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Abstract

Magnetoencephalography (MEG) and electroencephalography (EEG) are noninvasive
functional neuroimaging techniques that provide high temporal resolution recordings
of brain activity, offering a unique means to study fast neural dynamics in humans.
Localizing the sources of brain activity from MEG/EEG is an ill-posed inverse prob-
lem, with no unique solution in the absence of additional information. In this disser-
tation I analyze how solutions to the MEG/EEG inverse problem can be improved
by including information about temporal dynamics of brain activity and connectivity
within and among brain regions. The contributions of my thesis are: 1) I develop
a dynamic algorithm for source localization that uses local connectivity information
and Empirical Bayes estimates to improve source localization performance (Chap-
ter 1). This result led me to investigate the underlying theoretical principles that
might explain the performance improvement observed in simulations and by ana-
lyzing experimental data. In my analysis, 2) I demonstrate theoretically how the
inclusion of local connectivity information and basic source dynamics can greatly
increase the number of sources that can be recovered from MEG/EEG data (Chap-
ter 2). Finally, in order to include long distance connectivity information, 3) I develop
a fast multi-scale dynamic source estimation algorithm based on the Subspace Pur-
suit and Kalman Filter algorithms that incorporates brain connectivity information
derived from diffusion MRI (Chapter 3). Overall, I illustrate how dynamic mod-
els informed by neurophysiology and neuroanatomy can be used alongside advanced
statistical and signal processing methods to greatly improve MEG/EEG source local-
ization. More broadly, this work provides an example of how advanced modeling and
algorithm development can be used to address difficult problems in neuroscience and
neuroimaging.
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Chapter 1

A Spatiotemporal Dynamic Solution

to the MEG Inverse Problem Using

the Empirical Bayes Paradigm

1.1 Abstract

MEG/EEG are non-invasive imaging techniques that record brain activity with high

temporal resolution. However, estimation of brain source currents from surface record-

ings requires solving an ill-posed inverse problem. Converging lines of evidence in neu-

roscience, from neuronal network models to resting-state imaging and neurophysiol-

ogy, suggest that cortical activation is a distributed spatiotemporal dynamic process,

supported by both local and long-distance neuroanatomic connections. Because spa-

tiotemporal dynamics of this kind are central to brain physiology, inverse solutions

could be improved by incorporating models of these dynamics. In this article, we

present a model for cortical activity based on nearest-neighbor autoregression that in-

corporates local spatiotemporal interactions between distributed sources in a manner

consistent with neurophysiology and neuroanatomy. We develop a dynamic Maximum

a Posteriori Expectation-Maximization (dMAP-EM) source localization algorithm for

estimation of cortical sources and model parameters based on the Kalman Filter, the

17



Fixed Interval Smoother, and the EM algorithms. We apply the dMAP-EM algorithm

to simulated experiments as well as to human experimental data. Furthermore, we

derive expressions to relate our dynamic estimation formulas to those of standard

static models, and show how dynamic methods optimally assimilate past and future

data. Our results establish the feasibility of spatiotemporal dynamic estimation in

large-scale distributed source spaces with several thousand source locations and hun-

dreds of sensors, with resulting inverse solutions that provide substantial performance

improvements over static methods.

1.2 Introduction

Magnetoencephalography (MEG) and electroencephalography (EEG) are non-invasive

brain imaging techniques that provide high temporal resolution measurements of mag-

netic and electric fields at the scalp generated by the synchronous activation of neu-

ronal populations. It has been estimated that a detectable signal can be recorded if as

few as one in a thousand synapses become simultaneously active in an area of about 40

square millimeters of cortex [1]. The exceptional time resolution of these techniques

provides a unique window into the dynamics of neuronal process that cannot be ob-

tained with other functional neuroimaging modalities, such as functional magnetic

resonance imaging (fMRI) and positron emission tomography (PET), which mea-

sure brain activity indirectly through associated slow metabolic or cerebrovascular

changes.

Localizing active regions in the brain from MEG and EEG data requires solving

the neuromagnetic inverse problem, which consists of estimating the cerebral current

distribution underlying a time series of measurements at the scalp. The ill-posed

nature of the electromagnetic inverse problem and the relatively large distance be-

tween the sensors and the sources limit the spatial resolution of MEG and EEG. For

the inverse problem, solution of the corresponding forward problem in MEG/EEG,

i.e., determining the measured magnetic and electric field at the scalp generated by a

given distribution of neuronal currents, is a prerequisite. This problem can be solved

18



by adopting a quasistatic approximation to Maxwell’s equations, resulting in a linear

map which relates the activity of arbitrarily located neuronal sources to the signals

in a set of sensors [1, 2].

Two types of models have been proposed in the neuromagnetic inverse problem

literature: equivalent current dipole models and distributed source models. Equiva-

lent current dipole models are based on the assumption that a small set of current

dipoles with unknown locations, amplitudes, and orientations can closely approxi-

mate the actual current distribution [3, 4, 5, 6, 7, 8, 9]. Distributed source models,

on the other hand, assume that the recorded activity results from the activation of

a spatial distribution of current dipoles with known locations(see [10] for a review).

Most source localization methods assume that scalp measurements and their under-

lying sources are independent across time, and convenient probabilistic or computa-

tional prior constraints are imposed to obtain unique solutions. For example, inverse

methods have been proposed that penalize current sources with large amplitude or

power [11, 12, 13, 14], impose spatial smoothness [15], or favor focal estimates [16].

Furthermore, Bayesian methods have been used to obtain spatially sparse estimates,

where components of the current source covariance are estimated directly [17, 18]

or additional hierarchical priors are assigned in order to compute posterior distribu-

tions [19, 20, 21]. The assumption of temporal independence in all of these methods

allows the inverse solution at each point in time to be computed individually, without

regard for dynamics, treating the probability distribution of the underlying sources

as static in time. While this approach is computationally convenient, it ignores the

temporal structure observed in neural recordings at many different levels [22], which

could be used to improve inverse solutions.

Recent methods for source localization have incorporated temporal smoothness

constraints as part of a general Bayesian framework. The approach taken in these

methods is to specify an arbitrary prior distribution for the dipole sources in space

and time, sometimes in terms of basis functions, with limited or space-time separable

interactions in order to obtain simplified estimation algorithms [23, 24, 25, 26, 27, 28,

29, 30, 31, 32]. Linear state-space models have also been used to model source cur-
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rent dynamics. However, in order to reduce computational complexity, these methods

either apply spatially-independent approximations to their respective estimation al-

gorithms [33, 34] or a priori fix model specific parameters to avoid the problem of

parameter estimation [35]. Overall, while these methods incorporate temporal struc-

ture in their models, they specify highly constrained spatiotemporal interactions, such

as space-time separability or spatial independence, that may not accurately reflect

dynamic relationships between different brain areas.

Converging lines of evidence from neurophysiology, biophysics, and neuroimaging

illustrate that dynamic spatiotemporal interactions are a central feature of brain

activity. Intracranial recordings in different species, including humans, exhibit strong

spatial correlations during rest and task periods that persist up to distances of 10 mm

along the cortical surface [36, 37, 38]. These local spatial interactions are supported

neuroanatomically by axonal collateral projections from pyramidal cells that spread

laterally at distances of up to 10 mm [39]. Biophysical spatiotemporal dynamic models

of neuronal networks at various levels of abstraction have been effective in reproducing

properties of electromagnetic scalp recordings seen during both normal and disease

states [40, 41, 42, 43, 44, 45, 46, 47]. Furthermore, fMRI and PET studies have

shown temporally coherent fluctuation in activation within widely distributed cortical

networks during resting-state and experimentally administered task periods [48, 49,

50, 51].

In this article we present a new dynamic source localization method that models

local spatiotemporal interactions between distributed cortical sources in a manner

consistent with neurophysiology and neuroanatomy, and then uses this model to es-

timate an inverse solution. Specifically, 1) we describe a model of the spatiotemporal

dynamics based on nearest-neighbors multivariate autoregression along the cortical

surface; 2) We develop an algorithm for dynamic estimation of cortical current sources

and model parameters from MEG/EEG data based on the Kalman Filter, the Fixed

Interval Smoother, and the Expectation-Maximization (EM) algorithms; 3) We de-

rive expressions to relate our dynamic estimation formulas to those of standard static

algorithms; and 4) We apply our spatiotemporal dynamic method to simulated ex-
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periments of focal and distributed cortical activation as well as experimental data

from a human subject.

1.3 Methods

1.3.1 Measurement model

In an MEG/EEG experiment, we obtain a temporal set of recordings from hundreds of

sensors located above the scalp. The data are sampled by 𝑛 sensors at times {Δ𝑡}𝑇𝑡=1,

where Δ is the sampling interval and 𝑇 is the number of measurements in time. Let

𝑦𝑖,𝑡 denote the measurement at time 𝑡 in sensor 𝑖, and define y𝑡 = [𝑦1,𝑡, 𝑦2,𝑡, . . . , 𝑦𝑛,𝑡]
′

as the 𝑛 × 1 vector of measurements at all sensors at time 𝑡. We assume that the

measurements were generated by 𝑝 current dipole sources distributed on the cortical

surface and oriented perpendicular to it. Let 𝛽𝑖,𝑡 denote the source amplitude of

the 𝑖th dipole at time 𝑡, and define 𝛽𝑡 = [𝛽1,𝑡, 𝛽2,𝑡, . . . , 𝛽𝑝,𝑡]
′ as the 𝑝 × 1 vector of

cortical source activity in all considered locations, or cortical state vector, at time 𝑡.

Typically, 𝑛∼ a few hundred, and 𝑝∼ several thousand. The relationship between the

measurement vector y𝑡 and the cortical state vector 𝛽𝑡 is given by the measurement

equation,

y𝑡 = X𝛽𝑡 + 𝜀𝑡, (1.1)

where X is the 𝑛×𝑝 lead field gain matrix computed using a quasistatic approximation

of the Maxwell’s equations [1], i.e., the solution of the forward problem, and 𝜀𝑡 is

a 𝑛 × 1 Gaussian white noise vector with zero mean covariance matrix equal to

the identity matrix I independent from 𝛽𝑡 for all time points. In Equation (1.1)

we assumed that the model has been spatially whitened, i.e., that the original raw

data model ỹ𝑡 = X̃𝛽𝑡 + �̃�𝑡 has been premutiplied by the inverse of a matrix square

root of the covariance of �̃�𝑡. Since the orientation of the current generators of the

electromagnetic field, i.e., the apical dendrites of pyramidal cells, is perpendicular

to the cortical surface, the choice of fixing the current dipole orientation along this
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direction is justified [1]. Nevertheless, our development can be easily extended to

account for unconstrained source orientations.

1.3.2 Spatiotemporal dynamical source model

As we pointed in the Introduction Section 1.2, evidence from neurophysiology studies,

neuroanatomy, biophysics, and neuroimaging suggests that cortical activation is a

distributed spatiotemporal dynamic process [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,

47, 48, 49, 50, 51]. Because spatiotemporal dynamics of this kind are fundamental to

brain physiology, inverse solutions could be greatly improved by incorporating models

that approximate these dynamics.

One way to model local spatiotemporal connections of this type is to use a nearest-

neighbor autoregressive model. In this autoregressive model, neuronal currents at a

given point in time and space 𝛽𝑖,𝑡 are a function of past neuronal currents within a

small local neighborhood along the cortical surface and a small perturbation 𝜔𝑖,𝑡 that

accounts for unknown factors affecting the evolution of cortical currents,

𝛽𝑖,𝑡 = 𝜑[ 𝑓𝑖,𝑖𝛽𝑖,𝑡−1⏟  ⏞  
Past activity

+
∑︁

𝑗∈𝒩 (𝑖)

𝑓𝑖,𝑗𝛽𝑗,𝑡−1⏟  ⏞  
Past activity of neighbors

] + (1− 𝜑2)1/2𝜔𝑖,𝑡⏟  ⏞  
Unaccounted factors

, (1.2)

where 𝒩 (𝑖) is the index set of nearest neighbors of the 𝑖th dipole source, and 𝜑

(0 ≤ 𝜑 < 1) is a scalar that both represent the strengh of the history dependence in

the dynamics and also guarantee the stability of the cortical state dynamics. The

state noise 𝜔𝑡 = [𝜔1,𝑡, 𝜔2,𝑡, . . . , 𝜔𝑝,𝑡] is a 𝑝 × 1 Gaussian vector with zero mean and

covariance matrix Q, independent from the measurement noise 𝜀𝑡. The weights 𝑓𝑖,𝑗,

which represent the individual influence of neighboring sources in the autoregression,

are assumed to decay with the distance from the 𝑖th to the 𝑗th dipole source. A

simple relation that reflects this modeling assumption is to make the weights inversely

proportional to the distance between dipoles,

𝑓𝑖,𝑗 ∝
1

distance from 𝑖th to 𝑗th dipole
, (1.3)
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where the proportionality constant is chosen such that the contribution of the neigh-

bors to the dynamics of the 𝑖th source equals its self contribution, while the total

contribution is equal to one:
∑︀

𝑗∈𝒩 (𝑖) 𝑓𝑖,𝑗 = 𝑓𝑖,𝑖 and
∑︀

𝑗∈𝒩 (𝑖) 𝑓𝑖,𝑗 + 𝑓𝑖,𝑖 = 1. This al-

lows the power (prior variance) in every dipole 𝛽𝑖,𝑡 to remain approximately constant

over time.

Figure 1-1 illustrates this nearest-neighbors autoregressive model. The left panel

shows the cortical surface reconstructed from high-resolution magnetic resonance im-

ages (MRI) using Freesurfer [52, 53], where the caudal portion is represented by its

triangulated mesh of dipoles. The zoomed-in panel in the right isolates a dipole

source (central red dot) and its corresponding nearest-neighbor dipoles (green dots).

At a given point in time, the activity of the central dipole (red dot) is a function of

its past activity and the weighted activity of a small neighborhood of dipole sources

(green dots), where the weights (black dashed arrows) are inversely proportional to

the distance from the central dipole to its neighbor. We employ a cortical surface

representation with 𝑝 = 5124 dipoles sources, with an average distance of 6.2 mm

between nearest neighbors, yielding a model that is consistent with the local spatial

properties of intracranial electrophysiology and neuroanatomy. In 1.7.1, we analyze

how modifications in our spatial model, such us those arising from choosing a differ-

ent weighting scheme or a misspecification of the weights 𝑓𝑖,𝑗 (Eq. 1.2), influence the

smoothness encoded a priori in the dipole covariance. There we show that as long

as the modification in the spatial model is not too large, the smoothness modeled in

the dipole sources is not dramatically altered.

We can readily rewrite Equation (1.2) as the multivariate autoregressive model,

𝛽𝑡 = 𝜑F𝛽𝑡−1 + (1− 𝜑2)1/2𝜔𝑡, (1.4)

where the state feedback matrix F encompasses the neighborhood interactions be-

tween the sources at time 𝑡 in terms of the sources in the previous time step 𝑡− 1:
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Figure 1-1: Illustration of the spatiotemporal dynamic source model. The
left panel shows the reconstructed cortical surface where the caudal portion of cortex
is depicted as a triangulated mesh of dipole sources. The zoomed-in panel in the
right shows a dipole source (central red dot) and its nearest-neighbor dipole sources
(green dots). At a given point in time, the activity at the central dipole (red dot)
is a function of its past activity and the weighted activity of a small neighborhood
of dipole sources (green dots), plus a perturbation that represents unknown factors
affecting the dipole source activity. The weights (black dashed arrows) are inversely
proportional to the distance from the central dipole.

(F)𝑖,𝑗 =

⎧⎪⎨⎪⎩𝑓𝑖,𝑗 if 𝑗 = 𝑖 or 𝑗 ∈ 𝒩 (𝑖)

0 otherwise
, (1.5)

and (F)𝑖,𝑗 is the 𝑖th row of the 𝑗th column of F. The initial dipole source vector 𝛽0 is

assumed to be Gaussian with zero mean and covariance matrix C0, and independent

of {𝜔𝑡}𝑇𝑡=1.

1.3.3 Prior model for the parameters

The model defined in Sections 1.3.1 and 1.3.2 yields a probabilistic “forward model”

for the dynamic generation of the electromagnetic scalp recording. The next step in

the description of our model is to define prior densities for the unknown parameters

{X,F,Q,C0}. We should note that while in theory all the parameters in our model

have uncertainties, some of them can be fixed a priori based on knowledge of the
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system under investigation. For example, the lead field matrix X can be computed

using the boundary-element model based on high-resolution magnetic resonance im-

ages (MRI) [54]. The covariance C0 can be updated as described in Section 1.3.4.

The state feedback matrix F is constructed as indicated in Section 1.3.2 to incorpo-

rate nearest-neighbor interaction in order to model basic local intracortical dynamic

connections. The selection of the values of 𝜑 (Eq. 1.4) is discussed in Section 1.3.5.

We note that the process of fixing the lead field X and state feedback F matrices

can be seen as the analog of selecting the matrix of covariates or regressors in a linear

model, where the experimenter’s knowledge guides the selection of the regressor as

means of testing a scientific hypothesis based on collected data. In our case, the

regressors in F, which are fixed based on neurophysiological modeling considerations,

determine how much the state 𝛽𝑡 can be explained by its past 𝛽𝑡−1, and the unex-

plained portion is left to the state noise term 𝜔𝑡. In the same way, the regressors in X,

obtained from geometrical and biophysical knowledge, separate the measured MEG y𝑡

between the signals coming from the brain 𝛽𝑡, and the instrument and environmental

noise 𝜀𝑡.

The remaining unknown parameters, which must be estimated from data, are the

elements of the state noise covariance matrix Q. We assume this matrix is diagonal,

and parametrize it as follows in order more clearly intepret and normalize parameter

estimates as well as to simplify the initialization of our algorithms:

Q(𝜈) = [𝜆tr(̂︀Σ)/𝑛]−1diag(𝜈), (1.6)

where ̂︀Σ = X′X/𝑛 is the sample covariance of the rows of X, 𝜆 > 0 is equal to

the inverse of the signal-to-noise ratio (SNR2) of the data1, and 𝜈 = [𝜈1, 𝜈2, . . . , 𝜈𝑝]
′

(𝜈𝑖 > 0) is the parameter vector we need to estimate. Therefore, the number of

variance parameters we need to estimate is in the order of thousands (𝑝 ≈ 5000)

A common probability model for the parameter vector 𝜈 is the conjugate prior

1Specifically, if the matrix F is set equal to the identity matrix, and 𝜈𝑖 = 1 (𝑖 = 1, . . . , 𝑝),
the steady state covariance of 𝛽t becomes C = lim𝑡→∞ Cov(𝛽𝑡) = [𝜆tr(̂︀Σ)/𝑛]−1I[55].
If we define the power signal-to-noise ratio as SNR2 = E||X𝛽𝑡||2/E||𝜀𝑡||2, then
SNR2 = tr(X′X)[𝜆tr(̂︀Σ)/𝑛]−1/𝑛 = 1/𝜆.
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distribution. In this case the conjugate prior follows an inverse gamma density:

Pr(𝜈) =

𝑝∏︁
𝑖=1

𝑏𝑏−1

Γ(𝑏− 1)

(︂
1

𝜈𝑖

)︂𝑏

exp

(︂
−𝑏
𝜈𝑖

)︂
(1.7)

where the hyperparameter 𝑏 can be set to a value slightly higher than 3 to make the

mode of this prior close to 1, and thus consistent with the order of magnitude in the

model units, and at the same time maximize its variance yielding a non-informative

prior (see Section 1.7.2).

1.3.4 Empirical Bayes inference with the dynamic Maximum a

Posteriori Expectation-Maximization algorithm (dMAP-

EM)

In order to localize active regions of cortex from scalp recordings, we have to derive

estimates for the sequence of source amplitudes

{𝛽𝑡}𝑇𝑡=1 = {𝛽1,𝛽2, . . . ,𝛽𝑡} (1.8)

and parameters

𝜈 = [𝜈1, 𝜈2, . . . , 𝜈𝑝]
′ (1.9)

in the model. Specifically, we have to find the Maximum a Posteriori (MAP) estimate

of the parameters,

𝜈map = argmax
𝜈

Pr(𝜈|{y𝑡}𝑇𝑡=1), (1.10)

where Pr(𝜈|{y𝑡}𝑇𝑡=1) is the posterior density of the parameters 𝜈 conditioned on the

full set of measurements

{y𝑡}𝑇𝑡=1 = {y1,y2, . . . ,y𝑇}, (1.11)

and the Empirical Bayes estimate of the source amplitudes, i.e., the conditional mean
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of the state vector given the full set of measurements {y𝑡}𝑇𝑡=1 and the estimate of the

parameters in the model 𝜈map,

𝛽𝑡|𝑇 = E(𝛽𝑡|{y𝑡}𝑇𝑡=1,𝜈map), (1.12)

where the notation in the subscript of 𝛽𝑡|𝑇 indicates that we are conditioning on the

measurements form time 1 until time 𝑇 .

Once we obtain the MAP estimate of the parameters 𝜈map, computing the expec-

tation in the Empirical Bayes estimate of the source amplitudes (Eq. 1.12) can

be readily obtained using the well-known Kalman Filter [56] and Fixed Interval

Smoother algorithms [57]. However, the direct optimization required to compute

𝜈map (Eq. 1.10) would be computationally intractable. Therefore, we developed a

dynamic Maximum a Posteriori Expectation-Maximization (dMAP-EM) algorithm

to estimate source amplitudes and parameters in our model (Eqs. 1.10 and 1.12)

based on the work of [58] and [59]. The Expectation-Maximization algorithm [60] is

a general iterative method to obtain Maximum Likelihood or Maximum a Posteriori

estimates when the observed data can be regarded as incomplete. In our case we

treat the sequence of measurement and dipole sources, {y𝑡}𝑇𝑡=1, {𝛽𝑡}𝑇𝑡=0 as the com-

plete data, and iterate performing an E-step followed by an M-step until convergence

is achieved. In each iteration of the algorithm, the expectations in the E-step (Section

1.3.4) can be computed with the Kalman Filter [56], Fixed Interval Smoother [57],

and lag-covariance [61] recursions, and the maximization in the M-step (Section 1.3.4)

can be obtained in closed form. In each iteration we can evaluate the posterior density

of the parameters 𝜈 using the innovations form [62] (Section 1.3.4).

E-step

The dMAP-EM algorithm is initialized with the parameters Q(𝜈(0)) and C
(0)
0 . In

the 𝑖th iterate of the E-step, the algorithm computes the conditional expectation

of the complete data log-likelihood Pr({y𝑡}𝑇𝑡=1, {𝛽𝑡}𝑇𝑡=0|𝜈), given the observed data

{y𝑡}𝑇𝑡=1 and the previous estimates of the parameters 𝜈(𝑖−1), with an added term for
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the log-prior density:

𝑈(𝜈|𝜈(𝑖−1)) =E
[︀
log Pr

(︀
{y𝑡}𝑇𝑡=1, {𝛽𝑡}𝑇𝑡=0|𝜈

)︀
|{y𝑡}𝑇𝑡=1,𝜈

(𝑖−1)
]︀

+ log Pr(𝜈). (1.13)

We emphasize that the expectation in Equation (1.13) is computed with respect to

Pr({𝛽𝑡}𝑇𝑡=0|{y𝑡}𝑇𝑡=1,𝜈
(𝑖−1)), where we have conditioned on the full set of measurements

and the parameter estimate of the previous iteration.

Before continuing with the algorithm we establish the following variables to sim-

plify the notation. We define the conditional mean

𝛽
(𝑖)
𝑡|𝜏 = E(𝛽𝑡|{y𝑗}𝜏𝑗=1,𝜈

(𝑖−1)), (1.14)

the conditional covariance

V
(𝑖)
𝑡|𝜏 = Cov(𝛽𝑡|{y𝑘}𝜏𝑗=1,𝜈

(𝑖−1)), (1.15)

and the conditional lag-covariance

V
(𝑖)
𝑡,𝑡−1|𝜏 = Cov(𝛽𝑡,𝛽𝑡−1|{y𝑗}𝜏𝑗=1,𝜈

(𝑖−1)), (1.16)

where the subscript in Equations 1.14, 1.15, and 1.16 indicate that we are conditioning

on the measurements form time 1 until time 𝜏 , and the superscript 𝑖 refers to the

iteration number. For example, as we used in Equation (1.12), by setting 𝜏 equal

the number of samples in time 𝑇 we indicate that are conditioning on the full set of

measurements.

As shown in 1.7.3, the computation of the conditional expectations in the function

𝑈(𝜈|𝜈(𝑖−1)) (Eq. 1.13) can be obtained in closed form yielding
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𝑈(𝜈|𝜈(𝑖−1)) = −1

2

{︁
𝑐1 + log |C0|+ tr

[︁
C−1

0

(︁
V

(𝑖)
0|𝑇 + 𝛽

(𝑖)
0|𝑇𝛽

(𝑖)
0|𝑇

)︁]︁}︁
− 1

2

{︁
𝑐2𝑇 + 𝑇 log |Q(𝜈)|+ (1− 𝜑2)−1tr

[︁
Q(𝜈)−1A(𝑖)

]︁}︁
− 1

2

{︁
𝑐3𝑇 + tr

[︁
B(𝑖)

]︁}︁
− 1

2

𝑝∑︁
𝑗=1

{︂
𝑐4 + 2𝑏 log 𝜈𝑗 + 2

𝑏

𝜈𝑗

}︂
, (1.17)

where {𝑐𝑖}4𝑖=1 do not depend on 𝜈, and

A(𝑖) = A
(𝑖)
1 − 𝜑A

(𝑖)
2 F′ − 𝜑FA(𝑖)

2

′
+ 𝜑2FA

(𝑖)
3 F′ (1.18)

B(𝑖) =
𝑇∑︁
𝑡=1

[︂(︁
y𝑡 −X𝛽

(𝑖)
𝑡|𝑇

)︁(︁
y𝑡 −X𝛽

(𝑖)
𝑡|𝑇

)︁′
+XV

(𝑖)
𝑡|𝑇X

′
]︂
, (1.19)

where

A
(𝑖)
1 =

𝑇∑︁
𝑡=1

(︁
V

(𝑖)
𝑡|𝑇 + 𝛽

(𝑖)
𝑡|𝑇𝛽

(𝑖)
𝑡|𝑇

′)︁
A

(𝑖)
2 =

𝑇∑︁
𝑡=1

(︁
V

(𝑖)
𝑡,𝑡−1|𝑇 + 𝛽

(𝑖)
𝑡|𝑇𝛽

(𝑖)
𝑡−1|𝑇

′)︁
A

(𝑖)
3 =

𝑇∑︁
𝑡=1

(︁
V

(𝑖)
𝑡−1|𝑇 + 𝛽

(𝑖)
𝑡−1|𝑇𝛽

(𝑖)
𝑡−1|𝑇

)︁
. (1.20)

The conditional expectations and covariances in Equation (1.20) can be computed

with the Kalman Filter [56], Fixed Interval Smoother [57], and lag-covariance [61]

recursions.

The Kalman Filter, Fixed Interval Smoother, and lag-covariance recur-

sions We can use the forward and backward recursions [62] to compute the desired

expectations and covariances. In the 𝑖th iteration we initialize the recursion with
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𝛽
(𝑖)
0|0 = 0 and V

(𝑖)
0|0 = C

(𝑖−1)
0 . For the forward pass, 𝑡 = 1, 2, . . . , 𝑇 , we compute the

predictions:

𝛽
(𝑖)
𝑡|𝑡−1 = 𝜑F𝛽

(𝑖)
𝑡−1|𝑡−1

V
(𝑖)
𝑡|𝑡−1 = 𝜑2FV

(𝑖)
𝑡−1|𝑡−1F

′ + (1− 𝜑2)Q(𝜈(𝑖−1)), (1.21)

and filtered estimates:

G𝑡 = V
(𝑖)
𝑡|𝑡−1X

′
(︁
XV

(𝑖)
𝑡|𝑡−1X

′ + I
)︁−1

𝛽
(𝑖)
𝑡|𝑡 = 𝛽

(𝑖)
𝑡|𝑡−1 +G𝑡

(︁
y𝑡 −X𝛽

(𝑖)
𝑡|𝑡−1

)︁
V

(𝑖)
𝑡|𝑡 = (I−G𝑡X)V

(𝑖)
𝑡|𝑡−1, (1.22)

and for the backward pass, 𝑡 = 𝑇 − 1, . . . , 0, we find the smoothed estimates:

J𝑡 = 𝜑V
(𝑖)
𝑡|𝑡F

′V
(𝑖)
𝑡+1|𝑡

−1

𝛽
(𝑖)
𝑡|𝑇 = 𝛽

(𝑖)
𝑡|𝑡 + J𝑡

(︁
𝛽

(𝑖)
𝑡+1|𝑇 − 𝛽

(𝑖)
𝑡+1|𝑡

)︁
V

(𝑖)
𝑡|𝑇 = V

(𝑖)
𝑡|𝑡 + J𝑡

(︁
V

(𝑖)
𝑡+1|𝑇 −V

(𝑖)
𝑡+1|𝑡

)︁
J′
𝑡. (1.23)

The lag-covariances can be obtained using the covariance smoothing algorithm [61]:

V
(𝑖)
𝑡,𝑡−1|𝑇 = P

(𝑖)
𝑡|𝑇J

′
𝑡−1. (1.24)

The Kalman filter and Fixed Interval Smoother recursions are summarized in

Algorithms 1 and 2, respectively. We should note that the conditional mean and

covariance that we ultimately use for source localization (Eq. 1.12) correspond to the

Fixed Interval Smoother estimate (FIS, Eq. 1.23) obtained on the final iteration of

the MAP-EM algorithm. The FIS provides an estimate of the state based on the full
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Algorithm 1 The Kalman Filter
Inputs: {y𝑡}𝑇𝑡=1, 𝜑,F,X,C0,Q(𝜈)
𝛽0|0 ← 0 ◁ Initialization
V0|0 ← C0

for 𝑡 = 1, . . . 𝑇 do ◁ Kalman’s Recursion
𝛽𝑡|𝑡−1 ← 𝜑F𝛽𝑡−1|𝑡−1

V𝑡|𝑡−1 ← 𝜑2FV𝑡−1|𝑡−1F
′ + (1− 𝜑2)Q(𝜈)

G𝑡 ← V𝑡|𝑡−1X
′ (︀XV𝑡|𝑡−1X

′ + I
)︀−1

𝛽𝑡|𝑡 ← 𝛽𝑡|𝑡−1 +G𝑡

(︀
y𝑡 −X𝛽𝑡|𝑡−1

)︀
V𝑡|𝑡 ← (I−G𝑡X)V𝑡|𝑡−1

end for
Outputs: {𝛽𝑡|𝑡−1,𝛽𝑡|𝑡,V𝑡|𝑡−1,V𝑡|𝑡}𝑇𝑡=1

set of measurements, and results in improved performance in terms of reduced error

covariance compared to the Kalman Filter (KF), which uses a causal subset of the

data [63].

In 1.7.4, we show that the Kalman Filter and Fixed Interval Smoother estimates

can be interpreted as the solution to a penalized least squares problem, analogous

to that of the well-known 𝐿2 minimum-norm estimate (MNE) [11]. Viewed from

this perspective, we can readily see that the FIS, KF, and MNE source localization

methods are structurally similar, but with an important difference in how the prior

mean for the source activity is represented at a given time. The KF and FIS optimally

update their prior means by assimilating data from the past, and, in addition, from

the future measurements in the case of FIS. In contrast, the MNE assumes that the

prior mean is zero at all times and favors source values close to zero.

Algorithm 2 The Fixed Interval Smoother
Inputs: {𝛽𝑡|𝑡−1,𝛽𝑡|𝑡,V𝑡|𝑡−1,V𝑡|𝑡}𝑇𝑡=1, 𝜑,F
for 𝑡 = 𝑇 − 1, . . . , 0 do ◁ Rauch, Tung, and Striebel’s Recursion

J𝑡 ← 𝜑V𝑡|𝑡F
′V−1

𝑡+1|𝑡
𝛽𝑡|𝑇 ← 𝛽𝑡|𝑡 + J𝑡

(︀
𝛽𝑡+1|𝑇 − 𝛽𝑡+1|𝑡

)︀
V𝑡|𝑇 ← V𝑡|𝑡 + J𝑡

(︀
V𝑡+1|𝑇 −V𝑡+1|𝑡

)︀
J′
𝑡

end for
Outputs: {𝛽𝑡|𝑇 ,V𝑡|𝑇 ,J𝑡}𝑇𝑡=1
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M-step

The M-step in the 𝑖th iterate is achieved by maximizing with respect to the parameters

𝜈 the function 𝑈(𝜈|𝜈(𝑖−1)) computed in the E-step (Eq. 1.17), which equals the sum

of two terms: 1) the conditional expectation of the complete data log-likelihood given

the full set of measurements and the previous estimates of the parameters, and 2) the

log-prior density,

𝜈(𝑖) = argmax
𝜈

𝑈(𝜈|𝜈(𝑖−1)). (1.25)

It is easy to see that the maxima is achieved at

𝜈
(𝑖)
𝑗 =

𝑎
(𝑖)
𝑗,𝑗

𝜆tr(̂︀Σ)
(1−𝜑2)𝑛

+ 2𝑏

𝑇 + 2𝑏
, (1.26)

where 𝑎(𝑖)𝑗,𝑗 is the 𝑖th row of the 𝑖th column of A(𝑖) (Eq. 1.18), and 𝑏 is the hyperpa-

rameter defined in Equation (1.7).

Evaluation of the log-posterior density

The dMAP-EM algorithm iterates for 𝑖 = 1, 2, . . . , 𝑖𝑜 performing E-steps and M-steps

until the logarithm of the posterior density of the parameters

log Pr(𝜈|{y𝑡}𝑇𝑡=1) = log Pr({y}𝑇𝑡=1|𝜈)⏟  ⏞  
Log-likelihood

+ log Pr(𝜈)⏟  ⏞  
Log-prior

− log Pr({y𝑡}𝑇𝑡=1)⏟  ⏞  
Log-evidence

(1.27)

evaluated at 𝜈 = 𝜈(𝑖) reaches an asymptote at some iteration 𝑖𝑜.

We can evaluate the logarithm of the likelihood, i.e., the first term in Equation

(1.27), using the innovations form [62],
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log Pr({y𝑡}𝑇𝑡=1|𝜈(𝑖)) =− 𝑛𝑇

2
log(2𝜋)− 1

2

𝑇∑︁
𝑡=1

log|XV
(𝑖)
𝑡|𝑡−1X

′ + I| (1.28)

−1

2

𝑇∑︁
𝑡=1

(︁
y𝑡 −X𝛽

(𝑖)
𝑡|𝑡−1

)︁′ (︁
XV

(𝑖)
𝑡|𝑡−1X

′ + I
)︁−1 (︁

y𝑡 −X𝛽
(𝑖)
𝑡|𝑡−1

)︁
,

(1.29)

and the logarithm of the prior is obtained is obtained from Equation (1.7):

log Pr(𝜈(𝑖)) =

𝑝∑︁
𝑗=1

{︃
𝑐4 − 𝑏 log 𝜈(𝑖)𝑗 −

𝑏

𝜈
(𝑖)
𝑗

}︃
. (1.30)

Since the evidence in the data, Pr({y𝑡}𝑇𝑡=1), is a constant not depending on 𝜈, we do

not need to compute it in any iteration.

Summary of the dMAP-EM algorithm

The algorithm is initialized with parameters 𝜈(0) and C
(0)
0 . In the 𝑖th iteration, we

set the state noise covariance Q(𝜈(𝑖−1)) = [𝜆tr(̂︀Σ)/𝑛]−1diag(𝜈(𝑖−1)) and initial state

covariance V
(𝑖)
0|0 = C

(𝑖−1)
0 . We then perform an E-step (Section 1.3.4) by running

the Kalman Filter, Fixed Interval Smoother, and lag-covariance recursion (Section

1.3.4), and perform an M-step (Section 1.3.4) to update the parameters 𝜈(𝑖). At

each iteration we can update C0 with the heuristic C
(𝑖)
0 = V

(𝑖)
0|𝑇 . The algorithm

iterates for 𝑖 = 1, 2, . . . , 𝑖𝑜, performing an E-step followed by an M-step until the

log-posterior density evaluated at 𝜈(𝑖𝑜) converges (Section 1.3.4). The Maximum a

Posteriori (MAP) estimate of the parameters is then �̂�map = 𝜈(𝑖𝑜), and the Empirical

Bayes estimate of the sources amplitudes is 𝛽𝑡|𝑇 = 𝛽
(𝑖𝑜)
𝑡|𝑇 . The dMAP-EM algorithm

is summarized in Algorithm 3.

1.3.5 Initialization of algorithms

The state feedback matrix F was constructed as indicated in Section 1.3.2 to incor-

porate nearest-neighbor interaction in order to model basic local intracortical connec-
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Algorithm 3 The dMAP-EM Algorithm
Inputs: {y𝑡}𝑇𝑡=1, 𝜑,F,X, 𝜆tr(

̂︀Σ)/𝑛
Initialization:
𝑖← 0
𝜈(𝑖) ← [1, 1, . . . , 1]

C
(𝑖)
0 ← [𝜆tr(̂︀Σ)/𝑛]−1I

repeat
𝑖← 𝑖+ 1
Q(𝜈(𝑖−1))← [𝜆tr(̂︀Σ)/𝑛]−1diag(𝜈(𝑖−1))

E-step: ◁ Algorithms 1 and 2
{𝛽(𝑖)

𝑡|𝑡−1,𝛽
(𝑖)
𝑡|𝑡 ,V

(𝑖)
𝑡|𝑡−1,V

(𝑖)
𝑡|𝑡}𝑇𝑡=1 ← KalmanFilter({y𝑡}𝑇𝑡=1, 𝜑,F,X,C

(𝑖−1)
0 ,Q(𝜈(𝑖−1)))

{𝛽(𝑖)
𝑡|𝑇 ,V

(𝑖)
𝑡|𝑇 ,J𝑡}𝑇𝑡=1 ← FixedIntervalSmoother({𝛽(𝑖)

𝑡|𝑡−1,𝛽
(𝑖)
𝑡|𝑡 ,V

(𝑖)
𝑡|𝑡−1,V

(𝑖)
𝑡|𝑡}𝑇𝑡=1, 𝜑,F)

for 𝑡 = 1, . . . , 𝑇 do ◁ Lag Covariance Recursion
V

(𝑖)
𝑡,𝑡−1|𝑇 = P

(𝑖)
𝑡|𝑇J

′
𝑡−1

end for
A

(𝑖)
1 ←

∑︀𝑇
𝑡=1

(︁
V

(𝑖)
𝑡|𝑇 + 𝛽

(𝑖)
𝑡|𝑇𝛽

(𝑖)
𝑡|𝑇

′)︁
A

(𝑖)
2 ←

∑︀𝑇
𝑡=1

(︁
V

(𝑖)
𝑡,𝑡−1|𝑇 + 𝛽

(𝑖)
𝑡|𝑇𝛽

(𝑖)
𝑡−1|𝑇

′)︁
A

(𝑖)
3 ←

∑︀𝑇
𝑡=1

(︁
V

(𝑖)
𝑡−1|𝑇 + 𝛽

(𝑖)
𝑡−1|𝑇𝛽

(𝑖)
𝑡−1|𝑇

)︁
A(𝑖) ← A

(𝑖)
1 − 𝜑A

(𝑖)
2 F′ − 𝜑FA(𝑖)

2

′
+ 𝜑2FA

(𝑖)
3 F′ ◁ Equations (1.18) and (1.20)

M-step:
𝜈
(𝑖)
𝑗 ←

(︁
𝑎
(𝑖)
𝑗,𝑗

𝜆tr(̂︀Σ)
(1−𝜑2)𝑛

+ 2𝑏
)︁
(𝑇 + 2𝑏)−1

C
(𝑖)
0 ← V

(𝑖)
0|𝑇

Evaluation of log-posterior:
log Pr(𝜈(𝑖)|{y𝑡}𝑇𝑡=1)← −1

2

∑︀𝑇
𝑡=1 log|XV

(𝑖)
𝑡|𝑡−1X

′ + I|

−1
2

∑︀𝑇
𝑡=1

(︁
y𝑡 −X𝛽

(𝑖)
𝑡|𝑡−1

)︁′ (︁
XV

(𝑖)
𝑡|𝑡−1X

′ + I
)︁−1 (︁

y𝑡 −X𝛽
(𝑖)
𝑡|𝑡−1

)︁
log Pr(𝜈(𝑖))← −

∑︀𝑝
𝑗=1

[︂
𝑏 log 𝜈

(𝑖)
𝑗 + 𝑏

𝜈
(𝑖)
𝑗

]︂
until log Pr(𝜈(𝑖)|{y𝑡}𝑇𝑡=1) + log Pr(𝜈(𝑖)) converges
𝑖𝑜 ← 𝑖
𝜈map ← 𝜈(𝑖𝑜)

𝛽𝑡|𝑇 ← 𝛽
(𝑖𝑜)
𝑡|𝑇

V𝑡|𝑇 ← V
(𝑖𝑜)
𝑡|𝑇

Outputs: {𝛽𝑡|𝑇 ,V𝑡|𝑇}𝑇𝑡=1,𝜈map

tions. To evaluate the weights 𝑓𝑖,𝑗 (Eqs. 1.3 and 1.5), the distance between dipoles

was obtained from the triangular tessellation of the cortical surface. The value of 𝜑 in

Equation (1.5) was set to 0.95: this constrains the modulus of the largest eigenvalue

of 𝜑F to be strictly less that 1, and guarantees stability in the source model (Eq. 1.4).
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We should note that although it would be interesting to estimate the parameters 𝑓𝑖,𝑗

and 𝜑, this would add ∼ 30000 degrees of freedom to the estimation task—each dipole

has about 6 nearest neightbors and there are about 5000 dipoles—making this option

unfeasible.

The measurement noise covariance was set equal to the identity matrix since the

model has been spatially whitened, i.e., the original raw data model ỹ𝑡 = X̃𝛽𝑡 + �̃�𝑡

has been premutiplied by the inverse of a matrix square root of the sample covariance

of �̃�𝑡, which was in turn estimated from from empty room recordings. To initialize

the algorithms we set the source covariance at time zero (C(0)
0 ) and the input noise

covariance as a multiple of the identity:

C
(0)
0 = Q(𝜈(0)) = [𝜆tr(̂︀Σ)/𝑛]−1I (1.31)

thus approximating the power signal-to-noise ratio (SNR) of the measurements.

1.4 Data analysis

1.4.1 Design of simulation studies

We employed simulation studies to compare the source localization performance

of four methods: 1) The 𝐿2 minimum-norm estimate (MNE, 𝛽
(mne)
𝑡 in Equation

(1.50)) [11]; 2) An extension of MNE, which we call static Maximum a Posteriori

Expectation-Maximization (sMAP-EM), where the variance of each dipole source is

estimated similarly to that shown in [27] and [21]; 3) The FIS without the estimation

of the parameters 𝜈 (𝛽(0)
𝑡|𝑇 in Equation (1.23), i.e., the smoothed estimate in the first

iteration of our algorithm); and 4) And our dMAP-EM algorithm (𝛽(𝑖𝑜)
𝑡|𝑇 in Equation

(1.23), i.e., the smoothed estimate in the last iteration of our algorithm).

We should note that sMAP-EM uses a static source model and the inverse gamma

prior (Eq. 1.7) for the source variances. Therefore, the sMAP-EM is similar to our

method, but with the state feedback matrix F set to zero, i.e., F = 0. It provides

a baseline to compare how the matrix F, as specified to model local intracortical
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connections, can be used as covariates or regressors to explain the source activity 𝛽𝑡

in terms of its past 𝛽𝑡−1.

We constructed two simulated data sets with active regions of different sizes to

compare the performance of these methods in cases where the activity is distributed

across a large area, and where it is highly focal:

∙ Large Patch: We selected a large active region within primary somatosensory

cortex (Figure 1-2 top panel);

∙ Small Patch: We chose a small active region over primary auditory cortex

(Figure 1-4 top panel).

In order to avoid committing an “inverse crime”, where simulated data come

from the same source space and dynamic system used in estimation, we simulated

cortical activation on a highly discretized mesh with ∼ 150, 000 dipole sources in each

hemisphere and a temporal generating model differing from that of our autoregressive

model. The time course of the sources on each active patch was simulated as a 10-Hz

sinusoidal oscillation over a period of one second in order to emulate a realistic MEG

experiment, sin(2𝜋 · 10 · Δ𝑡), where the sampling frequency 1/Δ was 200 Hz thus

yielding 200 time samples.

The lead field matrix was computed with the MNE software package [54] using a

single-compartment boundary-element model (BEM) based on high-resolution MRIs

processed with Freesurfer [52, 53] from a human subject. The measurement equation

(Eq. 1.1) was then used to obtain the simulated MEG recordings, where the mea-

surement noise was set to achieve a power signal-to-noise ratio (SNR) of 5, a value

typical for MEG measurements, with signal amplitudes scaled uniformly across the

active regions to achieve this SNR.

1.4.2 Results of simulation studies

We compared dipole source estimates and their 95% Bayesian credibility (confidence)

intervals (CIs) from the static MNE, sMAP-EM, FIS, and dMAP-EM algorithms,
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using the simulated measurements described in Section 1.4.1. The 95% CIs are ob-

tained from the diagonal elements of the posterior covariance matrix of each method.

We should note that these CIs are Empirical Bayes estimates since we are also condi-

tioning on the model parameters 𝜈. Specifically, the 95% CIs of the FIS dipole source

estimates are equal to ±2 times the diagonal elements of posterior covariance in the

first EM iteration V
(1)
𝑡|𝑇 (Eq. 1.23), while the CIs of the dMAP-EM source estimates

equal ±2 times the diagonal elements of V
(𝑖𝑜)
𝑡|𝑇 , i.e. the posterior covariance of the

last EM iteration. Similarly, the CIs for the MNE and sMAP-EM estimates can be

obtained by using the well-known formula for the posterior covariance in a jointly

Gaussian model, or equivalently by setting F = 0 in our formulation.

Figure 1-2 shows the spatial extent of the estimated activity obtained from the

large patch simulation. In particular, these intensity maps represent the amplitude

of dipole currents 𝛽𝑗,𝑡 at a particular time, as opposed to (scaled or normalized)

statistical maps. The MNE extends beyond the simulated area in primary sensory

cortex, overlapping pre-central gyrus, parietal cortex, and a small active area in the

temporal lobe. The sMAP-EM estimates were highly focal in comparison to the extent

of the simulated active region. The FIS estimates were similar to the MNEs, but with

better coverage of the simulated patch area. The dMAP-EM method yielded dipole

source estimates whose spatial extent closely matched the simulated active region, as

observed with the yellow and red hues over primary somatosensory cortex.

Figure 1-3 compares the temporal tracking performance for representative dipole

sources located inside the active area for the large patch simulation. The MNE

time series greatly under-estimates the amplitude of the true simulated time series

and present wide CIs. The sMAP-EM either underestimates (sub-panels B and C)

or overestimates (sub-panel D) the source amplitude and presents larger CIs that

the other methods. Similar to MNE, FIS time series estimates also fail to track

the true underlying signal accurately, however, they exhibit smaller CIs. For most

dipole sources (sub-panels B, C, and D) dMAP-EM closely tracks the true underlying

time series while maintaining small CIs. We present in Supplementary Information 1

(SI1.mov) a video with the results of this simulation study that visualizes dynamically

37



Figure 1-2: Large cortical patch simulation results for MNE, sMAP-EM,
FIS, and dMAP-EM methods. The intensity maps represent the amplitude of
simulated and estimated sources. The colorbar’s maximum (bright yellow) and mini-
mum (bright blue) corresponds to ±3 nAm for all methods. The top panel shows the
simulated activity. The center left panel shows the estimates obtained with MNE,
while the bottom left panel shows the FIS estimates. Both of these methods yielded
estimates that extended far beyond the simulated active region. The sMAP-EM es-
timates (center right panel) show a spatial extent significantly smaller than the true
activation. The bottom right panel shows the dMAP-EM estimates, whose spatial
extent closely matches the simulated active region.

the spatial localization and temporal tracking performance.

The estimation results from MNE, sMAP-EM, FIS, and dMAP-EM for the small

patch simulation are shown in Figure 1-4. Again, the intensity maps represent the

amplitude of the source estimates, and not a statistical map. In MNE and FIS the

estimates extended beyond the active area to cover regions in the inferior temporal

lobe, parietal cortex, and the inferior frontal areas. In contrast, dipole source es-

timates obtained with sMAP-EM and dMAP-EM are focal and closely match the

spatial extent of the active simulated area.
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Figure 1-3: Time course estimates for the large patch simulation. The upper
panel shows a zoomed-in view of the simulated cortical area, where green dots repre-
sent the selected dipoles labeled A, B, C, and D. The black lines represent simulated
sources, while the colored lines represent estimated sources with 95% CIs (colored
shading). The center left panel shows the estimated time course of the MNE method
in red, and the bottom left panels show the FIS estimates in green. These meth-
ods showed poor tracking performance and could not recover the amplitrude of the
simulated dipole sources. The center right panel shows the sMAP-EM estimates in
magenta. This method either underestimated or overestimated the true source ampli-
tude, and showed very large CIs. The bottom right panel shows the estimated time
courses for the dMAP-EM method. For 3 of the 4 sources shown (B, C, and D), the
dMAP-EM method tracks the simulated time course very closely, significantly better
than MNE, FIS, or sMAP-EM, while showing small CIs.

Figure 1-5 compares the estimated and simulated time courses for representative

dipole sources in the small patch simulation. As shown in the upper left panel, the

dipoles labeled A, C and D are outside the active region, while the dipole labeled B

is inside the active region. Neither MNE nor FIS are able to accurately track the

true underlying active time series (sub-panel B), and both methods produce spurious

activation in locations outside the focal active patch (sub-panels A, C, and D). How-

ever, the FIS method shows smaller CIs. The sMAP-EM method tracks the active

source (sub-panel B), although it slightly overestimates it. In the inactive locations
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Figure 1-4: Small cortical patch simulation results for MNE, sMAP-EM,
FIS, and dMAP-EM methods. The intensity maps represent the amplitude of
simulated and estimated sources. The colorbar’s maximum (bright yellow) and min-
imum (bright blue) corresponds to ±3.5 nAm for MNE and FIS, and ±70 nAm for
the simulated data, sMAP-EM, and dMAP-EM method. The top panel shows the
simulated activity. The center left and bottom left panels show the estimates ob-
tained with the MNE and FIS methods, respectively. Both methods yield spatially
distributed estimates that extend far beyond the true underlying focal active patch.
The center right and bottom right panels show the estimates obtained with the sMAP-
EM and dMAP-EM methods, respectively. These algorithms yielded focal estimates
that closely match the spatial extent of the simulated data.

(sub-panels A, C, and D) the sMAP-EM shows small but noisy estimates with very

large CIs. The dMAP-EM method accurately tracks the time series for the active

dipole source (sub-panel B), while correctly showing small, near-zero activity outside

the focal active patch (sub-panels A, C, and D). Furthermore, the dMAP-EM shows

small CIs in all cases. We present in the Supplementary Information 2 (SI2.mov) a

video with the results of this simulation study.
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Figure 1-5: Time course of estimation results for the small patch simulation.
The upper shows a zoomed-in view of the simulated cortical area where green dots
represent selected dipoles labeled A, B, C, and D. The black lines represent simulated
sources, while the colored lines represent estimated sources with 95% CIs (colored
shading).The center left panel shows the estimated time courses for the MNE method
in red, and the lower left panels show the FIS estimates in green. These methods
showed poor tracking performance for the focal active source (sub-panel B), and
produced spurious activity in inactive simulated regions (sub-panels A, C, and D).
The center right panel shows the sMAP-EM estimates, which tracks the active source
(sub-panel B), but presents noisy estimates with very large CIs in the inactive sources
(sub-panels A, D, and D). The lower right panel shows the estimated time courses
of the dMAP-EM method, which shows accurate tracking performance for the focal
active source (sub-panel B), and near-zero activity outside the active area (sub-panels
A, C, and D), with very small CIs.

1.4.3 Error analyses

In this section we evaluate the source localization accuracy of our dMAP-EM method-

ology in comparison to MNE, sMAP-EM, and FIS. Specifically, we are interested in

evaluating the sensitivity and specificity of these source localization methods, as well

as the correlation between the simulated sources and their estimates. To do this,

we computed receiver operating characteristic (ROC) curves (See [64], or [65] for an

application in the MEG/EEG inverse problem) and root mean square errors (RMSE)
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of sources estimates in the simulation studies described in Sections 1.4.1 and 1.4.2.

Receiver operating characteristic (ROC) curves

The ROC technique is used to evaluate the performance of binary detection systems,

where the null hypothesis H0 generally represents the absence of an underlying signal

while the alternative hypothesis H𝐴 denotes its presence. This analysis is done by

determining the relation between the detection probability,

pr𝐷 = Pr(reject H0|H𝐴 is true), (1.32)

and the false alarm probability,

pr𝐹𝐴 = Pr(reject H0|H0 is true), (1.33)

as we vary a threshold for the hypothesis test, where in practice, the probabilities are

estimated by proportions from simulation studies.

For this analysis we consider a source signal to be inactive (H0 is true) when the

simulated 𝑗th dipole source at time 𝑡 equals zero (𝛽(sim)
𝑗,𝑡 = 0), while a source signal

is considered active (H𝐴 is true) when 𝛽
(sim)
𝑗,𝑡 ̸= 0. For a given estimation method,

we define 𝛽𝑗,𝑡 as the 𝑗th dipole source estimate at time 𝑡. Furthermore, we reject the

null hypothesis H0 to indicate that the source estimate is active with respect to a

test threshold 𝑐 > 0 if |𝛽𝑗,𝑡| > 𝑐. Consequently, for a specific threshold 𝑐, an estimate

of the detection probability ̂︀pr𝐷 is given by the fraction of events where we correctly

detected an active source, i.e., when the dipole source estimate was considered active

(|𝛽𝑗,𝑡| > 𝑐) given that the underlying true source was active (𝛽(sim)
𝑗,𝑡 ̸= 0). Similarly,

the estimate of false alarm probability ̂︀pr𝐹𝐴 is given by the proportion of events where

we considered the source estimate to be active (|𝛽𝑗,𝑡| > 𝑐) but the underlying true

source was inactive (𝛽(sim)
𝑗,𝑡 = 0) and made a “false alarm” (See 1.7.5 for details).

We computed ROC curves for the large and small patch simulation studies for

MNE (red), sMAP-EM (magenta), FIS (green), and dMAP-EM (blue) estimates.

The results from the large and small patch simulation study are shown in the sub-
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panels A and B of Figure 1-6, respectively. The ROC curves for dMAP-EM showed

a superior source detection accuracy in both simulation studies. In the large patch

study, the dMAP-EM achieved a ∼ 90% detection of true active sources ( ̂︀pr𝐷 ≈ 0.9)

with as few as ∼ 2% false alarms ( ̂︀pr𝐹𝐴 ≈ 0.02), while the other methods required

at least ∼ 40% false alarms to achieve the same detection accuracy. Similarly, in the

small patch simulation, the dMAP-EM achieved a ∼ 95% detection of true active

sources with as few as ∼ 2% false alarms, whereas the other methods required at

least ∼ 40% false alarms to detect ∼ 95% of the true active sources. Furthermore,

the area under the ROC curve (see tables in sub-panels A and B of Figure 1-6), which

is a comprehensive measure of the detection accuracy, was greater in the dMAP-EM

method than in the other methods, thus indicating a significant improvement in the

source localization accuracy of our method.

Root mean square errors (RMSE)

To further characterize the accuracy of each method, we evaluated the deviation of

the dipole source estimates 𝛽𝑗,𝑡 in relation to the true simulated sources 𝛽(sim)
𝑗,𝑡 in ab-

solute terms by computing root mean square errors (RMSE) in each simulation study.

Specifically, for the MNE, FIS, sMAP-EM, and dMAP-EM methods, we computed

the RMSE of each dipole source (𝑗 = 1, 2, . . . , 𝑝) over the length in time (𝑇 = 200)

of the simulation,

RMSE𝑗 =

⎯⎸⎸⎷∑︀𝑇
𝑡=1

(︁
𝛽𝑗,𝑡 − 𝛽(sim)

𝑗,𝑡

)︁2

𝑇
, (1.34)

and calculated summary statistics of these errors. We separated the summary statis-

tics for the RMSEs of dipole sources inside and outside the simulated active region

to disentangle the origin of the estimation errors. Given that the number of dipoles

inside the active patch was small, we computed scatter plots and the sample mean of

the RMSE of sources in this region (Fig. 1-6, sub-panels C and D). However, because

the number of dipole source located outside the active patch was relatively large,

we computed box-plot summaries of the RMSE of sources from this region, thereby
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(A) (C) (E) (G)

(B) (D) (F) (H)

MNE

FIS
sMAP-EM

dMAP-EM

Area under ROC curve 
MNE 0.90
sMAP-EM 0.82
FIS 0.92
dMAP-EM 0.97

Area under ROC curve 
MNE 0.95
sMAP-EM 0.96
FIS 0.96
dMAP-EM 0.99

Figure 1-6: ROC curves, RMSE, and convergence of algorithms. ROC curves
and area under the ROC curves from the large patch simulation (sub-panel A) and the
small patch simulation (sub-panel B) show that the dMAP-EM method outperforms
MNE, FIS, and sMAP-EM methods as it detects more active dipole sources while
making significantly less false alarms. Sub-panels C and D show scatter plots of
the RMSE of dipoles sources inside the active region in the large patch and small
path simulations, respectively. As indicated by the average RMSE (dashed lines),
the dMAP-EM method significantly reduces the estimation error compared to the
other methods. Sub-panels E and F show box-plot summaries of the RMSE of dipole
sources outside the active region from the large patch and small patch simulations,
respectively. The dMAP-EM method significantly reduces the 0.99 quantiles (top
horizontal black line or “whisker”) and 0.75 quantiles (thick colored line at top of
“box”) of the RMSEs in relation to the other methods. Sub-panels G and H show
the convergence of the cost function optimized by the dMAP-EM and sMAP-EM
algorithms in the large patch and small patch simulation studies, respectively. In all
cases, the cost function reaches a plateau in less than 15 iterations.

displaying 0.01, 0.25, 0.5, 0.75, and 0.99 approximate quantiles (Fig. 1-6, sub-panels

E and F). We should note that in box-plots the approximate 0.75 and 0.25 quantiles

are represented by the bottom (thin line) and top (thick colored line) of the box,

while the 0.5 quantile (median) is denoted by the colored dashed line across the box.

The approximate 0.99 and 0.01 quantiles are given by the top and bottom “whiskers”,

i.e., the horizontal black lines, and the grey crosses outside whiskers are considered
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outliers.

Sub-panels C and D of Figure 1-6 show the scatter plots and the average (dash

lines) RMSE of dipole sources inside the active region in the large and small patch sim-

ulation studies, respectively. In both simulation scenarios the dMAP-EM estimates

showed a significant improvement of the average RMSE in relation to the other meth-

ods. In the large patch simulation the dMAP-EM method yielded an average RMSE

of 7 nAm, which represents an reduction of ∼ 5.4%, ∼ 2.7%, and ∼ 23% in the

average of errors with respect to MNE, FIS, and sMAP-EM methods, respectively.

Similarly, the dMAP-EM method resulted with an average RMSE of 26 nAm in the

small patch simulation showing a reduction of ∼ 42% with respect to MNE and FIS,

and of ∼ 33% in relation to the sMAP-EM errors. In summary, the average RMSE of

sources in active regions is significantly reduced in the dMAP-EM method for both

large and small patch simulation scenarios.

Sub-panels E and F of Figure 1-6 show the RMSE box-plots of dipole sources

located outside the active region in large and small patch simulation, respectively.

In both simulated scenarios, our dMAP-EM method yielded the smallest quantiles

among the analyzed methods. The reduction in RMSE relative to MNE, FIS, and

sMAP-EM are shown in Table 1.1. The dMAP-EM method improved the 0.99 and

0.75 RMSE quantiles by 9% to 51%, showing that the dMAP-EM estimates signifi-

cantly and robustly improved source localization accuracy.
`````````````̀Method

Quantile 0.5 0.75 0.99

L
ar

ge
p
at

ch

dMAP-EM (nAm) 0.06 0.10 0.19

Reduction MNE 25% 33% 40%

with respect to: FIS 25% 23% 24%
sMAP-EM 0% 9% 20%

S
m

al
l

p
at

ch

dMAP-EM (nAm) 0.06 0.09 0.17

Reduction MNE 25% 43% 51%

with respect to: FIS 25% 30% 32%
sMAP-EM 0% 10% 26%

Table 1.1: Percentage reduction of the RMSE quantiles for dipole sources outside the
active region under dMAP-EM, compared to MNE, FIS, and sMAP-EM
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1.4.4 Convergence and computational requirements

The convergence of the dMAP-EM algorithm was assessed by tracking the logarithm

of the posterior density (Eq. 1.27),

cost(𝜈(𝑖)) = log Pr({y}𝑇𝑡=1|𝜈(𝑖)) + log Pr(𝜈(𝑖)) (1.35)

omitting the log-evidence term, which does change during EM iteration. Sub-panels

G and H of Figure 1-6 show the convergence, i.e., the cost evaluated at each iteration,

of the dMAP-EM and sMAP-EM algorithms for the large patch and small patch sim-

ulation studies, respectively. In both simulation scenarios, the cost function reaches

a plateau in less than 15 iterations.

The runtime of the dMAP-EM algorithm per EM iteration is effectively𝑂(𝑇𝑝3) [66],

where we assumed that the number of sensors 𝑛 is fixed and much smaller than the

number of dipole sources 𝑝 (𝑛 << 𝑝), and 𝑇 is the number of measurements in time.

The algorithm was implemented in Matlab (The MathWorks, Natick, MA) and run

on a dual 6-core Linux workstation at 2.67 GHz with 24 GB RAM. In our analyses the

number of dipole sources was 𝑝 = 5124, the number of sensor was 𝑛 = 204, and the

number of measurements in time was 𝑇 = 200. Since we did not attempt any kind of

model reduction procedure, the algorithm yielded a computation time of ∼ 2.5 hours

per EM iteration.

1.4.5 Analysis of experimental data from human subjects

We also applied the MNE, FIS, sMAP-EM, and dMAP-EM algorithms to mu-rhythm

MEG data from a human subject. The mu-rhythm originates from motor and so-

matosensory cortices, and consists of oscillations with 10 and 20 Hz components.

Data were collected using a 306-channel Neuromag Vectorview MEG system at Mas-

sachusetts General Hospital. The subject was instructed to rest with eyes open during

the recording. We recorded 12 minutes of data at a sampling frequency of 601 Hz with

a bandwidth of 0.1 to 200 Hz, and later downsampled to 200.3 Hz. The data were

visually inspected to select 1 second of strong mu-rhythm activity, as evidenced by
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its characteristic “𝜇” shape, for subsequent analyses. In Figure 1-7, we show the re-

sults of the three methods where the intensity maps represent the amplitude of source

estimates. This figure also includes the topography of the magnetic field component

normal to the sensor surface at the same time instant [11, 67]. Similar to Figures 1-2

and 1-4 in the simulated scenario, the MNE and FIS produced broad, spatially dis-

tributed estimates with activity covering primary somatosensory and motor regions as

well as parietal, occipital, and temporal areas. The sMAP-EM method yielded highly

focal estimates that appear spatially irregular. The dMAP-EM estimate presents a

more compact spatial extent that covers primary somatosensory and parietal areas.

The time course estimates and their 95% Bayesian credibility intervals (CIs) are

shown in Figure 1-8. The 95% CIs (light colored areas) are obtained as described in

Section 1.4.2. The upper panel shows a zoomed-in view of the cortical activity map

obtained with the MNE method, where green dots represent the selected dipoles in

primary motor (A), primary somatosensory (B), and parietal association areas (C and

D). We note that these particular areas were selected as they have been reported to

generate the mu-rhythm signals [68]. Both MNE and FIS methods yielded estimates

with smaller amplitudes, however, the CIs for the FIS method were smaller. In

sMAP-EM estimates, the amplitude of the dipoles estimates A, B, and C was small

with wider CIs in comparison to the dMAP-EM estimates. The dMAP-EM method

yielded estimates with higher-amplitude oscillations, especially in dipoles B, C, and

D, where the estimate follows the stereotypical mu-shape that characterizes these

data, and presented smaller CIs than those of the MNE and sMAP-EM methods. In

the Supplementary Information 3 (SI3.mov) we present a video of the results of this

analysis.

1.5 Discussion

Intracranial electrophysiological recordings have shown that on a local scale, brain

activity is spatially and temporally correlated [36, 37, 38, 39]. Similarly, non-invasive

fMRI and PET studies have shown that brain activation is temporally coherent in
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MEG Topography

Figure 1-7: Analysis of human MEG mu-rhythm data. The top panel shows the
topography of the magnetic field component normal to the sensor surface, with iso-
contour lines indicating a field change of 100 fT. In the remaining panels, the intensity
maps represent the amplitude of source estimates. The colorbar’s maximum (bright
yellow) and minimum (bright blue) corresponds to ±1.8 nAm for MNE and FIS, and
±9 nAm for the sMAP-EM, and dMAP-EM methods. The center and bottom left
panels show the estimates obtained with the MNE and FIS methods, respectively.
The estimated activity appears broad and spatially distributed, covering many dif-
ferent cortical regions. Similar to the simulated scenarios, the sMAP-EM algorithm
(center right panel) yielded highly focal estimates. The bottom right panel shows
the dMAP-EM estimates. This method resulted in more compact estimates covering
primary somatosensory cortex and other parietal regions.

a spatially distributed network [48, 49, 50, 51]. On the modeling side, biophysical

spatiotemporal dynamic models of neuronal networks have been able to simulate

electromagnetic scalp signals similar to those seen in recordings during normal and

disease states [40, 41, 42, 43, 44, 45, 46, 47]. We incorporated these insights to

probabilistically model cortical activation as a distributed spatiotemporal dynamic

process, and used this model as the basis for an inverse solution. This probabilistic
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Figure 1-8: Time course of estimation results for human MEG mu-rhythm data. The
upper panel shows a zoomed-in view of the cortical activity map obtained with the
MNE method, where the green dots represent dipoles labeled A, B, C, and D. The
colored lines are estimated sources with 95% CIs represented by light colored areas.
The center left panel shows the estimated time course of the MNE method in red,
and the bottom left panels show the FIS estimates in green. These methods resulted
in estimates with smaller amplitudes. The center right panel shows the sMAP-EM
estimates in magenta, which yielded large CIs. The dMAP-EM method (blue) yielded
estimates with higher-amplitude oscillations and smaller CIs, with the stereotyped
mu-shape that characterizes these data (dipoles B, C, and D).

model acts as a soft a priori constraint on the evolution of spatiotemporal cortical

trajectories, in a way that allows the recorded data to update our belief on this

trajectory at each moment in time. In this model of cortical activity, the nearest-

neighbor interactions are intended primarily to model spatial dependencies observed

with intracranial electrophysiology. However, as shown by the large and small patch

simulation results, the flexibility of this soft constraint results in accurate estimates

of both extended and focal brain activity.

Spatiotemporal MEG/EEG source localization algorithms [23, 24, 25, 26, 27, 28,

29, 30, 31, 32] have been previously developed with the aim of obtaining temporally

smooth estimates by imposing computationally convenient prior constraints on dipole
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sources. While these methods provide a way of constraining the temporal evolution of

inverse solutions, the relationship between prior constraints and underlying physiology

is unclear. In contrast, our spatiotemporal dynamic model is structured to represent

well-known local cortical biophysics, neuroanatomy, and electrophysiology, and can

be developed further to account for more complex brain dynamics and spatial inter-

actions. Other authors have proposed state-space models in the EEG inverse problem

with volumetric Laplacian spatial interactions, using recursive least-squares [33] or an

approximate version of the Kalman filter [34]. In contrast, our approach establishes

dynamic relationships along the cortical surface to represent local cortical interac-

tions observed in physiological studies, and uses the full-dimensional Kalman filter

and Fixed-Interval Smoother in conjunction with an EM algorithm to provide sta-

tistically optimal estimates of dipole source activity as well as dipole-specific model

parameters. While these calculations are high dimensional and computationally de-

manding, we chose this approach in order to place the model in a spatial and temporal

scale consistent with the biophysics of cortical interactions.

To understand the dynamic algorithms in relation to previously developed meth-

ods, we re-expressed the Kalman Filter and Fixed Interval Smoother estimates in

a form analogous to that of the well-known static MNE (see 1.7.4). This analysis

showed that the dynamic methods have a structure that is very similar to MNE, with

the Kalman Filter and Fixed Interval Smoother prediction covariance matrices play-

ing the same role as the prior source covariance, or regularization matrix, in MNE.

However, there is a critical difference in how the methods account for the prior mean

source activity at a given moment in time. MNE assumes that this prior mean is zero

at all times, while the Kalman filter and Fixed Interval Smoother optimally update

their prior means by assimilating data from the past, as well as the future in the

case of FIS. In this way, as pointed out by [69] and [35], MNE and other similarly

structured static algorithms impose a tendency towards zero source activity at every

moment in time by ignoring estimates computed for other time points. Any rea-

sonable model approximating spatiotemporal brain dynamics, employed within this

dynamic estimation framework, would avoid this tendency towards zero, and would
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improve performance by enabling information from past and future estimates to help

infer the cortical state at a particular point in time.

We designed simulation studies to compare source localization performance of

the static MNE, sMAP-EM, FIS, and dMAP-EM estimates. The simulations were

constructed to assess algorithm performance on both distributed and focal cortical

activity. We simulated MEG data with a highly discretized cortical mesh and a

deterministic temporal signal for source activity outside our autoregressive model

class to avoid committing an “inverse crime”. In both simulations, i.e., with either a

large or small active patch, the dMAP-EM method outperformed the MNE, sMAP-

EM, and FIS methods in terms of spatial localization accuracy, temporal tracking

of the simulated time series, the posterior error covariance, as well as RMSE and

ROC analyses. These results suggest that the joint estimation of model parameters

and source localization in a spatiotemporal dynamic model, as performed by the

dMAP-EM algorithm, can significantly improve inverse solutions. Furthermore, the

fact that dMAP-EM algorithm provides more accurate dipole source estimates than

FIS, which does not estimate model parameters, indicates that parameter estimation

within the dynamic model is critically important in this inverse problem. We also

applied these methods to human MEG mu-rhythm data, and obtained results similar

to the simulated scenarios: The dMAP-EM method yielded distributed yet spatially

compact estimates with pronounced time series amplitude in areas of cortex consistent

with previous mu-rhythm studies, while the MNE and FIS produced spatially spread

estimates with small amplitudes, and the sMAP-EM yielded highly focal and spatially

irregular estimates.

Recent work by [21] has taken on the important task of characterizing the many

seemingly dissimilar static methods described in the MEG inverse literature within

a unified statistical framework. An important conclusion of that work is that most

static MEG inverse methods can be viewed as solutions to a covariance selection

problem, allowing fast covariance selection algorithms from statistics to be applied

directly to the MEG inverse problem. Framing the inverse problem in terms of co-

variance selection, however, leaves open the question of how one should specify the
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form of that covariance, particularly in the presence of spatiotemporal phenomena.

Dynamic modeling and estimation provides a framework to integrate mechanisms and

empiricism from biophysics and neurophysiology into solutions for the MEG inverse

problem. In this view, the solution to the inverse problem becomes one of specifying

and identifying biophysical and dynamical models that closely approximate the un-

derlying neurophysiological system. The spatial and temporal covariance structure

then emerges from the second-order statistics inherent in the spatiotemporal dynamic

model. If these models can be phrased in the appropriate statistical framework, fast

and efficient algorithms with well-known properties can be applied to compute inverse

solutions and parameter estimates.

Sophisticated dynamic models have been studied previously in the context of

MEG/EEG data [70, 71]. These Dynamic Causal Models (DCMs) use simplified

spatial representations, such as equivalent current dipoles, to place greater emphasis

on temporal modeling while retaining computational tractability. In contrast, the

focus of our work has been to explore how spatiotemporal dynamic models in the

distributed source framework, and inspired by underlying neurophysiology, can be

used to improve source localization. This approach necessitates a higher-dimensional

spatial model that can represent local cortical dynamics on a spatial scale consistent

with neurophysiological recordings, balanced by a relatively simple temporal model

to make computations tractable. In the long run, we envision an approach where

more complex spatiotemporal models will be used to solve the MEG/EEG inverse

problem. These models could include long-distance connectivity information derived

from diffusion tensor imaging (DTI) and nonlinear interactions, while preserving a

realistic spatial scale to represent brain activity.

1.6 Conclusions and future work

In this work: 1) we developed a distributed stochastic dynamic model based on a

nearest-neighbors autoregression on the cortical surface to represent spatiotemporal

cortical dynamics; 2) we derived the dMAP-EM algorithm for optimal dynamic esti-
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mation of cortical current sources and model parameters from MEG/EEG data based

on the Kalman Filter, Fixed Interval Smoother, and Expectation-Maximization (EM)

algorithms; 3) we developed expressions to relate our dynamic estimation method to

standard static algorithms; and 4) we applied the spatiotemporal dynamic method

to simulated experiments of focal and distributed cortical activation as well as to

human experimental data. The results showed that our dMAP-EM method outper-

forms MNE, sMAP-EM, and FIS methods in terms of spatial localization accuracy,

temporal tracking, posterior error covariance, and RMSE and ROC measures.

Our results demonstrate the feasibility of spatiotemporal dynamic estimation in

distributed source spaces with several thousand dipoles and hundreds of sensors, re-

sulting in inverse solutions with substantial performance improvements over static

methods. Our analysis of known cortical biophysics, models (static vs. dynamic),

source estimates, and error in localization revealed clear reasons why one would ex-

pect the dynamic methods to perform better than the static MNE. In future work,

we will develop new techniques to improve computational performance by means of

model reduction or high-performance computing, and will incorporate more realistic

neurophysiological models within this dynamic modeling framework.

1.7 Supplemental materials

1.7.1 Robustness of source model against variations in the

feedback matrix F

In this appendix we analyze how modifications in our spatial model (F) influence

the prior source covariance, and show that the resulting smoothness encoded a priori

in the dynamic source model is robust against misspecification of the F matrix. To

simplify our notation, we combine the parameter 𝜑 into the definitions of F and Q.

To show the robustness our our model in this area, we first take a modified state

model (Eq. 1.4) where the feedback matrix F̃ = F + Δ𝐹 has been perturbed by

Δ𝐹 . Then, we consider the prior source covariance of the original model C and that
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of the modified model C̃, when they have reached equilibrium (steady-state), i.e.,

lim𝑡→∞ Cov(𝛽𝑡). At last, we derive an upper bound for the matrix 2-norm of the

difference between the equilibrium covariances Δ𝐶 = C̃ − C, as a function of the

perturbation of the spatial model Δ𝐹 .

We assume that both F and F̃ yield stable dynamical systems (i.e., the modulus

of their largest eigenvalue is strictly less than 1). From the stability condition, the

equilibrium prior state covariance of the original model (C) and that of the modified

model (C̃) correspond to the respective (unique) solutions of the discrete Lyapunov

equations [72]:

C = FCF′ +Q

C̃ = F̃C̃F̃
′
+Q. (1.36)

We now express the difference in the equilibrium covariances Δ𝐶 by subtracting

the equalities above to obtain:

Δ𝐶 = FΔ𝐶F
′ + FC̃Δ′

𝐹 + (FC̃Δ′
𝐹 )

′ +Δ𝐹 C̃Δ′
𝐹 . (1.37)

Now we take the matrix induced 2-norm in Equation (1.37), and apply repeatedly

the triangle inequality and the sub-multiplicative property of induced norms:

||Δ𝐶 ||2 ≤ ||F||22||Δ𝐶 ||2 + 2||F||2||C̃||2||Δ𝐹 ||2 + ||C̃||2||Δ𝐹 ||22. (1.38)

We rearrange terms in Equation (1.38) to obtain:

||Δ𝐶 ||2 ≤
||C̃||2(2||F||2 +Δ𝐹 ||2)

1− ||F||22
· ||Δ𝐹 ||2 (1.39)

The fact that both feedback matrices are stable is equivalent to ||F||2, ||F̃||2 < 1.

Using the inverse triangle inequality and setting F = F̃−Δ𝐹 , we obtain

| ||F̃||2 − ||Δ𝐹 ||2 | ≤ ||F||2 < 1. This inequality implies that ||Δ𝐹 ||2 < 2. We plug the

previous result and the fact that ||F||2 < 1 in the inequality above (Eq. 1.39), and
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find that the matrix 2-norm of the difference between the equilibrium covariances Δ𝐶

is bounded above by a constant multiplied by the 2-norm of the perturbation in the

feedback matrix Δ𝐹 :

||Δ𝐶 ||2 < 𝑐 · ||Δ𝐹 ||2, (1.40)

where the constant c = 4||C̃||2
1−||F||22

.

From Equation (1.40) we can conclude that as long as the misspecification of the

feedback matrix Δ𝐹 is small, the smoothness modeled a priori in the dipole sources

is not dramatically altered.

1.7.2 A non-informative prior for the state noise covariance

Q(𝜈)

In this section we show that setting the parameter 𝑏 in our prior (Eq. 1.7) to a

value slightly larger than 3, makes our prior on 𝜈𝑗 non-informative (flat). This can be

achieved by giving a large variance to the prior while fixing its mode to a value consis-

tent with the order of magnitude in the model. In our case, the order of magniture of

𝜈𝑗 (𝑗 ∈ [1, . . . , 𝑝]) is 1 since this makes our model consistent with SNR considerations

as well as model units. We should note that for 𝑏 > 3, the mode of the prior is 1.

This results from the way we parametrice the inverse gamma prior. The variance of

our prior is given by:

Var(𝜈𝑖) =
𝑏2

(𝑏− 2)2(𝑏− 3)
. (1.41)

From this equation (Eq. 1.41) we can see that setting 𝑏 = 3+𝛿, where 0 < 𝛿 << 𝑏,

makes the variance very large and thus give a non-informative (flat) prior.

1.7.3 Derivation of 𝑈(𝜈|𝜈(𝑖−1)) in the E-step

From Equation (1.13) we have that
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𝑈(𝜈|𝜈(𝑖−1)) =E
[︀
log Pr

(︀
{y𝑡}𝑇𝑡=1, {𝛽𝑡}𝑇𝑡=0|𝜈

)︀
|{y𝑡}𝑇𝑡=1,𝜈

(𝑖−1)
]︀

+ log Pr(𝜈). (1.42)

where the complete data log-likelihood is derived from the measurement (Eq. 1.1)

and source (Eq. 1.4) models:

log Pr({y𝑡}𝑇𝑡=1, {𝛽𝑡}𝑇𝑡=0|𝜈) =
𝑇∑︁
𝑡=1

log Pr(y𝑡|𝛽𝑡,𝜈) +
𝑇∑︁
𝑡=1

log Pr(𝛽𝑡|𝛽𝑡−1,𝜈)

+ log Pr(𝛽0|𝜈), (1.43)

with,

log Pr(𝛽0|𝜈) = −
1

2
{𝑐1 + log |C0|+ 𝛽′

0C
−1
0 𝛽0}

log Pr(𝛽𝑡|𝛽𝑡−1,𝜈) = −
1

2
{𝑐2 + log |Q(𝜈)|+ (1− 𝜑2)−1(𝛽𝑡 − 𝜑F𝛽𝑡−1)

′Q(𝜈)−1(𝛽𝑡 − 𝜑F𝛽𝑡−1)}

log Pr(y𝑡|𝛽𝑡,𝜈) = −
1

2
{𝑐3 + (y𝑡 −X𝛽𝑡)

′(y𝑡 −X𝛽𝑡)}, (1.44)

where 𝑐1, 𝑐2, and 𝑐3 are constants not depending on 𝜈.

We apply Equation (1.44) to the complete data log-likelihood (Eq. 1.43) and

compute its expectation with respect to

Pr({𝛽𝑡}𝑇𝑡=0|{y𝑡}𝑇𝑡=1,𝜈
(𝑖−1)), where we have conditioned on the full set of measurements

and the parameter estimate of the previous iteration [58]. We then add the logarithm

of the prior density of 𝜈 and obtain Equation (1.17).
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1.7.4 Relationships between the dynamic and static estima-

tors

In this appendix we present an algebraic analysis of the Kalman Filter (KF) and

Fixed Interval Smoother (FIS) estimates that illustrates their relationship to the

𝐿2 minimum-norm estimate (MNE) [11]. We emphasize that in this analysis the

parameters 𝜈 in the model are assumed to be fixed. Specifically, we set aside the

so-called problem of identification or learning of parameters and focus on comparing

and contrasting the functional form of the source amplitude estimates given by these

methods.

We note that while it has been well-established that, on one side, the MNE can be

seen as a static Maximum a Posteriori estimate of the current dipole sources where the

measurements are assumed to be independent in time [11, 21], and on the other, the

KF and FIS algorithms are implementations of a Maximum a Posteriori estimation

problem in a linear Gaussian state-space model [62, 73], our contribution in this

section is: 1) To show how the KF, and especially the FIS, are solutions to particular

penalized least square problems structurally similar to the 𝐿2 minimum-norm cost

function, where the penalty term reflects how the information of past {y𝑘}𝑡−1
𝑘=1 and

future {y𝑘}𝑇𝑘=𝑡+1 measurements is optimally accounted by the estimate; and 2) to

present the formulas for the KF and FIS estimates in a way that parallel those of

the well-known MNE equation as an attempt to further introduce these dynamic

estimation techniques in the broad neuroimaging community.

To facilitate the notation, in this section we will assume that all densities are

conditioned by a set of parameters and use the notation Pr(·) = Pr(·|𝜈). We begin by

recalling that the MNE assumes the probability density of the source amplitude vector

Pr(𝛽𝑡) to be Gaussian with mean 𝜇𝑡 = 𝜇(mne) = 0 and covariance, or regularization

matrix, V𝑡 = C(mne). Therefore, the MNE maximizes the posterior density [11],

Pr(𝛽𝑡|y𝑡) ∝ Pr(y𝑡|𝛽𝑡)⏟  ⏞  
Likelihood

Pr(𝛽𝑡)⏟  ⏞  
“Prior”

, (1.45)
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where the likelihood Pr(y𝑡|𝛽𝑡) is Gaussian with mean X𝛽𝑡 and covariance I (Eq.

1.1). We must emphasize that the MNE “prior” density Pr(𝛽𝑡) does not contain any

information about the measurements.

A similar interpretation can be given to the Kalman Filter estimate of 𝛽𝑡 given

data up to time 𝑡, as shown in [62, 73]. In this case, the “prior” corresponds to

the conditional density of 𝛽𝑡 given data up to time 𝑡 − 1, Pr(𝛽𝑡|{y𝑘}𝑡−1
𝑘=1), which is

Gaussian with mean 𝜇𝑡 = 𝛽𝑡|𝑡−1 and covariance V𝑡 = V𝑡|𝑡−1 given by the prediction

step of Kalman Filter recursions (Eq. 1.21). Then the Kalman Filter computes the

Maximum a Posteriori estimate of 𝛽𝑡 given data up to time 𝑡 by maximizing the

posterior density:

Pr(𝛽𝑡|{y𝑘}𝑡𝑘=1) ∝ Pr(y𝑡|𝛽𝑡)⏟  ⏞  
Likelihood

Pr(𝛽𝑡|{y𝑘}𝑡−1
𝑘=1)⏟  ⏞  

“Prior”

. (1.46)

We highlight that the Kalman Filter “prior” density Pr(𝛽𝑡|{y𝑘}𝑡−1
𝑘=1) contains infor-

mation only from past measurements {y𝑘}𝑡−1
𝑘=1.

The Fixed Interval Smoother estimate can be interpreted similarly, where the

“prior” density corresponds to the conditional density of 𝛽𝑡 given previous data up

to time 𝑡 − 1 and future data after time 𝑡 + 1, Pr(𝛽𝑡|{y𝑘}𝑡−1
𝑘=1, {y𝑘}𝑇𝑘=𝑡+1). To the

authors’ knowledge, this particular interpretation of the FIS has not been reported in

the literature. Again, the “prior” density is Gaussian, and its mean 𝜇𝑡 = 𝛽𝑡|𝑇∖𝑡 and

covariance V𝑡 = V𝑡|𝑇∖𝑡 can be obtained by standard methods with computationally

costly algebraic manipulation. In this case, the notation of the subscript 𝑡|𝑇∖𝑡 reflects

that we are conditioning on all data except the immediate data point y𝑡. Therefore,

the Fixed Interval Smoother estimate maximizes the posterior density of the state

given all measurements:

Pr(𝛽𝑡|{y𝑘}𝑇𝑘=1) ∝ Pr(y𝑡|𝛽𝑡)⏟  ⏞  
Likelihood

Pr(𝛽𝑡|{y𝑘}𝑡−1
𝑘=1, {y𝑘}𝑇𝑘=𝑡+1)⏟  ⏞  

“Prior”

. (1.47)

We emphasize that the Fixed Interval Smoother “prior” density Pr(𝛽𝑡|{y𝑘}𝑡−1
𝑘=1, {y𝑘}𝑇𝑘=𝑡+1)

includes information from both past {y𝑘}𝑡−1
𝑘=1 and future measurements {y𝑘}𝑇𝑘=𝑡+1.
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We can see now that once we have available the “prior” densities’ mean and covari-

ance for each method, obtaining the Maximum a Posteriori estimates for the MNE,

KF, and FIS by maximizing Equations 1.45, 1.46, and 1.47, respectively, corresponds

to apply a penalized least squares technique where the data fit term corresponds to

the likelihood term and the penalty term is related to the “prior” density. Specifically,

for each method, the penalized least squares function to minimize is

argmin
𝛽𝑡

||y𝑡 −X𝛽𝑡||2⏟  ⏞  
Data fit

+ ||𝛽𝑡 − 𝜇𝑡||2V−1
𝑡⏟  ⏞  

Penalty

, (1.48)

where 𝜇𝑡 and V𝑡 are the “prior” mean and covariance as defined above for each

method. We should note at this point that Equation (1.48) establishes a parallel

between 𝐿2 minimum-norm cost function, and the Kalman Filter and Fixed Interval

Smoother estimates, where the data fit term is identical in these methods, but the

penalty varies to indicate how and whether past and future measurements should

influence the estimate.

The minimizer of Equation (1.48) is given by

�̂�𝑡(𝜇𝑡,V𝑡) = 𝜇𝑡 +V𝑡X
′(XV𝑡X

′ + I)−1(y𝑡 −X𝜇𝑡). (1.49)

Now we can simply replace the corresponding “prior” mean and covariance for each

method to obtain the MNE (𝛽(mne)
𝑡 ), the Kalman Filter estimate (𝛽𝑡|𝑡) and the Fixed

Interval Smoother estimate (𝛽𝑡|𝑇 ):

𝛽
(mne)
𝑡 = 0 +C(mne)X′(XC(mne)X′ + I)−1(y𝑡 − 0)

𝛽𝑡|𝑡 = 𝛽𝑡|𝑡−1 +V𝑡|𝑡−1X
′(XV𝑡|𝑡−1X

′ + I)−1 (y𝑡 −X𝛽𝑡|𝑡−1)

𝛽𝑡|𝑇 = 𝛽𝑡|𝑇∖𝑡⏟  ⏞  
Prior mean

+V𝑡|𝑇∖𝑡X
′(XV𝑡|𝑇∖𝑡X

′ + I)−1⏟  ⏞  
Gain

(y𝑡 −X𝛽𝑡|𝑇∖𝑡)⏟  ⏞  
Residual

.

(1.50)

Equation (1.50) allows us to compare and contrast the algebraic forms of these

estimates. We should note that while line 1 is the well-known MNE formula and line
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2 is in fact identical to the Kalman Filter algorithm (Eq. 1.22), line 3 corresponds to

a novel derivation of the Fixed Interval Smoother estimate that allows us to highlight

similarities and differences between these estimates. We can see that each method

builds a prediction of 𝛽𝑡 using the respective “prior” mean, and then updates this

prediction using the measurement at the same time point y𝑡 by computing a residuals.

In the case of MNE, the prediction discards any observed data and assumes it is zero.

The Kalman Filter is an improvement over MNE since it builds a prediction based

on previous data {y𝑘}𝑡−1
𝑘=1. Finally, the Fixed Interval Smoother goes further to build

a prediction based on previous data {y𝑘}𝑡−1
𝑘=1 as well as future data {y𝑘}𝑇𝑘=𝑡+1. For all

methods, MNE, KF, and FIS, once the prediction is made, the estimate is obtained

by updating the prediction using the immediate data point y𝑡 by adding a term that

is proportional to the residuals.

1.7.5 Computation of ROC curves

In this appendix we present the computations that define the estimates of the detec-

tion (p̂r𝐷) and false alarm (p̂r𝐹𝐴) probabilities. These quantities, which depend on

the detection threshold 𝑐, are given by

p̂r𝐷(𝑐) =

∑︀𝑝
𝑗=1

∑︀𝑇
𝑡=1 indic(|𝛽𝑗,𝑡| > 𝑐) · indic(𝛽(sim)

𝑗,𝑡 ̸= 0)∑︀𝑝
𝑗=1

∑︀𝑇
𝑡=1 indic(𝛽

(sim)
𝑗,𝑡 ̸= 0)

p̂r𝐹𝐴(𝑐) =

∑︀𝑝
𝑗=1

∑︀𝑇
𝑡=1 indic(|𝛽𝑗,𝑡| > 𝑐) · indic(𝛽(sim)

𝑗,𝑡 = 0)∑︀𝑝
𝑗=1

∑︀𝑇
𝑡=1 indic(𝛽

(sim)
𝑗,𝑡 = 0)

, (1.51)

where indic(·) in Equation (1.51) is the indicator function. We should note that

𝑝 ≈ 5000 represents the number of dipole sources and 𝑇 = 200 is the number of time

samples.
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Chapter 2

An Analysis of How Spatiotemporal

Dynamic Models of Brain Activity

Could Dramatically Improve

MEG/EEG Inverse Solutions

2.1 Abstract

MEG and EEG are noninvasive functional neuroimaging techniques that provide

recordings of brain activity with high temporal resolution, and thus provide a unique

window to study fast time-scale neural dynamics in humans. However, the accuracy

of brain activity estimates resulting from these data is limited since 1) the number of

sensors is much smaller than the number of sources, and 2) the low sensitivity of the

recording device to deep or radially oriented sources. These factors limit the num-

ber of sources that can be recovered and bias source estimates to superficial cortical

areas, resulting in the need to include a priori information about the source activity.

The question of how to specify this information and how it might lead to improved

solutions remains a critical open problem. In this paper we show that the incorpo-

ration of knowledge about the brain’s underlying connectivity and spatiotemporal
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dynamics could dramatically improve inverse solutions. To do this, we develop the

concept of the dynamic lead field mapping, which expresses how information about

source activity at a given time is mapped not only to the immediate measurement,

but to a time series of measurements. With this mapping we show that the number of

source parameters that can be recovered could increase by up to a factor of ∼ 20, and

that such improvement is primarily represented by deep cortical areas. Our result

implies that future developments in MEG/EEG analysis that model spatialtemporal

dynamics have the potential to dramatically increase source resolution.

2.2 Introduction

Magnetoencephalography (MEG) and electroencephalography (EEG) are functional

neuroimaging tools that provide noninvasive recordings of the magnetic and electric

fields at the scalp generated by neuronal currents. Because MEG and EEG have a

high sampling rate in the order of kHz, they hold particular promise as tools to nonin-

vasively study fast time-scale neural dynamics of human brain function in health and

disease [1]. This makes MEG/EEG unique amongst other functional neuroimaging

techniques such as functional magnetic resonance imaging (fMRI), positron emission

tomography (PET), or diffuse optical tomography (DOT), which instead provide in-

direct measures of brain activity related to slower neurovascular changes. However,

to properly interpret MEG and EEG recordings and fully realize their potential, one

needs to estimate the source current activity underlying the measured electric poten-

tials and magnetic fields at the scalp surface, i.e., to solve the ill-posed MEG/EEG

inverse problem. Although significant progress has been made on this problem in the

past few decades [11, 15, 74, 21, 23, 27, 31, 32, 75, 34, 35, 76] at present MEG/EEG

inverse solutions are viewed as rough estimates characterized by poor spatial reso-

lution (in the order of a few cm), and insensitive the majority of deep cortical and

subcortical regions.

Two main factors make it difficult to obtain accurate sources estimates. These can

be analyzed if we consider the lead field matrix X, which maps the cortical activity
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of a few thousand dipole sources, 𝛽𝑡, to the recordings in a couple hundred scalp

sensors, y𝑡, at an individual time instant 𝑡 [1, 77]:

y𝑡 = X𝛽𝑡 + “noise”.

The first factor is due to the dimensionality in MEG/EEG. Since the number of

sources to be estimated is an order of magnitude larger than the number of sen-

sors, different source configurations can produce identical scalp recordings, making

solutions to this inverse problem non-unique. This issue is exacerbated by the fact

that adjacent sources can produce very similar recordings. As a result, the number

of sources that we can expect to recover from measurements in an individual time

point 𝑡, which is determined by the rank of X, is much smaller than the number of

sources. The second factor is due to the biophysics of MEG/EEG. This is because

the amplitude of the scalp fields and potentials rapidly decays with the square of

the distance from the sensor to the source [1]. In addition, radially-oriented sources

can be magnetically silent [78]. Therefore, the sensitivity of the recording device—

the signal power generated by an individual active source across all sensors given by

the norm of the columns of X—is very low for a large percentage of cortical areas.

These two factors limit the number of source parameters that can be recovered and

effectively restrict estimates to cortical areas whose activity is most easily detected

by the sensors, ultimately imposing the need to include a priori information about

the source currents. The question of how to specify this a priori information and

how it might lead to improved solutions is one of the most important problems in

bioelectromagnetism and neuroimaging.

Prior information about the current dipole distribution has been used in the

MEG/EEG inverse problem literature in order to obtain unique estimates. This

information has taken the form of a probabilistic model or optimization penalty

that implicitly or explicitly assumes cortical activity is either independent across

time [11, 15, 74, 21], temporally or spatio-temporally smooth [23, 27, 31, 32, 75], or

follow a linear dynamic process [34, 35, 76]. While these priors alleviate issues related
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to the non-uniqueness of source estimates, they do not necessarily improve on the

limitations that stem from the rank deficiency and restricted sensitivity of the lead

field matrix. However, one way to ameliorate these issues could be achieved by in-

corporating prior knowledge about the spatiotemporal physiological relations present

in brain activity [36, 37, 38, 39]. This is because in such a spatiotemporal system,

information about source activation at a given time instant 𝑡 is contained not only in

the immediate measurement y𝑡 but also in multiple observations over a time interval

[y1,y2, . . . ,y𝑇 ]. As a result of this dynamic flow of information, we can imagine a

mapping that relates brain activity at a given moment in time to the measurements

in the complete analysis interval—a dynamic lead field mapping. The rank and sen-

sitivity of the dynamic lead field mapping could be substantially better than those of

the static lead field matrix X, not only because of its increased dimensionality but

also because of how information can flow across structural connections from brain

areas that are harder to detect at the scalp to those that are easier to detect.

Inspired by electrophysiology and neuroanatomy studies [36, 37, 38, 39], in this

paper we show how the incorporation of information about the source spatial connec-

tivity and temporal dynamics could dramatically increase both the number of sources

that can be recovered, as well as the sensitivity for detecting such sources. To do this,

we develop the concept of the dynamic lead field mapping, a dynamic extension of the

lead field matrix that allows us to analyze the rank and sensitivity of the mapping

between source activity at a given time instant to the measurements both forward

and backwards in time over the complete analysis interval. This dynamic lead field

mapping, though developed for the specific problem of MEG/EEG source imaging,

is firmly grounded in dynamic systems theory. With this mapping we show that the

number of sources that can be effectively recovered increases by up to a factor of

∼ 20 by modeling the most basic local cortical dynamic connections. Furthermore,

we show that the inclusion of such local cortical connections increases the sensitivity

for detecting sources distributed across the brain, and that the increase in sensitivity

is more pronounced in sources located within sulci and other deeper areas. At the

core of our technical development is a projection operation that allows us to analyze
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the rank and sensitivity resulting from different prior source models. In particular,

we analyze a space-time separable model, as well as a static model that assumes

temporal independence. We find that improvements in the number and sensitivity of

sources that can be recovered occur only when dynamic spatiotemporal connections

are modeled. Our results imply that future developments in MEG/EEG analysis that

explicitly model dynamic connections between brain areas have the potential to dra-

matically increase spatiotemporal resolution by taking full advantage of the brain’s

inherent spatiotemporal structure, connectivity, and dynamics.

2.3 Methods

2.3.1 The spatiotemporal dynamic source model and the MEG/EEG

measurement model

Converging lines of evidence suggest that brain activity is a spatiotemporal dynamic

process with structure varying at different scales. At the smaller spatial scale, in-

tracranial recordings in different species have revealed that cortical activity exhibits

strong correlations that persist up to a distance of 10 mm during rest and task peri-

ods [36, 37, 38]. These local cortico-cortical dynamic interactions can be supported

neuroanatomically by the fact that axonal collateral projections from pyramidal cells

spread laterally approximately 6 mm along the cortical surface [39]. In addition,

long-distance correlations can exist by means of white matter tracts that connect dis-

tant brain regions, like those which are thought to support large-scale brain network

activity such as the resting-state networks studied via fMRI [79, 80, 81].

In order to provide a conservative analysis where spatiotemporal dynamics con-

sistent with neurophysiological evidence are considered, we choose to focus on a par-

simonious model that incorporates local spatiotemporal interactions. One way to

model local spatiotemporal connections of this type is to use a first order linear dy-

namic process. In this model, neuronal currents at a given point in time 𝑡 and spatial

location 𝑖, 𝛽𝑖,𝑡, are a function of past neuronal currents at the same location, 𝛽𝑖,𝑡−1,
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as well as past currents, 𝛽𝑗,𝑡−1, at locations 𝑗 within a local neighborhood 𝒩 (𝑖):

𝛽𝑖,𝑡 = 𝜑[𝑓𝑖,𝑖𝛽𝑖,𝑡−1 +
∑︁

𝑗∈𝒩 (𝑖)

𝑓𝑖,𝑗𝛽𝑗,𝑡−1] + (1− 𝜑2)1/2𝜔𝑖,𝑡. (2.1)

In Equation (2.1), the parameter 𝜑 (0 ≤ 𝜑 < 1) represents the strength of the history

dependance in the dynamics. The weighting factors 𝑓𝑖,𝑗 represent the interaction

between sources at locations 𝑖 and 𝑗. At each location 𝑖, the weights 𝑓𝑖,𝑗 corresponding

to its neighbors 𝑗 ∈ 𝒩 (𝑖) are assumed to be positive and inversely proportional to the

distance between sources. In addition, they are normalized such that the contribution

of the neighbors to the dynamics of the 𝑖th source equals its self contribution, while

the total contribution is equal to one:
∑︀

𝑗∈𝒩 (𝑖) 𝑓𝑖,𝑗 = 𝑓𝑖,𝑖 and
∑︀

𝑗∈𝒩 (𝑖) 𝑓𝑖,𝑗 + 𝑓𝑖,𝑖 = 1.

Furthermore, the input process 𝜔𝑖,𝑡 is assumed to be Gaussian with zero-mean and

independent across time and space. The spatiotemporal model in Equation (2.1),

which has been previously used in dynamic source localization analysis [34, 76], can

be readily expressed in vector form as:

𝛽𝑡 = 𝜑F𝛽𝑡−1 + (1− 𝜑2)1/2𝜔𝑡, (2.2)

where 𝛽𝑡 is a vector of dimension 𝑝 (∼ 103), and the input process 𝜔𝑡 is Gaussian

with zero mean and independent across time with spatial covariance matrix Q, which

we assume diagonal and positive definite. We should note that since the matrix 𝜑F

is stable and (1− 𝜑2)Q is positive definite, we can assume that the process 𝛽𝑡 has

reached a steady-state where its spatial covariance matrix C = Cov(𝛽𝑡) is time in-

variant and invertible1. Without loss of generality, we can parametrize the covariance

matrix Q = [𝜆tr(̂︀Σ)/𝑛]−1diag(𝜈1, 𝜈2, . . . , 𝜈𝑝), where ̂︀Σ = X′X/𝑛 is the sample covari-

ance of the rows of X, 𝜆 > 0, and 𝜈𝑖 > 0. Doing so would allow us to interpret 𝜆 as

1The matrix 𝜑F is stable, i.e., the magnitude of its largest eigenvalue is equal to 𝜑 < 1, since F
is a stochastic matrix (it has nonnegative entries with the sum of its rows equal to 1) and because
the largest eigenvalue of a stochastic matrix is 1. The matrix (1− 𝜑2)Q is positive definite because
it is diagonal with positive elements in its diagonal. Since 𝜑F is stable, the process covariance
reaches a steady-state, C = lim𝑡→∞ Cov(𝛽𝑡), which is given by the solution of the Lyapunov equation
C = 𝜑2FCF′ + (1− 𝜑2)Q. Furthermore, since (1− 𝜑2)Q is positive definite and invertible, so it is
the source covariance C [55].
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the inverse of the power signal-to-noise ratio (SNR2) 2.

In an MEG/EEG experiment, we obtain a recording of the magnetic field and

electric potential from hundreds of sensors located on or above the scalp at times

𝑡 ∈ [1, 2, . . . , 𝑇 ]. At time 𝑡, the resulting data vector y𝑡, which is of dimension 𝑛

(∼ 102), is related to the source vector 𝛽𝑡 by the observation equation [1, 77]:

y𝑡 = X𝛽𝑡⏟ ⏞ 
Signal

+ 𝜀𝑡⏟ ⏞ 
Noise

, (2.3)

where X is the 𝑛× 𝑝 lead field matrix computed using a quasistatic approximation of

the Maxwell’s equations, and 𝜀𝑡 is the Gaussian white noise vector with zero mean and

spatial covariance equal to the identity matrix I. We should emphasize that in our

notation we assume the observation model (Eq. 2.3) has been spatially whitened, i.e.,

that the original raw data model ỹ𝑡 = X̃𝛽𝑡 + �̃�𝑡 has been premutiplied by the inverse

of a matrix square root of the covariance of �̃�𝑡. In Equation (2.3), X𝛽𝑡 represents

the signal portion of the model, and the noise term 𝜀𝑡 is independent from 𝛽𝑡 for all

time points.

2.3.2 The dynamic lead field mapping

In the observation model (Eq. 2.3), the signals generated by brain activity are rep-

resented by the product of the lead field matrix and the source vector: X𝛽𝑡. Since

the resulting product and the source vector are independent of the noise term 𝜀𝑡,

the lead field matrix X contains all the information related to the mapping of the

brain source vector 𝛽𝑡 at a particular point in time 𝑡 to the measurement y𝑡 at that

same point in time 𝑡 (Figure 2-1A). From this static point of view, it is clear that the

maximum number of independent variables that could be determined from a single

measurement in time is limited by the rank of the X matrix, which unfortunately is

less than or equal to the number of sensors, and much smaller than the number of

sources [82]. However, if we consider the brain’s source activity as a spatiotemporal
2Roughly speaking, if the matrix F = I, where I is the identity matrix, and 𝜈𝑖 = 1 (𝑖 = 1, . . . , 𝑝),

the steady state covariance of 𝛽t becomes C = [𝜆tr(̂︀Σ)/𝑛]−1I. If we define the power signal-to-noise
ratio as SNR2 = E||X𝛽𝑡||2/E||𝜀𝑡||2, then SNR2 = tr(X′X)[𝜆tr(̂︀Σ)/𝑛]−1/𝑛 = 1/𝜆.
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B. Dynamic lead
field mapping

A. Lead
field matrix

βt βt

φXF φ2XF2 φ5XF5φ5XF5
b φ2XF2

b φXFb XX

yt yt+2yt+1 yt+5yt−1yt−2yt−5yt

Figure 2-1: The dynamic lead field mapping A: The (static) lead field matrix
X determines how information from the source vector 𝛽𝑡 propagates to the measure-
ment y𝑡 at the same point in time 𝑡. B: When spatiotemporal dynamics are modeled,
the dynamic lead field mapping D𝑡 determines how information from the source vec-
tor 𝛽𝑡 at a given time 𝑡 is mapped to the complete time series of measurements
[y1,y2, . . . ,y𝑇 ].

dynamic process, we can dramatically improve on these limitations.

In a spatiotemporal system, the information about the source vector 𝛽𝑡 at a

particular time 𝑡 is contained not only in the immediate observation y𝑡 but also in

the previous [y1,y2, . . . ,y𝑡−1] and future [y𝑡+1,y𝑡+2, . . . ,y𝑇 ] observations. Because of

this, information from the source vector 𝛽𝑡 is effectively mapped to the complete time

series of measurements through a function (Figure 2-1B), which we call the dynamic

lead field mapping, whose rank and sensitivity would be greater than those of the

static lead field matrix X.

To obtain the dynamic lead field mapping, we must derive an observation model

for the complete set of measurements [y1,y2, . . . ,y𝑇 ] where: i) the signal portion of

the model is a function of only the source vector 𝛽𝑡 at a particular time 𝑡, and ii) the

noise term is independent of the source vector 𝛽𝑡. As we will show below, the signal

function for this observation model is indeed linear. Because of this, the complete

observation model can be expressed as:
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⎡⎢⎢⎢⎢⎢⎢⎣
y1

y2

...

y𝑇

⎤⎥⎥⎥⎥⎥⎥⎦ = D𝑡𝛽𝑡⏟  ⏞  
Signal

+ n𝑡⏟ ⏞ 
Noise

, (2.4)

where the matrix D𝑡 of dimension 𝑛𝑇 × 𝑝 is the dynamic lead field mapping, and the

noise term n𝑡 of dimension 𝑛𝑇 is independent of the source vector 𝛽𝑡. In analogy to

the lead field matrix X in the static observation model (Eq. 2.3), the dynamic lead

field mapping D𝑡 can be used to determine the number of independent variables we

can recover as well as the sensitivity for detecting such sources when we consider the

complete time series of observations in a spatiotemporal dynamic framework.

In order to derive D𝑡 in Equation (2.4), we consider three separate cases depending

on whether the observation vector y𝑡±𝑘 (𝑘 = 0, 1, . . .) corresponds to a future, present,

or past observation with respect to the source vector 𝛽𝑡 a the present time 𝑡. Because

of this partition we will consider the dynamic lead field mapping D𝑡 as a block matrix

composed of submatrices P𝑡±𝑘,𝑡:

D𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣
P1,𝑡

P2,𝑡

...

P𝑇,𝑡

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where we call the blocks P𝑡±𝑘,𝑡 the projection matrices.

In the case where the measurement vector corresponds to the present observation

(𝑘 = 0), we use the static observation model (Eq. 2.3) to obtain the relation between

𝛽𝑡 and y𝑡 in the block number 𝑡 of Equation (2.4):

y𝑡 = X𝛽𝑡⏟ ⏞ 
Signal

+ 𝜀𝑡⏟ ⏞ 
Noise

.

From the equation above we can identify that P𝑡,𝑡 = X.

To obtain the projection matrices corresponding to future observations, we start
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by using the recursion defining the source vector spatiotemporal dynamics (Eq. 2.2)

and iterate it 𝑘 ∈ [1, 2, . . .] times to obtain:

𝛽𝑡+1 = 𝜑F𝛽𝑡 + (1− 𝜑2)1/2𝜔𝑡+1

𝛽𝑡+2 = 𝜑2F2𝛽𝑡 + (1− 𝜑2)1/2𝜑F𝜔𝑡+1 + (1− 𝜑2)1/2𝜔𝑡+1

...

𝛽𝑡+𝑘 = 𝜑𝑘F𝑘𝛽𝑡 + (1− 𝜑2)1/2
𝑘∑︁

𝑗=1

𝜑𝑘−𝑗F𝑘−𝑗𝜔𝑡+𝑗 . (2.5)

Using this 𝑘-step iteration into the future along with the static measurement model

(Eq. 2.3), we obtain the relation between 𝛽𝑡 and the future measurement y𝑡+𝑘:

y𝑡+𝑘 = 𝜑𝑘XF𝑘𝛽𝑡⏟  ⏞  
Signal

+(1− 𝜑2)1/2
𝑘∑︁

𝑗=1

𝜑𝑘−𝑗XF𝑘−𝑗𝜔𝑡+𝑗 + 𝜀𝑡+𝑘⏟  ⏞  
Noise

. (2.6)

We should note that Equation (2.6) represents the (𝑡+ 𝑘)th block of Equation (2.4),

and therefore we identify that P𝑡+𝑘,𝑡 = 𝜑𝑘XF𝑘.

To derive the past projection matrices we make use of an equivalent representation

of the source dynamics (Eq. 2.2) known as the backwards Markovian model [55]:

𝛽𝑡 = 𝜑F𝑏𝛽𝑡+1 + (1− 𝜑2)1/2𝜔𝑏
𝑡 . (2.7)

In this representation, where the state vector 𝛽𝑡 evolves backwards in time, the time-

reversed transition matrix is given by F𝑏 = CF′C−1. The backwards input process

𝜔𝑏
𝑡 , which is independent across time and Gaussian, has zero mean and covariance

matrix Q𝑏 = (1− 𝜑2)−1(C− 𝜑2F𝑏CF′
𝑏). With this equivalent backwards dynamic

representation (Eq. 2.7), we proceed to obtain the relation between 𝛽𝑡 and the pre-

vious measurement y𝑡−𝑘 just as we did when we considered future measurement. In

this case the 𝑘 ∈ [1, 2, . . . ] step backwards iteration is given by:
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𝛽𝑡−1 =𝜑F𝑏𝛽𝑡 + (1− 𝜑2)1/2𝜔𝑏
𝑡−1

𝛽𝑡−2 =𝜑2F2
𝑏𝛽𝑡 + (1− 𝜑2)1/2𝜑F𝑏𝜔

𝑏
𝑡−1 + (1− 𝜑2)1/2𝜔𝑏

𝑡−2

...

𝛽𝑡−𝑘 =𝜑𝑘F𝑘
𝑏𝛽𝑡 + (1− 𝜑2)1/2

𝑘∑︁
𝑗=1

𝜑𝑘−𝑗F𝑘−𝑗
𝑏 𝜔𝑏

𝑡−𝑗 . (2.8)

We use the static observation model (Eq. 2.3) along with the 𝑘-step past iteration to

obtain the (𝑡− 𝑘)th block of Equation (2.4):

y𝑡−𝑘 = 𝜑𝑘XF𝑘
𝑏𝛽𝑡⏟  ⏞  

Signal

+(1− 𝜑2)1/2
𝑘∑︁

𝑗=1

𝜑𝑘−𝑗XF𝑘−𝑗
𝑏 𝜔𝑏

𝑡−𝑗 + 𝜀𝑡−𝑘⏟  ⏞  
Noise

, (2.9)

where we see that P𝑡−𝑘,𝑡 = 𝜑𝑘XF𝑘
𝑏 .

At this point we are ready to explicitly write the complete observation model

(Eq. 2.4) as well as the dynamic lead field mapping D𝑡. For a particular time 𝑡,

we use the equations mapping the source vector 𝛽𝑡 to the present (Eq. 2.3), future

(Eq. 2.6), and past (Eq. 2.9) to obtain the complete observation model:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

...

y𝑡−1

y𝑡

y𝑡+1

...

y𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜑𝑡−1XF𝑡−1
𝑏

...

𝜑XF𝑏

X

𝜑XF
...

𝜑𝑇−𝑡XF𝑇−𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

D𝑡

𝛽𝑡 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1,𝑡
...

e𝑡−1,𝑡

e𝑡,𝑡

e𝑡+1,𝑡

...

e𝑇,𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

n𝑡

, (2.10)

where error terms are given by,
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e𝑡±𝑘,𝑡 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1− 𝜑2)1/2

∑︀𝑘
𝑗=1 𝜑

𝑘−𝑗XF𝑘−𝑗
𝑏 𝜔𝑏

𝑡−𝑗 + 𝜀𝑡−𝑘, −𝑘 > 0

𝜀𝑡, 𝑘 = 0

(1− 𝜑2)1/2
∑︀𝑘

𝑗=1 𝜑
𝑘−𝑗XF𝑘−𝑗𝜔𝑡+𝑗 + 𝜀𝑡+𝑘, +𝑘 > 0

.

From the complete observation model (Eq. 2.10) we can see that the dynamic lead

field mapping is:

D𝑡 =
[︁
𝜑𝑡−1F𝑡−1′

𝑏 X′, . . . , 𝜑F′
𝑏X

′,X′, 𝜑F′X′, . . . , 𝜑𝑇−𝑡F𝑇−𝑡′X′
]︁′
. (2.11)

In addition, we can observe that Equation (2.10) expresses the complete set of mea-

surements [y1,y2, . . . ,y𝑇 ] as the sum of the signal function D𝑡𝛽𝑡 and noise term

n𝑡 = [e′1,𝑡, e
′
2,𝑡, . . . , e

′
𝑇,𝑡]

′. We should note that the noise term n𝑡 is indeed independent

of the source vector 𝛽𝑡, since the vectors e𝑡±𝑘,𝑡 correspond to the projection errors

that result from projecting the measurements y𝑡±𝑘 onto the source vector 𝛽𝑡. Such

projections are obtained via the matrices P𝑡±𝑘,𝑡 (For details see Section 2.6.3 in Sup-

plemental materials). Consequently, the dynamic lead field mapping D𝑡 contains all

the information describing how the brain source vector 𝛽𝑡, at a particular point in

time 𝑡, propagates to the complete set of measurements. Therefore, we can use D𝑡

to determine the number of independent variables we can recover, as well as the sen-

sitivity for detecting such sources, from the complete time series of observations in a

spatiotemporal dynamic framework.

2.3.3 Extension to general Gaussian source models

The dynamic lead field (D𝑡) allows us to analyze the mapping from a source vec-

tor 𝛽𝑡 to the complete time series of measurements [y1,y2, . . . ,y𝑇 ] when considering

that the prior source model follows the spatiotemporal dynamics in Equation (2.1).

While our dynamic source model is inspired by neurophysiological evidence and neu-

roanatomy [36, 37, 38, 39], it is natural to consider other mappings resulting from

more general Gaussian source models. Doing so would allow us to place our dynamic
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lead field analysis within a more general framework, and to compare the properties

of different source models in MEG/EEG imaging.

In the models we now consider, the joint distribution of the sources has a zero

mean and is Gaussian, just like in our spatiotemporal dynamic source model (Eqs. 2.1

and 2.2), but the spatiotemporal covariance structure differs from that in our model.

Specifically, under a model m, the joint distribution of the source vectors

[𝛽
(m)
1 ,𝛽

(m)
2 , . . . ,𝛽

(m)
𝑇 ] is Gaussian with zero mean (E[𝛽(m)

𝑡 ] = 0) and arbitrary cross-

covariances E[𝛽(m)
𝑘 𝛽

(m)′

𝑡 ], where E denotes the expectation operator. The MEG/EEG

measurement are obtained via the static observation model (Eq. 2.3):

y
(m)
𝑡 = X𝛽

(m)
𝑡 + 𝜀𝑡. (2.12)

Just as we did in the case of the dynamic lead field mapping, when consider-

ing a model m we would like to express the complete time series of measurements

[y
(m)
1 ,y

(m)
2 , . . . ,y

(m)
𝑇 ] as the sum of a function that only depends on the source vector

𝛽
(m)
𝑡 at the present time 𝑡 and a noise term that is independent of 𝛽(m)

𝑡 . As we will

show below, this can be done via the linear relation,

⎡⎢⎢⎢⎢⎢⎢⎣
y
(m)
1

y
(m)
2

...

y
(m)
𝑇

⎤⎥⎥⎥⎥⎥⎥⎦ = D
(m)
𝑡 𝛽

(m)
𝑡⏟  ⏞  

Signal

+ n
(m)
𝑡⏟ ⏞ 

Noise

, (2.13)

where D
(m)
𝑡 is the equivalent of the dynamic lead field mapping for the model m, and

the noise term n
(m)
𝑡 is independent of the source vector 𝛽

(m)
𝑡 .

To obtain Equation (2.13) we again consider the matrix D
(m)
𝑡 as composed of

sub-matrix blocks P
(m)
𝑡±𝑘,𝑡:

D
(𝑚)
𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣
P

(m)
1,𝑡

P
(m)
2,𝑡

...

P
(m)
𝑇,𝑡

⎤⎥⎥⎥⎥⎥⎥⎦ .
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To obtain the 𝑡± 𝑘th block of Equation (2.13) we make use of the fact that, under a

model m, the measurement vector y(m)
𝑡±𝑘 at time 𝑡± 𝑘 can be expressed as the sum of

its projection onto the source vector 𝛽
(m)
𝑡 at time 𝑡 and the projection error:

y
(m)
𝑡±𝑘 = P

(m)
𝑡±𝑘,𝑡𝛽

(m)
𝑡 + e

(m)
𝑡±𝑘,𝑡,

where the projection error e
(m)
𝑡±𝑘,𝑡 is independent of the source vector at time 𝑡, and

the projection matrix P
(m)
𝑡±𝑘,𝑡 is the solution of the orthogonality equation3:

E
[︁
(y

(m)
𝑡±𝑘 −P

(m)
𝑡±𝑘,𝑡𝛽

(m)
𝑡 )𝛽

(m)′

𝑡

]︁
= 0. (2.14)

By making use of the static observation model (Eq. 2.12), it is easy to see that the

projection matrices that solve the orthogonality equation (Eq. 2.14) under a given

source model m are given by:

P
(m)
𝑡±𝑘,𝑡 = X

(︁
E[𝛽

(m)
𝑡±𝑘𝛽

(m)′

𝑡 ]
)︁(︁

E[𝛽
(m)
𝑡 𝛽

(m)′

𝑡 ]
)︁−1

. (2.15)

Therefore, for a given Gaussian model m with a specific spatiotemporal source covari-

ance structure, we can compute the corresponding projection matrices P(m)
𝑡±𝑘,𝑡 and, just

as we did in the development of the dynamic lead field mapping (Eqs. 2.4 and 2.10),

obtain an equivalent observation model for the complete series of measurements by

stacking up the projection matrices.

To give concrete examples of the D
(m)
𝑡 matrix for general Gaussian source models,

we will analyze two models commonly used in the source localization literature: i) the

first, which we denote as the IND model, assumes the source vectors are independent

across time [11], i.e., E[𝛽
(𝑖𝑛𝑑)
𝑡±𝑘 𝛽

(𝑖𝑛𝑑)′

𝑡 ] = 0 for 𝑘 ̸= 0; and ii) a space-time separable

(STS ) model in which the joint source covariance factors via the Kronecker product

Γ⊗C into a purely spatial covariance matrix C and a purely temporal covariance

3The projection error e
(m)
𝑡±𝑘,𝑡 = y

(m)
𝑡±𝑘 −P

(m)
𝑡±𝑘,𝑡𝛽

(m)
𝑡 is uncorrelated with 𝛽

(m)
𝑡 , namely

E[(y
(m)
𝑡±𝑘 −P

(m)
𝑡±𝑘,𝑡𝛽

(m)
𝑡 )𝛽

(m)′

𝑡 ] = 0 [55]. Since y
(m)
𝑡±𝑘 and 𝛽

(m)
𝑡 are jointly Gaussian, the projection

error e
(m)
𝑡±𝑘,𝑡 and 𝛽

(m)
𝑡 are also jointly Gaussian. Therefore, the projection error and the source

vector are uncorrelated and jointly Gaussian, and thus are independent.

74



matrix Γ [27]. We should note that in the STS model, the covariance between source

vectors at times 𝑡± 𝑘 and 𝑡 is given by E[𝛽
(𝑠𝑡𝑠)
𝑡±𝑘 𝛽

(𝑠𝑡𝑠)′

𝑡 ] = 𝛾𝑡±𝑘,𝑡C, where 𝛾𝑘,𝑡 is the

element of the temporal covariance matrix Γ at position 𝑡± 𝑘, 𝑡. With the covariance

structure defined for these two models, and using Equation (2.15), we can see that

the projection matrices for the IND and STS models are

P
(𝑖𝑛𝑑)
𝑡±𝑘,𝑡 =

⎧⎪⎨⎪⎩X 𝑘 = 0

0 𝑘 ̸= 0

and P
(𝑠𝑡𝑠)
𝑡±𝑘,𝑡 =

𝛾𝑡±𝑘,𝑡

𝛾𝑡,𝑡
X,

respectively. Therefore, the D
(m)
𝑡 matrix for the IND and STS models, which consti-

tute the equivalent of the D𝑡 matrix for these Gaussian models, are given by:

D
(𝑖𝑛𝑑)
𝑡 = 1𝑡 ⊗X and D

(𝑠𝑡𝑠)
𝑡 =

1

𝛾𝑡,𝑡
𝛾𝑡 ⊗X (2.16)

respectively, where 1𝑡 is the unit vector with the 𝑡th entry set equal to one, and 𝛾𝑡 is

the 𝑡th column of Γ

2.4 Results

2.4.1 Rank and singular value spectrum of the dynamic lead

field mapping D𝑡

We used the dynamic lead field mapping construct in conjunction with an MRI-

based MEG forward model from a human subject (see Section 2.6.2 in Supplemental

materials) to estimate the number of independent sources we can recover in a model

that includes local spatiotemporal cortical dynamics (Eq. 2.1). In order to avoid the

computational challenges associated with finding the rank and singular values of the

very large D𝑡 matrix (Eq. 2.11), we chose to analyze the truncated versions of D𝑡

that correspond to a model that includes 𝑘 ∈ [1, 2, 5, 10, 20] measurements into the

past and future of a given time 𝑡, [y𝑡−𝑘, . . . ,y𝑡, . . . ,y𝑡+𝑘]. The resulting mappings,

which we denote by D𝑡(𝑘), are given by:
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D𝑡(𝑘) =
[︁
𝜑𝑘F𝑘′

𝑏 X
′, . . . , 𝜑F′

𝑏X
′,X′, 𝜑F′X′, . . . 𝜑𝑘F𝑘′X′

]︁′
. (2.17)

This arrangement was chosen to compare the relative contributions of increasing

numbers of observations to the number of independent sources that can be effectively

recovered. Furthermore, since the matrices D𝑡(𝑘) correspond to a truncated version of

the much larger matrix D𝑡, our computations serve as a lower bound on the number of

sources that could be recovered from the time series of measurements in the complete

interval [1, 2, . . . , 𝑇 ].

Figure 2-2A and Table 2.1 show the evolution of the singular value spectrum and

the rank of the D𝑡(𝑘) matrix, respectively, as the number of observed data points

2𝑘 + 1 increases. With each successive increase in 𝑘, the singular value spectrum and

the rank of the D𝑡(𝑘) increases monotonically, reaching a value of rank(D𝑡(20)) = 4551.

This indicates the number of sources that could be recovered increases by up to a

factor of 20 by modeling only local cortical dynamic connections.

Table 2.1: Rank of D𝑡(𝑘).

𝑘 0 1 2 5 10 20
rank(D𝑡(𝑘)) 204 612 1020 2244 3889 4551

Similarly, we analyzed the the number of sources that could be recovered in the

IND and STS models by evaluating the rank and singular values spectrum of the

D
(𝑖𝑛𝑑)
𝑡 and D

(𝑠𝑡𝑠)
𝑡 matrices, respectively (Eq. 2.16). Just as we did in the case of our

spatiotemporal dynamic model, we evaluated the truncated versions of these matrices

given by:

D𝑡(𝑘)
(𝑖𝑛𝑑) =

[︀
0′, . . . ,0′,X′,0′, . . . ,0′

]︀′ (2.18)

D𝑡(𝑘)
(𝑠𝑡𝑠) =

1

𝛾𝑡,𝑡

[︀
𝛾𝑡−𝑘,𝑡X

′, . . . , 𝛾𝑡−1,𝑡X
′,X′, 𝛾𝑡+1,𝑡X

′, . . . 𝛾𝑡+𝑘,𝑡X
′]︀

For both the IND and STS models, the rank of these matrices did not increase with
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Figure 2-2: Spectrum of the dynamic lead field mapping D𝑡(𝑘). A: The evo-
lution of the singular value spectra of D𝑡(𝑘) (solid lines) with increasing number of
temporal measurements 𝑘. The spectrum of this matrix increases thus indicating an
increase in the number of sources that could be recovered in the spatiotemporal dy-
namic model with local connections. B: Zoom-in to subpanel (A) shows the singular
value spectra of D𝑡(𝑘)

(𝑠𝑡𝑠) for the space-time separable (STS ) source model (dashed
line) indicating that the number of sources that could be recovered does not increase
in the STS source model.

the inclusion of more temporal measurements: rank(D𝑡(𝑘)
(𝑖𝑛𝑑)) = rank(D𝑡(𝑘)

(𝑠𝑡𝑠)) = 204

for all values of 𝑘. In the case of the STS model, we saw that the 204 singular values

of D𝑡(𝑘)
(𝑠𝑡𝑠) were slightly increased (Fig. 2-2B). However, such increase was uniform

across singular values, as it can be shown that the vector with the ordered singular
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values of D𝑡(𝑘)
(𝑠𝑡𝑠) is equal to a scaled version of the vector with the singular values

of X: svd(D𝑡(𝑘)
(𝑠𝑡𝑠)) ∝ svd(X). Importantly, the fact that the rank of D𝑡(𝑘)

(𝑖𝑛𝑑) and

D𝑡(𝑘)
(𝑠𝑡𝑠) does not increase can be seen from the Equation (2.18). In both cases,

these matrices are obtained by stacking the lead field matrix X above and below with

either a matrix of zeros or scaled versions of X.

2.4.2 Sensitivity analysis of dynamic lead field mapping D𝑡

The biophysics of the MEG/EEG forward problem dictate that some regions of the

brain are more difficult to observe and measure than others. This is because the

measured signal decays with the inverse of the square distance from the sensor to

the source, and in the case of MEG, sources oriented near the radial direction are

magnetically silent. Figure 2-3 illustrates this phenomenon where we show arrows

representing dipole sources located in the right cingulate cortex (deep dipole, white),

the trough of a gyrus (mildly deep dipole, red), and the side of a gyrus (superficial

dipole, yellow). In this hypothetical example, the deep white dipole located at a

distance 𝑑1 from its closest sensor produces very low amplitude signals which renders

it practically impossible to detect; the mildly deep red dipole at a distance 𝑑2 from its

closest sensor generates relatively weak signals, and this makes it difficult to measure;

in contrast to the previous two cases, the yellow dipole located on the superficial side

of the gyrus at a distance 𝑑3 from its closest sensor produces strong signals which

makes it easy to recover. A natural way to quantify this ease or difficulty for detecting

the electric and magnetic fields at the scalp surface when only the instantaneous y𝑡

is observed, is to compute the signal power measured across sensors generated by a

single active dipole source of unit amplitude. Specifically, if we fix the source vector

to represent a unit amplitude active dipole at the 𝑖th cortical location, the total signal

power it produces at the sensors is given by:

𝜍𝑖,𝑡(0) = ||X1𝑖||2, (2.19)

Performing such computation for all cortical locations 𝑖 results in a static profile
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Figure 2-3: Illustration of sensitivity of the static lead field matrix to dipoles
at different depths. The white dipole located very deep in the insular cortex
at a distance 𝑑1 from its closest sensor produces very weak signals which makes it
practically undetectable. The red dipole near the trough of a gyrus at a distance
𝑑2 from its closest sensor produces relatively weak signals and is difficult to detect.
The superficial yellow dipole in the side of a sulcus at a distance 𝑑3 from its closest
sensor produces strong signals. For each dipole, the sensitivity can be calculated
using Equation (2.20).

of the absolute sensitivity gain of the lead field matrix X. Figure 2-4 shows this

static sensitivity profile in the top panel (𝑘 = 0) computed using the lead field matrix

described in the previous section. We saw that the sensitivity was highest in some

portions of gyri and the more superficial cortical areas (red tones), but it was low in

the troughs of sulci, insula, and inferior-frontal regions.

While the sensitivity of the lead field matrix gives us a static image of the signal

quality obtained in the instantaneous measurement y𝑡, it does not inform us of the

quality of the measured signals in time when we account for the spatiotemporal

dynamics of the underlying cortical activity. One way to asses such signal quality

is to extend the sensitivity analysis done for the lead field matrix (Eq. 2.19) to the

case of the dynamic lead field D𝑡(𝑘). Specifically, if we assume a unit amplitude

dipole is active at time 𝑡 and cortical location 𝑖 in our spatio-temporal dynamic model

(Eq. 2.2), the total measured power in the time interval [𝑡− 𝑘, . . . , 𝑡+ 𝑘] across all

sensor is given by:
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𝜍𝑖,𝑡(𝑘) = ||D𝑡(𝑘)1𝑖||2, (2.20)

Figure 2-4A (left panels) shows the absolute sensitivity of the dynamic lead field

mapping as we increase the number of measurement in time (2𝑘 + 1). We saw that

the sensitivity increased in most cortical regions including sulci when more temporal

information is included, but this increase was not as pronounced in deeper regions such

as some portions of insula and the inferior-frontal cortex. We performed an equivalent

sensitivity analysis assuming that the cortical activation was generated by the (STS )

model. To compute this sensitivity, we used Equation (2.20) but in this case replaced

D𝑡(𝑘) with the truncated matrix D𝑡(𝑘)
(𝑠𝑡𝑠) (Eq. 2.18). Figure 2-4B (center panels)

shows the sensitivity obtained in the space-time separable model. We saw an increase

in sensitivity in most cortical regions, but this increase was not as broadly spread

as it was in the case of the dynamic lead field mapping (Fig. 2-4A). Figure 2-4C

(right panels) shows the difference in absolute sensitivity between our spatiotemporal

dynamic model and the STS model for each value of 𝑘: 𝜍𝑖,𝑡(𝑘)− 𝜍𝑖,𝑡(𝑘)(𝑠𝑡𝑠). We should

note that the color scale in this case is different from that in panels A and B: the

red and blue tones indicate small positive and negative differences of ∼ 0.2× 10−3,

respectively; large positive difference of ∼ 2× 10−3 are shown in yellow, while large

negative differences are shown in light blue. For the majority of cortical areas, and

all values of 𝑘, the sensitivity was higher in the spatiotemporal dynamic model as

indicated by the red and yellow tones. The small areas where the sensitivity of the

STS model was slightly higher (blue areas where the difference is ∼ −0.2× 10−3) were

mainly represented by superficial portions of sulci which are indeed already detectable

from a static point of view, i.e., if we only consider the immediate measurement

for analysis. Interestingly, for values of 𝑘 ≥ 5 the sensitivity in the spatiotemporal

dynamic model is higher in deeper areas such as sulci and cingulate cortex, which are

precisely the areas that are more difficult to detect from a static point of view.

To quantify the improvement in the dynamic lead field sensitivity 𝜍𝑖,𝑡(𝑘) as we

include more temporal information in relation to the static case, i.e., the static lead
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Figure 2-4: Absolute sensitivity of the dynamic lead field mapping. A: Ab-
solute sensitivity of D𝑡(𝑘) as a function of the number of incorporated measurements
2𝑘 + 1. When 𝑘 = 0, the sensitivity of the static lead field matrix X = D𝑡(0) is shown.
For 𝑘 ≥ 1, the sensitivity increases in most cortical regions including sulci. B: Abso-
lute sensitivity for the space-time separable model D𝑡(𝑘)

(𝑠𝑡𝑠) as a function of 𝑘. The
sensitivity increases in this case but is not as widespread nor as high as it was in the
case of the dynamic lead field as indicated by the differences in sensitivities between
these two models (C, right panels). The color-scale is multiplied by 10−3.
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field matrix sensitivity 𝜍𝑖,𝑡(0), we computed the relative sensitivity gain: 𝜍𝑖,𝑡(𝑘)/𝜍𝑖,𝑡(0).

Figure 2-5A (left panels) shows the relative sensitivity gain of the dynamic lead field

mapping. We found that the relative sensitivity increases in the majority of cortical

regions with additional temporal information. Interestingly, the increments in relative

sensitivity were higher in regions of low absolute sensitivity, such as sulci, insula, and

inferior frontal cortex (yellow tones). We computed the relative sensitivity in the

case of the space-time separable (STS ) model by using instead truncated versions of

the D
(𝑠𝑡𝑠)
𝑡 matrix (Eq. 2.18, bottom). The resulting relative increments in the STS

model were spatially uniform across cortex (Figure 2-5B). Compared to the relative

sensitivity of the dynamic lead field, the increments in the STS model were not as

pronounced in regions that are more difficult to detect from a static point of view,

such as sulci, insula, and inferior-frontal regions.

We saw in the previous section that, in a model that includes local spatiotemporal

cortical dynamics, adding temporal measurements (𝑘) increases the rank of the D𝑡(𝑘)

matrices. We therefore wanted to characterize the dynamic lead field sensitivity that

corresponded to the rank increments, which thus represent the sensitivity gains in

the newly accessible dimensions. Specifically, if we consider two dynamic lead field

matrices D𝑡(𝑘1) and D𝑡(𝑘2) with 𝑘1 < 𝑘2, the sensitivity in the dimension accessible

at 𝑘2 but not at 𝑘1 can be obtained by: first projecting the rows of D𝑡(𝑘2) onto the

null space of D𝑡(𝑘1); and then compute the sensitivity of the matrix constructed with

the projected rows. Figure 2-6A shows the sensitivity in the newly accessible areas

for the pairs of values corresponding to consecutive number in 𝑘 ∈ [1, 2, 5, 10, 20].

As 𝑘 increased, the distribution of sensitivity for the newly accessible dimensions

was highest in some portions of sulci, insula, and inferior-frontal regions, which are

poorly detected areas in the static case (Fig. 2-6A, left panels). We performed an

equivalent analysis for the space-time separable (STS ) model. In this case there were

no gains in sensitivity in the previously unaccessible dimensions (Fig. 2-6B, right

panels). This results from the fact that the rank of the D𝑡(𝑘)
(𝑠𝑡𝑠) matrix does not

increase irrespective to the number of analyzed measurements (𝑘).
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Figure 2-5: Relative sensitivity of the dynamic lead field mapping. A: The
relative sensitivity of the dynamic lead field mapping increases with 𝑘 in most cortical
regions. This relative increase is more pronounced in areas with low static sensitivity
such as sulci, insula, and inferior frontal cortex. B: The increments in relative sensi-
tivity for the space-time separable model are spatially uniform and not as pronounced
in regions that are difficult to detect such as sulci, insula, and inferior frontal cortex.

2.5 Conclusions and discussion

In this work we have shown that the number of independent sources that can be

recovered from MEG recordings can increase up to a factor of ∼ 20 by modeling

basic first-order and linear source dynamics and local cortical connections. To do

this, we developed and analyzed the concept of the dynamic lead field mapping. This
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Figure 2-6: Sensivity of dynamic lead field in newly accessible dimensions. A:
The sensitivity of the dynamic lead field mapping in the newly accessible dimension
increases as a function of 𝑘 and is highest in some portions of sulci, insula, and
inferior frontal regions. B: In the case of the space-time separable model, there are no
sensitivity gains in previously unaccessible dimensions since the rank of the matrix
D𝑡(𝑘)

(𝑠𝑡𝑠) does not increase.

dynamic mapping extends the static observation model that originates from the lead

field biophysics (Eq. 2.3) to to account for spatiotemporal dynamics [36, 37, 38, 39, 79,

80, 81]. The dynamic lead field mapping expresses the relation between the cortical

source vector at any given time 𝑡 and the MEG/EEG measurements in the complete

experiment interval [y1,y2, . . . ,y𝑇 ], creating an observation model for the complete

time series of measurements that maintains the crucial signal-plus-noise structure

84



present in its static counterpart. Since the rank of the lead field matrix determines

the number of independent variables we can expect to recover from an individual

measurement in time, the rank of the dynamic lead field mapping determines the

number of variables we can recover in the dynamic case from the complete time series

of observations. Therefore, in a typical MRI-based source model with ∼ 5124 dipole

sources and ∼ 204 sensors, while the static (IND) or space-time separable (STS )

models can recover at most ∼ 4% (204/5124× 100) of the independent variables, the

approximate 4551/204 ≈ 20 fold rank improvement of the dynamic lead field implies

that we could recover up to ∼ 89% (4551/5124× 100) of the independent variables

when we consider the brain’s source activity as a spatiotemporal dynamic process.

While the static lead field matrix provides information about the source vector

from a single measurement at a given point in time, the dynamic lead field provides

additional information by accounting for past and future measurements that reflect

the trajectory followed by the dynamic cortical state. Along this trajectory, states

hidden within a “blind spot” of the static lead field at a given time can evolve into

a “visible” portion of the static lead field at some other time due to the brain’s high

level of connectivity. Since the dynamic lead field mapping explicitly describes how

the measurement at one time point contains information about the cortical state at

another time point, this mapping effectively shows how information can flow from

blind spots in the static lead field to more visible locations. In principle, depending

on the cortical connectivity and dynamics, it is then possible to access and poten-

tially estimate a much larger number of independent variables. Our work shows that

modeling the simplest spatiotemporal relationships could dramatically improve source

localization. Moreover, it suggests that more comprehensive models of connectivity

and spatiotemporal dynamics could provide even greater improvements.

We performed a sensitivity analysis of the dynamic lead field mapping to deter-

mine the degree to which different cortical areas produce detectable recordings as we

increased the number of measurements in time. This analysis showed that, in our spa-

tiotemporal dynamic paradigm, brain areas that are difficult to detect from a static

point of view, such as those with low sensitivity in troughs of sulci, insula, and inferior-
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frontal regions—“blind spots” as described above—become more accessible with the

addition of temporal measurements. Thus, activity within these “blind spots” be-

come accessible through their connection to more visible regions. This could explain

the improvements in MEG/EEG source localization accuracy obtained via algorithms

that explicitly model source dynamics with local cortical connections [34, 76].

We have generalized the development of the dynamic lead field mapping to include

arbitrary Gaussian source models using a projections approach. With this general-

ization, we performed a detailed analysis of two Gaussian source models commonly

used in the MEG/EEG inverse problem literature, namely the temporally indepen-

dent model (IND) and the space-time separable model (STS ). We showed that these

source models do not produce rank improvements in their respective observation

matrices as the number of temporal measurements increased, nor do they obtain sen-

sitivity gains in cortical “blind spots” of the static lead field. This finding suggests

that source models that either ignore dynamics or restrict the spatiotemporal source

structure do not improve with additional temporal measurements. This is consistent

with our previous discussion, since such source models do not account for dynamic

connections between blind and visible portions of the static lead field.

We envision a possible way in which our dynamic lead field construct could be

extended to more general source models, to potentially include non-Gaussian mod-

els or more realistic spatiotemporal neural source dynamics. In principle, this could

be achieved by taking techniques from control theory designed to analyze determin-

istic systems, and adapting them to characterize properties of stochastic dynami-

cal systems. In control theory, a basic question is to determine if different initial

states of a deterministic dynamical system necessarily produce different measure-

ments. When this is the case, the system is called observable, since the system’s

initial states can be distinguished based on measurements alone [55]. In our lin-

ear dynamic state-space model (Eqs. 2.2 and 2.3), for example, assuming that the

state input 𝜔𝑡 is a priori known and deterministic, and that the measurements are

noiseless (𝜀𝑡 = 0), effectively converts our model into a deterministic system. In this

deterministic case, an unknown initial state 𝛽0 of the system can be distinguished
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based on noiseless measurements when the rank of the so-called observability matrix

𝒪 = [X′, 𝜑F′X′, . . . , 𝜑𝑝−1F′𝑝−1X′]′ is equal to the dimension of the state (𝑝). We

can see here that the observability matrix 𝒪 is related to the mapping given by the

dynamic lead field from the state 𝛽𝑡 to only the present and future observations

[y𝑡,y𝑡+1, . . . ,y𝑡+𝑝−1] (this can be seen in Equation (2.11)). We therefore hypothesize

that the dynamic lead field concept developed here could be extended by incorporat-

ing insights from the analysis of observability in deterministic nonlinear systems [83],

and by applying the time-reversed representation of nonlinear stochastic dynamic

systems [84].

A long-standing conjecture in functional neuroimaging is that the integration of

different imaging modalities, such as MEG, EEG, fMRI, and DOT, could improve spa-

tiotemporal resolution, due to the complementary nature of the physics and physiol-

ogy underlying these modalities. Extensions of our analysis to multimodal neuroimag-

ing could provide a formal paradigm to characterize and maximize the spatiotemporal

resolution that can be obtained from multimodal data. For example, an immediate

multimodal effort could be aimed at including long-distance connections—both be-

tween distant cortical locations, and between cortex and low sensitivity subcortical

areas—by using anatomical connectivity derived from diffusion MRI [79]. We predict

that the inclusion of these long-distance connections in a stochastic dynamics frame-

work could have a dramatic impact on the number and location of source parameters

that could be recovered from MEG/EEG time series data. While the focus of our work

is in the field of neuroimaging, our dynamic lead field approach could have applica-

tion in other areas where an underlying spatiotemporal stochastic dynamical system

is observed through noisy serial measurements. Therefore, we hypothesize that our

approach could find applications in areas such as geophysics, network theory, and

epidemiology, where physical spatiotemporal dynamic relationships may exist, but

are not yet exploited in inverse solutions.

Our analysis and results have been focused on the number, spatial distribution,

and sensitivity of sources that can be recovered under a spatiotemporal dynamic

framework. In practical applications, model misspecification, as well as the signal-to-
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noise of the measurements, will likely limit performance gains to some extent below

the levels we have reported. However, the large improvements in rank and sensitiv-

ity that we have observed, even under a very simple spatiotemporal model, suggest

that substantial performance improvements would be achievable in practical source

localization applications. In future work, we will analyze source localization perfor-

mance under this spatiotemporal framework and characterize the influence of different

spatiotemporal model choices.

Due to the disparity between the number of unknown cortical sources and the

number of sensors, and the low sensitivity of MEG/EEG to deeper sources, accurate

source estimates are thought to be unattainable. In this paper, we have demonstrated

how source models that delineate the brain’s dynamic and spatial connectivity struc-

ture could dramatically improve MEG/EEG inverse solutions. Our work therefore

suggests a new way forward in this field, where information from neurophysiology

and neuroanatomy studies about brain connectivity and dynamics could be used to

guide the development of models of brain activity in functional neuroimaging. Given

the dramatic improvements we have observed under a very simple model, our hope

is that our results can inspire the development of more detailed models of spatiotem-

poral brain activity, and the use of these models as a fundamental component of

MEG/EEG source localization analyses.
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2.6.2 Data description and preprocessing

In our analysis, the lead field matrix X was computed with the MNE software using

an MRI-based boundary element model from a human subject [1, 77], with 𝑝 = 5124

dipole sources oriented normal to the cortical surface. This arrangement yielded an

average distance between nearest neighbors of ∼ 6.2 mm, resulting in a model that

is consistent with intracranial electrophysiology and neuroanatomy [36, 37, 38, 39].

Due to the difference in orders of magnitude and physical units in the elements of

the lead field matrix X corresponding to planar gradiometers and magnetometers, we

restricted our analysis to the 204 planar gradiometers of the Neuromag Vectorview

system at Massachusetts General Hospital. The F matrix was specified using the

nearest-neighbor dynamic formulation described by Equations (2.1) and (2.2), with

the stability parameter 𝜑 = 0.95. The state input covariance matrix Q was estimated

from mu-rhythm data from one subject using the dMAP-EM algorithm presented

in [76]. The mu-rhythm originates from motor and somatosensory cortices, and con-

sists of synchronous oscillations with 10 and 20-Hz components. Data were collected

from one subject using a 306-channel Neuromag Vectorview MEG system at the Mas-

sachusetts General Hospital. The signals were acquired at 601 Hz with a bandwidth

of 0.1 to 200 Hz, and downsampled to 204.8 Hz for subsequent analysis. In the STS

model, the elements for the temporal covariance matrix Γ were set as suggested in [27]:

𝛾𝑡±𝑘,𝑡 =
∑︀𝑇

𝑗=1 exp{−1/2[(𝑡± 𝑘 − 𝑗)2 + (𝑗 − 𝑡)2]Δ−2𝜓−2}, where Δ = 4 × 10−3 s and

𝜓 = 204.8 Hz.

2.6.3 The dynamic lead field mapping projects [y′1,y
′
2, . . . ,y

′
𝑇 ]
′

onto 𝛽𝑡

In this section we show that the observation model for the complete set of measure-

ments [y1,y2, . . . ,y𝑇 ] under the dynamic lead field mapping possesses the desired

signal plus noise structure in which the source vector at time 𝑡 is independent of the

noise term (Eq. 2.10). In order to do this, we will show that the matrices P𝑡±𝑘,𝑡 that

make up the blocks of the dynamic lead field mapping are indeed matrices projecting
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the corresponding measurement y𝑡±𝑘 onto the source vector 𝛽𝑡. Doing so would imply

that the dynamic lead field mapping achieves the desired independence condition.

We should first point to a few facts about the linear projection P𝑡±𝑘,𝑡𝛽𝑡 of the

measurement vector y𝑡±𝑘 onto the source vector 𝛽𝑡. By definition, the projection

error e𝑡±𝑘,𝑡 = y𝑡±𝑘 −P𝑡±𝑘,𝑡𝛽𝑡 is uncorrelated with 𝛽𝑡[55]:

E
[︀
(y𝑡±𝑘 −P𝑡±𝑘,𝑡𝛽𝑡)𝛽

′
𝑡

]︀
= 0. (2.21)

In addition, since y𝑡±𝑘 and 𝛽𝑡 are jointly Gaussian, the projection error e𝑡±𝑘,𝑡 and 𝛽𝑡

are also jointly Gaussian. Therefore, the projection error and the source vector are

uncorrelated and jointly Gaussian, and thus are independent. As a result, we can use

the definition of the projection error to express any measurement vector y𝑡±𝑘 as the

sum of the projection P𝑡±𝑘,𝑡𝛽𝑡 and projection error e𝑡±𝑘,𝑡:

y𝑡±𝑘 = P𝑡±𝑘,𝑡𝛽𝑡 + e𝑡±𝑘,𝑡.

If we do this for all values of 𝑘 we obtain an observation model for the complete time

series of measurements where the source vector 𝛽𝑡 is indeed independent of the noise

term [e′1,𝑡, e
′
2,𝑡, . . . , e

′
𝑇,𝑡]

′:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

...

y𝑡−1

y𝑡

y𝑡+1

...

y𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1,𝑡

...

P𝑡−1,𝑡

P𝑡,𝑡

P𝑡+1,𝑡

...

P𝑇,𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝛽𝑡

⏟  ⏞  
Signal

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1,𝑡
...

e𝑡−1,𝑡

e𝑡,𝑡

e𝑡+1,𝑡

...

e𝑇,𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

Noise

.

Therefore, if we show that the choices we made for the P𝑡±𝑘,𝑡 matrices for the dynamic

lead field mapping in Section 2.3.2, namely,
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P𝑡,𝑡 = X,

P𝑡+𝑘,𝑡 = 𝜑𝑘XF𝑘,

P𝑡−𝑘,𝑡 = 𝜑𝑘XF𝑘
𝑏 ,

satisfy the orthogonality condition (Eq. 2.21), it would follow that the signal and

noise portions in Equation (2.10) are independent.

In the case where the projection matrix corresponds to the present observation

(𝑘 = 0), we substitute Equation (2.3) in Equation (2.21), and note that setting

P𝑡,𝑡 = X achieves the desired orthogonality condition since the source vector 𝛽𝑡 is

independent of the measurement noise 𝜀𝑡:

E [(y𝑡 −P𝑡,𝑡𝛽𝑡)𝛽
′
𝑡] = E [(X𝛽𝑡 + 𝜀𝑡 −P𝑡,𝑡𝛽𝑡)𝛽

′
𝑡]

= E [𝜀𝑡𝛽
′
𝑡]

= 0.

To analyze the case where the measurement corresponds to a future observation,

we should first make note of two facts in relation to the source vector process. The first

is that, by definition, the input process to the source dynamics is independent across

time, i.e., 𝜔𝑡 is independent of 𝜔𝑡±𝑗 for 𝑗 ∈ [1, 2, . . .]. The second is that given the

recursive definition of the source process (Eq. 2.2), the source vector at a particular

time 𝑡 is a function of only the present input 𝜔𝑡 and past inputs 𝜔𝑡−𝑗, 𝑗 ∈ [1, 2, . . .].

Because of these two facts, the source vector a time 𝑡, 𝛽𝑡, is independent of the future

inputs 𝜔𝑡+𝑗, 𝑗 ∈ [1, 2, . . .].

With this result at hand, we proceed to deduce the future projection matrices

P𝑡+𝑘,𝑡, 𝑘 ∈ [1, 2, . . .] by using the forward iteration in Equation (2.5):

𝛽𝑡+𝑘 = 𝜑𝑘F𝑘𝛽𝑡 + (1− 𝜑2)1/2
∑︀𝑘

𝑗=1 𝜑
𝑘−𝑗F𝑘−𝑗𝜔𝑡+𝑗. We substitute Equations (2.3) in

Equation (2.21), then substitute Equation (2.5) in the obtained result, and note
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that by setting P𝑡+𝑘,𝑡 = 𝜑𝑘XF𝑘 we achieve the orthogonality condition since 𝛽𝑡 is

independent of both 𝜀𝑡+𝑘, and 𝜔𝑡+𝑗, 𝑗 ∈ [1, 2, . . .]:

E[(y𝑡+𝑘 −P𝑡+𝑘,𝑡𝛽𝑡)𝛽
′
𝑡] = E[(X𝛽𝑡+𝑘 + 𝜀𝑡+𝑘 −P𝑡+𝑘,𝑡𝛽𝑡)𝛽

′
𝑡]

= E[(𝜑𝑘XF𝑘𝛽𝑡 + (1− 𝜑2)1/2
𝑘∑︀

𝑗=1
𝜑𝑘−𝑗XF𝑘−𝑗𝜔𝑡+𝑗 + 𝜀𝑡+𝑘 −P𝑡+𝑘,𝑡𝛽𝑡)𝛽

′
𝑡]

= E[((1− 𝜑2)1/2
𝑘∑︀

𝑗=1
𝜑𝑘−𝑗XF𝑘−𝑗𝜔𝑡+𝑗 + 𝜀𝑡+𝑘)𝛽

′
𝑡]

= 0.

To analyze the past observations y𝑡−𝑘, 𝑘 ∈ [1, 2, . . .], we proceed similarly to the

case of the future projections but use instead the backwards Markovian representation

(Eq. 2.7) and its 𝑘-step past iteration (Eq. 2.8)4:

𝛽𝑡−𝑘 = 𝜑𝑘F𝑘
𝑏𝛽𝑡 + (1− 𝜑2)1/2

∑︀𝑘
𝑗=1 𝜑

𝑘−𝑗F𝑘−𝑗
𝑏 𝜔𝑏

𝑡−𝑗. We should note that in the back-

wards Markovian representation (Eq. 2.7), the source vector 𝛽𝑡 is a function of only

the present 𝜔𝑏
𝑡 and future inputs 𝜔𝑏

𝑡+𝑗, 𝑗 ∈ [1, 2, . . .]. In addition, given that the

backwards input process 𝜔𝑏
𝑡 is independent across time, in this equivalent represen-

tation the source vector 𝛽𝑡 is independent of the past inputs 𝜔𝑏
𝑡−𝑗, 𝑗 ∈ [1, 2, . . .].

Using this result, we can readily obtain the past projection matrices. We use Equa-

tions (2.3), (2.21), and (2.8) to deduce that by setting P𝑡−𝑘,𝑡 = 𝜑𝑘XF𝑘
𝑏 we obtain

the desired orthogonality condition since 𝛽𝑡 is independent of both 𝜀𝑡−𝑘, and 𝜔𝑏
𝑡−𝑗,

𝑗 ∈ [1, 2, . . .]:

4We should point out that directly reversing the time direction of the equation defining the
source spatiotemporal dynamics (Eq. 2.2), i.e., 𝛽𝑡−1 = 𝜑−1F−1𝛽𝑡 − 𝜑−1(1− 𝜑2)1/2F−1𝜔𝑡, instead
of using the backwards Markovian model does not yield the desired orthogonality condition.
This is because the 𝑘-step backwards iteration resulting from this direct time reversal, namely,
𝛽𝑡−𝑘 = 𝜑−𝑘F−𝑘𝛽𝑡 − (1− 𝜑2)1/2

∑︀𝑘−1
𝑗=0 𝜑

𝑗−𝑘F𝑗−𝑘𝜔𝑡−𝑗 , contains the terms 𝜔𝑡 and 𝜔𝑡−𝑗 which are
not independent of the source vector 𝛽𝑡.
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E[(y𝑡−𝑘 −P𝑡−𝑘,𝑡𝛽𝑡)𝛽
′
𝑡] = E[(X𝛽𝑡−𝑘 + 𝜀𝑡−𝑘 −P𝑡−𝑘,𝑡𝛽𝑡)𝛽

′
𝑡]

= E[(𝜑𝑘XF𝑘
𝑏𝛽𝑡 + (1− 𝜑2)1/2

𝑘∑︀
𝑗=1

𝜑𝑘−𝑗XF𝑘−𝑗
𝑏 𝜔𝑏

𝑡−𝑗 + 𝜀𝑡−𝑘 −P𝑡−𝑘,𝑡𝛽𝑡)𝛽
′
𝑡]

= E[((1− 𝜑2)1/2
𝑘∑︀

𝑗=1
𝜑𝑘−𝑗XF𝑘−𝑗

𝑏 𝜔𝑏
𝑡−𝑗 + 𝜀𝑡−𝑘)𝛽

′
𝑡]

= 0.
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Chapter 3

Spatial Sparsity, Long Range

Connectivity, and Dynamics in a

Multi-Scale Solution to the

MEG/EEG Inverse Problem

3.1 Abstract

MEG/EEG are important tools that non-invasively record brain function with mil-

lisecond temporal resolution, allowing us to study fast scale dynamics of brain activa-

tion. In order to fully grasp the power of these techniques, one needs to estimate the

cortical activity that generates these recordings, i.e., to solve the MEG/EEG inverse

problem. However, due to the biophysics of how the MEG/EEG signals are generated

as well as the fact that the number of sensors is much smaller that the number of

sources, this inverse problem is highly ill-posed and has no unique solution. Because

of this, source estimation methods need to include additional information about the

nature of the source activity. In this work we present a source localization method

that models source dynamics, local and long distance brain structural connections de-

rived from diffusion MRI, as well as spatial sparsity—we refer to this method as the
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Multi-Scale Kalman Filter based Group Subspace Pursuit algorithm. We show via

simulations and experimental data from a human subject the improvements in source

localization accuracy obtained using our method. Our fast algorithm is competitive

in term of computational speed, while greatly improves source estimation accuracy.

Our results show the great importance of proper modeling of activation dynamics and

brain structural connectivity, as well as algorithmic development, in the MEG/EEG

inverse problem. This result therefore suggests a way forward in MEG/EEG source

imaging in which detailed models of the brain’s structure and function can yield

significant improvements in source localization accuracy.

3.2 Introduction

The localization of current sources inside the brain from electromagnetic fields mea-

sured at the scalp surface alone is an ill-posed problem since it solution is generally

not unique. This is due to the fact that different source configurations can produce

identical measurements at the scalp [1]. In EEG/MEG brain imaging, the estimation

of current sources can be even more challenging since the sensitivity of the recording

device decays rapidly with the square of the distance from the sensor to the sources,

as well as due to the fact that the number of sensors is typically much smaller that the

number of discrete sources distributed across the brain tissue. However, incorporating

brain structural connectivity may provide a means to dramatically improve source lo-

calization. This is because source activity in areas that are more difficult to estimate

due to its orientation and distance to the sensors can be better inferred if they are con-

nected to sources in easier to estimate areas. Therefore, if brain connectivity could

be modeled properly, incorporating both short and long distance connections, this

approach could provide substantial improvements in source localization performance.

3.2.1 MEG/EEG measurement model

In a MEG/EEG experiment we record data on or above the scalp at a few hundred

sensors. This data is regularly sampled over a time interval. Typically, the experi-
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ment is repeated between 𝑚 = 50 and 𝑚 = 100 trials or epochs. In some cases, such

as in the analysis of resting state data or in the study of epilepsy, the trials cannot

be naturally repeated and we can only obtain a single trial. We define y
(𝑖)
𝑡 ∈ R𝑛 as

the measurement vector at time 𝑡 ∈ [1, . . . , 𝑇 ] and trial 𝑖 ∈ [1, . . . ,𝑚] in all measured

locations 𝑛 (∼ 300). The MEG/EEG measurements are generated by the postsynap-

tic currents in synchronously active neuronal populations across the brain’s cortices.

This process can be accurately modeled by a few thousand current dipoles uniformly

distributed over the cortical mantle and perpendicular to it [1]. We define 𝛽𝑗,𝑡 as

the current dipole at time 𝑡 and cortical location 𝑗 ∈ [1, . . . , 𝑝], where 𝑝 ∼ 5000,

and the source vector as 𝛽𝑡 = [𝛽1,𝑡, . . . , 𝛽𝑝,𝑡]
′. At any point in time 𝑡 and trial 𝑖, the

measurement and source vector are related via the linear model:

y
(𝑖)
𝑡 = X𝛽𝑡 + 𝜀

(𝑖)
𝑡 , (3.1)

where X ∈ R𝑛×𝑝 is the gain matrix that maps the source activity to the measured fields

and potentials. This matrix is obtained via a quasi-static approximation to Maxwell’s

equations using a boundary element model derived from high-resolution MRI [1, 54].

Without loss of generality, we can assume that our measurement model (Eq. 3.1) has

been spatially whitened, i.e., that the original raw data model ỹ(𝑖)
𝑡 = X̃𝛽𝑡 + �̃�

(𝑖)
𝑡 has

been pre-multiplied by the inverse of a matrix square root of the covariance of �̃�𝑡.

Therefore, we can assume that the noise vector 𝜀
(𝑖)
𝑡 has a zero mean and covariance

equal to the identity matrix. We further assume that 𝜀
(𝑖)
𝑡 is independent across time

as well as it is independent of the modeled signal X𝛽𝑡.

At each point in time 𝑡, the data is average over the 𝑚 trials or epochs to produce

an evoked response: ȳ𝑡 =
1
𝑚

∑︀𝑚
𝑖=1 y

(𝑖)
𝑡 . The evoked responses can thus be model via:

ȳ𝑡 = X𝛽𝑡 + 𝜀𝑡, (3.2)

where 𝜀𝑡 is the noise in the evoked response at time 𝑡, and has zero mean and covari-

ance equal to 1
𝑚
I.
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3.2.2 Long distance connections can reduce entropy of source

estimates

One way to incorporate structural connectivity of this kind in the MEG/EEG source

localization problem is to use a linear dynamical system:

𝛽𝑖,𝑡 = 𝑓𝑖,𝑖𝛽𝑖,𝑡−1⏟  ⏞  
Past activity

+
∑︁

𝑗∈𝒩𝑆ℎ𝑜𝑟𝑡(𝑖)

𝑓𝑖,𝑗𝛽𝑗,𝑡−1⏟  ⏞  
Short Distance Connections

+
∑︁

𝑗∈𝒩𝐿𝑜𝑛𝑔(𝑖)

𝑓𝑖,𝑗𝛽𝑗,𝑡−1⏟  ⏞  
Long Distance Connections

+ 𝜔𝑖,𝑡⏟ ⏞ 
Unaccounted factors

,

(3.3)

where 𝛽𝑖,𝑡 represents the activity of the 𝑖th dipole source at time 𝑡, the coefficients

𝑓𝑖,𝑗 indicate the strength of the spatiotemporal interactions between the 𝑖th and 𝑗th

dipoles, 𝒩𝑆ℎ𝑜𝑟𝑡(𝑖) and 𝒩𝐿𝑜𝑛𝑔(𝑖) are the set of close and distantly connected dipoles

to the 𝑖th source, and 𝜔𝑖,𝑡 is a white noise process driving the dynamics of the 𝑖th

source. We can readily write Equation 3.3 in vector form as 𝛽𝑡 = F𝛽𝑡−1 +𝜔𝑡, where

F is the feedback connectivity matrix in our model. In this work, we model the short

distance connections as those corresponding to nearest-neighbor sources. We then

model the long-distance connection as those corresponding to axonal bundles derived

from diffusion MRI (Figure 3-1, left panels).

The potential improvement of our proposed approach that includes long-distance

connection can be readily quantified in simulation studies. To do this we evaluated

the source localization accuracy using a dynamic model that includes: (1) nearest-

neighbor short distance connections (Figure 3-1, bottom right panel), and (2) the

long distance neuroanatomical connections that are thought to link the Default Mode

Network (DMN) [81, 85] (Figure 3-1, top right panel). We computed the MEG

gain matrix X using the Freesurfer and MNE software packages [52, 53, 54] using

high-resolution MRI from a human subject. The nearest-neighbor connectivity was

obtained from the MNE software, while the long distance connections were derived

from Freesurfer’s automatic cortical parcellation [86] by linking the cortical areas in

the DMN that have been show to be anatomically connected [81]. In each scenario,
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Figure 3-1: Long-distance and nearest-neighbor connectivity in the
MEG/EEG inverse problem. Anatomically derived local and long distance struc-
tural connections

we simulated the source activity using the autoregressive model in Equation 3.3 with

connectivity parameters (𝑓𝑖,𝑗, 𝑖 ̸= 𝑗) set equal to 0.45 divided by the number of neigh-

bors, and 𝑓𝑖,𝑖 = 0.45. In this way, the connections attempt to explain approximately

one half of the amplitude of the sources and the source history explains the other

half. At the same time, since the largest eigenvalue of F is less than one we obtain

stable dynamics. We then generated the MEG time series by mapping the simulated

source activity via the gain matrix X and added noise to achieve a signal-to-noise

ratio of approximately 5. At last, under each model parametrization, we estimated

the source activity using the Kalman Filter [56].

In Figure 3-2 we show the reduction in the uncertainty of the estimated dipole

sources due to the inclusion of both types of connections by computing the entropy

of the source estimates. The entropy is a widely used measure that combines the

uncertainty or noise in a group of estimates. In our case, high entropy implies that
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the source estimates have high noise and large confidence intervals (Figure 3-2, top left

panel), while a low entropy values indicate more accurate source estimates (Figure 3-2,

bottom left panel). We specifically computed the entropy of the posterior distribution

of the source vector 𝛽𝑡 given the MEG measurements y𝑡 in the time interval 0 ≤ 𝑡 ≤ 𝑡𝑒

while we varied the feedback connectivity matrix (Figure 3-2, right panel):

𝑆(F) = E
[︀
ln Pr(𝛽𝑡𝑒|y𝑡, 0 ≤ 𝑡 ≤ 𝑡𝑒)

]︀
(3.4)

where the expectation operation E is computed with respect the posterior distribu-

tion, and 𝑡𝑒 is the time where the posterior distribution reaches an equilibrium. We

first computed the entropy for the model that only includes nearest-neighbor con-

nections 𝑆(F𝑁𝑁), and then evaluated how the entropy decreased while sequentially

adding long distance DMN connection. We found that the entropy decreases when

the connections that link cortical areas within the left hemisphere in the DMN (green

circles) are added to the nearest-neighbor connections already present in the model.

In addition, we found that the entropy was further reduced when we also included

the inter-hemispheric connection (blue circle, genu of corpus callosum). Lastly, we

found that the entropy reached its lowest value when we included the remaining DMN

long distance connections to the model (red circles, right hemisphere). Interestingly,

randomly adding edges to the nearest-neighbor connectivity model could reduce the

entropy (dashed line, diamond marks). However, in this randomly connected model,

thousand of added edges were necessary to reduce the entropy to the level observed

in the DMN, which consists only of 5 connections. Furthermore, we found that the

entropy increases when we modeled only the spatial correlations emerging from the

connectivity model but eliminated the temporal dynamics, yielding a prior model with

spatially correlations equivalent to those of the spatially connected model (dashed

line).

This preliminary result indicates that the inclusion of well-known local and long

distance neuroanatomic connections in a dynamical systems framework significantly

improves source localization accuracy in the EEG/MEG brain imaging. As suggested
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Figure 3-2: Reduction in source estimation entropy by including dMRI long-
distance connections. The left panels show how high entropy estimates result in
noisier estimates with larger confidence intervals. The right panel shows the decrease
in the entropy of the estimate by the inclusion of short and long distance anatomical
connection that support the Default Mode Network

by the theoretical analysis presented in Chapter 2, this improvement cannot be ex-

plained alone by the addition of connections (random connection model) or by the

inclusion of spatial correlations (temporally independent model), but by the inter-

action of underlying spatial connections and dynamics. Therefore, in the following

sections we will present a dynamic source localization algorithm, that not only in-

cludes these types of connections, but also exploits the spatially sparse nature of

cortical activation and is orders of magnitude faster than a standard dynamic source

localization algorithm such as dMAP-EM (See [76]).
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3.3 Dimension reduction at different spatial scales

using anatomically defined cortical parcellations

and principal components analysis

A major challenge faced when developing accurate source estimation algorithms for

MEG/EEG data (Eq. 3.2) is that the number of sensors is about one order of mag-

nitude smaller than the number of sources to be estimated (𝑛 << 𝑝). In the last few

years—and thanks to recent developments in the field of high-dimensional statistics

and compressed sensing [87, 88]—several source localization algorithms that explicitly

models spatial sparsity have been proposed [21, 89, 75, 90]. These algorithms exploit

the fact that, in most MEG/EEG experiments, the cortical areas that are active

and effectively relate to the given experimental paradigm are indeed spatially sparse.

These sparse active areas are usually formed by small set of focal active dipoles, or

by small group of active cortical areas of different sizes. Based on this insight, these

sparse source localization algorithms are design to search for sparse cortical activity

of a relative size 𝑎 much smaller that the number of dipoles (𝑎 << 𝑝).

The guarantees for these sparse modeling algorithms in term of selection of the

correct variables, as well as to the reconstruction of the noise-free measured signal,

are essentially tied to the correlations between the regressors, i.e, the columns of the

measurement matrix X [87, 88]. One can imagine that it would difficult, or perhaps

impossible, to correctly select a few truly active sources if their lead field vectors

(columns of X) where highly correlated with the lead field vectors of sources that are

not active. These scenario can often occur in MEG/EEG when a group of sources

located near each other are simultaneously active, or when only a portion of these

nearby sources are active. Because of this, sparse reconstruction algorithms that work

directly with the lead field matrix X do not perform well in those scenarios, and are

thus better suited to experiments where the activation is thought to be generated by

a few focal areas of activity.

To overcome this challenge, a recent approach in the MEG/EEG literature has
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Coarser Scales Finer Scales

Multi-Scale Algorithm on Parcelations Based on Vononoi Regions

Figure 3-3: Multi-Scale analysis using Voronoi regions. The Multi-Scale algo-
rithm traverses a hierarchy of spatial scales. In each scale, it produces an estimate
that is then refined in the next scale. These scales are defined as the Voronoi regions
that sequentially parcellate cortex. From left to right, the parcellations contain 84,
324, and 1284 regions.

been to both model and estimate sparse cortical activity at several spatial scales [91].

The spatial scales range from a coarser scale comprised of less than a hundred cortical

areas to a finer spatial scale made of about a thousand regions. These scales are

constructed as Voronoi regions that sequentially subdivide or parcellate cortex. The

proposed algorithm traverses the hierarchy of scales, and in each scale produces a

refined estimate of what was obtained in the precious coarser scale (Figure 3-3).

Importantly, these algorithm operate on a source space of reduced dimension obtained

in a manner similar to principal components regression. Specifically, at a given scale

𝑠, the cortex is parcellated into |𝑠| regions or areas (in this case the operator | · |

indicates the number of regions and not the absolute value) yielding the observation

model:

ȳ𝑡 =

|𝑠|∑︁
𝑖=1

X
(𝑠)
𝑖 𝛽

(𝑠)
𝑖,𝑡 + 𝜀𝑡, (3.5)

where X
(𝑠)
𝑖 and 𝛽

(𝑠)
𝑖,𝑡 are the columns of the lead field matrix X and the components of

the source vector 𝛽𝑡 corresponding to the 𝑖th cortical region at scale 𝑠, respectively.

To obtain a model of reduced dimension, it is common to use the low rank ap-

proximation of X(𝑠)
𝑖 given by its first few principal components [92, 91]. Concretely,
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if U(𝑠)
𝑖 diag(d

(𝑠)
𝑖 )V

(𝑠)
𝑖

′
is the singular value decomposition of X(𝑠)

𝑖 , the measured signal

coming from the 𝑖th cortical area can be accurately approximated by:

X
(𝑠)
𝑖 𝛽

(𝑠)
𝑖,𝑡 ≈ Z

(𝑠)
𝑖 𝜃

(𝑠)
𝑖,𝑡 , (3.6)

where

Z
(𝑠)
𝑖 = [u

(𝑠)
1,𝑖 ,u

(𝑠)
2,𝑖 , . . . ,u

(𝑠)

𝑝
(𝑠)
𝑖 ,𝑖

]diag(𝑑
(𝑠)
1,𝑖 , 𝑑

(𝑠)
2,𝑖 , . . . , 𝑑

(𝑠)

𝑝
(𝑠)
𝑖 ,𝑖

) (3.7)

is the new regression (gain) matrix composed of the first 𝑝(𝑠)𝑖 principal component

of X
(𝑠)
𝑖 , and 𝜃

(𝑠)
𝑖,𝑡 ∈ R𝑝

(𝑠)
𝑖 are the parameters in the 𝑖th cortical area that we need

to estimate. To make this approximation accurate, it is necessary to select enough

principal components. To this end, it is recommended to select 𝑝(𝑠)𝑖 such that the

representation accuracy exceeds 90%:

𝑅
(𝑠)
𝑖

2
=

∑︀𝑝
(𝑠)
𝑖

𝑗=1 𝑑
(𝑠)
𝑗,𝑖

2∑︀
all 𝑗 𝑑

(𝑠)
𝑗,𝑖

2 > 0.9. (3.8)

As a result of the dimension reduction, as well as the representation over cortical

areas, the measurement model becomes:

ȳ𝑡 =

|𝑠|∑︁
𝑖=1

Z
(𝑠)
𝑖 𝜃

(𝑠)
𝑖,𝑡 + 𝜀𝑡. (3.9)

We should note that this representation not only reduces the dimensionality of the

problem at any given scale, but also automatically ameliorates the issues related

to the high correlations between the lead field vectors. This is because, in the new

representation, the columns of X(𝑠)
𝑖 , which represent nearby sources in a given cortical

area, are now represented by a set of orthogonal vectors in Z
(𝑠)
𝑖 .

In contrast to the parcellations based on Voronio regions used in [91], we propose

to used the hierarchy of gyral based anatomically defined parcellations 3-4 developed

by the Connectome Mapper [93]. This parcellation is obtained by sequentially sub-

dividing freesurfer ’s parcellation [94]. One important difference between the Voronoi
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Coarser Scales Finer Scales

Multi-Scale Algorithm on Gyral-Based Anatomical Parcelation

Figure 3-4: Multi-Scale analysis using gyral-based parcellation. The Multi-
Scale traverses a hierarchy of spatial scales, and it sequentially refines the estimates
found in a scale based on what it estimated in the previous coarser scale. These scales
are defined via the sequential subdivision of a gyral-based anatomical parcellation.
From left to right, the parcellations contain 72, 118, 219, and 452 regions.

based parcellations and the ones we use in the dynamic Multi-Scale analysis, is that

source estimates derived from the latter could benefit from the naturally introduced

anatomical constraints. Furthermore, since these gyral-based anatomical parcella-

tions can be mapped between different subjects, they could provide a way to combine

source localization results between different subjects.

3.4 Dynamic and sparse source estimation with the

Kalman Filter based Group Subspace Pursuit al-

gorithm (KF-GSP)

Converging lines of evidence suggest that dynamics are a central feature of brain func-

tion [40, 41, 42, 43, 44, 45, 46, 47]. Because of this, algorithms for source localization

that explicitly model dynamics have been shown to dramatically improve source esti-

mates since they attempt to mimic those spatiotemporal interactions [34, 35, 76](See

Chapters 1 and 2 for detailed analysis and discussion). While some of these algo-

rithms can yield spatially sparse source estimates [76], they do not explicitly model

spatial sparsity nor do they take advantage of the fast algorithms and optimization

techniques that are generally used in the high-dimensional and sparse modeling do-
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mains. On the other hand, the fast techniques used for sparse source localization,

such as [91], do not account for the source dynamics that are thought to be central

to accurately model brain function.

Because of this, in this section we present a novel algorithm for dynamic and sparse

source localization that we call the Kalman Filter based Group Subspace Pursuit

algorithm (KF-GSP). This greedy algorithm form the basis for a Multi-Scale source

localization analysis similar to the one presented in [91]. Specifically, the KF-GSP

algorithm is used at each spatial scale 𝑠 to estimate the brain’s source activity. The

algorithm is first applied in the coarsest spatial scale 𝑠 = 1 (Figure 3-4, left-most

panel) and takes the whole cortical mantle as candidate region to produce the source

estimates. These estimates in turn define the candidate regions that the KF-GSP

algorithm will consider in the next scale. This process is repeated until the finest

spatial scale in reached (Figure 3-4, right-most panel). The details of how the

algorithm traverses through the spatial scales are described in Section 3.5

At any given scale 𝑠, using the candidate areas 𝒞𝑠 defined in the previous scale, the

KF-GSP algorithm takes the reduced model corresponding to the candidate areas:

ȳ𝑡 =
∑︁
𝑖∈𝒞𝑠

Z
(𝑠)
𝑖 𝜃

(𝑠)
𝑖,𝑡 + 𝜀𝑡. (3.10)

To simplify our notation, we will get rid or the reference to the scale, the candidate

regions, and the summation in Equation (3.10) and compactly write it as: ȳ𝑡 =

Z𝜃𝑡+𝜀𝑡. The algorithm is similar to the Subspace Pursuit (SP) and Ridge-Regression

SP algorithms [95, 91] in that it is made of 4 main steps: 1) identification, 2) merging

and estimation, 3) active set pruning, and 4) residual update. Our KF-GSP algorithm,

however, performs each of these steps in a different way.

The algorithm is given a desired number of active variables 𝑎, a predefined cor-

relation history and smoothness parameter 𝜑, and an estimate of the inverse of the

power signal-to-noise of the data 𝜆 = 1/SNR2. It is then initialized (𝑖 = 0) with an

empty active set 𝒜𝑖 = {}, source parameter estimates set equal to zero, the residual

equal to the data, and the residual sum of squares equal to the sum of square of the
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data (𝑅𝑆𝑆𝑖 =
∑︀𝑇

𝑡=1 ||ȳ𝑡||22). Specifically, for each 𝑡 ∈ [1, . . . 𝑇 ]:

�̂�𝑡 = 0

�̂�𝑡 = ȳ𝑡. (3.11)

Then the algorithm iterates (𝑖 = 0, 1, . . . ) through the 4 steps (See Alg. alg:kfgsp

for a summary). First, is the identification step. The idea of this step is to use a

computationally inexpensive technique to determine which variables can explain the

current residual through time. To do this, we compute the correlation between each

regressor and the residual at every point in time, and then square it:

𝑟2𝑗,𝑡 = (z′𝑗 �̂�𝑡)
2. (3.12)

We should point out that in the case that the regressors have unit norm, this quantity

can be interpreted as a scaled coefficient of determination for regressing each variable

independently on the residuals through time. We then average the 𝑟2𝑗,𝑡 values through

time to obtain the averaged residual square correlation:

𝑟2𝑗 =
1

𝑇

𝑇∑︁
𝑡=1

𝑟2𝑗,𝑡. (3.13)

The algorithm then selects the set of size 𝑎 with the variables 𝑗 that have the

largest averaged residual square correlation, and merges these to the current active

set 𝒜𝑖:

ℳ̂ = 𝒜𝑖 ∪ {set of size 𝑎 with the variables 𝑗 with the largest 𝑟2𝑗}. (3.14)

Therefore, in the identification step we select the 𝑎 variables that better explain

the current residual—as measured by their correlation to the regressors—giving more

importance to the residuals through time (�̂�𝑡) and regressors (z𝑗) whose magnitude
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Algorithm 4 The Kalman Filter in Information Form
Inputs: {ȳ𝑡}𝑇𝑡=1,Z,𝒮, 𝜑, 𝜆
Σ̂𝒮 ← Z′

𝒮Z𝒮/𝑛 ◁ Initialization
𝜃0|0 ← 0

V0|0 ←
(︁

𝜆tr(Σ̂𝒮)
𝑛

)︁−1

I

for 𝑡 = 1, . . . 𝑇 do ◁ Kalman’s Recursion in Information Form
𝜃𝑡|𝑡−1 ← 𝜑𝜃𝑡−1|𝑡−1

V𝑡|𝑡−1 ← 𝜑2V𝑡−1|𝑡−1 +
(1−𝜑2)

𝜆tr(Σ̂𝒮)/𝑛
I

V𝑡|𝑡 ←
(︁
V−1

𝑡|𝑡−1 + Σ̂𝒮

)︁−1

𝜃𝑡|𝑡 ← 𝜃𝑡|𝑡−1 +
1
𝑛
V𝑡|𝑡Z

′
𝒮
(︀
ȳ𝑡 − Z𝒮𝜃𝑡|𝑡−1

)︀
end for
Outputs: {𝜃𝑡|𝑡}𝑇𝑡=1

is larger. We should emphasize that even though the set of variables 𝑗 can be large,

the computations involved in this step are inexpensive (𝑝𝑇 inner product of vectors

of size 𝑛 ∼ 300).

Then the algorithm uses the Kalman Filter on the current merged set ℳ̂ to obtain

a new estimate of the parameters �̂�𝑡. Specifically, for 𝑡 ∈ [1, . . . 𝑇 ] (Alg. 4):

{�̂�ℳ̂,𝑡}
𝑇
𝑡=1 = KalmanFilterInformationForm({ȳ𝑡}𝑇𝑡=1,Z,ℳ̂, 𝜑, 𝜆). (3.15)

Since the size of the current merged set ℳ̂ is equal to 2𝑎, the algorithm then

performs a pruning step to pick the best 𝑎 variables in the current merged set. To

do this, from the current estimate it selects the variables with the 𝑎 largest squared

sum through time. That is,

𝑖 = 𝑖+ 1

𝒜𝑖 = {𝑗 ∈ ℳ̂ : 𝜃2𝑗 is one of the 𝑎 largest variables}, (3.16)

where
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𝜃2𝑗 =
1

𝑇

𝑇∑︁
𝑡=1

𝜃2𝑗,𝑡. (3.17)

At this point, the algorithm has obtained an updated active set of the desired size

𝑎. However, to check for convergence as well as to obtain a residual that reflects this

pruned active set, we need to perform an additional Kalman Filtering step (Alg. 4).

We should note that, in comparison to the previous Kalman Filter step, this time the

Kalman recursion is executed over a set of 𝑎 variables:

{�̂�𝒜𝑖,𝑡}
𝑇
𝑡=1 = KalmanFilterInformationForm({ȳ𝑡}𝑇𝑡=1,Z,𝒜𝑖, 𝜑, 𝜆). (3.18)

With this updated estimate, the algorithm then computes the residual (𝑡 ∈ [1, . . . , 𝑇 ]),

�̂�𝑡 = ȳ𝑡 − Z𝒜𝑖�̂�𝒜𝑖,𝑡, (3.19)

yielding the updated residual sum of squares

𝑅𝑆𝑆𝑖 =
𝑇∑︁
𝑡=1

||�̂�𝑡||22. (3.20)

The last step of the iteration consist of checking if the residual sum of squares did

not decrease in relation to the previous iteration. If this is the case, the algorithm

stops and returns the Kalman Filter estimate and active set of size 𝑎 corresponding

to the previous iteration. If not, the algorithm goes to the beginning to perform an

additional iteration (Eq. 3.12). The KF-GSP procedure is summarized in Algorithm 5.

We should note that this algorithm is fast in practice since the steps involving

the more computationally costly Kalman Filter are performed on active set of less

than 100 variables. At the same time, the identification step involving the complete

set of variables is computationally inexpensive. This is because it consists of several

independent inner product computations. Lastly, it is worth emphasizing that the

Kalman Filter, over any set 𝒮, explicitly solves the following optimization problem

for every 𝑡 ∈ [1, . . . , 𝑇 ]:
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Algorithm 5 The Kalman Filter Group Subspace Pursuit
Inputs: {ȳ𝑡}𝑇𝑡=1,Z, 𝜑, 𝜆, 𝑎
Initialization:
𝑖← 0
𝒜(𝑖) ← {}
�̂�𝑡 ← 0
�̂�𝑡 ← ȳ𝑡

𝑅𝑆𝑆𝑖 ←
∑︀𝑇

𝑡=1 ||�̂�𝑡||22
repeat

Identification:
for 𝑗 = 1, . . . , 𝑝 do

𝑟2𝑗 ← 1
𝑇

∑︀𝑇
𝑡=1(z

′
𝑗 �̂�𝑡)

2

end for
ℐ ← {set of size 𝑎 with the variables 𝑗 with the largest 𝑟2𝑗}

Merging and estimation:
ℳ̂ ← 𝒜𝑖 ∪ ℐ
{�̂�ℳ̂,𝑡}𝑇𝑡=1 ← KalmanFilterInformationForm({ȳ𝑡}𝑇𝑡=1,Z,ℳ̂, 𝜑, 𝜆) ◁ Alg. 4
𝑖← 𝑖+ 1
for 𝑗 ∈ℳ do

𝜃2𝑗 ← 1
𝑇

∑︀𝑇
𝑡=1 𝜃

2
𝑗,𝑡

end for
Active set pruning and re-estimation:
𝒜𝑖 ← {𝑗 ∈ ℳ̂ : 𝜃2𝑗 is one of the 𝑎 largest variables}
{�̂�𝒜𝑖,𝑡}𝑇𝑡=1 ← KalmanFilterInformationForm({ȳ𝑡}𝑡𝑡=1,Z,𝒜𝑖, 𝜑, 𝜆) ◁ Alg. 4

Residual update:
�̂�𝑡 ← ȳ𝑡 − Z𝒜𝑖�̂�𝒜𝑖,𝑡

𝑅𝑆𝑆𝑖 ←
∑︀𝑇

𝑡=1 ||�̂�𝑡||22
until 𝑅𝑆𝑆𝑖 > 𝑅𝑆𝑆𝑖−1

�̂�∖𝒜𝑖−1,𝑡 ← 0

Outputs: �̂�𝒜𝑖−1,𝑡�̂�∖𝒜𝑖−1,𝑡

min
{𝜃𝒮,𝜏}𝑡𝜏=1

1

𝑛

𝑡∑︁
𝜏=1

||ȳ𝜏−Z𝒜𝜃𝒮,𝜏 ||22+
𝜆tr(Σ̂𝒮)

(1− 𝜑2)𝑛

𝑡∑︁
𝜏=2

||𝜃𝒮,𝜏−𝜑𝜃𝒮,𝜏−1||22+
𝜆tr(Σ̂𝒮)

𝑛
||𝜃𝒮,1||22, (3.21)

where Σ̂𝒮 = Z′
𝒮Z𝒮/𝑛 is the sample correlation of the considered regressors. It is im-

portant to note that the Kalman Filter recursively solves this optimization problems

in a fast manner.
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3.5 Linking spatial scales using local and long-range

connectivity derived from diffusion MRI

In order to perform the Multi-Scale analysis, once we have obtained an estimate of

the spatially sparse source activity with the KS-GSP algorithm over a given scale

𝑠, as well as the corresponding set of active cortical regions, we need to define the

candidate regions that will be considered in the following spatial scale (𝑠 + 1). The

approach used in [91] is to set as candidate regions those that match the current set

of active cortical regions as well as their nearest-neighboring regions. We illustrate

this process in the bottom panel of Figure 3-5. If a hypothetical active region is

active in a scale 𝑠 (solid orange), the candidate regions that the next scale considers

are the light orange areas as well as the orange active regions. We can imagine that

in a MEG/EEG experiment, if a cortical region is active, and it is connected to a

neighboring region, it is possible that the second region is also active. Therefore, this

strategy can correct for those cases in which the estimated active regions misses some

of their nearest neighbors.

However, it is also possible to add distant areas that are structurally connected via

white matter bundles, such as those that can be estimated from diffusion MRI(Fig.

3-1, left). We illustrate how the process of adding dMRI connected regions would

work in the top panel of Figure 3-5. In this case, if a hypothetical active region is

active in a scale 𝑠 (solid orange), the candidate regions that the next scale considers

are the light orange areas as well as the orange active regions. In contrast to the

nearest-neighbor strategy, we can see that the diffusion MRI connected regions can

span both hemispheres. As we saw in Section 3.2.2, the inclusion of such long distance

connections can greatly reduce the source estimation error (entropy). In addition, a

reason why this might improve the quality of our source estimates comes from neuro-

science literature using other brain imaging modalities. Specifically, recent imaging

studies provide evidence linking the brain’s structural connectivity with its functional

activation. For instance, structural connectivity derived from diffusion MRI exhibits

a strong correspondence with resting-state fMRI connectivity[79], and have been used
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Nearest Neighbor Short Distance Connections

dMRI-Based Long and Short Distance Connections

Figure 3-5: Linking spatial scales with nearest-neighbor connections and
connectivity derived from dMRI. The top panels show the nearest neighbor
regions of a cortical patch in the left hemisphere of the inferior frontal cortex (orange).
The bottom panels show the distantly connected regions (derived from dMRI) of the
same inferior frontal patch.

to predict resting-state functional connectivity[80] as well as fMRI activation in ex-

perimental task conditions[96]. This indicates that structural connectivity does carry

information about functional activation and thus suggest that a Multi-Scale source

localization approach could benefit from adding these distantly connected regions.

We propose a Multi-Scale approach that adds these two kinds of connected areas—

the nearest-neighbors as well as distant regions that are structurally connected. We

call the resulting algorithm the Multi-Scale KF-GSP (MS-KF-GSP). This algorithm

first estimates activity in the coarsest scale (𝑠 = 1) via the KF-GSP algorithm by

searching for the 𝑎𝑠 regressor vectors that best explain the data. With the estimated

source parameters and active regions, the algorithm then moves to the following finer
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scale 𝑠+1. To do this, it determines which areas in the current parcellations correpond

to the previously found active areas. Next, it add the regions that are connected to

these active areas via diffusion MRI as well as the nearest-neighbor areas. This then

forms the current set of candidate areas. The KF-GSP algorithm is then used to

estimate the active source parameters in this candidate set. This process is repeated

as the Multi-Scale analysis traverses through the spatial scales, until it reaches the

finest scale (Fig. 3-6).

3.6 Model selection and hyper-parameter tunning

via 𝐾-fold cross-validation

Source estimate obtained with the MS-KF-GSP algorithm depend on two sets of

parameters: The number of active regions in each spatial scale 𝑎𝑠 and the correlation

history parameter 𝜑 that determines the temporal smoothness of source estimates.

These parameters can be automatically selected from data in a principled way using

𝐾-fold cross-validation[97]. 𝐾-fold cross-validation is a general method for model

selection and hyper-parameter tunning. It works by splitting the data into 𝐾 parts

of approximately equal size. Then, for a given combination of the hyper-parameter,

the model or algorithm is fitted to the data with the 𝑗th partition of the data left

aside. This process is repeated leaving out each of the 𝐾 partitions. Then, each of

the 𝐾 fitted models is evaluated against the corresponding partition that was left

out using a loss function, such as the deviance from a statistical model, and the

results are averaged over the 𝐾 partitions to produce a cross-validation (CV) score.

This technique has been effectively used in several data analysis application, and

most importantly, it has been shown that it is a generalization of methods for model

selection such as Akaike’s Information Criterion (AIC) [98].

In MEG/EEG analyses, 𝐾-fold cross-validation has not yet been used. This is

probably because there is not an immediately natural way to partition the data into

sets that are statistically independent. Specifically, if one leaves a portion of the time
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Activation Path of Multi-Scale Algorithm

Figure 3-6: Activation path of Multi-Scale algorithm. The top panels show in
green a hypothetical set of regions that the Multi-Scale algorithm finds active. As
the algorithm traverses the spatial scales, from coarser (top) to finer (bottom) scales,
it successively refines the the extent of the active areas.

samples in an evoked response ȳ𝑡 or some of the MEG/EEG channels aside to perform

the cross validation technique, the results might not be reliable. This is because the

measured evoked responses across time and space are indeed highly dependent. One

way to overcome this issue is to perform the partition of the data over the trials or

epochs in an evoked response study. A reason why this approach could perform well

is because, conditioning or fixing the source activity and for a given time instant 𝑡,
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the measurement of a trial 𝑖 is likely to be independent from a measurement in a

different trial. The premise about the independence of the trials constitute the basis

for averaging trials to obtain evoked responses.

In practice, the sizes of the active set 𝑎𝑠 in each scale that we would like to evaluate

range from 1 to 50. Because of this, it would be computationally prohibitive to

perform 𝐾-fold cross-validation over 3 scales, since this would require the evaluation

of the ∼ 503 combination of parameters. Therefore, we propose to define a single

parameter that encompasses the sparsity levels throughout all scales. To do this,

we use the following simplification. If in any given scale, consisting of 𝑝𝑠 candidate

regressors (i.e., the number of columns in Z in the candidate set), the number of

regressors necessary to explain the data is 𝑎𝑠, then the relative number of degrees

of freedom used by the scale is df = 𝑎𝑠/𝑝𝑠. It might then be desirable to fix 𝑑𝑓

through the scales. This is because, as the algorithms goes from a coarser scale to

a finer scale, the number of candidate regressors increase due to the fact that the

number of modes or principal components necessary to approximate the the lead field

matrices in the parcellation increases. Then, this might make it necessary to adjust

𝑎𝑠 accordingly to allow the model to match the expressive power across the different

scales. This heuristic, beside working well in practice, is effectively similar to the

doubling heuristic proposed in [91].

To determine the hyper-parameters in our algorithm we propose the following

𝐾-fold cross validation scheme. The MEG/EEG signals are measured in 𝑚 trials

or epochs. We should recall that the measurement at time 𝑡 and trial 𝑖 is given by

Equation (3.1) (y(𝑖)
𝑡 = X𝛽𝑡+𝜀

(𝑖)
𝑡 , 𝑖 ∈ [1, . . . ,𝑚]). We randomly partition the 𝑚 trials

into 𝐾 groups of approximately equal size. Then, we compute an evoked response

leaving out each group of trials 𝒢𝑗 (𝑗 ∈ [1, . . . , 𝐾]) one at the time. We then use the

MS-KF-GSP algorithm to estimate the source activity until we reach the estimates

in the finer spatial scale �̂�
∖𝒢𝑗

𝑡 . With the estimated activity, we produce the predicted

evoked response on the sensor space as Z�̂�
∖𝒢𝑗

𝑡 . At last, we produce the cross-validation

score:
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𝐶𝑉 (df, 𝜆) =
1

𝑚𝑛𝑇

𝐾∑︁
𝑗=1

∑︁
𝑖∈𝒢𝑗

𝑇∑︁
𝑡=1

||y(𝑖)
𝑡 − Z�̂�

∖𝒢𝑗

𝑡 ||22. (3.22)

3.7 Data description and preprocessing

In order to evaluate the proposed algorithm, whole head MEG data was recorded

from a human subject using the 306-channel Neuromag Vectorview MEG system at

Massachusetts General Hospital. The data was sampled at 1 kHz and band pass

filter between 1 and 40 Hz. The gain matrix X was computed from the patient’s

high-resolution MRI using a 3-layer boundary element model with the mne-python

package[99], the MNE software [1, 54], and the freesurfer software[52, 53]. The al-

gorithm for multi-scale source localization (MS-KF-GSP) was coded in the Python

programming language.

The MEG experimental paradigm consisted of a semantic decision task in which

160 English nouns were visually presented to the subject. The subject were asked to

decide if the presented words were concrete or abstract, and to respond accordingly

using different button presses. Each word was presented for 1 second, and the inter-

stimulus interval was 2 seconds. The total recording time of ∼ 8 minutes. The epochs

(trials) were visually inspected for artifact resulting in 𝑚 = 105 trials.

Diffusion MRI data was collected from the same subject. This data was process

with the Connectome Mapper[93] using a diffusion tensor model and deterministc

streamlining algorithm to produce connectivity matrices corresponding to the 4 spa-

tial scales analyzed by our algorithm. In our algorithms, we consider two cortical

region in a given parcellation to be connected if they are connected by any streamline

fiber.

3.8 Cross-validation results

We used the proposed k-fold cross validation technique for model selection purposes,

as well as to evaluate contribution of the connectivity information derived from diffu-
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sion MRI in improving source estimates. Figure 3-7 show the 𝐾-fold cross-validation

results. In general, it is recommended that 𝐾 is set equal to 5 or 10[97]. We chose

𝐾 = 5 as this seemed to provide estimates of the prediction error (𝐶𝑉 ) scores with less

variability. The results that include both the nearest-neighbor as well as the connec-

tome information (dMRI) are presented as solid lines. The dashed lines indicate that

only nearest neighbor connectivity is included. We evaluated the sparsity parameter

𝑎1 on a grid of values ranging from 10 to 50. We evaluated the temporal smoothness

parameter 𝜑 taking the values 0.5 and 0.75. The results form cross-validation suggest

that the inclusion of long distance connectome (dMRI) information yields smaller

values of 𝐶𝑉 scores as well as more parsimonious models. Specifically, the inclusion

of dMRI connectivity allow the models to achieve a small prediction error (𝐶𝑉 score)

at a smaller sparsity level. In the case of the smoothness parameter 𝜑, it is difficult

to appreciate a difference between the evaluated smoothness parameters. The effect

of this parameter is appears more difficult to disambiguate.

3.9 Localization of language processing network

We estimated cortical activity using the MEG data described in Section 3.7 to study

the language networks involved in the semantic decision task. The source estimates

were obtained using a time interval between 250−550 ms after stimulus. This interval

was selected because the language network areas are prominently active during this

period of time. The sparsity parameter 𝑎1 was selected via 5-fold cross-validation as

described in Section 3.8. Specifically, for the analysis that contains the connectome

dMRI information, the sparsity parameter found via cross-validation was 𝑎1 = 17. In

the case where the algorithm only uses nearest neighbor information, the parameter

found was 𝑎1 = 25. Since cross-validation results for the parameter 𝜑 were not

conclusive, we chose to set 𝜑 = 0.75. Doing so produced smoother and less noisy

cross-validation curves. The source localization results are shown in Figure 3-8. The

top panels show the results that include both dMRI connectome information as well as

nearest-neighbors, while the lower panels show results that only use nearest-neighbor
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Figure 3-7: k-fold cross validation for model hyper-parameters. The dashed
lines indicate the model used only neareast neighbor connection, while the solid line
indicates the model uses both the connectivity derived from dMRI as well as nearest
neighbors. The evaluated values of the temporal smoothness of correlation history
parameter 𝜑 where 0.5, 0.75. The x-axis shows the sparsity level 𝑎1.

information. The absolute value of the estimated activation is shown in the red to

yellow color scale. Estimate obtained with dMRI connectome information (Fig. 3-8,

top) seem to cover more closely the areas that are thought to be involved in the

semantic task, such us the opercular and triangular portions of the inferior frontal

gyrus, superior temporal gyrus, and supramarginal gyrus in both hemispheres[100].

On the other hand, estimates obtained without the dMRI connectome seem to miss

some of the relevant areas, including the supramarginal gyrus and the inferior frontal

gyrus.
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Estimates with Nearest Neighbor Connections Only

Estimates with dMRI (Connectome) + Nearest Neighbor Connections

Figure 3-8: Source localization results with the MS-KF-GSP algorithm in
semantic processing task.. The top panel show the source estimates obtained
using the dMRI connectome information as well as nearest neighbors. The bottom
panel shows the source estimation results when we only use the nearest neighbor
information. The absolute value of the estimated source activity is shown in the red
to yellow color scale. In both cases, the displayed sample correspond to 355 ms after
the presentation of the word (visual stimulus). The estimates obtained using dMRI
connectome information more closely detect the language areas that are believed to
be involved in this task. In addition, the estimates that do not use dMRI information
seem to produce a larger number of false positives.

3.10 Conclusions and discussion

In this work we demonstrated the importance of modeling and developing algorithms

that include 1) spatial sparsity, 2) dynamics, 3) local nearest-neighbor connections,

and 4) long distance connections derived from diffusion MRI in the MEG inverse prob-

lem. We showed with a simulation study as well as using MEG experimental data from

a human subject the benefits of including these four modeling components in terms of

the accuracy of source estimates. At the core of our result is the development of the

fast, multi-scale, and dynamic greedy algorithm for source localization, namely, the

119



Multi-Scale Kalman Filter Based Group Subspace Pursuit (MS-KF-GSP) algorithm.

Our algorithm traverses different spatial scales—from coarser to finer scales—and

sequentially refines the spatial extent of the dynamic source estimates.

In our simulation study we investigated the importance of including the long

distance connections that are thought to support the default mode network (DMN)

in terms of the reduction of the entropy of source estimates. We showed that the

reduction of the estimation error (entropy) when including the DMN connections

could not be explained alone by the addition of connections (random connection

model) or by the inclusion of spatial correlations (temporally independent model).

Therefore, our result showed that the dramatic decrease in entropy result from the

interaction of the spatial connection and dynamics in the source localization problem.

In order to make dynamic source localization feasible in practical applications,

we developed the greedy and dynamic Kalman Filter based Group Subspace Pur-

suit algorithm (KF-GSP). Our algorithm exploits the fact that, in most MEG/EEG

experimental scenarios, the spatial extent of brain activity is much smaller that the

area representing the complete cortical mantle, i.e., that brain activity is spatially

sparse. Our algorithm is a dynamic extension of the Ridge-Regression GSP [91]. The

KF-GSP algorithm, as well as the Ridge-Regression GSP algorithm, greedily searches

for cortical areas that can help explain the measured data. This is done by comput-

ing the correlation between the regressors corresponding to these cortical areas and

the unexplained data residual. Because of these greedy computations have very low

computational complexity, the algorithm is very fast and can obtain source estimates

in seconds to minutes.

The main difference between our dynamic algorithm (KF-GSP) and the Ridge-

Regression GSP lies on the way source estimates are obtained withing the estimated

active sets. Whereas the the Ridge-Regression variant uses a static estimate that

penalizes the L2-norm of the source parameters, our algorithm estimates source ac-

tivity dynamically using the Kalman Filter. Because of this, our KF-GSP algorithm

not only produce estimates that are temporally smooth, but also attempts to more

closely mimic cortical activation dynamics that are thought to be a central feature
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of brain function [40, 41, 42, 43, 44, 45, 46, 47]. Furthermore, our algorithm models

both local nearest-neighbor as well as long distance connections derived from diffusion

MRI. To do this, our Multi-Scale algorithm includes these two kinds of connections to

determine the candidate activation areas as it traverses different spatial scales while

refining the spatial extent of the estimated activity. Interestingly, our experimental

source localization results in the semantic decision task highlight the importance of

including these long distance connections: In the absence of these connection, the al-

gorithm misses language areas that are thought to be active under these experimental

conditions.

We develop a 𝐾-fold cross validation technique to estimate the model hyper-

parameters as well as to perform model selection. The principal insight in developing

this method was to recognize that the most appropriate way to split the data was

across trials. By doing this, we could clearly determine the most appropriate size

of the desired active set (sparsity level) in the MS-KF-GSP algorithm. In addition,

the cross-validation technique allowed us to recognize that the inclusion of long dis-

tance connections produce more spatially parsimonious source estimates with equal

or better predictive power.

Altogether, our results demonstrate for the first time the importance and clear

improvements in terms of estimation accuracy that result from appropriately modeling

dynamics, the brain’s long and short distance structural connections, and spatial

sparsity in the MEG/EEG inverse problem.
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