowels may have similar representations, possibly

because their representations share some common set of features.
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5.4 Individual Subject Results

This final section is a compilation of plots and descriptions of the individual subject
results in Study 2. For each subject, the following three aspects of his results are

considered:!”

1. Compensation and adaptation results: overall compensation and adapta-

tion responses in the real and control experiments.

2. Timecourse results: compensation and adaptation response timecourses in

the real experiment.

3. Generalization results: how adaptation of training word vowel productions

affected testing word vowel productions.

Subjects are discussed in order of decreasing adaptation, beginning with subject
CW. CW’s strong adaptation results are good examples to use in describing the layout
of the plots. CW’s results also clearly show the major features of all other subjects’
results. Thus, all features of CW’s results are described in detail. For subsequent
subjects, their results are described in terms of how their features differ from the

major features seen in CW'’s results.

5.4.1 Subject CW

Figures 5-12 through 5-16 show the results for subject CW - the subject exhibiting
the largest mean adaptation. For this subject, the real experiment was run on 4/6/96,
at 1:12 PM using the +2.0 feedback transform. The control experiment was run 51
days later, on 5/27/96 at 9:05 AM.

5.4.1.1 Compensation and Adaptation Results

Figure 5-12 shows CW'’s overall compensation and adaptation results.

17These are the same aspects discussed in Section 5.3.

202



Plot Layouts Figure 5-12(a) shows plots of CW'’s overall compensation responses
in the real and control experiments. The figure consists of two plots: a vowel plot and
a path projection plot. Figure 5-12(a)’s caption lists calculated mean compensation

for CW in the real and control experiments.

Vowel Plot The vowel plot (Figure 5-12(a), left side) shows mean formant
changes (test phase - baseline) of the subject’s training word vowel productions in his

compensation responses. The plot has four elements:
1. The subject’s [i]-[a] path.

2. A black arrow labeled “real exp” representing mean formant change of vowel

productions in the real experiment.

3. A gray arrow labeled “control” representing mean formant change of vowel

productions in the control experiment.

4. A hollow arrow that is the feedback transformation of the “real exp” arrow, and

is called the feedback image arrow.

For both the “real exp” and “control” arrows, ellipses around the arrow’s base and
tip represent standard errors of the baseline and test phase mean (F1,F2) estimates,
respectively. (The standard errors are often quite small, so these ellipses are often
difficult to see.)

The feedback image arrow shows how the subject heard his own vowel formant
changes in the real experiment (the “real exp” arrow) through his altered feedback.
The arrow’s base shows how the feedback transformation initially distorted the sub-
ject’s hearing of his baseline vowel formants (i.e., the arrow’s base is the feedback
transformation of the “real exp” arrow’s base). The arrow’s tip shows how the sub-
ject heard his vowel formants in the test phase (i.e., the arrow’s tip is the feedback
transformation of the “real exp” arrow’s tip).

The feedback image arrow is useful for graphically exhibiting how completely a

subject compensates. When compensating, the subject tries to make his test phase
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vowel formants sound like his baseline vowel formants did before his feedback was
altered. The feedback image arrow’s tip represents how the subject hears his test
rhase vowel formants. The “real exp” arrow’s base represents how the subject heard
his baseline vowel formants before his feedback was altered. Thus, when compensat-
ing, the subject tries to make the feedback image arrow’s tip approach the “real exp”

arrow’s base.1®

Path Projection Plot The path projection plot (Figure 5-12(a), right side)
shows path projections of the formant changes shown in the vowel plot. The solid line
labeled “real exp” shows vowel path projection changes in the real experiment. The
line links two filled dots. The filled dot above the “base” label is mean path projection
of baseline vowel productions (i.e., the path projection of the “real exp” arrow’s base
in the vowel plot) The filled dot above the “test” label is mean path projection of
test phase vowel productions (i.e., the path projection of the “real exp” arrow’s tip in
the vowel plot). In an analogous fashion, the dotted line labeled “control” that links
the open dots shows vowel path projection changes in the control experiment. For all
dots, standard error confidence intervals are shown as bars above and below the dots.
(As with the vowel plots, the stand errors are often quite small. Thus, the confidence
interval bars are often so close together that they are obscured by the dots.) Note
also that, as was done in Section 5.3.1.2, numbering of path positions is reversed for
+2.0 subjects like CW, but not for -2.0 subjects. Doing this makes path projection
increases represent compensation for all subjects.

Figure 5-12(b) shows plots of CW’s overall adaptation responses in the real and
control experiments. It’s layout is the same as Figure 5-12(a)’s, with one exception:
no feedback image arrow is shown in the vowel plot. This is because the subject
never hears the vowel production changes he makes in his adaptation response.'?
Figure 5-12(b)’s caption lists calculated mean adaptation for CW in the real and

control experiments.

18For further explanation of the feedback image arrow, see Section 3.3.1.3.
15Recall that, by definition, a subject’s adaptation response refers to his word productions made
while he was prevented from hearing his whispering by masking noise.
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Results Analysis CW'’s compensation response plots (Figure 5-12(a)) show four

features common to most subjects’ results:

1. Baseline formant mismatch in the real experiment: CW’s baseline [¢]
formants in the real experiment don’t match those of [¢] on his [i]-[a] path.

Figure 5-12(a)’s plots show this in two ways:

a) The “real exp” arrow’s base is not centered on [¢] on the [i]-[a] path.
p

Instead, it appears closer to [z].

(b) Baseline real experiment mean path projection is closer to 2.0 (the value

for []) than 3.0 (the value for [e]).

These results indicate a discrepancy between mean baseline [¢] formants in the
real experiment and in the subject pretest when CW’s [i]-[a] path vowel for-
mants were measured. Two possible causes of this discrepancy are apparent.
One is that CW changed his production of [¢]after the subject pretest. The
other is that the discrepancy is caused by differences in vowel formant mea-
surement procedures. In the subject pretest, vowel formants were measured
as average formant values of a subject’s mean production of a CVC utterance.
Coarticulatory influences from the initial ([b]) and final ([d]) consonants were
minimized by by prompting the subject to extend his whispering of the utter-
ance to 500 ms. This lengthened the utterance’s vowel portion. In spite of
this, it is still possible that coarticulation caused mean formants of the whole
utterance to be noticeably different from the true steady-state vowel formants.
Vowel formant measurement in the real experiment was done using a better
method: an avgram was used to identify the steady-state vowel portion of the
mean training word utterance. Mean vowel formants were then estimated by
averaging only over this portion of the subject’s training word utterances. In
future experiments, both subject pretest and the actual experiment will use this

vowel formant measurement method.

2. Compensation in the real experiment: CW’s vowel production changes

in the real experiment exhibit compensation. In fact, CW’s vowel production
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changes are so big that they fully compensate for the path projection shift of
the feedback alteration. Figure 5-12(a)’s plots show this in three ways:

(a) The “real exp” arrow is long and oriented in the compensating direction.

(b) The feedback image arrow’s tip position is close to the “real exp” arrow’s
base position. In fact, the two positions appear to have the same path
projection.

(c) In the test phase, real experiment mean path projection is approximately

2.0 vowel units greater than it is in the baseline phase.

These results are in agreement with the calculated value of mean compensation

in the real experiment. As shown in the figure caption, this value is 1.06 £ 0.03.

. Baseline shift in the control experiment: CW'’s baseline [¢] formants in
the control experiment are shifted in the direction in which he compensated in

the real experiment. Figure 5-12(a)’s plots show this in two ways:

(a) The “control” arrow’s base is shifted in direction that CW compensated

in the real experiment.

(b) Baseline control experiment mean path projection (= 3.0) is greater than

baseline real experiment mean path projection (= 2.0).

In Section 5.3.1.2, it was discussed how this shift of control experiment baseline
may result from a retention of production changes that were adapted in the real

experiment.

. Small vowel production changes in the control experiment: In the
control experiment, CW’s vowel production changes are much smaller than

those of the real experiment. Figure 5-12(a)’s plots show this in two ways:

(a) The “control” arrow is much smaller than the “real exp” arrow (and, in
fact, points in the opposite direction).
(b) In the test phase, control experiment mean path projection is only slightly

less than it is in the baseline phase.
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These results are in agreement with the calculated negligible value of mean
compensation in the control experiment. As shown in the figure caption, this

value is —0.20 4 0.04.

These same trends can be seen in CW'’s adaptation response plots (Figure 5-
12(b)). However, there is one interesting difference: in his real experiment adaptation
response, CW leaves F1 unchanged from it’s baseline value. In the plots, this is
indicated by the fact that the “real exp” arrow is almost completely vertical. This
feature is not seen in other the subjects’ results.

Thus, in comparing CW'’s compensation and adaptation responses, the most
salient difference concerns F1: in compensating, CW adjusts both F1 aud F2, but
in adapting, he adjusts only F2. It appears, therefore, that CW has made long-term
adjustments only to his control of F'2; his adjustment of F1 is a temporary correction,

present only during exposure to the altered feedback.?®

5.4.1.2 Timecourse Results

Figure 5-13 shows the timecourse of CW’s compensation and adaptation responses in

the real experiment.

Plot Layouts Figure 5-13(a) shows the timecourse of of CW’s compensation re-

sponse. The figure consists of two plots: a vowel plot and a mean compensation

plot.

Vowel Plot The vowel plot (Figure 5-13(a), left side) shows the sequence of
mean formant changes in CW’s training word vowel productions over the course of
the real experiment. The plot shows mean vowel formants in each of a sequence of
experiment intervals. Each labeled dot represents mean vowel formants during the

experiment interval indicated by the label. As always, the ellipse around the dot

20Note also that the F1 lowering effect (see discussion of subjects MF and JK in Study 1) does
not explain the results. The key feature of the F1 lowering effect is that baseline F1 is lower in a
subject’s adaptation response than in his compensation response. Examination of the “real exp”
arrows in the vowel plots of Figure 5-12 shows this is not the case for CW.
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represents the standard error of the mean formant estimates. A dashed line connects
the dots of the labeled intervals in the order they occur in the experiment. A portioa
of CW’s [i]-[a] path is also shown.

As mentioned in Section 5.3.2.1, it is important to note that the labeled intervals

represent differing amounts of time:
e The interval labeled “base” represents the entire 17-minute baseline phase.

e The intervals labeled “1” - “9” represent ramp stages 1 — 9, which were each

about 2 minutes long.

e The intervals labeled “trainl”, “train2”, and “train3” represent successive 20-

minute time intervals of the train phase.

e The interval labeled “test” represents the entire 17-minute test phase.

Mean Compensation Plot The mean compensation plot (Figure 5-13(a),
right side) shows CW'’s mean compensation in each of the experiment intervals shown
in the vowel plot. The plot’s x-axis lists the intervals in the experiment’s timecourse:
“base” is the baseline phase; “1”-“9” are stages 1-9 of the ramp phase; “trainl”,
“train2”, and “train3” are the 1st, 2nd, and 3rd 20-minute intervals of the train
phase; “test” is the test phase. For each interval, mean compensation and adaptation
are shown as black and white dots, respectively, on the y-axis.

Also as mentioned in Section 5.3.2.1, the differing interval durations have two
consequences. First, there is less data to average in each ramp stage interval than
in the other intervals. Thus, the ellipses and confidence intervals of the ramp stage
measurements are larger than those of the other intervals. Second, there is a timescale
discontinuity at ramp stage 9: up to this point, each ramp stage interval represents
another 2 minutes in the experiment; past this point, each interval represents roughly
another 20 minutes in the experiment. Any apparent jumps in compensation between
ramp stage 9 and the trainl interval (as seen here in CW’s mean compensation plot)

are thus possibly due to the timescale discontinuity.
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Figure 5-13(b) shows the timecourse of of CW'’s adaptation response. The figure

consists of two plots: a vowel plot and a mean adaptation plot. The layout of the

figure is exactly the same as that of Figure 5-13(a).

Results Analysis CW’s compensation timecourse plots (Figure 5-13(a)) show four

features common to most subjects’ results:

1. Monotonic compensation increases: CW increases his compensation al-
most monotonically over the course of the experiment. Figure 5-13(a)’s plots

show this in two ways:

(a) In the vowel plot, it appears that path projections of his mean vowel for-

mants steadily move towards the [i]-end of his [i]-[a] path.

(b) At all intervals in the mean compensation plot, mean compensation either

increases or shows an insignificant decrease (e.g., at ramp stage 9).

Monotonic compensation increases are predicted because the feedback alteration
monotonically increased during the experiment. That is, the feedback alteration
was increased to its maximum distortion during the ramp phase and held at this

value for the rest of the experiment.

2. Inconsistent path deviation changes: the vowel plot shows that CW'’s path

deviation changes were much less consistent than his path projection changes.

Inconsistent path deviation changes are predicted because the feedback alter-

ation affected perceived path projections, not perceived path deviations.

3. A stable limit to compensation: by about midway through the train phase,
CW’s compensation appears to have reached a stable limit. This is best seen
in the mean compensation plot: it appears that mean compensation levels out

to a value of 1.0 by the train2 interval.

For CW, it can be argued that his compensation reaches a limit because he
achieves complete compensation. As subsequent plots will show, other sub-

jects reach stable compensation limits that are less than complete. This was
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discussed in Section 5.3.1. There, it was hypothesized that less-than-complete
compensation occurs if a subject’s speech perception partially adapts to the

altered feedback.

. No clear compensation delay: there is no clear evidence of any delay in
the onset of CW’s compensation response. This can be seen in the ramp phase
portion of the mean compensation plot. There, the standard error confidence
intervals are large enough that the jump in compensation visible between ramp
stages 3 and 4 is probably not significant. In fact, a linear compensation increase
is a good fit to the timecourse of mean compensation and its confidence intervals

in the ramp-phase.

The lack of any delay or discontinuous jump in mean compensation in the ramp
phase was discussed in Section 5.3.2. There, it was explained that, because
no clear jump in compensation was seen, there is no evidence that categorical

perception affects subjects’ compensations.

Note also that, as mentioned above, the jump in mean compensation visible
between ramp stage 9 and the trainl interval may not be significant: it may be

an artifact of the timescale discontinuity at this point in the graph.

CW'’s adaptation timecourse plots (Figure 5-13(b)) show all of the same features seen
in his compensation timecourse plots, except for one differing feature. The adaptation
plots exhibit a probable delay in adaptation: there is evidence of a delay in the
onset of CW’s adaptation response. This can be seen in the ramp phase portion of
the mean adaptation plot. There, the standard error confidence intervals are small
enough that the jump in adaptation visible between ramp stages 3 and 4 is probably

significant.

As subsequent plots will show, this probable delay in adaptation is seen in many

other subjects’ results as well. In Section 5.3.2, this delayed adaptation onset was
hypothesized to be caused by subjects preferring to initially make only temporary

corrections for the increasingly altered feedback.
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5.4.1.3 Generalization Results

Figures 5-14 through 5-16 show plots of CW'’s generalization results.

Plot Layouts Figure 5-14 shows avgrams of CW'’s testing word productions in the
real experiment. In each avgram, the solid lines show formant tracks of the mean
utterance in the baseline phase, while the dashed lines show formant tracks of the
mean utterance in the test phase. The gray regions show the utterance interval that
was used for vowel analysis.

Figure 5-15 shows vowel plots of subject CW'’s generalization results. The figure’s
left plot (Figure 5-15(a)) shows CW’s context generalization results. Black arrows
show mean vowel (F1,F2) changes (test phase - baseline phase) for his context gen-
eralization word productions in the real experiment. White arrows show the same
changes in the control experiment. In a similar fashion, the figure’s right plot (Fig-
ure 5-15(b)) shows CW'’s target generalization results. It shows mean vowel (F1,F2)
changes for his target generalization word productions. (Note that, to facilitate com-
parisons, the vowel production change arrow for “pep” appears in both the left and
right plots.)

Figure 5-16 shows mean path projection changes (test phase - baseline) of CW'’s
testing word vowel productions. Figure 5-16(a) shows mean path projection changes
in the real experiment, while Figure 5-16(b) shows the same for the control exper-
iment. Figure 5-16 shows mean relative path projection changes. This figure is

essentially the difference between figures 5-16(a) and 5-16(b).

Results Analysis CW’s generalization plots show two technical problems seen in

most subjects’ results:?!

1. Weak or missing formants: analysis of vowel production changes in certain
testing words can’t be performed because of weak or absent formants within

their vowel analysis intervals. CW’s avgrams show this is the case for “pop”.

21Note that these problems are also discussed in Section 5.3.3.2 using subject OB’s generalization
results.
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In the avgram of “pop”, baseline F2 is missing for most of the vowel analysis

interval (gray region), meaning that 'its amplitude is below plotting threshold

for most of this interval. Thus, production changes for [a] in “pop” are not

analyzable.

. Coarticulation: analysis of vowel production changes in certain testing words

is confounded by coarticulation of the initial stop consonant with the following

vowel. In CW'’s results, both “gep” and “teg” exhibit coarticulation that affects

calculation of their mean path projections. The plots show this in three ways:

(a)

(b)

In Figure 5-16(a), the mean path projection changes of “gep” and “teg”
in the real experiment are noticeably lower than the mean path projection

change of “peg”.

The context generalization vowel plot (Figure 5-15(a)) shows that these
lower mean path projection changes occur because mean (F1,F2) change
vectors for “gep” and “teg” in the real experiment (black arrows) are
smaller than those of “pep” and “peg”. The plot shows this difference
in mean (F1,F2) change vector sizes is partially due to the difference in
baselines. Baseline mean (F1,F2) positions for “gep” and “teg” have higher

F2 values than those of “pep” and “peg”.

In Figure 5-14, the avgrams show that these differences in F2 values are
probably due to coarticulation effects. For “teg”, F2 in the baseline phase
is initially higher than it is in “pep” and “peg”. Over the course of the ut-
terance, F2 in “teg” makes no noticeable transition down from its initially
elevated position. Similarly, for “gep”, F2 in the baseline phase is initially
higher than it is in “pep” and “peg”. F2 in “gep” then takes much longer
to transition to the steady-state vowel than it does in the other words. In
fact, F'2 is making this downward transition throughout the vowel analysis
interval. Thus, within this interval, average F2 in “gep” is higher than it

is in “peg” or “pep”.
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These differences in F2 behavior are ascribed to coarticulation because they
correlate with the different types of initial consonants. Since the initial [p] in
“pep” and “peg” is a bilabial stop, F2 is initially low but quickly transitions to
a steady-state value that it holds for the rest of the utterance. This quick F2
transition is possible because the articulation of [p] does not need the tongue,
so the tongue can be preset to its position for [¢]. In “gep”, however, since [g]
is a velar stop, F2 is initially high. It then takes time for the tongue to move
from its position for [g] to its position for [¢]. This makes the F2 transition to
the steady-state vowel much slower. In “teg”, since [t] is an alveolar stop (and

thus articulated with the tongue), F2 is also initially high.

CW’s generalization plots show four features of his generalization that are seen in

most subjects’ results:

1. Adaptation of Wiegt “pep”: CW appears tc have adapted his production
of [e] in Wiegt “pep”. The plots show this in four ways:

(a) The plot of mean relative path projection change (Figure 5-16) shows, for

Wiest “pep”, it is positive and large compared to its confidence intervals.

(b) The mean path projection change plots (figures 5-16(a) and 5-16(b)) show
this large positive mean relative path projection change results because
mean path projection change for Wiegt “pep” in the real experiment is

large but in the control experiment is small.

(c) In Figure 5-15, the vowel plots show that these differences in mean path
projection change result from differences in the size and orientation of
the mean (F1,F2) change vectors for “pep”. Its change vector in the real
experiment (black arrow labeled “pep”) is large, roughly aligned with the
[i]-[a] path (in fact, it is almost vertical), and is pointing in the direction
that compensates for the 2.0 feedback transformation. Its change vector
in the control experiment (white arrow labeled “pep”) is smaller and much

less aligned with the [i]-[a] path.
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(d) In Figure 5-14, the avgram for “pep” shows the compensating production
change as an elevation of F2: F2 in the test phase (dashed line) is higher
than F2 in the baseline phase (solid line).

That Wiegt “pep” should show adaptation is predicted because it is the only

testing word that is also a training word.

2. Context generalization: The adaptation of [¢] in Wiegt “pep” generalizes
to different word contexts - i.e., it causes similar production changes in [¢] in
the other context generalization words (“gep”, “peg”, and “teg”). The plots
exhibit this generalization as an compensatory change in the production of [¢]
in the context generalization words. For each context generalization word, the
generalization plots exhibit the compensatory [¢] production change in the same

four ways they show adaptation of [¢] in W “pep” (see point 1 above).
test P P

3. Target generalization: The adaptation of [¢] in Wiqogt “pep” generalizes to
different vowel targets - i.e., it causes similar production changes in the vowels
of most of the analyzable target generalization words (“peep” and “pip”). The
plots exhibit this generalization as an compensatory vowel production changes
in the target generalization words. For each target generalization word, the
generalization plots again exhibit the compensatory vowel production change

in the same four ways they show adaptation of [e] in Wyagt “pep”.

4. Zero generalization: For certain testing words, the path projections of their
vowel production changes in the real and control experiments are nearly equal.
This makes mean relative path projectioh change (and thus mean generaliza-
tion) zero for the this testing word.?> CW'’s generalization plots show this has

happened for “pap”:

(a) The plot of mean relative path projection change shows it is essentially

zero for “pap”.

22Gection 5.3.3.2 describes how mean generalization is calculated from mean relative path projec-
tion changes.
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(b) The mean path projection plots show this zero mean relative path projec-
tion change results from mean path projection change for “pap” in the real
experiment being approximately equal to its value in the control experi-

ment.

(c) The target generalization vowel plot shows that these equal path projec-
tions result from the orientations of the mean (F1,F2) change vectors for
“pap”. Its mean (F1,F2) change vector in the real experiment is large and
oriented nearly vertically, while its mean (F'1,F2) change vector in the con-
trol experiment is large and oriented nearly horizontally. Because of their
orientation with respect to the [i]-[a] path, it appears both change vectors
have nearly the same path projection changes and differ only in their path

deviation changes.

Generalization, as we have defined it, means how adaptation of training word
vowel productions (as seen in Wiegt “pep”) affect testing word vowel produc-
tions. A measure of generalization should therefore gauge how correlated the

vowel production changes seen in a testing word are with those seen in Wyt

% ”

pep .
However, in CW’s results, it appears the measured zero mean generalization
for “pap” may not accurately represent how correlated the vowel production
changes of “pap” are with those of “pep”. The target generalization vowel plot
shows the mean (F1,F2) change vectors for “pap” exhibit the same orientation
differences between the real and control experiments that are seen in the mean
(F1,F2) change vectors for “pep”. In this sense, adaptation of [¢] in “pep”
has caused similar production changes in [¢] in “pap”. In this case, calculation
of mean generalization based on path projection changes fails to capture this

production similarity.

Thus, mean generalization calculated using path projection changes may oc-
casionally be an overly conservative measure of how related some testing and

training word vowel productions are. However, zero mean generalization for a
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testing word is not always an indication of a problem with the generalization
measure. As subsequent plots will show, zero mean generalization also results
when, in the control experiment, a testing word’s vowel production change is
large while the vowel production change of “pep” is small. In such a case, mean
generalization based on path projections does correctly indicate a lack of corre-
lation between the vowel production changes seen in a testing word and those

seen in “pep”.

A feature of CW'’s generalization results that is not seen in other subjects’ results
is the pattern of testing word mean (F1,F2) change vectors in the control experiment.
The context generalization plot shows mean (F1,F2) changes in the real experiment
are principally in the increasing F2 direction, while mean (F1,F2) changes in the
control experiment are principally in the decreasing F1 direction. The target gen-
eralization plot shows a more revealing pattern: control experiment mean (F1,F2)
change arrows show not only an F1 decrease, but also show what appears to be a
convergence towards a some common point. Such convergence is typical of a subject
that ceases paying attention to correct word pronunciations: he tends towards pro-
ducing the same sound for all vowels. Perhaps this occurred because, unlike the real
experiment, the control experiment was run fairly early in the morning (9:05 AM) for

this subject.
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5.4.2 Subject RS

Figures 5-17 through 5-21 show the results for subject RS. I'or this subject, the real
experiment was run on 5/28/96, at 11:41 AM using the +2.0 feedback transform.
The control experiment was run 2 days later, on 5/30/96 at 9:01 AM.

Compensation and Adaptation Results Figure 5-17 shows that RS’s overall
compensation and adaptation results exhibit the same major features seen in CW’s

results. However, RS’s adaptation response is not restricted to the F2 dimension.

Timecourse Results Figure 5-18 shows that RS’s compensation and adaptation
timecourse results exhibit all the major features seen in CW'’s results except for the

following:

1. There is no evidence of a probable delay in adaptation. In fact, RS’s adaptation

timecourse is roughly similar to his compensation timecourse.

2. Neither his compensation nor his adaptation appear to have reached a stable
limit by the end of the experiment. In the train and test phase intervals, RS’s
mean compensation and mean adaptation are still increasing, suggesting that if
the experiment had continued, RS would have achieved even greater compen-

sation.

Generalization Results Figures 5-19 through 5-21 show plots of RS’s generaliza-
tion results.

The first noticeable feature of RS’s generalization results is seen in the avgrams
(Figure 5-19): RS’s utterance durations are short — about half as long as subject
CW'’s. In most cases the shortness of RS’s utterances significantly reduced how much
of his utterances fell within the vowel analysis intervals (gray regions).

Other technical problems exhibited in RS’s generalization results are similar to
those seen in CW'’s results. Baseline phase F2 is missing in the vowel regions of
the avgrams of both “peep” and “pop”, preventing vowel analysis for these words.

Coarticulation can be seen in the avgrams of “teg” and, especially, “gep”. In “gep”,
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F2 does not complete its transition to the steady-state vowel before the utterance
ends.

RS’s generalization results also exhibit all of the major generalization features
seen in CW’s results. Wiacst “pep” exhibits adaptation; “peg” exhibits context
generaliza.‘ion: “pip” and “pap” exhibit target generalization; “gep” and “teg” exhibit

zero generalization.
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5.4.3 Subject OB

Figures 5-22 through 5-26 show the results for subject OB. For this subject, the real
experiment was run on 4/3/96, at 3:16 PM using the -2.0 feedback transform. The
control experiment was run 48 days later, on 5/21/96 at 2:50 PM. Sub ject OB showed

the largest adaptation of all subject run with the -2.0 feedback transform.

Compensation and Adaptation Results Figure 5-22 shows that OB’s overall
compensation and adaptation results exhibit the same features described in CW'’s
results, with the difference that OB compensates by shifting path projections in the
opposite direction on the [i]-[a] path.

A striking aspect of this OB’s results is that he shows virtually no formant change
in the control experiment in either his compensation (Figure 5-22(a)) or adaptation
(Figure 5-22(b)) responses. In both figures, the “control” arrow is barely visible in

the vowel plots.

Timecourse Results Figure 5-23 shows that OB’s compensation and adaptation
timecourse results exhibit all the same features described in CW’s results. Notably,
OB’s mean compensation plot (Figure 5-23(a)) shows confidence intervals in the ramp
stage are small enough to observe some detail of the ramp stage timecourse. Except
for the dip at ramp stage 3, it appears that OB roughly linearly increased mean
compensation during the ramp stage. OB’s mean adaptation plot (Figure 5-23(b))
shows that, like CW, OB exhibits a probable delay in adaptation. The plot shows
mean adaptation is approximately zero up to ramp stage 3, at which point it swiftly
increases to equal mean compensation in ramp stage 4. Also like CW, OB’s compen-
sation and adaptation appear to reach stable limijts by about midway through the

train phase.

Generalization Results Plots of OB’s clear generalization results were presented
and discussed in Section 5.3.3.2 in order to illustrate how generalization is assessed.

These plots are repeated here as Figures 5-24 through 5-26.
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The technical problems exhibited in OB’s results are similar to those seen in
CW’s results. Baseline phase F2 is missing in “peep”, while test phase F2 is missing
in “pop”, preventing vowel analysis for these words. Coarticulation can be seen in
the avgrams of “teg” and, especially, “gep”.

OB’s generalization results also exhibit all of the major generalization features seen
in CW's results. Wiegt “pep” exhibits adaptation (note that, in this case, adaptation
is indicated by F1 increasing and F2 decreasing). All context generalization words
exhibit context generalization. “pap” exhibits target generalization. “pip” exhibits
zero generalization.

The zero generalization of “pip” is interesting because of how it occurs: “pip”
is the only analyzable testing word whose vowel production changes in the control

experiment appear substantial. The plots show this in three ways:

1. The plot of mean relative path projection change (Figure 5-26(c)) shows it to

" be near zero only for “pip”.

9. The mean path projection change plots (figures 5-26(a) and 5-26(b)) show the
zero mean relative path projection change for “pip” occurs because “pip” ex-
hibits substantial mean path projection change in the control experiment —~ the

highest of all analyzable testing words.

3. The vowel plots (Figure 5-25) shows the situation most clearly. They show that
mean (F1,F2) change vectors in the control experiment (white arrows) are very
small for all testing words except “pip”. For “pip”, its mean (F1,F2) change
vector in the control experiment is very similar to its mean (F1,F2) change

vector in the real experiment.
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5.4.4 Subject SR

Figures 5-27 through 3-31 show the results for subject SR. For this subject, the real
experiment was run on 4/16/96, at 2:30 PM using the -2.0 feedback transform. The
control experiment was run 30 days later, on 5/16/96 at 1:31 PM.

Compensation and Adaptation Results Figure 5-27 shows that SR’s overall
conipensation and adaptation results exhibit all the major features seen in CW’s
results. However, an interesting difference is that SR’s adaptation is substantially

less than his compensation. The figure’s plots show this in two ways:

1. The mean (F1,F2) change vector of SR’s adaptation (the “real exp” arrow in

Figure 5-27(b)) is less than half the length of the mean (F1,F2) change vector

of his compensation (the “real exp” arrow in Figure 5-27(a)).

2. The path projection change of SR’s adaptation (the solid line labeled “real
exp” in Figure 5-27(b)) is also less than half the path projection change of his
compensation (the solid line labeled “real exp” in Figure 5-27(a)). Interestingly,
this reduced adaptation results partly from baseline path projection of his real
experiment adaptation response being significantly higher than baseline path

projection of his real experiment compensation response.

[t therefore appears that in his adaptation response in the real experiment SR reacted
to the presence of masking noise by raising his vowel path projections. The adaptation
response vowel plot shows this path projection raising corresponds to a lowering of
F2 and a raising of F1. This response to the masking noise differs significantly from

the F1-lowering response of subjects MF and JK in Study 1.

Timecourse Results Figure 5-28 shows that SR’s compensation and adaptation
timecourse results exhibit all the same features described in CW’s results, However,
SR’s results exhibit more extreme contrasts between his compensation and adaptation

timecourses.
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The mean compensation plot shows no evidence of any delay in the onset of SR’s
compensation. Instead, his mean compensation appears to increase linearly in the
ramp phase and achieves a stable limit (close to 1.0) midway through the train phase.
On the other hand, the mean adaptation plot shows a very large delay in the onset of
SR’s adaptation. The plot shows mean adaptation is approximately zero up to ramp
stage 8, at which point it swiftly increases to equal mean compensation in ramp stage
9. After ramp stage 9, SR’s mean adaptation immediately levels out to a roughly
stable limit for the rest of the experiment. This limit is less than 0.5.

As discussed in Section 5.3.2, this extreme contrast between SR’s compensation
and adaptation timecourses is evidence that SR has a large capacity to compensate
using only temporary production changes: only after the feedback alteration reaches

near-maximum distortion is SR compelled to make long term adaptations.

Generalization Results Figures 5-29 through 5-31 show plots of SR’s generaliza-
tion results.

SR’s generalization results do not exhibit exactly the same technical problems
seen in CW'’s results. The avgrams of “gep” and “teg” do show the usual effects
of coarticulation on F2, However, no test words were excluded because of missing
formants: the avgrams of both “peep” and “pop” show analyzable formants in both
baseline and test phases. A technical problem seen only in SR’s results was the
extreme lowering of baseline F1 in “gep” and “teg”. The avgrams show this lowering
is about 250 Hz in “teg” and 500 hz in “gep”. Both words’ avgrams also show that,
after lowering, baseline F1 rises up to its normal level at the end of the utterance.
This anomalous behavior suggests F1 measurement instabilities, and thus “gep” and
“teg” were considered to have unanalyzable formants.

SR’s generalization results do exhibit all of the major generalization features seen
in CW’s results. Wiegt “pep” exhibits adaptation. “peg” exhibits context gener-
alization. “pap” and “pop” exhibit target generalization. “peep” and “pip” exhibit
zero generalization.

However, a caveat to SR’s generalization results can be seen in the target gener-
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alization vowel plot (Figure 5-30(b)). The plot shows that, in the real experiment,
mean (F1,F2) change vectors for the target generalization words show some variation
in orientation, but, except for “peep”, each target generalization weord’s vector ter-
minates at the path vowel position corresponding to the word’s vowel. This suggests
that the mean (F1,F2) change vectors may represent a response to the masking noise,
not adaptation and its generalization. The baseline positions of the change vectors
could be a perturbation from normal (F1,F2) caused by SR hearing the masking noise.
This perturbation effect disappears over the duration of the experiment, so that, by

the test phase, SR’s vowel productions are back to their normal (F1,F2) positions.
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Figure 5-31: Subject SR testing word path projection changes.
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5.4.5 Subject RO

Figures 5-32 through 5-36 show the results for subject RO. For this subject, the real
experiment was run on 4/10/96, at 1:06 PM using the -2.0 feedback transform. The
control experiment was run 37 days later, on 5/17/96 at 12:58 PM.

Compensation and Adaptation Results Figure 5-32 shows that RO’s overall
compensation and adaptation results exhibit all the major features seen in CW’s
results. However, the vowel plots show that, in terms of mean (F1,F2) changes, RO’s
compensation and adaptation changes were small. The path projection plots show
that these small mean (F1,F2) changes were amplified into large path projection
changes. It is the proximity of [¢] and [2] on RS’s [i]-[a] path that causes this
amplification. Path projection is measured in terms of [i]-[a] path position. Since
[i]-[a] path position is measured in terms of normalized inter-vowel units, the small
distance between [¢] and [] in the (F1,F2) plot is still measured as a complete unit
of path position change.?

Another interesting feature of RO’s overall compensation and adaptation results is
the baseline shift in the control experiments. For other subjects, baseline vowel path
projections in the control experiment are partially shifted from their values in the
real experiment. This shift is always in the direction that the subject compensated in
the real experiment. RO’s baseline shift, in the control experiment is not partial but
complete: in both his compensation and adaptation responses, baseline vowel path
projections in the control experiment are nearly equal to his test phase vowel path
projections in the real experiment.

Note that RO’s responses in the control experiment also differ in other ways from
his real experiment responses. For both compensation and adaptation responses, his
control experiment mean (F1,F2) change vectors are much smaller and in different

positions from his real experiment mean (F1,F2) change vectors.

23For a complete discussion of path projection and path position, see Section 3.3.1.
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Timecourse Results Figure 5-33 shows RO’s compensation and adaptation time-
course results. RO’s timecourse results are exhibit so much variability that few fea-
tures can be seen in them. The mean compensation plot shows RO apparently reaches
a stable limit to his compensation within the train phase of the experiment. Note,
however, that even this stability is not apparent in his mean adaptation plot: his
mean adaptation shows an unusual dip in its value (to approximately zero) in the

traind experiment interval.

Generalization Results Figures 5-34 through 5-36 show plots of RO’s generaliza-
tion results.

RO’s generalization results exhibit the same types of technical problems seen in
CW’s results. The avgram of “peep” shows F2 is missing in both the baseline and
test phases. Although not easily seen in the avgram, it turns out there are formant
estimation problems for “pop” as well. The avgrams of “gep” and “teg” show the
usual effects of coarticulation seen in other subjects’ results.

However, RO’s generalization results do not exhibit the major generalization fea-
tures seen in CW'’s results. In RS’s results, none of the testing words (except possibly

“pep”) exhibit any noticeable production changes.
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5.4.6 Subject TY

Figures 5-37 through 5-41 show the results for subject TY. For this subject, the real
experiment was run on 4/15/96, at 12:43 PM using the +2.0 feedback transform. The

control experiment was run 35 days later, on 5/20/96 at 12:55 PM.

Compensation and Adaptation Results Figure 5-37 shows that TY’s overall
compensation and adaptation results exhibit all the major features seen in CW's
results.

It is interesting to compare TY’s overall compensation and adaptation responses
in the real experiment with RO’s responses. Mean (F1,F2) changes for RO’s com-
pensation and adaptation responses occur next to a place on his [i]-[a] path where
the path vowels ([e] and [a]) are very close together. Thus, RO’s small mean (F1,F2)
changes are amplified into large mean path projection changes. Mean (F1,F2) changes
for TY’s compensation and adaptation responses occur next to a place on his [i]-[a]
path where the path vowels ([¢] and [e]) are far apart. Thus, TY's mean (F1,F2)
changes, which are larger than RQ'’s, result in mean path projection changes that are

smaller than RO’s.

Timecourse Results Figure 5-38 shows that TY’s compensation and adaptation
timecourse results exhibit all of the major features seen in CW'’s results except one:
TY’s mean adaptation plot shows no evidence of a delay in his adaptation. However,
the confidence intervals in the ramp phase of his mean adaptation plot are large
enough that it is difficult to make any detailed conclusions about his adaptation

timecourse.

Generalization Results Figures 5-39 through 5-41 show plots of TY’s generaliza-
tion results.

TY'’s generalization results exhibit the same types of technical problems seen in
CW’s results, The avgram of “peep” shows F2 is missing in the test phase. The

avgram of “pop” shows F2 is missing in the baseline phase. The avgrams of “gep”
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and “teg” show the usual effects of coarticulation seen in other subjects’ results.

Note also that the avgram for “gep” shows an anomalous rise within the vowel
analysis interval, followed by a lowering again outside the interval. This may be
another case in which F1 is not being stably estimated, as was the case for subject
RO’s “gep” and “teg” avgrams.

TY’s generalization results exhibit all the major generalization features seen in
CW'’s results except one: none of TY’s analyzable testing words exhibit zero gener-
alization.

An interesting overall aspect of TY’s generalization results (seen best in Figure 5-
40) is that his testing word production changes in the real experiment are confined
principally to the F1 dimension. This stands in marked contrast with CW'’s general-
ization results, where testing word production changes in the real experiment can be

seen te be confined principally to the F2 dimension.
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5.4.7 Subject VS

Figures 5-42 through 5-43 show the results for subject VS. For this subject, the real
experiment was run on 4/13/96, at 1:16 PM using the +2.0 feedback transform. The
control experiment was run 33 days later, on 5/16/96 at 9:33 AM.

Compensation and Adaptation Results Figure 5-42 shows VS’s overall com-
pensation and adaptiation results. These results show evidence of some comp >nsation
but very little evidence of any adaptation.

Because VS did not appear to exhibit any adaptation, no analysis of his general-

ization results was performed.

Timecourse Results Figure 5-43 shows VS’s compensation and adaptation time-
course results. The mean compensation plot shows some evidence of VS’s compensa-
tion reaching a stable limit midway through the train phase. The mean adaptation
plot shows VS’s adaptation reaches a maximum midway trough the train phase but
then noticeably decreases. VS’s ramp phase timecourse results exhibit such large

variation that it is difficult to see any definite features.
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5.4.8 Subject AH

Figures 5-44 through 5-45 show the results for subject AH. For this subject, the real
experiment was run on 4/04/96, at 3:36 PM using the -2.0 feedback transform. The
control experiment was run 40 days later, on 5/14/96 at 12:59 PM.

Compensation and Adaptation Results Figure 5-44 shows AH’s overall com-
pensation and adaptation results. These results show evidence of slight compensation
but no evidence of any adaptation.

Because AH did not appear to exhibit any adaptation, no analysis of his general-

ization results was performed.

Timecourse Results Figure 5-45 shows AH’s compensation and adaptation time-
course results. The mean compensation plot shows some evidence of AH’s compensa-
tion reaching a stable limit. However, AH’s overall production changes are so slight
that it is difficult to determine where this stable limit is reached or whether its mag-
nitude is significant. The mean adaptation plot shows an interesting rise and fall in
mean compensation over the course of the experiment. Again, however, AH’s overall
production changes are so slight that it is difficult to assess whether his changes mean

adaptation are significant.
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Chapter 6

Discussion

The primary objective of this thesis was to examine the hypothesis that vowel pro-
duction, like reaching, exhibits sensorimotor adaptation (SA). A second objective was
to exhibit the potential of speech SA for examining the phonetic structure of speech

production.

6.1 Existence of Speech SA

The hypothesis that vowel production exhibits SA can be factored into two subhy-

potheses:

1. Speakers will adjust vowel productions to compensate for perceived alterations

of their auditory feedback.

2. This compensation will be sufficiently permanent to be partly retained in the

absence of auditory feedback. Such retained compensation is called adaptation.

Both Study 1 and Study 2 tested this hypothesis. Both did so by altering formants
in subjects’ auditory feedback and analyzing how this affected their produccions of
whispered [¢]. Both studies found that exposure to this altered feedback caused

subjects’ productions to exhibit the following characteristics:

1. Compensation: Their production of [¢] was changed in ways that compensated

for the effects of the feedback alteration. The amount of compensation varied
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widely across subjects but overall was highly significant.

2. Adaptation: The subjects retained much of this compensation when producing
[€] while prevented from hearing it. This retained compensation, or adaptation,

was also significant across subjects.

Study 2 included two additional aspects in its design to provide corfirmation
and elaboration of these results. First, Study 2 included a comparison of subject’s
responses in the real experiment with those in a control version (no feedback alter-
ation). Compensation and adaptation were found to be significantly greater in the
real experiment.

Second, in Study 2 the feedback transformation was introduced gradually to min-
imize subjects’ awareness of it. This awareness was assessed by post-experiment
interviews. In these interviews, no subject reported noticing the alteration of his
feedback.

These results provide strong support for the hypothesized existence of speech SA
and reveal several important characteristics of it. These characteristics concern sub-
jects’ perception of the feedback alteration, and their compensation and adaptation

responses.

6.1.1 Perception of the Altered Feedback

In Study 2, no subject reported noticing feedback alterations, yet many subjects
showed considerable compensation. This suggests that compensation does not require
conscious perception of unusual or unexpected feedback.

On the other hand, some subjects showed very little compensation. For these
subjects, an explanation is needed tor why they did not compensate more and why
they didn’t report noticing the altered feedback. In Section 5.3.1, several possible
explanations were discussed.

Possible methodological problems were considered. Problems with generating the
altered feedback are possible but unlikely since subject pretesting screened out sub-

jects whose formants transformed poorly. Also, post-experiment interviews may have
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unreliably gauged subjects’ awareness of the altered feedback. This too was rated as
uniikely: subjects’ exhibited noticeable curiosity about the experiment’s purpose and
thus seemed likely to remember any of its unusual aspects.

Other explanations concerned speech perception. The first is that the poor com-
pensators could be insensitive to the whispered vowel sound differences created by
the altered feedback. Given that these differences amount to complete changes of
vowel phonetic identity, this explanation also seems unlikely.

A more likely explanation for the poor compensators is that the altered feedback
induced adaptation of their speech perception, not their speech production. That
speech perception can adapt has already been shown in other types of experiments:
subjects’ voiced/voiceless feature perception will shift after repeatedly hearing only
stop consonants with one of these features [Cooper, 1979].

This explanation can account for the range of compensations observed across
subjects. Each subject could have a different capacity to adapt his perception of
the altered feedback. This perceptual adaptation reduces his perception of the true
amount of feedback alteration. He then produces compensations only for the perceived
amount of feedback alteration.

By this account, subjects who produced large compensations have small capacities
to adapt perception, while subjects who produced small compensations have large

capacities to adapt perception.

6.1.2 Compensation

For all subjects, compensation was greater than (or, occasionally, equal to) adap-
tation. One possible explanation for this difference is that the presence of masking
noise somehow causes subjects to whisper differently. This account, however, does
not specify why compensation would be greater than adaptation.

Another possible explanation is that some portion of each subject’s compensation
was accomplished by some temporary correction mechanism, active only in the pres-
ence of the altered feedback. This explanation suggests that vowel production may

be partly under auditory feedback control.
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Control of speech production based on auditory feedback was first proposed by
Grant Fairbanks in 1954 [Fairbanks, 1954]. However, since then, several arguments
have been made that auditory feedback plays no such direct role in the control of
speech.

The first argument is based on minimality: it isn’t necessary to suppose audi-
tory feedback control, since speech is producible without auditory feedback. Speak-
ers deafened in adult life retain intelligible speech [Cowie and Douglas-Cowie, 1983,
Lane and Webster, 1991]. Many other experiments (including those of this thesis)
have shown that speech remains intelligible even when hearing is blocked by masking
noise [Lombard, 1911, Lane and Tranel, 1971].

However, this argument does not rule out the possibility that, when available,
auditory feedback control is used in speech production. In fact, evidence for auditory
feedback control has been found in other aspects of speech. Kawahara and others
have found evidence of fast pitch corrections in response to sudden perturbations of
pitch feedback [Kawahara, 1993]. These experiments found a compensating response
within 100-200ms of the onset of perturbation.

The other major argument against auditory feedback control is that it is too
slow: the neural delays in processing auditory feedback probably make it unusable
for the control of fast speech movements [Perkell, 1996]. But not all speech tasks
require fast movements. Maintaining a pitch frequency or a steady-state vowel are
examples of speech tasks not requiring fast movements. For these tasks, the speech
production system may take advantage of the feasibility of using control based on

auditory feedback, when it’s available.

6.1.3 Adaptation

The study results concerning adaptation show that significant production changes of
some permanence can be induced by relatively brief (e.g. 1 hour) exposure to altered
feedback. These results are surprising, given the stability of speech control in the
ahsence of feedback. Such stability can be seen in speakers deafened in adult life: their

speech remains intelligible for years after deafness [Cowie and Douglas-Cowie, 1983,
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Lane and Webster, 1991]. Speech thus appears to be both stable in the absence of
feedback and yet easily affected by altered feedback.

One explanation of these observations is the speech-equivalent of the “reafference
hypothesis” proposed by Held to explain reaching SA [Hein and Held, 1962]. This
explanation assumes a speaker retains an ezpected outcome of any speech motor com-
mands. Any sensory reports of the actual outcome (e.g., auditory or proprioceptive)
are compared with the expected outcome. A mismatch drives the speaker to make
some coitective response that minimizes the mismatch.

In this account, if a sensory report is not available (as when the subject’s hearing
was blocked by noise), no comparison is made, no mismatch is generated, and the
speaker is not driven to make a corrective response. If a sensory report is available
and feedback is unaltered, the outcome reported matches expectations, and there is
no mismatch to correct. However, when feedback is altered, the sensed outcome no
longer matches expectations. Only in this case is the speaker driven to correct the
mismatch.

As discussed above, there are several possible ways the speaker could correct
the mismatch. Perceptual adaptation could occur, causing the sensed outcome better
match the expected outcome. Auditory feedback control mechanisms could also cause
some temporary production correction. Finally, the speaker could respond by making
long-term adjustments to his speech control.

Recently, the reafference hypothesis has been incorporated into computational
models of motor learning [Jordan and Rumelhart, 1992]. In these models, minimizing
the mismatch between actual and expected outcomes is a basic process in learning
control of directed movements. These models would predict that speech SA is simply
a more limited and controlled version of the initial process of learning speech motor

control.

6.1.4 Summary

In sum, the characteristics of speech SA observed in studies 1 and 2 are explained by

the following theory:
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1. Perception of altered speech feedback is partially offset by perceptual adap-

tation. The capacity to adapt perception is limited and speaker-specific.
2. Perceived feedback alterations are compensated for.

3. Compensation is preferentially achieved by a temporary correction mecha-
nism (active only while exposed to the altered feedback). The capacity of
the temporary correction mechanism to compensate is limited and speaker-

specific.

4. When required compensation exceeds the capacity of the temporary cor-
rection mechanism, long-term speech control adjustments must be made -

i.e., adaptation occurs.

This theory is preliminary, and further investigations will be needed to confirm

its assertions.

6.2 Using Speech SA to Address Phonetic Struc-
ture Questions

Chapter 1 suggested that a principal value of speech SA is in its potential for examin-
ing questions concerning phonetic structure in speech production. To illustrate this,
a hypothetical experiment was described showing how speech SA could be used to
determine (1) if words specify their productions via shared intermediate production
units, and (2) whether these production units have independent representations.
Study 2 implemented this experiment for the vowel [¢]. It looked at how adap-
tation of [¢] in a bilabial CVC word context affected [¢]’s production in other CVC
words. It also looked at how other vowels’ productions were affected. The results

showed that adaptation of [¢] in the bilabial context caused:

1. Similar production changes in [e] in other word contexts. This is called contect
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generalization.

2. Similar production changes in other vowels. This is called target generalization.

6.2.1 Context Generalization

The context generalization results showed that [¢] adapted in one word context caused
[€] to be produced in this adapted manner in other word contexts. These words all
appeared to access the same adapted production of [¢]. This result rules out the
possibility that these words each have independent production mechanisms. Instead,
it appears that production of a word involves specifying representations of interme-
diate production units that are shared by many words. This is consistent with most
phonetic theories, which suppose word productions to be represented as sequences
of elemental production units like phonemes or syllables [Halle, 1990, Levelt, 1989,
Meyer, 1991}.

The above result suggests that speech SA experiments could be designed to in-
vestigate a number of issues related to word production. Several of these issues are

discussed below.

6.2.1.1 Word Frequency Differences

It is possible that high-frequency words are not produced in the same way as low-
frequency words and non-words. Because there are arbitrarily many low-frequency
words and non-words, it seems unlikely that their productions are not constructed
from smaller shared production units. However it does seem plausible that frequently-
used words might start to function as production units themselves. If this were the
case, adapting a vowel’s production in a high-frequency word might not alter its

production in other words.

6.2.1.2 Syllables Versus Phonemes

Study 2 did not have sufficient power to determine if generalization was affected by

syllable context. This is an important issue because the syllable has been suggested as
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a possible intermediate production unit [Levelt, 1989]. If this were the case, context

generalization might be restricted to words sharing the same syllable.

6.2.2 Target Generalization

The target generalizaticn results showed that [¢] adapted in one word context caused
similar production changes in other vowels. These results demonstrate that vowel
production representations are not independent. This suggests that vowel represen-
tations may share common features.

The results suggest ways in which future speech SA experiments could be used
to examine the representations of speech production units. Consider vowels as an
example. More detailed investigations of target generalization could be conducted to
reveal its pattern across many vowels. Different vowel representations could then be
examined by evaluating how easily they explain the target generalization pattern. For
example, the pattern might be easily explained by assuming adjustment of a single
articulatory parameter (e.g., tongue height): this would be evidence for articulatory
vowel representations. On the other hand, the pattern might be more easily explained
as a function of distance in formant space (e.g., nearby vowels show similar production

changes): this would be evidence for acoustic vowel representations.

6.3 Conclusions

To summarize, the principal thesis results are the following:

1. Experience with auditory feedback induces long-term adaptation of parameters

controlling vewel production.

2. Adapting production of a vowel in one word context affects production of this

vowel in different word contexts and the production of other vowels.

Result 1 shows that speech, like reaching, exhibits sensorimotor adaptation (SA).
Result 2 shows that words share common intermediate production representations,

and that vowel representations are not independent. These results show that speech
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SA exists and provides a new tool for examining fundamental questions concerning

phonetic representations in speech production.
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Appendix A

Formant Estimation, Analysis,

and Subject Pretesting

Accurate formant estimation was central to all aspects of the studies discussed in this
thesis. During an experiment, the feedback transformation was based on formant
estimates produced by the digital signal processor (DSP). Post-experiment, the results
analyses assessed compensation by examining changes in mean formant values of the
recorded formant data.

In the first section of this appendix, the key procedures relating to formant es-
timation are described. First, the formant estimation method used by the DSP in
transforming a subject’s whispered speech is considered. As discussed in chapter 3,
the DSP estimated formants from the magnitude spectrum of a frame of input speech
data. These formant estimates were then used in the transformation and resynthesis
of feedback for a subject. They were also the data recorded for that input speech
frame.

In the second section, the method of deriving mean formant values from this
recorded formant data is discussed.

Finally, in the third section, the procedures used in pretesting subjects are de-
scribed. Pretesting of subjects was needed for a number of reasons, but primarily
because the formant estimation and transformation methods required parameters

which were measured in these pretest procedures.
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A.1 Formant Estimation

As described in Section 3.2, the feedback transformation process consisted of:
1. Acquiring a frame of whispered speech from the subject.
2. Producing a magnitude spectrum of it
3. Estimating formants from the spectrum

4. Altering the formants

Synthesizing from the altered formants a frame of speech fed back to the subject.

(&)

All steps of this process are considered in more detail in appendix B. Here,
we focus on the method of estimating formants (step 3), which was complicated by
certain spectral characteristics of whispered speech. We begin by defining what we

mean by the term “formant”.

A.1.1 What are Formants?

Specifying all the spectral features that define formants is the subject of continued
research that is beyond the scope of this thesis. Here, we give a functional definition
of formants that served the purposes of the experiments.

If spectral analysis is done on some time interval of voiced speech, the envelope of
the resulting magnitude spectrum will exhibit peaks. These peaks are usually labeled

in order of increasing frequency as F1, F2,...FN. They have the following properties:

1. From a reasonable pitch function and F1, F2, F3, and F4, it is possible to
synthesize speech that is perceptually similar to the original speech from which

F1, F2, F2, and F4 were derived [Klatt, 1980, O’Shaughnessy, 1987].

2. If the speech interval is from a sustained vowel sound, then the frequencies of
F1 and F2 determine the vowel’s identity. In particular, as the vowel is changed
from [i] to [¢] tc [¢] to [e] to [a], F1 increases in frequency and F2 decreases

[Peterson and Barney, 1952].
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The feedback transformation process depended on extracting from the whispered

speech spectrum quantities which had these same properties:

e Property 1 was needed for synthesizing speech feedback that the subject con-

sidered an adequate substitute for his real feedback.

e Property 2 was needed because the feedback alteration was based on the premise
that shifting the frequencies of F1 and F2 altered perceived vowel identity. In
particular, it was critical that changing vowel identity between [i], [¢], [€], [e],

and [a]could be achieved by shifting the frequencies of F1 and F2.

Quantities which have these two properties are generally referred to as formants.
For the purposes of the experiments, these two properties will define what we consider
to be formants.

Unlike voiced speech, however, the spectral envelope peaks of whispered sy« ech
sounds did not always have these properties, and thus could not be used directly as

formant estimates.

A.1.2 Formant Estimation Problems

It was found that the spectral peaks of whispered speech had property 1: if peak
frequencies were left unaltered, whispered speech synthesized from these peaks was
perceptually similar to the input whispered speech.

However, these peaks did not always have property 2. In particular, the two lowest
frequency spectral peaks did not always distinguish the vowels [i], [¢], [€], [2], and
[a]. In normal voiced speech, this progression of vowels causes the lowest peak (F1)
to increase in frequency and the next highest peak (F2) to decrease in frequency.

In many subjects’ whispered speech, this same vowel progression instead exhibited

the following peak pattern (peaks considered in order of increasing frequency):
o The first peak remained fixed in frequency but decreased in amplitude.

e The second peak varied little in frequency and increased in amplitude.
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e The third peak decreased in frequency, increased in amplitude, but often disap-

peared in the vowel [a].

Figure A-1 illustrates these observed spectral differences. The figure shows a
comparison of the author’s voiced and whispered productions of the vowels [i], [¢],
[€], [2], and [a]. As indicated by the labeling, each row of the figure displays the
magnitude spectra of a given vowel, with the spectrum of voiced production on the
left and that of the whispered production on the right. The gray streaks in the figure
highlight how corresponding peaks change frequency across the vowel spectra.

The data for these spectra were 3-5 sec. productions of voiced or whispered steady-
state vowels. Each vowel’s spectrum was calculated from a 1.7 sec. analysis window
positioned within the waveform data corresponding to the production of the vowel.
The ESPS system’s zspectrum tool was used to calculate the spectra.! This tool
windowed the analyzed data with a Hanning function and used Cepstral smoothing
(low-pass liftering) of the calculated spectrum.

Considering only the spectra of voiced vowel productions (the left column of the
figure), it can be seen that the two lowest-frequency peaks exhibit property 2: moving
down the column, as the vowel is varied from [i] to [a], the voiced F1 peak (vIF1)
generally increases in frequency while the voiced F2 peak (vF2) decreases in frequency.

On the other hand, the spectra of whispered vowel productions (the right column
of the figure) clearly do not exhibit property 2. Consider first the spectrum of whis-
pered [i]: its peaks do not match up with those seen in the spectrum of voiced (i}. In
the voiced spectrum, the lowest-frequency peak, vF1, appears at 300 Hz, while the
second-lowest-frequency peak, vF2, appears at 2000 Hz. In the whispered spectrum,
the vF1 peak may still be present (albeit at a higher frequency of 400 Hz). But
here, vF1 is almost overshadowed by two flanking peaks: wF1 and wl2. The wi!
peak frequency (300 Hz) roughly matches that of the vF1 peak, but the wF2 peak
frequency (800 Hz) does not come close to that of the vF2 peak. Note, however, that

the whispered spectrum’s wF3 peak (2100 Hz), does approximate the vi'2 peak.

YThe ESPS system is a collection of UNIX/X-windows speech analysis tools from Entropic Re-
search Laboratory, Inc. ’
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Now consider what happens to these peaks in the whispered spectra as the vowel
is changed from [i] to [¢] to [e] to [&] to [a]. Over this vowel progression, the wI'l and
wF2 peaks do not appear to change in frequency. Instead, their amplitudes change
in complementary fashion: wF1’s amplitude decreases while wF2’s increases. The
wF3 peak continues to match vF?2 over the progression, increasing in frequency until
[a], where it curiously splits into two smaller peaks. The higher-frequency peaks of
the whispered spectra (wF4 and wF5) generally also match peaks seen in the voiced
spectra (vF3 and vF4).

In sum, this discussion has highlighted two differences between the voiced and

whispered spectra of the vowels shown:

1. The F1 peak seen in the voiced spectra, which increases in frequency from [i]
to [a], is overshadowed by two peaks (wF1 and wF2) in the whispered spectra.
These pecks appear fixed in frequency, but vary their amplitudes in comple-

mentary fashion as the vowel changes from [i] to [a].

(S

The F2 peak seen in the voiced spectra is also seen in the whispered spectra (as
wF3). However, in whispered [a], it splits into two small peaks (that, in fact,

in many subjects, are so small as to disappear).

We refer to both these observed spectral differences as splitting phenomena. The
F2 splitting phenomenon (item 2) could be avoided by concentrating the experiments
on vowels other than [a]. The F1 splitting phenomenon, however, was a more per-
vasive problem, and required development of a new estimation approach to mitigate

it.
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A.1.3 The Chosen Estimation Procedure

The most troubling aspect of the F1 splitting phenomenon was its inconsistency:
the degree to which the flanking peaks wF1 and wF?2 overshadowed vF1 depended
on the subject. For some subjects, their whispered vowel spectra looked just like
those seen in Figure A-1. For others, the splitting phenomena were ahsent, and the
spectra of their whispered vowels looked like the voiced vowel spectra of Figure A-1.
Many subjects’ whispered vowel spectra exhibited characteristics between these two
extremes.

Because of this, the chosen F1 estimation procedure did not use peaks of the
whispered spectrum, but instead calculated the centroid of a limited region of it. It

was done in the following way:

1. For each subject, a region from 0Hz up to some maximum frequency was chosen
as the subject’s F'I range. This frequency range was chosen to contain the peaks

pertaining to F1:

e If the subject exhibited the splitting phenomenon, this range was chosen
to contain wF1 and wF2. (For example, in the whispered vowel spectra
of Figure A-1 wF1 and wF2 appear confined to the 0-1000 Hz frequency

range.)

o If the subject did not exhibit significant splitting phenomena, this range
was chosen to contain the frequency of F1 over the range of vowels shown

in Figure A-1.

2. Within this regicn, the frequency of F1 was estimated as the centroid of the
distribution of spectral amplitudes, while the amplitude of F1 was estimated as

the average of these spectral amplitudes.

The complete formant estimation procedure thus relied on having determined a

subject’s F1 region:

e Within this region, F1 was estimated via the centroid method just discussed.
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e Above this region, F2, F3, and F4 were estimated in the conventional way from

the spectral envelope peaks:

— F2: the lowest frequency peak above the F'1 region.
— F3: the next highest peak

— F4: the next highest peak beyond F3.

This estimation procedure is illustrated in Figure A-2 (which is a repeat of Fig-
ure 3-3 in chapter 3).

The advantage of this formant estimation procedure was that it produced usable
F1 estimates regardless of the existence.of splitting phenomena in the spectrum. If a
subject’s spectra exhibited F1 splitting, then the complementary amplitude variations
of wF1 and wF2 caused the F1 range centroid to behave as desired. As Figure A-1
shows, from [i] to [a] wF1’s amplitude decreases while wF2’s increases. This causes
the F1 range centroid to increase in frequency over this vowel progression. If a
subject’s spectra did not exhibit F1 splitting, then the F1 range centroid simply
tracked the F1 peak. Thus, in the vowd: progression from [i] to [a], the F1 range
centroid again increased in frequency.

Because of this, the frequencies of the F1 and F2 estimates sufficed to distinguish
the whispered vowels [i], [¢], [¢], [], and [a]. Moreover, they varied in the same way
that F1 and F2 vary in the voiced versions of these vowels.

Figure A-3 illustrates this. It shows spectra of resynthesized versions of the whis-
pered vowels shown in Figure A-1. This resynthesis was accomplished using the DSP
to perform a 0.0 transformation (no formant alteration) of each whispered vowel’s
recording. For each vowel, the spectrum of the DSP’s output was again calculated
using the ESPS system in the same fashion described above.

In the figure, the left column shows the spectra of the original whispered vowels
(the same shown in the right column of Figure A-1). The right column shows the
spectra of the resynthesized versions of these vowels.

The peaks of the resynthesized spectra result from the formant estimates used

by the DSP in its analysis and resynthesis of the original whispered vowels. Since
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Figure A-2: An illustration of the formant estimation procedure. The solid line shows
the spectrum of one frame of the author’s whispering of [i]. The gray region highlights
the F'1 range, within which the two peaks of wF1 and wF2 can clearly be seen. The
circle-terminated vertical lines display the formants estimated from this spectrum.
As these lines indicate, F1 is estimated as the centroid of spectral amplitudes within
the F1 range, while outside of this range, F2, I3, and F4 are estimated from the
spectrum’s peaks, just as they would be in a voiced spectrum. (The dashed line is a
peak-enhanced version of the spectrum used to facilitate peak finding. Note also that,
for display purposes, the spectra and estimated formant amplitudes have been offset
from each other by scaling. Further details of this process can be found in appendix

B.)
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these estimates were created using the above-described formant estimation procedure,
they exhibit the desired behavior for F1 and F2. This is seen in the spectra of the
resynthesized vowels as changes in peak frequencies. In the progression from [i] to
[a], the lowest-frequency peak (resulting from the F'1 estimate) increases in frequency,
while the second-lowest-frequency peak (resulting from the I'2 estimate) decreases in
frequency. Because of this, the spectra of the resynthesized vowels look more like the
voiced vowel spectra shown in Figure A-1.2

Interestingly, in spite of the obvious spectral differences, each vowel’s resynthesized
version sounded perceptually similar to the original version. This was confirmed by
all subjects in feedback tests preceding each experiment.

Thus, the formants estimated by this method possessed both properties of the

formant definition given above, and therefore served as usable formant estimates.

’In the resynthesized [i] and [¢] spectra, the amplitude of F2 is, for reasons to be investigated,
unusually high. This makes the F1 amplitude appear lower than that of wF1 or wF2 in the original
spectra. Checking the amplitude scales shows this is not the case.
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A.1.4 Discussion

For this thesis, the spectral characteristics of whispered vowels served only as a tech-
nical problem to overcome. However, they are sufficiently interesting in their own
right to warrant further discussion. In particular, we consider here a possible articu-
latory explanation for them and their relevance to theories of vowel perception. This

discussion will conclude this section on formant estimation.

A.1.4.1 An Articulatory Explanation

The hypothesized articulatory explanation of whispered vowel’s spectral characteris-
tics comes from [Stevens, 1996], and concerns how a speaker positions his vocal folds
when whispering.

Vocal fold position determines two aspects of a speakers speech. First, it deter-
mines what type of speech is produced: if the folds are held in one particular position,
they vibrate and voiced speech is produced; if they are held in another position, air
from the lungs passing through them produces turbulence that results in whispered
speech. Intermediate positionings result in breathy speech, which is a mixture of
voiced and whispered speech.

The other aspect this positioning determines is the amount of acoustic coupling
to the sub-glottal cavities. In voiced speech, the timing of vocal fold vibration is such
that, acoustically, these cavities are largely isolated from the rest of the vocal tract.
This is because, within each cycle of glottal vibration, maximal excitation of the vocal
tract occuis when the vocal folds are closed. In whispered speech, however, the vocal
folds are constantly open, resulting in a constant amount of sub-glottal coupling.

The effect of this coupling is to introduce pole-zero pairs in the spectrum of the
whispered speech produced. Each pole-zero pair occurs at a resonant frequency of the
sub-glottal cavities. For an adult speaker, the lowest two of these resonant frequencies
have been observed to occur at 600 and 1400 Hz [Fant and Ishizaka, 1972]. The
amount of separation between the pole and zero in the pole-zero pairs is a function of
the amount of coupling. With no coupling, as occurs with a closed glottis, there is zero

separation between the poles and zeros. In this case, the poles and zeros cancel each
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other’s effects, resulting in no net effect on the spectrum. With significant coupling,
as occurs with a more open glottis, the poles and zeros are separated. In this case,
the spectrum is amplified near each pole’s frequency and attenuated near each zero's
frequency.

Thus, spectral distortion produced by sub-glottal coupling occurs around the res-
onant frequencies of the sub-glottal cavities, and is a function of the amount of cou-
pling. Since this coupling is controlled by the size of the glottal opening, the amount
of spectral distortion is a function of the glottal opening.

It is hypothesized that the observed splitting phenomena in whispered speech
spectra arise from this mechanism. Moreover, the variability seen across subjects in

the amount of splitting is thought to result from differences in whispering styles:

e Some subjects are thought to whisper with an open-glottis whispering style.
These subjects whisper with a large glottal opening, which results in spectral
distortions due to sub-glottal coupling. These distortions occur around 600 and
1400 Hz. The distortions at 1400 Hz affect F2 when it is nearby, as is the case
for [a]. The distortions at 600 Hz affect F1 when it is nearby, as is the case for
[i], [¢], [€], and, to a lesser extent, [e], and [a]. This results in whispered vowel

spectra like those seen in the right column of Figure A-1.

e Other subjects are thought to whisper with a closed-gloltis whispering style.
These subjects whisper with a small glottal opening, producing little sub-glottal
coupling and little spectral distortion. These subjects’ whispered vowel spectra
thus differ only minimally from their voiced spectra; their whispered spectra

would look like those seen in the: left column of Figure A-1.

Subjects with whispering styles between these two extremes would show interme-
diate amounts of distortion in their whispered vowel spectra.

Confirming evidence for this explanation was provided by a pilot investigation. In
it, the avthor produced vowels in both a closed-glottis and open-glottis whispering
style and compared spectra of the results. To make the comparisons more direct,

the compared whispering styles were from the same vowel production. This was
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accomplished by beginning each vowel’s production in the closed-glottis whispering
style, and abruptly changing to the open-glottis style midway through the production.

The results of this comparison for the vowel [] are shown in figures A-4 and A-5.

Figure A-4 shows the waveform of the recorded whispering of [¢]. The labels above
the waveform indicate the closed and open-giottis portions of the utterance.

The figure shows the waveform amplitude is greatly affected by whispering style.
The initial amplitude is consistent and low, corresponding to the closed-glottis portion
of the utterance. This amplitude abruptly increases at the point where the glottis was
opened to the open-glottis whispering style. The amplitude then gradually decreases
as the speaker’s lung capacity is expended.

The labeled gray regions in the figure show the waveform data time windows from
which spectra of the whispering styles were calculated. The closed-glottis spectrum
was calculated from time window (a); the open-glottis spectrum, from time window
(b). These time windows had the same size (0.4 secj, and were positioned to contain
approximately equal-amplitude waveform samples. Figure A-5 shows plots of the
resulting magnitude spectra. Each was calculated using the same zspectrum settings
used to create the spectra of figures A-1 and A-3.

Figure A-5(a) shows the spectrum of the closed-glottis whispering of [e]. This
spectrum looks similar to that of a voiced production of [¢]: the peaks look like the
normal formants of voiced [¢]. These peaks are therefore labeled as F1, I'2, I'3, and
F4. Only minimal spectral distortion is evident: the slight peak below F1 is the only
apparent deviation from the normal voiced spectrum.?

Figure A-5(b) shows the spectrum of the open-glottis whispering of [¢]. The
distortions seen in this spectrum look similar to those seen in the whispered vowel

spectra of Figure A-1. F1 of the closed-glottis spectrum has been largely replaced in

this spectrum by peaks wF1 and wF2.* These two peaks are centered roughly around

3In discussing these spectra, we will use the word “below” to mean lower in frequency, and
“above” to mean higher in frequency.

4This spectrum is visibly different fromn the whispered [£] spectrum in Figure A-1. This is perhaps
due to glottal opening size differences: the whispered vowels of Figure A-1 were produced with no
conscious manipulation of glottal opening, while in Figure A-5(b) glottal opening was deliberately
maximized.
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600 Hz - the predicted frequency of the first sub-glottal resonance.

Above wF?2, the largest spectral peaks occur approximately where the voiced for-
mants would be: wF3 corresponds to F2, wF4 corresponds to F3, and wF5 cor-
responds to F4. However, additional spectral distortions can be seen between these
peaks. A small peak is seen between wF2 and wF3. The frequency of this peak - 1350
Hz - is near the predicted frequency of the second sub-glottal resonance. Another
peak is seen between wF4 and wES.

In sum, the observed differences between the spectra of Figure A-5 are consistent

with the hypothesized distortion mechanism:

e Figure A-5(a) shows whispering [¢] with a nearly-closed glottis (minimizing

sub-glottal coupling) produces minimal spectral distortion.

e Figure A-5(b) shows whispering [¢] with a wide-open glottis (maximizing sub-
glottal coupling) produces significant spectral distortion. Most of these distor-

tions occur near frequencies of the predicted sub-glottal resonances.

Furthermore, these two spectra represent the extremes of the range of spectral
distortions seen in the subject data. Some subjects produced undistorted spectra like
Figure A-5(a), while others produced spectra with the same kinds of distortions seen
in Figure A-5(b).

Thus, the pilot study results for [¢] show that sub-glottal coupling produces the
kinds of spectral distortions seen in the subject data. Similar results have been found
for ] and [e].

To confirm the trends seen in the pilot study, a more complete investigation of
sub-glottal coupling in whispering is necessary. Such a study, however, is beyond the

scope of this thesis and will be reported elsewhere.
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Figure A-4: The time waveform of [¢] from which spectra of the whispering styles
were calculated. As indicated by the brackets above the waveform, [¢] was initially
whispered closed-glottis style, but was subsequently whispered open-glottis style. The
gray regions marked (a) and (b) indicate the time windows from which spectra were
calculated.
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Figure A-5: Spectra of the closed and open-glottis portions of the whispered [g]
waveform shown in Figure A-4. These spectra were calculated from time windows
indicated by gray regions in the waveform figure: spectrum (a) was calculated from
time window (a); spectrum (b) was calculated from time window (b).
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A.1.4.2 Implications for Vowel Perception Theories

To conclude discussion of this topic, we consider briefly the perceptual implications
of the spectral characteristics of whispered vowels.

Since peak frequencies distinguish voiced vowels, it is natural to suppose listeners
also use peak frequencies to distinguish whispered vowels.

A study done by Klatt supports this hypothesis [Klatt, 1982]. In it, subjects rated
phonetic similarity of synthesized versions of a vowel (either [2] or [a]). The versions
differed in some acoustic parameter value (e.g., formant frequency, amplitude, or
bandwidth). The study found versions differing in formant frequency were rated as
most phonetically dissimilar. Since, in voiced vowels, formants are spectral peaks,
the results offer evidence that listeners use peak frequencies to distinguish vowels.

However, as we have shown above, peak frequencies are often insufficient to dis-
tinguish whispered vowels. In particular, frequencies of the first two spectral peaks -
wF1 and wF2 - often do not change across whisperings of the [i]-[a] path vowels ([i],
[¢], [€], [], and [a]). How, then, do listeners distinguish whispered vowels?

Several possibilities are apparent:

1. Listeners do not use F1 to distinguish vowels. For the range of whispered vowels

just mentioned, the spectral peaks above wF2 appear to be the same seen in

voiced vowels. The lowest of these — wF3 — corresponds to the normal voiced
F2 peak. This peak’s frequency decreases over the [i]-[a] path vowels and is
therefore sufficient to distinguish them. However, the distribution of vowel
positions seen in formant-space plots of the complete vowel triangle suggest I'1

is necessary for some vowel distinctions (see Figure 2-2).

2. Listeners compute F1 as a centroid of the spectral region they erpect F1 to
occur in. Evidence for this comes from subjects’ judgments in the feedback
tests beginning eack SA experiment. In these tests, all subjects judged the
DSP output to be perceptually similar to their actual whispered speech. As
shown by Figure A-3, for subjects exhibiting F'1 splitting, spectra of their actual
whispering and the DSP output can differ significantly. Within the F1 range,
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the spectral peaks were often completely different; only the centroid of the F1
range was preserved by the DSP processing. Lack of sensitivity to this difference

may indicate subjects also compute a centroid to estimate F1.

3. Listeners have independent representations of voiced and whispered vowels.
This would obviate the need to suppose auditory processing invariant to the
spectral distortions of whispered speech. Listeners could be supposed to use
one criterion for judging voiced vowels (e.g., peak frequencies), and another for

judging whispered vowels (e.g., peak frequencies and amplitudes).

Results of the adaptation experiments indirectly support this theory. Study
2 found subjects retained measurable whispering adaptation over month-long
intervals. During a month, each subject should have had ample experience pro-
ducing voiced speech with unaltered feedback. It was expected that this would
restore original whispered vowel productions. That this did not occur suggests
that voiced and whispered vowels may have independent representations in the

speech production system.

Investigations that address these hypotheses will be conducted in the future, but
are beyond the scope of this thesis.

At this point, we resume discussion of issues central to the thesis by considering

formant data analysis.

A.2 Formant Data Analysis

All the data analysis methods used in this thesis involved estimating mean formant
values of formant data sets. For each data set, these estimates were made from a
formant histogram of the data. This section describes how these histograms were

created and used to estimate mean formants.
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A.2.1 'Word Production Data Records

Formant data sets come from data records of a subject’s word productions. These
data records contain formant estimates — by-products of the feedback transformation
process.

During an experiment, the DSP estimates F1, F2, F3, and F4 for each input
speech frame. To effect the feedback transformation, these formant estimates are
then altered and used to synthesize output speech. In addition, these estimates were
the data recorded for the input speech frame.

Thus, a word produced by a subject was converted into a sequence of input, speech
frames. The (F1,F2,F3,F4) estimates for each of these frames constituted the data
record of the word production. (For this reason, we will also call each (F1,F2,F3,F4)

estimate a “frame”.) This process is illustrated in Figure A-6.

A.2.2 Calculating Mean Formants of Formant Data

Figure A-T7 illustrates the steps in creating a formant data set and calculating mean
formant values from it.

Formant data sets consist of frames collected from word production data records.
Depending on the type of data analysis, these frames might be from the same frame
position in different data records, or they might be from a range of frames in a single
word production’s data record.

Once a formant data set is created, the four-step process illustrated in the figure

is used to calculate the set’s mean formant values. These steps were:
1. Splitting the formant data into individual formant data sets.

To do this, the individual formant estimates in each frame of the data set are
collated into separate data sets for each formant. Thus, an F1 data set is
created from the F1 estimates in each frame, an F2 data set is created from the

F2 estimates in each frame, etc.

2. Creating an amplitude-weighted histogram of the data in each formant’s data

set.
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As described in Section A.1, a formant estimate consists of two numbers: the
formant frequency and amplitude. Each formant’s data set is a set of these
formant estimates: histograms were made of the formant estimate frequencies,

weighted by their amplitudes.

The standard procedure for creating a data set’s histogram involves:

(a) Creating bins that cover the range of data values.

(b) For each data value, incrementing the count in the bin representing that

data value.

For a formant data set, the data values are the frequencies of the formant
estimates. A histogram is created for these data values using only one departure
from the standard procedure: for each formant estimate, the count in the bin
representing the estimate’s frequency is incremented, not by one, but by the

amplitude of the formant estimate.

This amplitude weighting of each formant estimate was done to minimize the

effect of spurious low-amplitude formant estimates.

After creation of the individual formant histograms, the final two steps in esti-

mating mean formants are:

. Adding the individual formant histograms to create the combined histogram,

which is called the formant histogram.

. Estimating mean F1, F'2, F3, and F4 from the highest four peaks of the formant

histogram.
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Time waveform of word production W
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~

DSP DSP DSP DSP Data record of word production W

(F1,F2,F3,F4)) frame N

»((F1,F2,F3,F4)) frame n+3

»((F1,F2,F3,F4)) frame n+2

»((F1,F2,F3,F4)) frame n+1

»((F1,F2,F3,F4)) frame n

(F1,F2,F3,F4)) frame 1

Figure A-6: Illustrating how word data records were created. The upper right of
the figure shows a portion of the time waveform of a subject’s word production W.
To create transformed feedback, the word production is chunked into input speech
frames, as indicated by the oval boxes labeled “frame n” through “frame n+3”. As
indicated by the boxes labeled “DSP Proc.”, An intermediate step in this processing is
the estimation of F1, F2, F3, and F4 from a magnitude spectrum of the frame. These
(F1,F2,F3,F4) estimates are used to synthesize the subject’s feedback. In addition,
as indicated by the arrows below the “DSP Proc.” boxes, these formant estimates
are the data stored for each frame. The data record of word production W is thus a
sequence of (F1,F2,F3,F4) estimates that we also call frames.
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Figure A-7: Steps in the calculation of mean formants of a set of formant data. By
some selection criteria, frames from word production data records are collected into
a formant data set. Then, via a four-step process, mean formants of this data set are
estimated. These steps are: (1) splitting the formant data into individual formant
data sets; (2) creating an amplitude-weighted histogram of the data in each formant’s
data set; (3) adding the individual formant histograms to create the combined formant
histogram; (4) estimating mean F1, F2, F3, and F4 from the formant histogram.
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A.2.3 Analysis of the Method

To see why mean formants are estimated from the combined formant histogram, in-
stead of directly from the individual formant histograms, we consider here an example
of this process.

Figure A-8 shows an example of individual formant histograms calculated from
an actual formant data set. In this case, the set’s frames are from a word produced
by subject BK in study 1. This figure illustrates why it was unreliable to estimate
mean formant values directly from the individual formant histograms. Figures A-
8(a) and A-8(b) show the F1 and F2 histograms to be suitable for estimating mean
formant values: these histograms both exhibit a single-peaked distribution. Such
a distribution is the predicted outcome of a subject intending to produce a single
formant frequency.

However, figures A-8(c) and A-8(d) show the F3 and F4 histograms are unsuit-
able for estimating mean formant values: their double-peaked distributions are not
the likely result of a single intended formant frequency. Indeed, the mean of each
distribution is a formant frequency value never produced by the subject.

The cause of these double-peaked distributions can be seen in how their peaks line
up with those of the other formants’ distributions. In the F3 distribution, the lower
frequency peak has the same frequency as the peak in the F2 distribution. In the
F4 distribution, the lower frequency peak is aligned with the higher F3 distribution
peak. This alignment of peaks suggests the double-peaked distributions are due to
mislabeling in the formant estimation process: as a result of noise, an insignificant
spectral peak (whose frequency is lower than the true F2 peak) is occasionally getting
labeled as F2. This results in the true F2 peak being labeled as F3 and the true F3
peak being labeled as F4.

The effects of this mislabeling on the F2 histogram are minimized by amplitude
weighting the data used in creating it, as described above. Because the spectrum
peaks occasionally mislabeled as F2 have small amplitudes, they contribute little to
the overall F2 histogram. However, the F2 peaks mislabeled as F3 are likely to have
high amplitudes and contribute significantly to the overall F3 histogram. The same
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BK.
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holds true for F3 peaks mislabeled as F4.
To mitigate the effects of this mislabeling, mean formant values are instead es-
timated from the combined formant histogram shown in Figure A-9. From this his-

togram, mean formants are estimated as the frequencies and amplitudes of the four

largest peaks.
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Figure A-9: The complete formant histogram made by adding together the individual
formant histograms of Figure A-8.

By estimating mean formants in this fashion, we have, in effect, removed the
peak labels in the individual formant histograms. This makes the approach robust
to formant mislabeling: it does not matter which individual formant histogram a
formant peak initially belongs to, since all its occurrences will sum to a single peak

in the combined histogram.

Having described how formant histograms are created and used to estimate mean
formants, we can now describe the subject pretest procedure. This procedure is based

on examining formant histograms.

A.3 Subject Pretesting

The formant estimation procedure described in the first section was based on knowing
the F1 range of a subject. This necessitated its measurement in a subject pretest

procedure. Pretesting of subjects was also necessary for several other reasons:

e Since feedback transformations were based on shifts along a subject’s [i]-[a]

path, formant values of subjects’ path vowels ([i], [¢], [¢], [], and [a]) needed
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measurement.

e Subjects with weak spectral peaks, or who otherwise had trouble whispering

had to be screened out.

o Subjects whose vowels sounded unnatural when heard through the feedback

transformation also had to be screened out.

These requirements led to the a three-step subject pretest procedure consisting

of:
1. Measuring the subject’s F1 range.
2. Measuring his path vowel formants.

3. Assessing the fidelity of his transformed vowel sounds.

A.3.1 Measuring the F1 Range

Measuring a subject’s F1 range began by first acquiring vowel data in a brief exper-
iment. Data from this experiment was then analyzed using formant histograms to
estimate the range of F1.

An important aspect of this experiment was how the DSP estimated formants in
it. Since no F'1 range was known at this point, the normal formant estimation method
could not be used. Instead, all formants were estimated as peaks in the magnitude
spectrum, just as is normally done for voiced speech. This will be called the DSP’s
peak mode of formant estimation, to distinguish it from the DSP’s normal mode of
F1-range-dependent formant estimation.

As described above, whispered formants estimated as peaks are not a suitable
basis for the feedback transformation procedures. But, if left unaltered, they can be
used to produce reasonable synthesized whispered speech. The subject’s feedback
was left unaltered in this experiment, because its purpose was only to record normal
whispered vowel productions of a subject. The DSP was therefore able to provide

adequate feedback using peak mode formant estimation during the experiment.
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A.3.1.1 Vowel Data Acquisition

The experiment collected data on the subject’s productions of the five different path
vowels.

The time course and subject interface of this experiment were identical to those
described in chapter 3. The experiment consisted of 10 epochs, each of which con-
sisted of two stages: a feedback stage and a noise stage. These two stages both
consisted of prompting, in random order, of all of the words from the set {“beed”,
“bid”, “bed”, “bad”, “bod”}.% In the feedback stage, the DSP output was in mixed
mode, allowing the subject to hear his whispering. In the noise stage, the DSP output
was in noise mode, which blocked the subject’s hearing. The feedback heard by the
subject in the mixed mode state was unaltered.

In order for the utterance data to primarily reflect the steady vowel portion, the
prompted-for utterance duration was 500ms (63 analysis frames). This was done in an
effort to make the constant transition times small compared to the overall utterance
duration. For the initial [b] and final [d], these transition times were, in general,

sufficiently fast to be largely completed in 2-3 analysis frames.

A.3.1.2 Vowel Data Analysis

Formant histograms were used to analyze the results of the data collection experiment
and determine the subject’s F1 range.

For each word and each feedback condition, a histogram was made of the formant
data from all productions of that word whispered in that feedback condition. These
histograms were then combined to make two different composite histograms: one for
words whispered while the subject heard feedback (a feedback composite histogram) ,
and one for words whispered while he heard only noise (a noise composite histogram).
A subject’s F1 range was estimated from the feedback composite histogram and

verified in the noise composite histogram.

5For early versions of the procedure other vowel sounds were also tested for, and the set included
the word “bawd” or the word “bahd”. However, nearly all subjects pronunciation of these words
were the same as “bod”, and data from these pronunciations were never used.
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In the feedback composite histogram, estimation of the F1 range depended on the
whispering style of the subject. If the subject whispered closed-glottis style, his F1
range was the frequency range over which his F1 peak varied across the individual
word histograms. If the subject whispered open-glottis style, his F1 range was the
frequency range containing the wF1 and wF?2 peaks of the individual word histograms.

Feedback composite histograms of two different subjects are shown in Figure A-10.

Figure A-10(a) shows the composite histogram of subject JI's word productions.
This subject whispered closed-glottis style. As indicated by the figure, his F1 range
was determined from the range containing the F1 peak of all his individual word
histograms.

Figure A-10(b) shows the composite histogram of subject GL’s word productions.
This subject whispered open-glottis style, and indicated by the figure, his F1 range
was determined from the positions of the wF1 and wF2 peaks of his individual word

histograms.
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A.3.2 Measuring Path Vowel Formants

Following measurement of a subject’s F1 range, a second procedure was used to
measure his path vowel formant frequencies. This procedure was almost identical to

the F1 range measurement procedure. The only differences were:
o The data collection experiment was 20 epochs long.
e In the experiment, the DSP’s normal mode of formant estimation was used.

e In analyzing the results, vowel formant frequencies were estimated from the

feedback composite histogram.

Examples of feedback composite histograms from this measurement procedure
are shown in Figure A-11. The histograms are from the same subjects shown in the
previous figure. Each histogram shows the formant labeling given the peaks of the
individual word histograms. Note that because of the centroid-based F1 estimate
used by the DSP, the previously seen wF1 and wF2 peaks are no longer present in
subject GL’s histogram.

Since the words used in the data collection experiment contained all the path
vowels, formants estimated from their histograms could be used as path vowel formant
estimates. Table A.l shows the path vowel formants estimated for subjects JI and

GL from the word histograms in Figure A-11.
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Subject JI Subject GL

path vowel F1 F2 F3 F4 |F1 F2 F3 F4
[i] (in “beed”) | 500 2250 2937 3625 | 375 2437 3062 3687
[¢] (in “bid”) [ 625 2062 2750 3562 | 625 2125 2875 3687
[e] (in “bed™) | 687 1875 2625 3625 | 687 1812 2687 3687
[] (in “bad™) | 750 1812 2500 3625|875 1625 2562 3687
[a] (in “bod™) | 875 1375 2187 3562 | 875 1312 2687 3625

Table A.1: Path vowel formant frequencies (Hz) for subjects JI and GL, estimated
from peaks of the word histograms in Figure A-11.

A.3.3 Assessing Feedback Transformation Fidelity

Following determination of a subject’s path vowel formants, a brief assessment pro-
cedure was used to evaluate transformed versions of his path vowels. This procedure

consisted of:

1. Using the path vowel formant estimates to generate the lookup tables for the

2p and 2m feedback transformations.

2. Listening to how the subject’s path vowels sounded under each feedback trans-

formation.

The listening test of step 2 was a subjective evaluation by the experimenter. The
subject did not hear the DSP output during this test; he removed the insert earphones
and heard his whispering in the normal acoustic fashion. ‘T'he experimenter listened to
the DSP output and made requests for the subject to whisper different words. These
words were the same as those used in the previous measurement procedure: they
therefore contained all the path vowels. For each word whispered, the experimenter
judged phonetic identity of the vowel heard in the DSP output.

These phonetic judgments were recorded for each path vowel under each feedback

transformation. The recorded judgments were then compared with the predicted
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action of each feedback transformation. For example, [¢] under the 2p transformation
should be heard as [a]and under the 2m transformation as [i].

For a given transformation, if recorded phonetic judgments matched predictions
for all path vowels except [a] (which was often missing F2), the subject was rated as
suitable for participating in experiments using that feedback transformation.

This assessment of feedback transformation fidelity concluded the pretest done on

each subject.
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Appendix B

Signal Processing

In Chapter 3, Section 3.2 summarized the feedback transformation signal processing

as consisting of five steps:

¢ Acquisition: An 8ms (64 sample) frame of the subject’s whispered speech is

acquired.

e Spectral analysis: This frame is analyzed into a magnitude spectrum, which

is further processed before formats are estimated from it.

e Formant estimation: From the processed spectrum, the frequencies and am-

plitudes of F1, F2, F3, and F4 were estimated.

e Formant alteration: To implement the feedback transformation, a lookup

table was used to shift the frequencies of F1, F2, and F3.

e Synthesis: Whispered speech is synthesized from the altered formant estimates

and output as feedback to the subject.

The implementation of these steps was based on a number of sources. Design of
the acquisition step was based on example programs provided by the manufacturer of
the DSP system used (see Appendix D). Design of the spectral analysis and synthesis
steps were based on [Houde, 1994). Finally, design of the formant estimation step was

based on observed characteristics of whispered speech, as described in Appendix A.
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These processing steps will now be discussed in more detail. In this discussion,

some knowledge of speech and linear systems theory is assumed.

B.1 Acquisition

Two issues were important in the acquisition of the subject’s speech: sampling rate

and frame size.

B.1.1 Sampling Rate

The digital nature of the signal processing required that the continuous-time speech
signal be sampled. The rate at which these samples were acquired (the sampling rate)
was determined from two competing considerations: (1) higher sampling rates in-
curred greater computational cost; (2) lower sampling rates decreased
system bandwidth.!

For typical adult male speakers, F4, the highest formant likely to contain signifi-
cant phonetic information [Stevens, 1989], ranges as high as 4KHz (with female and
child speakers, F'4 will typically be much higher). Thus, by restricting the choice of
subjects to adult male speakers, the bandwidth of the system could be as small as
4KHz, which set the sampling rate at 8KHz.

B.1.2 Frame Size

To maximize the veridicality of the subject’s feedback, there must be little delay and
no interruptions in its generation. The requirements this places on the signal process-
ing are that the input speech must be continuously sampled without interruptions,
and that, simultaneous to this and in synchrony with it, synthesized speech feedback
samples must be generated.

In order to accomplish this, the signal processing employed a system of two input

buffers and two output buffers. At any given time, one set of the buffers is active

1According to sampling theory [Oppenheim and Willsky, 1983], system bandwidth is equal to
half the sampling rate.
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while the other is idle. The active input buffer is in the process of being filled (with
incoming samples of the subject’s speech), while tne active output buffer is in the
process of being emptied (as its contents are sequentially output to the subject as
his feedback). Both buffers fill and empty at the the sampling rate, and both hold a
frame-sized amount of data.

While the active buffers are being filled/emptied, the idle buffers are being pro-
cessed: the frame of data in the idle input buffer is added to a larger data buffer called
the analysis window, the contents of which are then then analyzed into a magnitude
spectrum. From this spectrum, formants are estimated, altered, and used to generate
synthesized speech that fills the idle output buffer.

Once the the active buffers have finished filling/emptying, the buffers must imme-
diately change roles before the next input speech sample arrives (and the next output

speech sample must be delivered). When this happens:

o the current idle buffers become the new active buffers (ready for input/output),

and
e the active buffers become the new idle buffers (ready to be processed).

This double-buffering scheme works because the DSP system hardware allows the
active buffers’ input/output to proceed simultaneous to the processing of the idle
buffers. Thus, the main system time constraint is that the processes filling the idle
output buffer must complete before the active buffers have finished filling/emptying.

Since the sampling rate is fixed, the time it takes for the active input buffer to
fill (or, equivalently, the active output buffer to empty) is determined solely by the
frame size. It was found that this could be set as small as 64 samples and still leave
enough time for the processing of the idle buffers to finish.

In this double-buffering scheme, feedback delay is the time between two events:
o Acquisition of an incoming speech frame’s first data sample.

o Output of the first synthesized speech sample generated from processing this

incoming speech frame.
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Thus, from the above description it can be seen that:

time it takes to ac- time it takes to pro-
feedback delay = [ quire the input frame | + | cess this frame of
of data data

But since, after the idle buffers are processed, the system must still wait for the

active buffers to finish filling/emptying, the above equation reduces to:

time it takes to ac- L
time it takes to out-)

feedback delay = | quire the input frame | + (
put a frame of data

of data

time it takes to ac-
= 2| quire the input frame

f data
= 2(frame size) (time per sample)
= 2(frame size) (1/sampling rate)
= 2(64)(0.125ms)

= 16ms

This value is well below the 30ms delay at which speakers begin to notice and be

disturbed by the delay in feedback [Lee, 1950, Yates, 1963].

B.2 Spectral analysis

The goal of the spectral analysis processing step was creation of spectral representa-
tions suitable for formant estimation. This involved creating a magnitude spectrum

that was then further processed into smoothed and peak-enhanced versions.
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B.2.1 Creating the Magnitude Spectrum

The first step in processing the new frame of data in the idle input buffer is calculation
of its magnitude spectrum. ‘Chis magnitude spectrum is calculated from a buffer of
data called an analysis window. Thus, to calculate the magnitude spectrum of the
new frame of data, the oldest frame of data in the analysis window is shifted out of
the window and the new frame shifted in. This process is illustrated in Figure B-1.

The size of the analysis window is determined by the resolution of the spectral
analysis done. In this case, it was found that there was sufficient processing time to
do a 64-channel magnitude spectrum analysis. This meant that a 128-point FFT (fast
Fourier Transform [Cooley and Tukey, 1965, Oppenheim and Schafer, 1975]) was
done on the data, which required the analysis window to hold 128 data samples,
or 2 frame’s worth of data.

The FFT is not immediately done on the analysis window after the newest frame
of data had been added: first, its contents are multiplied by a windowing function (a
hamming window) to minimize spectral distortion in the FFT processing. After this,

The FFT processing is done, resulting in the initial magnitude spectrum.

B.2.2 Processing the Magnitude Spectrum

Several operations are performed on the magnitude spectrum before its formants are
estimated.

First, the ambient spectrum is subtracted from it. This ambient spectrum is the
magnitude spectrum of background sound sources existing in the room where the
experimental setup exists, plus any noise sources in the electronics of the microphone
and microphone amplifier.

Next, the average magnitude of the spectrum is calculated and saved for later use
in controlling amplitude of the speech feedback synthesized from the spectrum. This
average spectrum magnitude therefore controls the amplitude of the feedback heard
by the subject. As a safeguard for the subject’s hearing, this average magnitude is

limited to be less than a fixed threshold value.
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After that, the spectrum is smoothed in time by averaging it with the previous
frame’s spectrum. The resulting time-smoothed spectrum is saved for further pro-
cessing, and is later used for estimating F1.

Finally, the peaks of the time-smoothed spectrum are enhanced by a series of op-
erations. First, a running average (the average magnitude of the n surrounding chan-
nels) is subtracted from each channel. This removes overall trends in the spectrum
and thus tends to enhance localized variations which are usually peaks. Any small
peaks in the valleys (which, at this point, have negative magnitude values) are then
removed by keeping only the positive channel amplitude values. This peak-enhanced
spectrum is then smoothed in frequency (by convolution with an appropriate kernel)
and then in time (by weighted average with the sum of past frames’ peak-enhanced
spectra), to make the final peak-enhanced spectrum. F2, F3, and F4 were estimated
from this spectrum.

Examples of the time-smoothed and peak-enhanced spectra are illustrated in Fig-

ure B-2.
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Figure B-1: Showing how the incoming speech data was processed into magnitude
spectra. The time waveform shown is from the author whispering the vowel [¢] in
the word “beed”. Input speech data was processed in 8ms (64-sample) frames. As
soon as a complete frame of data was acquired (the gray box labeled “frame N"),
its data and the previous frame’s data were processed into a magnitude spectrum.
This is indicated below the time waveform by the brace spanning frames N and N-1
(representing the analysis window), and by the arrow leading from this brace to the
magnitude spectrum of frame N. During the calculation and subsequent processing
of this spectrum, two other processes were simultaneously occurring: (1) new input
speech data (the time waveform shown extending beyond frame N) was being acquired
and (2) the synthesized speech generated from the previous processing of frame N-1
was being output.
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Figure B-2: Key steps in processing the magnitude spectrum of frame N from the
previous figure. The highest solid-line spectrum is the unprocessed FFT magnitude
spectrum of frame N. The superimposed dashed-line spectrum is the time-smoothed
version of it from which F1 was estimated. The lower smooth solid-line spectrum is
the peak-enhanced spectrum. This was derived from the time-smoothed spectrum,
and was used to estimate F2, F3, and F4. (For display purposes, these spectra have
been offset from each other by scaling. In the actual signal processing, each spectra
is normalized to have the same average amplitude.)
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B.3 Formant Estimation

Because of problems with determining F1 in whispered speech (see Appendix A), for-
mants could not be estimated simply from the peaks of the peak-enhanced spectrum.
The method used required measuring the frequency region over which a subject’s

F1 ranges:?

e Within the F1 range, the time-smoothed spectrum was used to estimate F1.
The frequency of F1 was estimated as the centroid frequency of the spectral
amplitude distribution within the F1 range. The amplitude of F1 was estimated

as the average spectral amplitude within this range.

As discussed in Appendix A, this produces a robust F1 estimate with the desired
characteristics: it increases in frequency as the whispered vowel changes from

[i] to [a], just as F1 does for the voiced version of these vowels.

e Outside of the F1 range, the peak-enhanced spectrum was used to estimate
F2, F3, and F4. This was done using a standard, hill-climbing-based technique
to find the peaks of the spectrum. F2, F3, and F4 were then estimated as the
highest three of these peaks.

This method is illustrated in Figure B-3, which is a repeat of Figure A-2.

Because F1 estimation is based on calculating a center of mass, it is desirable
to have the spectrum which more closely represents the true distribution of channel
amplitudes in the F1 range. The peak-enhanced spectrum is not a good representation
of this since many overall amplitudes trends have been removed from it. For this
reason, F1 is estimated from the time-smoothed spectrum rather than the peak-
enhanced spectrum

Following this, the formant amplitudes are rescaled so their average equals the
original (previously calculated) average amplitude of the original magnitude spec-

trum.

2This was done in the subject pretest procedure described in Section A.3.
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Figure B-3: Showing how formants were estimated from the spectra in Figure B-
2. In this figure, the solid line is the time-smoothed spectrum of frame N (shown
in Figure B-2 as a dashed line) and the dashed line is the peak-enhanced spectrum
(shown in Figure B-2 as the lower solid line). F1 is estimated as the centroid of
the time-smoothed spectrum within the frequencies of the F1 range (shown in gray).
Outside of this region, the peak enhanced spectrum is used: F2, F3, and F4 are
estimated as its three highest peaks. The vertical lines terminated by circles indicate
the frequencies and relative amplitudes of the formant estimates. (Note again: ior
display purposes, the spectra and estimated formant amplitudes have been offset from

each other by scaling. In the actual signal processing, all are normalized to have the
same average amplitude.)
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B.4 Formant Alteration

To implement the feedback transformation, the frequencies of F1, F2, and F3 were

shifted via a lookup table. Use of this table and its construction are described in

detail in Chapter 3.

B.5 Synthesis

Synthesizing a new frame of output speech from the altered formants was based
on an approach called forman! synthesis, which is a method used in many current
speech synthesis systems [Klatt, 1980, O’Shaughnessy, 1987]. This approach is in turn
based on the source-filter theory of speech production [Fant, 1960, Flanagan, 1972,
O’Shaughnessy, 1987, Titze, 1994] that supposes the vocal tract can be modeled as
a linear time-varying filter, characterized by an impulse response function. Speech
is then modeled as the convolution of this impulse response with the glottal source
function.

The synthesis process based on this theory consisted of three steps:

(1) Creating a vocal tract impulse response function corresponding to the formant

estimates.
(2) Generating a whispered pitch glottal source function.

(3) Simulating the response of a vocal tract with an impulse response calculated in

(1) to the pitch function generated in (2).

B.5.1 Creating the Vocal Tract Impulse Response

The vocal tract’s impulse response function was calculated by assuming it could
be modeled as the parallel combination of four resonances, each corresponding to a
different formant.

Each resonance was modeled as a second-order linear filter with a damped-sinusoid

impulse response. All resonances were assumed to have the same fixed damping factor
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controlling their impulse response decay rate.

The resonant frequencies of these filters were specified by the estimated formant
frequencies. The filter outputs were weighted by the estimated formant amplitudes.
In this way, the complete vocal tract impulse response was calculated as the weighted
sum of the impulse responses corresponding to each formant.

Illustrations of these weighted formant impulse responses are shown in Figure B-4.

Their sum made the vocal tract impulse response function shown in Figure B-5(a).

B.5.2 Generating a Glottal Source Function

Because subjects were restricted to whispered speech, their glottal source functions
were assumed to be random. Thus, a synthesized random source function could be
generated which functioned as an adequate substitute for subjects’ true glottal source
function. This allowed for significant computational savings since no source analysis
then needed.

The actual random source function used was a random series of impulses. These
impulses all had the same magnitude but alternated in sign. The intervals between the
impulses were random numbers generated from a uniform distribution between some
minimum and maximum limit values. It was found that this source function generated
synthesized whispered speech that was perceptually nearly indistinguishable from the
input whispered speech.

An example of this type of glottal source function is shown in Figure B-5(b).

B.5.3 Simulating the Response of the Vocal Tract: Gener-
ating Whispered Speech

At this point in the synthesis process, the impulse response of the vocal tract has
been created, as has the glottal source function. All that remains is to determine the
response of a vocal tract with this impulse response to this glottal source function.
Since the vocal tract is assumed to be an linear, time-invariant system over the frame,

computing this response involves merely convolving the vocal tract impulse response
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with the glottal source function.

The result of this final step is a frame of synthesized whispered speech correspond-
ing to the peak representation derived from the subject’s input speech. An example
is shown in Figure B-5(c). This frame is synthesized in the current idle output buffer.
With the completion of the synthesis process, this buffer is now ready to become the
next active output buffer. When this happens, the buffer’s contents are delivered to
the subject as feedback of his whispered speech.

This completes the description of the signal processing used in the experimental

apparatus.
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Figure B-4: The impulse response functions created from the formant estimates of
Figure B-3. These response functions were then added together to make the complete

vocal tract impulse response shown in Figure B-5(a).
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Figure B-5: Showing how the next frame of output synthesized speech was con-
structed from the convolution of the vocal tract impulse response and one frame of
glottal source function. (a) shows the vocal tract impulse response function, which
was created by summing the separate formant impulse response functions shown in
Figure B-4. (b) shows the frame of glottal sourre function, which was calculated as
a random sequence of alternating impulse functions. (c) shows the frame of output
synthesized speech resulting from the convolution of the functions in (a) and (b). This
frame was then output to the subject while the spectrum of the next input frame was
being proccssed (see Figure B-1).
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Appendix C

Resolution and Stability of Path

Projections

To construct the feedback transformation tables, a line-segment definition of the [i}-[q]
path was used. In this definition, the [i}-[a] path is formed from line segments joining
the the path reference points.! Subsequent to running the experiments, however,
several problems were discovered with using this path definition to calculate path

projections.

C.1 Cubic-Spline [i]-[a] Path Definitions

These problems were mitigated by changing to a cubic-spline [i]-[a] path definition.
In this definition, the [i]-[a] path is formed by fitting a 3rd-order spline curve to the
path reference points. Figure C-1 shows line-segment and cubic-spline [i]-[a] paths
made from the same path reference points. As the figure shows, both paths pass
through the path reference points. The main difference between the two paths is
smoothness: the line-segment path makes abrupt direction changes at path reference
points, while the cubic spline path makes smooth direction changes between the

path reference points.

!Path reference points are the path vowels plus the endpoint extensions — see Section 3.3.1.
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Figure C-1: Comparison of line-segment and cubic-spline [i]-[a] paths made from the
same path reference points. In this figure, the line-segment path is the thick gray line
while the cubic-spline path is the thin dark line.
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C.2 Resolution and Stability Issues

The problems mitigated by using the cubic-spline path concerned the resolution and
stability of path projections. The problems are explained in more detail in figures C-2
and C-2. The figures show the problems are caused by the line-segment path’s abrupt
direction changes at path reference points. Because of this, the problems worsen with
sharper direction changes at path reference points. The problems are also worse for
vowel sounds more distant from the [i]-[a] path.

Consider, now, the impact of these problems on quality of the feedback transfor-

mations and on data analysis.

C.3 Impact on the Feedback Transformations

Recall that the feedback transformations were defined as path projections shifts. They
shift perceived formants of a vowel sound by shifting its path projection without
altering its path deviation. Maintaining path deviations insures that all formant
shifts follow the contour of the [i]-[a] path. In this sense, all vowel sounds are shifted
are in the same direction.

Thus, bad path deviation estimates would affect vowel sound shift directions,
whereas bad path projection estimates would affect shift magnitudes. Therefore, the
line-segment path projection problems discussed above only affected formant shift
magnitudes, not their directions. The resolution problem would affect continuity of
the shift magnitudes, while the stability problem would affect consistency of the shift
magnitudes.

The path projection problems would be most severe for subjects whose [i]-[q]
paths exhibit sharp direction changes near close-together path reference points. These
subjects may therefore have experienced discontinaous and inconsistent shifts of some
of their vowel sounds. However, any subjects whose transformed vowels sounded
noticeably bad were screened out in the subject pretest.

Thus, via subject screening, the impact of the line-segment path projection prob-
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lems on feedback transformations was minimized. For this reason, plots of accepted
subjects’ feedback transformations (such as Figure 3-10) looked generally consistent
in magnitude and direction. And, as the experiment data show (chapters 4 and 5),

these transformations were consistent enough to cause subjects to compensate.

C.4 Impact on Data Analysis

Although the resolution and stability problems had only limited overall effects on the
feedback transformations, they introduced avoidable inaccuracies in the data analysis.
For this reason, all path projection and deviation analysis of utterance data was

done using the cubic-spline [i]-[a] path definitions.
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(a) resolution, line-segment path (b) resolution, cubic-spline path

Figure C-2: Resolution of path projections. (a) and (b) show different [i]-[a] path
definitions based on the same path reference points (shown as diamonds). In both
subfigures, lines show path projections of vowel sounds a thru k.

(a) shows path projections based on the line-segment path. a-b-c-d and h-i-j-k are
parallel to the [i]-[¢] and [¢]-[¢] path segments, respectively. Because of this, a, b, c,
i, j, and k all have different path projections. However, all vowel sounds in the gray
sector (e.g., sounds d, e, f, g, and h) have [¢] as their closest path point, so they all
have the same path projection. (The sector’s size is determined by the angle between
the [i]-[¢] and [¢]-[¢] path segments: the sharper the angle, the larger the sector.) Now
consider vowel sound f. Perturbations of f’s formants to d or h are still in the sector
and have the same path projection. (Note however, if f were closer to [¢], the same
size perturbations of f would be outside of the sector. These f perturbations would
have different path projections.)

Path projection insensitivity to formant variations in the gray sector is called the
resolution problem. As shown above, the problem is worse at greater distances from
the path. Sharper path segment angles also make it worse.

(b) shows path projections based on the cubic-spline path. Here, because there is
no angle between path segments, there is no sector of vowel sounds with the same
path projections. Thus, in this case, vowel sounds a thru k all have different path
projections.
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(a) stability, line-segment path (b) stability, cubic-spline path

Figure C-3: Stability of path projections. (a) and (b) show the same [i]-[a] path
definitions seen in Figure C-2. In both subfigures, lines show path projections of
vowel sounds m thru s.

(a) shows path projections based on the line-segment path. m-n-o-p and p-q-r-s are
parallel to the [i)-[:] and [¢]-[¢] path segments, respectively. m thru s all have the same
path deviation. Thus p is on the bisector (shown in gray) of the angle between the
[i]-[¢] and [¢]-[¢] path segments.

The two lines emanating from p illustrate the stability problem: p is equidistant from
either path segment, so it is ambiguous which segment p projects to. This projection
ambiguity amplifies any variation in p’s formants: p will project to one segment or the
other, depending on which it is infinitesimally closer to. Thus, small variations in p’s
formants make larger variations in its path projection. All points on the bisector of
an acute path segment angle have this problem: their projection ambiguities amplify
formant variations. The ambiguity gets worse for points more distant from the path.
It also gets worse for smaller path segment angles.

(b) shows path projections based on the cubic-spline path. Here, there is no projection
ambiguity: vowel sound p projects to only to [¢].
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Appendix D

Equipment

Section 3.1 discussed the apparatus used in the experiments. Here, more detailed

specifications of the equipment comprising this apparatus are described.

D.1 Detailed Apparatus Description

Figure D-1 shows a diagram of the equipment used in the experimental setup. In
this diagram, the main pathway involved in processing the subject’s feedback is high-
lighted.

The subject whispered into a head-mounted, noise-cancellation microphone that
was connected to a mixer that functioned as a pre-amplifier. The auxéutput of the
mixer was fed to both the DSP system’s input A and input 1 of a four-track tape
deck. The DSP system transformed the speech signal; the tape deck was used to
record both the subject’s speech and his feedback. The DSP system produced two

outputs:

o Output A of the DSP system was the feedback signal sent to the subject. This
signal was either pure noise to block his hearing, or a mixture of mild noise and
transformed feedback of his whispering. This signal when to input 2 of the tape
deck as well as to the Tuner L input of the Amplifier. The Phones output of the
Amplifier when to the insert earphones that actually delivered the transformed

feedback to the subject.
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e Output B of the DSP system was a copy of the subject’s transformed feedback

without the noise mixed in. This signal when to input 3 of the tape deck.

In this way, the subject’s actual whispered speech, what he heard as feedback, and the
transformed version of his speech could be simultaneously recorded and monitored
throughout an experiment.

The DSP system resided on a board installed in a PC computer. Words for the
subject to whisper were presented visually on the PC’s video monitor, and the PC’s

mouse was used by the subject to control the pace of the experiment.

D.2 Equipment Specifications

The specifications of the equipment used in the experimental apparatus were the

following:

Microphone: | Shure model SM10A (noise cancellation, headmounted). Shure

Brothers, Inc.

Mixer: Shure model M268. Shure Brothers, Inc.

DSP system: | Ariel DSP-96. Ariel Corp.

PC: Alcom 486DX /33 Mhz VESA Local Bus System. Alcom Technology
Corp.

Tape Deck: | TEAC model A-3440 (four-track, reel-to-reel). Teac Corp.
Amplifier: Realistic SA-150 integrated stereo amplifier. Radio Shack Div.,

Tandy Corp.

Earphones: | E-A-RTone 3A insert earphones. E-A-R Auditory Systems Div.,
Cabot Safety Corp.
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Figure D-1: Diagram of the equipment used in the experimental apparatus. The
highlighted arrows show the pathway along which the subject’s whispered speech was
intercepted, processed, and fed back to him.
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