
Joint Inference in Pragmatic Reasoning Ms STITUTTE

by

Leon Bergen JUL 2 0 2016

B.A., Swarthmore College (2009) LIBRARIES

Submitted to the Department of Brain and Cognitive Sciences -
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

Massachusetts Institute of Technology 2016. All rights reserved.

Author ............. .....

Certified by............

S
Accepted bf

Signature redacted
Department of Brain and Cognitive Sciences

7;1
April 20, 2016

Signature redacted
Edward A. F. Gibson

Professor of Cognitive Science
Thesis Supervisor

. . ............
ignature redacted

Matthew A. Wilson
Sherman Fairchild Professor of Neuroscience and Picower Scholar

Director of Graduate Education for Brain and Cognitive Sciences





Joint Inference in Pragmatic Reasoning

by

Leon Bergen

Submitted to the Department of Brain and Cognitive Sciences
on April 20, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

A number of recent proposals have used techniques from game theory and Bayesian cog-
nitive science to formalize Gricean pragmatic reasoning [29, 28, 36, 51]. In the first part of
this work, we discuss several phenomena which pose a challenge to these accounts of prag-
matics: M-implicatures [45] and embedded implicatures which violate Hurford's constraint
[49, 16]. While techniques have been developed for deriving M-implicatures, Hurford-
violating embedded implicatures pose a more fundamental challenge to the models' archi-
tecture. In order to explain these phenomena, we propose that the semantic content of an
utterance is not fixed independent of pragmatic inference; rather, pragmatic inference par-
tially determines an utterance's semantic content. We show how semantic inference can be
realized as an extension to the Rational Speech Acts framework [36]. The addition of lexi-
cal uncertainty derives both M-implicatures and the relevant embedded implicatures. This
principle explains a novel class of implicature, non-convex disjunctive implicatures. These
implicatures can be preserved in downward-entailing contexts in the absence of accenting, a
property which is predicted by lexical uncertainty, but which violates prior generalizations
in the literature [46, 27]

In the second part of the thesis, we combine these pragmatic models with another recent
probabilistic approach to natural language understanding, exploring the formal pragmatics
of communication on a noisy channel. We extend a model of rational communication be-
tween a speaker and listener, to allow for the possibility that messages are corrupted by
noise. Prosodic stress is modeled as the choice to intentionally reduce the noise rate on
a word. We show that the model derives several well-known changes in meaning associ-
ated with stress, including exhaustive interpretations, scalar implicature strengthening, the
association between stress and disagreement, and the interpretation of the focus-sensitive
adverbs. We then show that it can account for several phenomena which are outside of the
scope of previous accounts of stress interpretation: the effects of stress on quantifier domain
inferences, the intensification of gradable adjective interpretation, and the strengthening of
hyperbolic utterances. The account avoids the use of syntactic or semantic representations
of stress; the interpretive effects of stress are derived from general-purpose pragmatic rea-
soning.
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Chapter 1

Introduction

Theories of natural language semantics aim to provide a simple account of how people

interpret expressions in their language. Attempts to provide such an account face a basic

challenge: the interpretation of expressions frequently varies with linguistic and social

context. An obvious response to such contextual variation is to posit that natural language

expressions are highly polysemous. A naive implementation of this idea will have at least

two deficiencies: the theory will need to be extremely complex to accommodate all of the

possible meanings of each expression; and it will miss the systematic relationship between

an expression's context and its interpretation.

Gricean theories of pragmatics provide an elegant solution to these problems. They

posit that the interpretation of an expression is not necessarily identical to its semantic con-

tent. Rather, this semantic content plays a specific role in the derivation of the expression's

interpretation. In typical circumstances, speakers and listeners regard each other as rational

agents who share the goal of communicating information to each other. A speaker chooses

an utterance by reasoning about the beliefs that a listener would form if they interpreted

utterances according to their semantic content; the speaker will be more likely to choose an

utterance that is effective at communicating their intended meaning. The listener, in turn,

interprets an utterance by reasoning about which intended meanings would have made the

speaker most likely to choose this utterance. Gricean pragmatic accounts thus factor the

interpretation of an expression into two parts: its semantic content, which determines its

literal meaning, and cooperative social reasoning, which builds on this literal interpreta-

15



tion to determine the expression's inferred meaning. By factoring out the role of semantic

content in this manner, Gricean pragmatic accounts reduce the explanatory burden of se-

mantic theories. Many facts about an expression's interpretation will be determined by the

communicative setting in which the expression is used, and not simply the expression's

semantic content.

Despite the promise and apparently broad empirical coverage of these theories, attempts

at formalizing them (e.g., 33) have historically met with less success than formalization in

other linguistic domains such as phonology, syntax, or semantics. Nevertheless, there is

strong reason to believe that formal accounts of Gricean pragmatic reasoning have substan-

tial potential scientific value. First, all Gricean theories assume that multiple factors-most

famously Grice's quality, quantity, relevance, and manner-jointly guide the flexible rela-

tionship between literal semantic content and understood meaning, and in all Gricean the-

ories these factors can potentially come into conflict (e.g., the opposition between Horn's

[45] Q and R principles). Our success at cooperative communication implies that a cal-

culus of how different factors' influence is resolved in each communicative act is broadly

shared within every speech community, yet extant theories generally leave this calculus un-

specified and are thus unsatisfactory in predicting preferred utterance interpretation when

multiple factors come into conflict. Mathematical formalization can provide such a calcu-

lus. Second, in the decades since Grice's original work there has been a persistent drive

toward conceptual unification of Grice's original maxims into a smaller set of principles

[e.g., 45, 62, 92]. Mathematical formalization can help rigorously evaluate which such

efforts are sound, and may reveal new possibilities for unification. Third, the appropriate

mathematical formalization may bring pragmatics into much closer contact with empirical

data, by making clear (often quantitative) and falsifiable predictions regarding communica-

tive behavior in specific situations that may be brought under experimental control. This

kind of payoff from formalization has been seen in recent years in related fields including

psycholinguistics [69, 91] and cognitive science [96]. Fourth, the development of prag-

matic theory necessarily has a tight relationship with that of semantic theory. A precise,

formalized pragmatic theory may contribute to advances in semantic theory by revealing

the nature of the literal meanings that are exposed to Gricean inference and minimizing

16



the possibility that promissory appeals to pragmatics may leave key issues in semantics

unresolved.

The last several years have, in fact, seen a number of recent accounts that are beginning

to realize this potential by formalizing Gricean pragmatic reasoning using game theory

or related decision-theoretic frameworks [77, 29, 51, 31, 85, 28, 36, 22, 6, 87]. These

accounts find conceptual unification in grounding cooperative communicative behavior in

simple principles of efficient information exchange by rational agents that can reason about

each other. These accounts provide a precise specification of the reasoning that leads con-

versational partners to infer conversational implicatures either by using the notion of a

game-theoretic equilibrium to define conditions that the agents' reasoning must meet or by

providing a computational or procedural description of the reasoning itself. They character-

istically provide formal proposals of the division between semantic content and pragmatic

inference in which the semantic content of each linguistic expression is determined out-

side of the model, by a separate semantic theory. This semantic content serves as input

to the pragmatics model, which in tum, specifies how agents use this semantic content, in

addition to facts about their conversational setting, in order to infer enriched pragmatic in-

terpretations of the expressions. Finally, by bringing in linking assumptions regarding the

relationship between probabilistic beliefs and action from mathematical psychology, some

of these models have been tested against empirical data far more rigorously than has been

seen in previous work [28, 36, 22].

This work continues these efforts, using recursive probabilistic models to formalize

Gricean explanations of a sequence of increasingly complex pragmatic phenomena. We

will begin by providing an account, in line with previous game-theoretic models, of scalar

implicatures and a generalized class of these implicatures, which we refer to as specificity

implicatures. We will also demonstrate how this rational speech acts model provides a

solution to the symmetry problem for scalar implicatures.

We will next turn to M-implicatures, inferences that assign marked interpretations to

complex expressions. We will show that the simple model of specificity implicatures does

not derive M-implicatures, for reasons that are closely related to the multiple equilibrium

problem for signaling games-a well-known problem in game theory. In order to derive

17



even the simplest types of M-implicatures, we need to relax the traditional Gricean fac-

torization of semantic content and pragmatic inference. In particular, the semantic content

of expressions will not be determined in advance of pragmatic inference. Rather, the par-

ticipants in a conversation will jointly infer this semantic content, as they are performing

pragmatic reasoning.

Semantic inference plays an essential role in our derivation of M-implicatures. By the

term inference we refer to the use of data to estimate model parameters which are a priori

unknown; by semantic inference, we are referring to the use of probabilistic inference to

resolve the semantic content of utterances. Thus, the end result of pragmatic reasoning

results from inferences about the meaning of words, not only about the speaker's intentions

or beliefs. In order to represent the speaker and listener's inferences about the semantic

content of their language's expressions, we will introduce lexical uncertainty, according to

which the speaker and listener begin their pragmatic reasoning uncertain about exactly how

their language's lexicon maps expressions to literal meanings. By extending the rational

speech acts model with lexical uncertainty, we will be able to derive simple M-implicatures,

in which complex expressions are assigned low probability interpretations. We will be able

to derive a larger class of M-implicatures, in which complex utterances are assigned more

generally marked interpretations, by relaxing the assumption that the speaker is knowl-

edgeable.

The last phenomenon that we consider in the thesis's first section is a novel class of

embedded implicatures, which have not yet been derived within game-theoretic models of

pragmatics. These implicatures cannot be derived by the rational speech acts model or the

simple extension of this model with lexical uncertainty. In order to derive these implica-

tures, our model will need to be sensitive to the compositional structure of the expressions

that it is interpreting. We will extend the model so that it respects the compositional struc-

ture of expressions, and represents uncertainty about the semantic content of genuine ele-

ments of the lexicon - i.e., atomic expressions - rather than whole expressions. When

the model is extended in this manner, it will derive the embedded implicatures in question.

The phenomena discussed in the first section differ with respect to their novelty in the

pragmatics literature and whether they can be explained under previous pragmatic accounts.

18



Specificity implicatures (and their special case, scalar implicatures) are entirely standard in

the game-theoretic pragmatics literature, and our account of these implicatures is essen-

tially identical to previous proposals. M-implicatures have also been looked at extensively

in this literature, but unlike specificity implicatures, there is no canonical explanation for

them. We introduce a novel pragmatic principle, lexical uncertainty, to explain these impli-

catures. The final set of phenomena we consider in , non-convex disjunctive implicatures,

have not yet been considered in the pragmatics literature, and cannot be derived within pre-

vious game-theoretic accounts. We show how to derive these implicatures through a nat-

ural extension of the lexical uncertainty principle, thereby demonstrating an improvement

in empirical coverage over these previous models. Non-convex disjunctive implicatures

have further theoretical interest, because they can be derived in downward-entailing con-

texts, and therefore serve as counterexamples to previous generalizations in the literature.

We will show that lexical uncertainty both explains the phenomena which motivated these

generalizations, and provides an account of these counterexamples.

In the second part of the thesis, we explore the formal pragmatics of communication

over a noisy channel. Recent work in cognitive science has provided evidence that people

rationally account for the possibility of noise in their language input [2, 64, 34]. We extend

the rational speech acts model, so that the speaker and listener rationally adjust for the pos-

sibility of noise, and so that this fact is common knowledge between them. This framework

allow us to model prosodic stress as the intentional reduction of the noise rate on part of

the utterance. The speaker in this model exploits the possibility of noise, and uses stress to

communicate aspects of their intended meaning. We show that the model derives several

well-known changes in meaning associated with stress, including exhaustive interpreta-

tions, scalar implicature strengthening, the association between stress and disagreement,

and the interpretation of the focus-sensitive adverbs. We then show that it can account for

several phenomena which are, to the best of our knowledge, outside of the scope of previ-

ous accounts of stress interpretation: the effects of stress on quantifier domain inferences,

the intensification of gradable adjective interpretation, and the strengthening of hyperbolic

utterances. The account avoids the use of syntactic or semantic representations of stress;

all of the interpretive effects of stress are derived in a strictly pragmatic manner.
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The models that we present are undoubtedly incomplete in many respects, and our goal

is not to present a theory of pragmatics per-se. Rather, our goal is to present several new

principles of pragmatic reasoning, and understand how these principles may be used to

derive different classes of implicatures. These principles are, to the best of our knowledge,

minimal sets of assumptions for deriving the phenomena considered in this work within a

probabilistic approach. These principles are therefore promising candidates for inclusion

in more complete formal accounts of pragmatics. This is supported by an observation

which will recur throughout the thesis: the proposed principles are conservative, in the

sense that extending simpler models with them preserves the major classes of implicatures

derived by those simpler models. This supports the development of pragmatic theories in

an incremental manner, and suggests that the ideas presented here may be incorporated into

other accounts without disturbing the core predictions of those accounts.
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Chapter 2

Pragmatic Reasoning through Semantic

Inference

2.1 The baseline rational speech-act theory of pragmatics

We begin by introducing the baseline rational speech-act theory of pragmatics [28, 36],

built on a number of simple foundational assumptions about speakers and listeners in co-

operative communicative contexts. We assume first a notion of COMMON KNOWLEDGE

[65, 94, 18]-information known by both speaker and listener, with this shared knowledge

jointly known by both speaker and listener, knowledge of the knowledge of shared knowl-

edge jointly known by both speaker and listener, and so on ad infinitum (or at least as many

levels of recursion up as necessary in the recursive pragmatic inference). Communication

involves the transmission of knowledge which is not common knowledge: we assume that

the speaker, by virtue of some observation that she has made, is in a particular belief state

regarding the likely state of some conversationally relevant aspect of the world (or, more

tersely, regarding the world). In engaging in a cooperative communicative act, the speaker

and listener have the joint goal of bringing the listener's belief state as close as possible to

that of the speaker, by means of the speaker formulating and sending a not-too-costly sig-

nal to the listener, who interprets it. The lexicon and grammar of the speaker and listener's

language serve as resources by which literal content can be formulated. As pragmatically

sophisticated agents, the speaker and the listener recursively model each other's expected
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production decisions and inferences in comprehension.

More formally, let 0 be the set of possible speaker observations, W the set of possible

worlds, and U the set of possible utterances. Observations o E 0 and worlds w E W have

joint prior distribution P(o, w), shared by listener and speaker.

The literal meaning of each utterance u E U is defined by a lexicon L, which is a

mapping from each possible utterance-world pair to the truth value of the utterance in that

world. That is,

L(u,w) = ifW ul (2.1)
1 if w E [ul

where Jul is the intension of u.

The first and simplest component of the model is the LITERAL LISTENER, who in-

terprets speaker utterance u by conditioning on it being true and computing via Bayesian

inference a belief state about speaker observation state o and world w. This updated distri-

bution Lo on w is defined by:

Lo(o, wIu, L) oc L(u, w)P(o, w). (2.2)

To illustrate these definitions, consider a scenario in which the students in the class took

a test, and the speaker has observed the test results for all of the students or none of them.

In a simplified representation of this situation, there are two worlds,

corresponding to whether all of the students passed the test (V) or some but not all of them

passed (3-,V). There are three possible observations,

0 = {Vo, ]-Vo, 0},

corresponding to whether the speaker observed that all of the students passed (VO), observed

Note that this definition of the lexicon departs from standard usage, as it assigns meanings to whole
utterances rather than atomic subexpressions. This is a provisional assumption which will be revised in
Section 2.4.
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that some but not all of them passed (]-V,), or did not make any relevant observations (0,).

A possible joint probability distribution P(o, w) is given by:

P(VOV) = 0.25

P(-,Vo, 3-,V) = 0.25

P(0V) = 0.25

P(00 , E-,V) = 0.25

There is probability 0.5 of all of the students passing the test, and given either state of the

world (V or 3,V), the speaker has probability 0.5 of observing that state.

Continuing this example, we could set

U = {some, all},

with the intensions

some = {V, ,-V}

Eall] = {V}

The utterance "some" is therefore compatible with both

ible with V.

worlds, while "all" is only compat-

After hearing the utterance "all", the literal listener will exclude all worlds which are

incompatible with with the meaning of the utterance. The only world compatible with this

meaning is V, and therefore:

Lo(VO,Vlall) = 0.5

Lo(0 0 ,Vlall) = 0.5

Only two observation-world pairs are include the world V, so these are each assigned prob-
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ability 0.5.

Social reasoning enters the model through a pair of recursive formulas that describe how

the speaker and listener reason about each other at increasing levels of sophistication. We

will say that the speaker has recursion level n if they reason about a listener with recursion

level n - 1; and that the listener has recursion level n if they reason about a speaker with

recursion level n. This definition grounds out in the listener with recursion level 0, who has

been defined in Equation 2.2. We begin with the speaker, who plans a choice of utterance

based on the EXPECTED UTILITY of each utterance, with utterances being high in utility

insofar as they communicate to the listener all of the information that the speaker has about

the world, and low in utility insofar as they are costly to produce.

The expected utility of utterance u for a recursion-level n speaker who has observed o

is defined as

Un(ujo) = EP(w 10) logLnf l(o, wju) - c(u) (2.3)

The term c(u) is the cost of utterance u. Intuitively, utterances are costly insofar as they are

time-consuming or effortful to produce; in this work, we remain largely agnostic about pre-

cisely what determines utterance cost, assuming only that utterance cost is strictly mono-

tonic in utterance lengths (as measured in words). The term Ep(w10 ) logLn-i (o, wfu) is the

negative EXPECTED SURPRISAL over observations and worlds given utterance u, and can

be expanded as follows:

Ep(wIo) log Ln1 (o, wlu) = P(wlo) log L, i (o, wlu) (2.4)

The quantity -logLn- (o, wlu), the SURPRISAL, quantifies the residual information left

about the observation o and world w after the listener LnI hears utterance u. The speaker

wants to minimize the amount of information that is left uncommunicated to the listener,

and hence maximizes the negative surprisal. However, the speaker may not know what

the true world is, and therefore may not know how much information is being left uncom-

municated. The speaker uses the expected surprisal in Equation 2.4 to consider all of the
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worlds which are consistent with his observation, and average over the surprisal in each of

these worlds. The speaker wants to minimize the expected amount of information that is

left uncommunicated, while simultaneously minimizing the cost of their utterance.

In the first part of this work, we assume that for each world w E 'W, there is a unique

observation o E 0 consistent with this world. In this special case, it is common knowledge

that the speaker knows the true world w with probability 1, so that P(wjo) is 1 for that

world and 0 for all other worlds. This entails that we can ignore the world variable w in

the speaker and listener equations, and the expected surprisal reduces to the surprisal of

the observation for the listener given the utterance. Under these conditions, (expected)

utterance utility can be written as simply

Un(ulo) = logL- 1 (olu) - c(u) (2.5)

The assumption of speaker knowledgeability is relaxed in Section 2.3.6.

We are now ready to state the speaker's formula. The speaker's conditional distribution

over utterances given the world w under consideration as the listener's possible interpreta-

tion is defined as

Sn(ujo) c< exUn(ulo), (2.6)

where X. > 0. This specification of the speaker formula uses the SOFTMAX FUNCTION

or LUCE-CHOICE RULE [95] to map from a set of utterance utilities to a probability dis-

tribution over utterance choice. The INVERSE-TEMPERATURE parameter X governs the

speaker's degree of "greedy rationality". When X = 1, the probability that the speaker

chooses utterance u is proportional to the exponentiated utility of u. As X increases, the

speaker's distribution over utterance choices becomes increasingly more strongly peaked

toward utterances with high exponentiated utility. The Luce-choice rule is used extensively

in psychology and cognitive science as a model of human decision-making, and in rein-

forcement learning in order design algorithms that balance maximizing behavior that is

optimal in the short-run and exploratory behavior that is beneficial in the long-run [95].

Finally, we turn to the listener's recursive formula for interpreting utterances by rea-

soning about likely speaker choices. The listener's higher-order interpretations are simply
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defined as

L,(o, wIu) < P(o, w)S, (ulo). (2.7)

That is, the listener uses Bayes' rule to reconcile their prior expectations about world state

to be described with their model of the speaker. Equations (2.2), (2.3), (2.6), and (2.7)

constitute the heart of this basic model. Note the relationship between recursion levels of

the speaker and listener in Equations (2.3): the first speaker Si reasons about the literal

listener Lo, the first pragmatic listener L1 reasons about SI, the second speaker S2 reasons

about the first pragmatic listener LI, and so forth. The model we present here generalizes

the rational speech-act model presented in [36] by adding utterance costs and the possibility

of recursion beyond Si.

2.1.1 Auxiliary assumptions: alternative sets, but no lexical scales

As in much previous work in pragmatics [37, 45, 33, 62], our models of pragmatic reason-

ing will rely heavily the set of alternative utterances available to the speaker. That is, in

deriving the implicatures for an utterance, our models will reason about why the speaker

did not use the other utterances available to them. We will not be providing a general theory

of the alternative utterances that are reasoned about during the course of pragmatic infer-

ence. Rather, as is done in most other work in pragmatics, we will posit the relevant set of

utterances on a case-by-case basis. As is discussed below, however, there are certain cases

for which our models require fewer restrictions on the set of alternatives than most other

models. These examples will provide suggestive - though not decisive - evidence that

no categorical restrictions need to be placed on the alternatives set within our models, i.e.

that every grammatical sentence in a language can be considered as an alternative during

pragmatic reasoning. The mechanisms by which this may be made possible are discussed

below.

Our models' treatment of lexical scales will represent a larger departure from the norm.

By a "scale," we are referring to a totally ordered set of lexical items which vary along a

single dimension; a typical example is the set of lexical items <"some", "most", "all">,

where each item (when used in a sentence) is logically stronger than all of the items that
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fall below it on the scale. Such scales play an important role in many theories of pragmatic

reasoning, where they constrain the set of alternative utterances available to the speaker.

In such theories, it is assumed that the set of alternative utterances can be totally ordered

along a relevant dimension (e.g. along the dimension of informativeness for ordinary scalar

implicatures), so that this set forms a scale. Our models will not use scales in order to derive

pragmatic inferences. In certain cases, the set of alternatives used by the model will include

multiple utterances which are logically equivalent to each other. In other cases, the set of

alternatives will include utterances which are jointly logically inconsistent. In general, the

global constraints on the alternatives set which are described by scales will not be required

by our models.

2.2 Specificity implicature in the baseline theory

To demonstrate the value of the baseline theory presented in Section 2.1, we show here how

it accounts for a basic type of pragmatic inference: specificity implicatures, a generalization

of scalar implicatures, in the case where it is common knowledge that the speaker knows

the relevant world state. Specificity implicatures describe the inference that less specific

utterances imply the negation of more specific utterances. For example, "Some of the

students passed the test" is strictly less specific than "All of the students passed the test,"

and therefore the use of the first utterance implicates that not all of the students passed. This

is of course an example of a scalar implicature, in that there is a canonical scale, ordered

according to logical strength, which both "some" and "all" fall on.

Not all specificity implicatures are naturally described as scalar implicatures. For ex-

ample, consider the utterance "The object that I saw is green" in a context in which there

are two green objects, one of which is a ball and one of which has an unusual and hard-to-

describe shape. In this context, the utterance will be interpreted as describing the strangely

shaped object, because the speaker could have said "The object that I saw is a ball" to

uniquely pick out the ball (see 28 for experimental evidence for these implicatures). That

is, in this context, there is an available utterance which is more specific than "green", and as

a result "green" receives a specificity implicature which is the negation of the more specific
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utterance. It is important to note that neither "green" nor "ball" is strictly logically stronger

than the other; it is only in a particular context that one can be strictly more descriptive

than the other. Thus, these utterances do not fall on a scale which is ordered according to

logical strength.2

In general, specificity implicatures will arise in contexts in which there is a pair of utter-

ances such that one utterance is more contextually specific than the other. To a first approx-

imation, an utterance "A" is more contextually specific than "B" when the contextually-

salient meanings consistent with "A" are a subset of those consistent with "B." The use of

the less specific utterance "B" will result in the inference that "A" is false. It is this more

general phenomenon that the model will be explaining.

2.2.1 Derivation of specificity implicatures

This model can be used to derive specificity implicatures as follows. A rational speaker

will use as specific of an utterance as possible in order to communicate with the literal

listener; a more specific utterance is more likely to be interpreted correctly by the literal

listener. If the speaker does not use a specific utterance, then this is evidence that such

an utterance would not have communicated her intended meaning. The listener L1 knows

this, and (given the assumption of speaker knowledgeability) infers that the speaker must

know that the more specific utterance is false. Therefore, a less specific utterance implies

the negation of a more specific utterance for this listener.

To illustrate this reasoning, we will consider the simplest possible example in which

specificity implicatures are possible. In this example, there are two utterances,

'U = {some, all},

2 Though these utterances are logically incommensurable, it may still be possible to describe them as
falling on an ad-hoc scale, as in [42]. While we will not be providing a direct argument against this analysis,
our model obviates the need for a scalar representation in cases like this.
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Figure 2-1: Some strengthening with P(V) = , P(-V) = , c(all) = c(some) = 0, X = 1.

The lexicon panel indicates the truth value of utterances across each world. The listener

panels indicate the conditional probabilities over worlds, given each utterance. The speaker

panels indicate the conditional probabilities over utterances, given each world. Arrows are

used to indicate dependence across the panels. The listener LO uses the lexicon in order

to compute conditional probabilities given an utterance; the speaker Si uses the output of

listener LO in order to compute utterance probabilities given each world; and so on. This

figure, and several others in this form which appear later in this work, are intended for

readers who want to better understand the dynamics of the speaker-hearer recursion. The

linguistic claims of this work can be appreciated without relying on them.

and two meanings,

q42= IV, ]hiV} ,

where the intensions of the utterances are as usual:

some = {V, -,V};

all= {V}

Since it is common knowledge that the speaker knows the relevant world state, we can

without loss of generality consider the observation and world variables to be equal, so that

o = w, and drop w from the recursive equations (2.2)- (2.7). This allows the baseline model
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to be expressed as

Lo(olu, L) o L(u, o)P(o), (2.8)

Un(ulo) = logL- 1 (olu) - c(u) (2.9)

Sn(ulo) x exun(Ulo) (2.10)

Ln(Olu) c< P(O)Sn(UIO), (2.11)

for integers n > 0. For illustration, we take the prior on observations as uniform-P(]-,V) =

P(V) = -the cost c(u) of both utterances as identical (the specific value has no effect, and

we treat it here as zero), and the softmax parameter X = 1.3

Figure 2-1 depicts the listener and speaker posteriors Ln(.u) and Sn(.|o) at increasing

levels of recursion n for these parameter values. The lexicon matrix depicts the mapping

of each possible utterance-world pair to a 0/1 value; this represents the truth value of each

utterance across the worlds. Each speaker (respectively listener) matrix should be read as

a conditional distribution of utterances given interpretations (respectively interpretations

given utterances), with bar height proportional to conditional probability (hence each row

in each speaker or listener matrix sums to probability mass 1):

Listener n Speaker n

all Ln(Vlall) Ln(--,Vjall) V S,(allIV) Sn(someIV)

some Ln(Vlsome) Ln(--,Vlsome) 3-,V Sn(all --,V) Sn(some]hV)

V 3-V all some

Crucially, while the literal listener interprets some, which rules out no worlds, entirely

according to the prior (and hence as equiprobable as meaning V and ,3-V), the speaker

and listener both associate some increasingly strongly with 3-,V as the pragmatic recursion

depth increases.

3Changes in the prior on observations, utterance costs, and the softmax parameter change the precise
values of the speaker and listener posteriors at various levels of recursion, but do not change the signature
specificity-implicature pattern that the model exhibits. For this example, and for others throughout this work,
we assessed robustness to changes in the model parameters by computing model predictions across a grid of
parameter values.
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Figure 2-2: The degree of some strengthening as a function of the "greedy rationality"
parameter X, with P(V) = 1, P(],V) = 1, c(all) = c(some) = 0

One way to understand the fundamental reason for this behavior-the signature pattern

of specificity implicature-is by considering the effect on one level of recursive inference

on the listener's tendency to interpret some with unstrengthened meaning V. Let us de-

note L,_ I (VI some) by the probability p. Further, note that lexical constraints on the literal

listener mean that L,(3-,Vlall) = 0 always. This means that we can write, following Equa-

tions (2.9)-(2.11):

Ln_ I Un Sn Ln

all 1 0 V 0 10g p V P all 1 0

some p I - p ],W -oo log(l - p) 3-,V 0 1 some +

V EIW all some all some V 3,V

For all p > 0, the strict inequality P < p holds; therefore L, is less inclined than Ln-1

to interpret some as meaning V.

The above analysis assumed a uniform prior and X = 1. The precise values of listener
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and speaker inferences are affected by these choices. A more exhaustive analysis of the

behavior of this recursive reasoning system under a range of parameter settings is beyond

the scope of the present work, but the qualitative pattern of specificity implicature-that

when pragmatic reasoning is formalized as recursive speaker-listener inference, more spe-

cific terms like all guide more general terms like some toward meanings not covered by

the specific term-is highly general and robust to precise parameter settings. It is worth

noting, however, that the value "greedy rationality" parameter X affects the strength of the

implicature when recursion depth is held constant. Figure 2-2 shows the tendency of the

first pragmatic listener L1 to interpret some as meaning V (recall that for the literal listener,

Lo(Vlsome) = Lo(--,Vlsome) = j when the prior is uniform). This dependence on A is due

to L1 modeling the first speaker Si's degree of "greedy rationality". As greedy rationality

increases, the strength of specificity implicature increases, to the extent that the possibil-

ity of V interpretation for some can all but disappear after just one round of iteration with

sufficiently high A.

2.2.2 The symmetry problem

In addition to explaining specificity implicatures, the model provides a straightforward so-

lution to the symmetry problem for scalar implicatures. As previously noted, on the stan-

dard account of scalar implicatures, implicatures are computed with reference to a scale;

lower utterances on the scale imply the negation of higher utterances on the scale. For

example, the implicature for "some" is computed using the scale <"some", "all">, so that

"some" implies the negation of "all." The symmetry problem describes a problem with con-

structing the scales for the implicature computations: there are multiple consistent ways of

constructing the scales, and different scales will give rise to different implicatures. The

only formal requirement on a scale is that items higher on it be logically stronger than

those lower on it. A possible scale for "some" is therefore <"some", "some but not all">.

If this scale is used, "some" will imply that "some but not all" is not true, i.e. that "all" is

true.
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[26] break the symmetry between "all" and "some but not all" by providing a theory

of the alternative utterances which are considered during the computation of scalar im-

plicatures. This theory posits that the set of scalar alternatives is computed via a set of

combinatorial operations. That is, only the utterances which are constructed through these

operations will be placed on the scale. The definition of these operations ensures that for

each utterance on a scale, the set of utterances higher on the scale are consistent with each

other. As a result, a consistent set of implicatures will be computed for each utterance.

The rational speech act model provides a different solution to this problem, which

places weaker requirements on the set of alternative utterances. For the previous exam-

ple, the model can include both "all" and "some but not all" as alternatives, and still derive

the correct implicatures. It does so by assigning higher cost to "some but not all" than to

"all." Because "some but not all" is assigned a higher cost, it is less likely to be used to

communicate not all than "all" is to communicate all. Thus, when the listener hears the

utterance "some," they will reason that the speaker was likely to have intended to commu-

nicate not all: if the speaker had intended to communicate all, they would have used the

utterance "all," but if they had intended to communicate not all, they would have been less

likely to use "not all."

In general, this approach allows arbitrary sets of grammatical utterances to be consid-

ered as alternatives, without resulting in contradictory inferences, and while still preserving

attested implicatures. The model will do this by assigning more complex utterances higher

cost, and as a result weighing these more costly utterances less during pragmatic infer-

ence. Utterances that are more costly to the speaker are less likely to be used, because the

speaker is rational. As an utterance becomes more and more costly, it becomes less and

less salient to the speaker and listener as an alternative, and has less and less of an effect on

the interpretation of other utterances.
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2.3 Lexical uncertainty

2.3.1 M-implicatures

We will next consider a different type of pragmatic inference: M-implicatures. An M-

implicature arises when there are two semantically equivalent utterances that differ in com-

plexity. In general, the more complex utterance will receive a marked interpretation. The

most straightforward way for an interpretation to be marked is for it to have low probability.

Consider, for example, the following two sentences:

(1) John can finish the homework.

(2) John has the ability to finish the homework.

These two sentences (plausibly) have the same literal semantic content, but they will typi-

cally not be interpreted identically. The latter sentence will usually be interpreted to mean

that John will not finish the homework, while the former example does not have this im-

plicature. [45] and [62] cite a number of other linguistic examples which suggest that the

assignment of marked interpretations to complex utterances is a pervasive phenomenon, in

cases where there exist simpler, semantically equivalent alternatives.

Though M-implicatures describe a linguistic phenomenon, the reasoning that generates

these implicatures applies equally to ad-hoc communication games with no linguistic com-

ponent. Consider a one-shot speaker-listener signaling game with two utterances, SHORT

and long (the costs of these utterances reflect their names), and two meanings, FREQ and

rare; nothing distinguishes the utterances other than their cost, and neither is assigned a

meaning prior to the start of the game (so that effectively both have the all-true mean-

ing). The speaker in this game needs to communicate one of the meanings; which meaning

the speaker needs to communicate is sampled according to the prior distribution on these

meanings (with the meaning FREQ having higher prior probability). The listener in turn

needs to recover the speaker's intended meaning from their utterance. The speaker and

listener will communicate most efficiently in this game if the speaker uses long in order

to communicate the meaning rare, and SHORT in order to communicate FREQ, and the
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listener interprets the speaker accordingly. That is, if the speaker and listener coordinate

on this communication system, then the speaker will successfully transmit their intended

meaning to the listener, and the expected cost to the speaker will be minimized. [7] find that

in one-shot communication games of this sort, people do in fact communicate efficiently,

suggesting that the pragmatic knowledge underlying M-implicatures is quite general and

not limited to specific linguistic examples. 4

Failure of rational speech acts model to derive M-implicatures

Perhaps surprisingly, our baseline rational speech-act model of Sections 2.1-2.2 is unable

to account for speakers' and listeners' solution to the one-shot M-implicature problem.

The behavior of the baseline model is shown in Figure 2-3; the model's qualitative failure

is totally general across different settings of prior probabilities, utterance costs, and k. The

literal listener L0 interprets both utterances identically, following the prior probabilities

of the meanings. Crucially, Lo's interpretation distribution provides no information that

speaker S, can leverage to associate either utterance with any specific meaning; the only

thing distinguishing the utterances' expected utility is their cost. This leads to an across-

the-board dispreference on the part of S1 for long, but gives no starting point for more

sophisticated listeners or speakers to break the symmetry between these utterances.

We will now formalize this argument; the following results will be useful in later dis-

cussions.

Lemma 1. Let u, u' be utterances, and suppose L(u, w) = L(u', w) for all worlds w. Then

for all observations o and worlds w, Lo (o, wIu, L) = Lo (o, wlu', L).

4The communication game considered in that paper differs slightly from the one considered here. In
the experiments performed in that paper, there were three utterances available to the speaker, one of which
was expensive, one of intermediate cost, and one cheap, and three possible meanings, one of which was
most likely, one of intermediate probability, and one which was least likely. Participants in the experiment
coordinated on the efficient mapping of utterances to meanings, i.e. the expensive utterance was mapped to
the least likely meaning, and so on.
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Proof By equation 2.2.

Lo(o,wu, L) = P(o, w)L(u, w)
POo', ')Luu L)')

Lt iP (o,w) L(u, w) (2.12)P(o, w ')L(u', w)

Lo(o, wlu', L) (2.14)

where the equality in 2.13 follows from the fact that L(u, w) = L(u', w) for all worlds

W.

Lemma 2. Let u,u' be utterances, and suppose that Lo(o,wlu, L) = Lo(o,wlu', L) for

all observations o and worlds w. Then for all observations o, worlds w, and n > 0,

L,(o,wIu) = Ln(o,wIu').

Proof We will prove this by induction. Lemma 1 has already established the base case.

Suppose that the statement is true up to n - 1 > 0.

We will first consider the utility for speaker Sn. By equation 2.3,

Un(ulo) -c(u') = Ep(w1o)logLn-i(owju) -c(u) -c(u') (2.15)

= Ep(wlo) logLn_ I(o, wju') - c(u') - c(u) (2.16)

= Un(u'Io) - c(u) (2.17)

It follows from equation 2.6 that:

Sn(ulo) = exun U1(ulo) (2.18)

eX(Un(u' I)-c(u)+c(u'))

EU, eXUn(uio) (2.19)

= Sn(u'lo) -ex(c(u')-c(u)) (2.20)

In other words, for all observations o, Sn(ujo) and Sn(u'lo) differ by a constant factor de-

termined by the difference of the utterances' costs.
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Figure 2-3: The failure of the basic model to derive M-implicature (illustrated here for

P(FREQ) = , P(rare) = , X = 3, c(SHORT) = 1, c(long) = 2). The listener panels

illustrate that the interpretation of each utterance is constant across each recursion depth.

The speaker panels illustrate that the utterance distributions are also constant across each

recursion depth.

We will now show the equivalence of listeners L,(. u) and L,(- u'). By equation 2.7,

L(owlu) - P(o, w)Sn(u1o)
LO _ , P(',w')Sn(uo '(

P(o, w)S, (u'l o)eX( e("') -C(1"))

Loixg, P(o', W')Sn (u'l o') ex(CWu) -C(U))

=, L(o, w Iu')

(2.21)

(2.22)

(2.23)

D

Together, these lemmas show that if two utterances have the same literal meanings,

then they will be interpreted identically at all levels of the speaker-hearer recursion in the

rational speech acts model.

2.3.2 The multiple equilibrium problem

Our baseline model's failure for M-implicature is in fact closely related to a more general

problem from game theory, the multiple equilibrium problem for signalling games [79, 17].

In a typical signalling game, a subset of the agents in the game each receive a type, where
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this type is revealed only to the agent receiving it; in the settings being considered in this

work, each speaker has, a type, which is the meaning that they want to communicate. The

goal of the listener is to correctly guess the type of the speaker based on the signal that they

send.

To describe the multiple equilibrium problem for such games, we first need to introduce

the relevant notion of equilibrium. Loosely speaking, the equilibria for a game describe the

self-consistent ways that the game can be played. The simplest equilibrium concept in

game theory is the, Nash equilibrium [76, 74, 32]. For games with two agents A and B, a

pair of strategies (aA, GB), which describe how each agent will play the game, are a Nash

equilibrium if neither agent would benefit by unilaterally changing their strategy; that is,

the strategies are an equilibrium if, fixing GB, there is no strategy for A that would improve

the outcome of the game for A, and vice-versa.

The relevant notion of equilibrium for signalling games is the Bayesian Nash equilib-

rium [41], which in addition to the requirements imposed by the definition of the Nash

equilibrium also imposes consistency constraints on the beliefs of the agents. In particular,

given the prior distribution over types, and the agents' strategies (which define the likeli-

hood of taking actions given a player type), the agents must use Bayes' rule to compute

their posterior distribution over types after observing an action. Each agent's strategy must

also be rational given their beliefs at the time that they take the action, in the sense that the

strategy must maximize their expected utility. The multiple equilibrium problem arises in

a signalling game when the game has multiple Bayesian Nash equilibria. This occurs when

the agents can devise multiple self-consistent communication systems given the constraints

of the game. That is, given the assumption that the other agents are using the commu-

nication system, it will not be rational for one agent to unilaterally start using a different

communication system.

The multiple equilibrium problem can be illustrated concretely using the game above.

This game has two general classes of equilibria, illustrated in Figure 2-4. In the first

class, which are called the separating equilibria, successful communication occurs be-

tween the speaker and listener, but their communication system may be suboptimal from

an information-theoretic perspective. In the first such equilibrium, the speaker chooses
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Figure 2-4: Multiple equilibria (speaker matrices) for the M-implicature signaling game

long when they want to communicate rare, and SHORT when they want to communicate

FREQ (Figure 2-4a). Given these strategies, the listener knows how to interpret each ut-

terance: long will be interpreted as rare- conditional on hearing long, the only possibility

is that it was produced by the agent wanting to communicate rare- and similarly SHORT

will be interpreted as FREQ. This is clearly an equilibrium, because neither speaker will

successfully communicate their intended meaning if they unilaterally change their strat-

egy; for example, if the speaker wanting to communicate rare switches to using SHORT,

then they will be interpreted as intending FREQ. A second separating equilibrium is also

possible in this game. Under this equilibrium, the speaker-utterance pairs are reversed, so

that the agent intending to communicate rare uses SHORT, and the agent intending FREQ

uses long (Figure 2-4c). This is inefficient - in expectation, it will be more expensive than

the previous equilibrium for the speaker - but it is nonetheless an equilibrium, because

neither speaker can unilaterally change strategies without failing to communicate.

The second type of equilibrium in this game, known as a pooling equilibrium, is still

more deficient than the inefficient separating equilibrium, and it is the one that is most

closely related to the problem for our initial model of pragmatic inference. In one pooling

equilibrium, the speaker chooses the utterance SHORT, independent of the meaning that

they want to communicate (Figure 2-4b). Because the speakers always choose SHORT,

this utterance communicates no information about the speaker's intended meaning, and the

listener interprets this utterance according to the prior distribution on meanings. Assuming

that the utterance long is also interpreted according to the prior, it will never be rational for
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the speaker to choose this utterance. 5 Thus this is indeed an equilibrium.

These arguments demonstrate that under the standard game-theoretic signalling model,

speakers and listeners are not guaranteed to arrive at the efficient communication equilib-

rium. Rather, there is -the possibility that they will successfully communicate but do so

inefficiently, with cheaper utterances interpreted as referring to less likely meanings. There

is also the possibility that they will fail to communicate at all, in. the case that all speak-

ers choose the cheapest -available utterance. However, M-implicatures demonstrate that at

least in certain cases, people are able to systematically coordinate on the efficient strategies

for-communication, even when semantics provides no guide for breaking the symmetries

between utterances. Thus, there is something to account for in people's strategic and prag-

matic reasoning beyond what is represented in standard game-theoretic models or in our

initial model of pragmatic reasoning.

In recent work in linguistics, there have generally been three approaches to accounting

for these reasoning abilities. The first approach uses the notion of afocal point for equilibria

[77]. On this approach, people select the efficient equilibrium in signalling games because

it is especially salient; the fact that it is salient makes each agent expect other agents to

play it, which in turn makes each agent more likely to play it themselves. .While this

approach does derive the efficient equilibrium for communication games, it is not entirely

satisfactory, since it does not provide an independent account of salience in these games

- precisely the feature which allows the agents to efficiently communicate under this

approach.

An alternative approach has been to derive the efficient equilibrium using evolutionary

game theory, as in [97, 21]. These models show that given an appropriate evolutionary

dynamics, inefficient communication systems will evolve towards more efficient systems

among collections of agents. While these models may demonstrate how efficient semantic

conventions can evolve among agents, they do not demonstrate how agents can efficiently

communicate in one-shot games. Indeed, in the relevant setting for M-implicatures, the

5Note that because in this equilibrium the speaker never uses one of the two utterances, the listener cannot
interpret the never-used utterance by Bayesian conditioning, because it is not possible to condition on a
probability 0 event. As a result, standard game-theoretic models need to separately specify the interpretation
of probability 0 signals. We will return to this issue below.
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agents begin with an inefficient communication system - one in which the semantics of

their utterances does not distinguish between the meanings of interest - and must success-

fully communicate within a single round of play. There is no room for selection pressures

to apply in this setting.

Finally, [29], [51], and [31] have derived M-implicatures in the Iterated Best Response

(IBR) and Iterated Quantal Response (IQR) models of communication, which are closely

related to the rational speech act model considered in the previous section. The naive

versions of these models do not derive M-implicatures, for reasons that are nearly identical

to why the rational speech act model fails to derive them. In the IBR model, players choose

strategies in a perfectly optimal manner. Because the expensive utterance in the Horn

game is strictly worse than the cheap utterance - it is more expensive and has identical

semantic content - an optimal speaker will never use it. As a result, in the naive IBR model,

the speaker chooses the expensive utterance with probability 0, and no coherent inference

can be drawn by the listener if they hear this utterance; interpreting this utterance would

require them to condition on a probability 0 event. [29] and [51] show how to eliminate this

problem in the IBR model and correctly derive M-implicatures. They propose a constraint

on how listeners interpret probability 0 utterances, and show that this constraint results

in the efficient equilibrium. This proposal cannot be extended to the rational speech acts

model, because it relies on the expensive utterance being used with probability 0; in the

rational speech acts model, agents are only approximately rational, and as a result, every

utterance is used with positive probability.

As in the rational speech acts model, agents are only approximately rational in the

IQR model, and the IBR derivation of M-implicatures similarly does not extend to this

model. [31] therefore provide an alternative extension of the IQR model which derives M-

implicatures. Under this proposal, agents who receive low utility from all of their available

actions engage in more exploratory behavior. In a Horn game, the speaker who wants

to communicate the meaning rare starts out with a low expected utility from all of their

actions: no matter which utterance they choose, the listener is unlikely to interpret them

correctly. As a result, this speaker will engage in more exploratory behavior - i.e., behave

less optimally with respect to their communicative goal - and will be more likely to choose
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the suboptimal expensive utterance. This is sufficient to break the symmetry between the

cheap and expensive utterances, and derive the M-implicature.

Unlike the proposed modification of the IBR model, [31]'s proposed derivation of M-

implicatures within the IQR model would extend straightforwardly to the rational speech

acts model. We will nonetheless be proposing an alternative extension to the tational speech

acts model. This is for several reasons. First, the derivation within the IQR model de-

pends on the empirical assumption that agents with worse alternatives available to them

will choose among these alternatives less optimally than agents with better alternatives

available. Though this is a reasonable assumption, it may turn out to be empirically false;

to our knowledge, it has not been experimentally evaluated. As a general claim about how

agents make decisions, it will have consequences for other areas of psychological theoriz-

ing as well. Second, the derivation of M-implicatures which we present can be extended

to explain a number of other phenomena, which will be discussed in later sections. These

explanations will hinge on features which are distinctive to our proposed extension of the

rational speech acts model.

2.3.3 The lexical-uncertainty model

In the previous version of the model, it was assumed that the lexicon L used by the speaker

and listener was fixed. For every utterance u, there was a single lexical entry L(u,.) that

gave the truth function for u. This fixed lexicon determined how the literal listener would

interpret each utterance.

In the current version of the model, we introduce lexical uncertainty, so that the fixed

lexicon is replaced by a set of lexica A over which a there is a probability distribution P(L).

This distribution represents sophisticated listeners' and speakers' uncertainty about how

the literal listener will interpret utterances. (Alternative formulations of lexical uncertainty

may be clear to the reader; in Appendix A.2 we describe two and explain why they don't

give rise to the desired pragmatic effects.)

Introducing lexical uncertainty generalizes the previous model; the base listener Lo
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remains unchanged from equation 2.2, i.e. this listener is defined by:

Lo(o, wlu, L) xc L(u, w)P(o, w) (2.24)

for every lexicon L E A. The more sophisticated speakers and listeners, S, and L, for n > 1,

are defined by:

U1 (ulo, L) = EP(wlo) logLo(o, wlu, L) - c(u), (2.25)

Sj (uIo, L) c e " (uo,L) (2.26)

Li (o, wlu) cc P(o, w) E P(L)Si (ulo, L), (2.27)
LEA

Un(ulo) = Ep(wj,)logL_ I (o,wlu) -c(u) for n > 1, (2.28)

Sn(u1o) cc exu(u1o) for n > 1, (2.29)

Ln(o, w1u) cc P(o, w)Sn(u 10) for n > 1.6 (2.30)

These equations differ from the baseline model in several respects. In Equations 2.25

and 2.26, the speaker S1 is parameterized by a lexicon L, which determines the speaker's

beliefs about how their utterances will be interpreted. That is, this speaker believes that the

listener L4 will use this lexicon to interpret their utterances. The definition of the listener

L, in Equation 2.27 is the most important difference between the current and baseline

models. The listener L1 in the baseline model (Equation 2.7) is certain about the speaker

Si's beliefs about the lexicon; for this listener, there is a single lexicon which determines

the speaker's beliefs about the literal meanings of utterances. In the current model, the

61t is possible to define the lexical-uncertainty model more concisely by replacing Equations (2.25)-(2.30)
with the following three equations:

U(uo, w, L) =Ep(0 j) logL,- I (o, wju, L) - c(u). (i)

S,(ujo, w, L) eXUn(uIo,w,L), (ii)

L,(o,wju, L)- E P(o, w)P(L')Sn,(ujo,vw, L'), (iii)
L'EA

Once the first marginalization over lexica occurs at the L, level, higher-level speaker and listener distributions
lose their dependence on the lexicon L being conditioned on, since there is no dependence on L in the right-
hand side of equation (iii). In this work we rely on the less concise definitions provided in the main text,
however, based on the belief that they are easier to follow than those in Equations (i)-(iii).
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listener Ll (Equation 2.27) has uncertainty about which lexicon the speaker Si is using. For

each possible lexicon L E A, the listener considers how the speaker would behave given

this lexicon. To interpret an utterance, the listener first considers how likely the speaker

would have been to choose this utterance given each lexicon, and then accounts for her

uncertainty by marginalizing (taking a weighted average) over the lexica. The definitions

of the higher-order speakers and listeners, in Equations 2.28-2.30, are the same as in the

baseline model.

In order for the normalization of Equation 2.24 and the expected surprisal of Equa-

tion 2.25 to be well-defined we must place two restrictions on each L C A.

1. Each utterance must receive a non-contradictory interpretation. Formally, for each

utterance u and each lexicon L E A there must exist a world w such that L(u, w) > 0.

2. For any observation there is an utterance which includes the speaker's belief state in

its support. Formally, for each observation o and each lexicon L E A there exists (at

least) one utterance u such that L(u, w) > 0 for any w with P(wlo) > 0.

Satisfying the first of these restrictions is straightforward. We have considered four ap-

proaches to constructing A that satisfy the second restriction, each of which result in quali-

tatively similar predictions for all of the models considered in this work. In the first of these

approaches, the global constraint of restriction 2 is simply imposed on each lexicon by fiat;

any lexicon which does not satisfy this condition is assigned probability 0. In the second of

these approaches, the truth-conditional semantics of each utterance is slightly weakened.

When an utterance u is false at a world state w, we define L(u, w) = 10-6 (or any smaller,

positive number). In this case, each utterance always assigns at least a small amount of

mass to each world state, immediately satisfying restriction 2. In the third approach we

assume that there is some, much more complex, utterance that could fully specify any pos-

sible belief state. That is, for any o there is an utterance uO such that L(uO, ) coincides

with the support of P(wjo) in every lexicon L E A. The utterances u0 may be arbitrarily

expensive, so that the speaker is arbitrarily unlikely to use them; they still serve to make

the expected surprisal well-defined. This approach captures the intuition that real language

44



is infinitely expressive in the sense that any intended meaning can be conveyed by some

arbitrarily complex utterance. The fourth approach is a simplification of the previous one:

we collapse the u, into a single utterance uull such that L(unil, w) = 1 for every world w.

Again unult is assumed to be the most expensive utterance available. In the remainder we

adopt this last option as the clearest for presentational purposes. In the models we consider

in the remainder of this work, uull never becomes a preferred speaker choice due to its

high cost, though it is possible that for other problems Unuzl may turn out to be an effec-

tive communicative act. We leave the question of whether this is a desirable feature of our

model for future work.

The above restrictions leave a great deal of flexibility for determining A; in practice

we adopt the largest A that is compatible with the base semantics of our language. If

we begin with a base SEMANTIC LEXICON, Ls, for the language (i.e. the lexicon that

maps each utterance to its truth function under the language's semantics) we can define A

by a canonical procedure of sentential enrichment: Call the utterance meaning L(u,.) a

valid refinement of Ls if: Vw Ls(u, w) = 0 -> L(u, w) =0, and, 3w L(u, w) > 0. More

informally, these conditions state that utterance meaning L(u, -) is a valid refinement if it

logically implies the semantic meaning Ls(u, -), and if it is non-contradictory. Define A to

consist of all lexica L such that each utterance meaning is a valid refinement of the meaning

in Ls; define the ENRICHMENT A of Ls to be A with an additional utterance Unull added to

each lexicon, such that L(unull, w) = 1 for every world w.

2.3.4 Specificity implicature under lexical uncertainty

Before demonstrating how the lexical-uncertainty model derives M-implicature (which we

do in Section 2.3.5), in this section we walk the reader through the operation of the lexical-

uncertainty model for a simpler problem: the original problem of specificity implicature,

which the revised lexical-uncertainty model also solves. The setup of the problem re-

mains the same, with (equal-cost) utterance set 'U = {some, all}, meanings 'W = {V, ]-,V},

and literal utterance meanings-semantic lexicon Ls in the terminology of Section 2.3.3-
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[somej = {V, -V}, [all] = {V}. The enrichment procedure gives A consisting of:

[allj = {V} Jallj = {V} J all = {V}

L]= some] = { E ,V} L2 = Lsome] = {+-,V} } L3 = some = {V} }
[Unul11 {],VV} junull {3,VV} nuld = { iVV}

and we make the minimal assumption of a uniform distribution over A: P(Li) = P(L2 )

P(L3 ) = 1. Note that some can be enriched to either 2,V or to V, and before pragmatic3.

inference gets involved there is no preference among either those two or an unenriched

meaning.

We can now compute the behavior of the model. Since it is common knowledge that

the speaker knows the relevant world state, we can once again let o = w and drop w from

the recursive equations, so that the lexical-uncertainty model of Equations (2.24)-(2.30)

can be expressed as

Lo(olu, L) c< L(u, o)P(o), (2.31)

U1 (ulo, L) = logLo(olu, L) - c(u), (2.32)

S1 (ulo, L) cx edul (ulo,L), (2.33)

Li (olu) < P(o) P(L)Si (ulo, L), (2.34)
LEA

U,(uo) = logL_ I (olu) -c(u) for n > 1, (2.35)

Sn(ulo) oc eu(ulo) for n > 1, (2.36)

Ln(olu) < P(o)Sn(uIo) for n > 1. (2.37)

Figure 2-5 shows the listener and speaker posterior distributions at varying levels of recur-

sion. At the LO literal-listener and S first-speaker levels, different inferences are drawn

conditional on the lexicon entertained: the three lexica L, through L3 are stacked top to

bottom in the leftmost panel, and the dependencies among lexicon-specific inferences are

indicated with arrows between panels. Up through S1, each lexicon-specific recursive in-

ference chain operates indistinguishably from that of the baseline model, except that an

enriched lexicon rather than the base semantic lexicon of the language is used throughout.
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The specificity implicature first appears at the level of the listener Lj, who is reasoning

about the speaker S1 . The listener computes their posterior distribution over the speaker's

intended meaning by marginalizing over the possible lexica that the speaker may have been

using (Equation (2.34)). As can be seen in the second column of the third panel of Figure 2-

5, LI's posterior supports three different possible interpretations of some. Under the lexicon

in which some has been enriched to mean V (bottom subpanel), some should be interpreted

to categorically mean V; under the lexicon in which some has been enriched to mean 3,V

(middle subpanel), some should be interpreted to categorically mean 3-,V. Under the lex-

icon in which some remains unenriched, some should be preferentially interpreted as E-,V

due to blocking of V by all, exactly as in the baseline model. Thus in the final mixture

of lexica determining the overall interpretive preferences of LI, there is an overall prefer-

ence of some to be interpreted as ]-,V; this preference can get further strengthened through

additional speaker-listener iterations, exactly as in the baseline model. Thus specificity

implicatures are still derived under lexical uncertainty.

It is important to note that the specificity implicature is not primarily driven by infer-

ences about lexical content of "some." More precisely, the listener L I retains a high degree

of uncertainty about the lexical content of "some" after hearing this utterance - much

more uncertainty than they have about the intended interpretation of "some." As described

above, if the listener hears "some," then there are multiple hypotheses about the speaker's

communicative intent and their lexicon which will rationalize the choice of this utterance.

Moreover, there are multiple lexica which are consistent with the speaker intending to com-

municate the world 3-,V by this utterance. The speaker will use "some" to communicate

3,V if the lexical entry for "some" is 3-,V, and also if the entry is unenriched. As a re-

sult, even restricting to cases in which the listener Li has inferred that the speaker intends

to communicate 3,V, this listener will be uncertain about whether the lexical entry for

"some" has been enriched. Pragmatic inference in this model thus involves resolution of

the lexicon, but is not identical to lexical resolution.
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2.3.5 Derivation of M-implicature under lexical uncertainty

We now show how lexical uncertainty allows the derivation of one-shot M-implicatures.

We consider the simplest possible M-implicature problem of two possible meanings to be

communicated-one higher in prior probability (FREQ) than the other (rare)-that could

potentially be signaled by two utterances-one less costly (SHORT) than the other (long).

The semantic lexicon of the language is completely unconstrained:

Ls =SHORTI = {FREQ, rare}

[long] = {FREQ, rare}

Each utterance has three possible enrichments-{FREQ, rare}, {FREQ}, and {rare}-

leading to nine logically possible enriched lexica. We make the minimal assumption of

taking A to be this complete set of nine, illustrated in the first panel of Figure 2-6, and

putting a uniform distribution over A.

Because utterance costs play no role in the literal listener's inferences, L0 is completely

symmetric in the behavior of the two utterances (second panel of Figure 2-6). However, the

variety in lexica gives speaker S resources with which to plan utterance use efficiently. The

key lexica in question are the four in which the meaning of only one of the two utterances

is enriched: L2, L3, 4, and L7 . 4 and L7 offer the speaker the partial associations long-

rare and SHORT-FREQ, respectively, whereas L3 and 4 offer the opposite: long-FREQ

and SHORT-rare, respectively. Crucially, the former pair of associations allows greater

expected speaker utility, and thus undergo a stronger specificity implicature in Si, than the

latter pair of associations.

This can be seen most clearly in the contrast between L2 and L3. The speaker S1 forms

a stronger association of long to rare in 4 than of long to FREQ in L3. This asymmetry

arises because the value of precision varies with communicative intention. A speaker us-

ing 4 can communicate rare precisely by using long, and will not be able to effectively

communicate this meaning by using the vague utterance SHORT. Thus, this speaker will

be relatively likely to use long to communicate rare. In contrast, long will communicate

FREQ precisely under L3 , but this meaning can also be communicated effectively with the
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utterance SHORT. Thus, the speaker using L3 will be less likely to choose long.

When the first pragmatic listener L, takes into account the variety of SI behavior across

possible lexica (through the marginalization in Equation (2.34)), the result is a weak but

crucial long-rare association. Further levels of listener-speaker recursion amplify this

association toward increasing categoricality. (The parameter settings in Figure 2-6 are

chosen to make the association at the L, level relatively visible, but the same qualitative

behavior is robust for all finite X > 1.) Simply by introducing consideration of multiple

possible enrichments of the literal semantic lexicon of the language, lexical uncertainty

allows listeners and speakers to converge toward the M-implicature equilibrium that is seen

not only in natural language but also in one-shot rounds of simple signaling games (e.g. as

observed in [7]).

2.3.6 Ignorance as a marked state

The lexical-uncertainty model introduced earlier in this section provided a novel means by

which speakers and listeners in one-shot communication games align forms and meanings

in terms of what can be thought of as two different types of markedness: cost of forms

and prior probabilities, or frequencies, of meanings. Perhaps remarkably, a third type of

markedness emerges as a side effect of this model that can explain a particularly vexing

class instance of implicature, most famously exemplified by the sentence pair below:

(3) Some or all of the students passed the test.

(4) Some of the students passed the test.

As discussed in Section 2.2, (4) has a specificity implicature that strengthens the literal

meaning of "some" to an understood meaning of "some but not all". The implicatures

of (3) differ crucially in two ways. First, as noted by [33, see also 16], (3) lacks the

basic specificity implicature of (4). Second, (3) seems to possess an ignorance implicature:

namely, that the speaker is not sure whether or not all the students passed the test.

Accounting for why the specificity implicature is lacking and how the ignorance impli-

cature comes about has become a problem of considerable prominence in recent semantic
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and pragmatic theory [24, 87, 71, 25]. This is for several reasons. First, the sentence in (3)

violates Hurford's constraint [49], according to which a disjunction is infelicitous if one

of its disjuncts entails the other. In this case, because "all" entails "some," the constraint

incorrectly predicts that the sentence should be infelicitous. For closely related reasons,

neo-Gricean theories - as well as the rational speech acts model from Section 2.1 --

cannot derive the implicatures associated with this sentence. A disjunction which violates

Hurford's constraint will be semantically equivalent to one of its disjuncts (i.e. the weaker

one); in this case, the expression "some or all" is semantically equivalent to "some." As pre-

viously discussed, the rational speech acts model, and neo-Gricean models more generally,

cannot derive distinct pragmatic interpretations for semantically equivalent expressions. To

the best of our knowledge, there has been only one previous formal derivation of this class

of implicatures, using an extension of the Iterated Best Response model 7.

An empirical test of ignorance implicature

Before proceeding further, a note regarding the available data is called for. To the best of

our knowledge, the only data adduced in the literature in support of the claim that sentences

like (3) possess ignorance implicatures have been introspective judgments by the authors

of research articles on the phenomenon in question. It is therefore worth briefly exploring

exactly how this claim might be more objectively tested and thus verified or disconfirmed.

In our view, the claim that "some or all" sentences such as (3) possess an ignorance impli-

cature that corresponding sentences such as (4) do not should make the following empiri-

cally testable prediction. Consider a sentence pair like ((3)-(4)), differing only in TARGET

QUANTIFIER "some or all" versus "some." For the "some or all" variant, comprehenders

should be less likely to conclude that the speaker knows (a) exactly how many of the ob-

jects have the relevant property or (b) that not all of the objects have the relevant property.

To test this prediction, we ran a brief experiment that involved presenting speakers with

paragraphs of the following type, each in one of two variants:

Letters to Laura's company almost always have checks inside. Today Laura

received 10 letters. She may or may not have had time to check all of the
7http://www.sfs.uni-tuebingen.de/ gjaeger/slides/slidesIrvine.pdf
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letters to see if they have checks. You call Laura and ask her how many of the

letters have checks inside. She says, "{Some/Some or all } of the letters have

checks inside."

Participants were asked two questions:

" How many letters did Laura look inside? Answers to this question confirmed (a)

above: significantly more participants answered 10 in the "some" condition than in

the "some or all" condition.

" Of the letters that Laura looked inside, how many had checks in them? Answers

to this question confirmed (b) above: significantly fewer participants gave the same

number as an answer to both this and the preceding question in the "some" condition

than in the "some or all" condition.

We are now on more solid ground in asserting that "some or all" triggers an ignorance

implicature that is lacked by "some" and that needs to be explained, and proceed to derive

this ignorance implicature within our lexical-uncertainty model. (Further details of this

experiment can be found in Appendix A. 1.)

Deriving ignorance implicatures

To show how our model derives ignorance implicature for the "some or all" case, we first

lay out assumptions about the set of world and observation states, the prior over these states,

the contents of the semantic lexicon, and utterance costs:

w
u C(U)

P(o, w) V 3-,V [all] = {V} cl) all 0
V 0 Ls = somej = {2,VV}

some 0
o? [some or all = {

some or all I
--,V 0 4

Exactly as before in our treatment of specificity implicature in Sections 2.2 and 2.3.4, we

assume two possible world states: '= {V, -V}. In order to capture the notion of possible
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speaker ignorance, however, we have relaxed the assumption of a one-to-one mapping

between speaker observation state and world state, and allow three observation states: 3-,V,

V, and a third, "ignorance" observation state denoted simply as ?. For the prior over (o, w)

state pairs we assume a uniform distribution over the three possible observations and a

uniform conditional distribution over world states given the ignorance observation state.

We follow standard assumptions regarding literal compositional semantics in assigning

identical unrefined literal meanings to "some" and "some or all" in the semantic lexicon.

However, the more prolix "some or all" is more costly than both "some" and "all", which

are of equal cost.

Following our core assumptions laid out in Section 2.3.3, the set of possible lexica

generated under lexical uncertainty involves all possible refinements of the meaning of

each utterance: "all" cannot be further refined, but "some" and "some or all" each have

three possible refinements (to {V}, {--,V}, or {V, 1-V}), giving us nine lexica in total.

Also following our core assumptions, each possible lexicon includes the null utterance unul

with maximally general meaning [ull ] = {--,V, V} and substantially higher cost than any

other utterance; here we specify that cost to be c(unuli) = 4.

Figure 2-7 shows the results of the lexical uncertainty model under these assump-

tions, with greedy rationality parameter ? - 4.8 (We chose the above parameter values

to make the model's qualitative behavior easy to visualize, but the fundamental ignorance-

implicature result seen here is robust across specifications of the prior probabilities, "greedy"

rationality parameter, and utterance costs, so long as c(all) = c(some) < c(some or all) <

c(unul/).) The key to understanding how the ignorance implicature arises lies in the Si

matrices for lexica L3 and L7. In each of these lexica, one of some and some or all has

been refined to mean only 3-,V, while the other remains unrefined. For a speaker whose

observation state is ignorance, an utterance with a refined meaning has infinitely negative

expected utility and can never be used; hence, this speaker near-categorically selects the

unrefined utterance (some in L3 , some or all in L7; the null utterance being ruled out due

8 Note that interpretations in listener functions Li are given as observation states, not pairs of observation
and world states. This is a presentational shorthand; the full listener functions Lo(o, w~u, L) and Li(o, w~u) can
always be recovered by multiplying the posterior distribution on observations by the conditional distribution
P(w1o).
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to its higher cost in both cases). But crucially, while in L7 the informed speaker who has

observed -,V prefers the refined utterance "some", in L3 that speaker prefers the unrefined

utterance-again "some"-due to its lower cost. This asymmetry leads to an asymmetry in

the marginalizing listener L 1, for whom the association with 3-V is crucially stronger for

"some" than for "some or all". Further rounds of pragmatic inference strengthen the former

association, which in turn drives an ignorance interpretation of "some or all" through the

now-familiar mechanics that give rise to scalar implicature.

Although both can be derived with the same machinery, the ignorance implicature de-

rived in this section is not just a repackaging of the M-implicatures derived in Section 2.3.5,

but rather is a distinct phenomenon. As shown in that section, lexical uncertainty will as-

sign low-probability interpretations to complex utterances. In the current section, we have

considered a scenario in which the interpretations receive uniform prior probability. In

particular, the ignorant knowledge state is assigned the same probability as each state in

which the speaker knows the true state of the world. Therefore, nothing in the assignment

of prior probabilities breaks the symmetry between interpretations. We showed that lexical

uncertainty nonetheless assigns the ignorant knowledge state as the interpretation of the

complex utterance. This derivation of the ignorance implicature therefore exploits asym-

metries between knowledgeable and ignorant knowledge states, rather than asymmetries

between high-and-low probability states. Multiple forms of effective markedness emerge

naturally from the lexical uncertainty model.

2.4 Compositionality

In the previous section we introduced the lexical uncertainty extension of the rational

speech-act model, which surmounted a general class of challenges: explaining why two

utterances with identical literal content but different form complexity receive different in-

terpretations. In each case, lexical uncertainty led to an alignment between utterances'

formal complexity and some kind of markedness of the interpretations they receive. These

analyses hinged on introducing a set of refined lexica, A, and allowing the pragmatic rea-

soner to infer which lexicon from this set the speaker was using. We described how A could
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be canonically derived from a base semantic lexicon Ls as the set of all refined sentence

meanings suitably restricted and augmented to make the model well-defined. However,

there was a choice implicitly in this setup: should refinements be considered at the level

of sentences, after composition has constructed meanings from lexical entries, or should

refinements be considered at the level of single lexical entries, and be followed by com-

positional construction of sentence meaning? Our previous process, enrichment of whole

sentences, operated after composition; in this section we consider an alternative, lexical

enrichment, which operates before composition. In the examples we have considered so

far, sentence meanings were simple enough that this choice would have little effect; as

we will show below the two approaches can diverge in interesting ways for more complex

sentences.

In order to generalize the previous approach to enrichment from full sentences to lexical

entries of more complex types we need an extended notion of refinement. While it is

beyond the scope of this work, one could adopt the generalized notion of entailment from

natural logics and then define a refinement of a lexical entry as another term of the same

type that entails the original entry. The set of lexica A could then be derived, as before, as

the set of all lexicons that can be derived from Ls by refinement. Sentence meanings would

then be derived from (refined) lexical meanings by ordinary compositional mechanisms. In

this work, we will only consider refinements of Boolean-typed lexical items. As before, we

must impose certain restrictions on these refinements to ensure that the model will be well

defined. The necessary restrictions are the same as in Section 2.3.3. Our previous solution

for restriction 2 carries over: we may extend each lexicon with a trivial untt!. Restriction I

is more subtle than before. We must still guarantee that the literal listener can interpret

any utterance. Simply restricting that the lexical entries be assigned non-contradictory

refinements in not enough, as composition can arrive an contradictions (e.g. "A and not

A"). There are various options available to solve this problem 9 ; we will initially restrict

our attention to composition by disjunction, where it is sufficient to require that individual

9For instance, we could add a world state werr which has non-zero weight if and only if all other states
have zero weight. Since P(werro)=O for any observation o, the speaker will never choose an utterance
which leads to the Werr interpretation. This mechanism is generally useful for filtering out un-interpretable
compositions [35].

57



lexical items are non-contradictory.

We first motivate the need to consider composition of enriched lexical entries by de-

scribing a class of implicatures that pose trouble for our approach so far. We then describe

the lexical enrichment procedure for the case of Boolean composition and show that it can

explain these (and other) cases of pragmatic enrichment.

2.4.1 Implicatures from non-convex disjunctive expressions

We have thus far explored two subtle cases of implicatures that break the symmetry be-

tween semantically equivalent utterances. The first example was that of M-implicatures

such as the difference in interpretation between Sue smiled and The corners of Sue's lips

turned slightly upwards [62], where the relevant notion of markedness is the prior proba-

bility of the meaning: ordinary smiles are more common than smirks and grimaces. The

second example was that of ignorance implicatures for disjunctions such as some or all,

in which the relevant notion of markedness is the degree of speaker ignorance about the

world state: the more complex utterance is interpreted as indicating a greater degree of

speaker ignorance. However, there are even more challenging cases than these: cases in

which non-atomic utterances with identical literal content and identical formal complexity

receive systematically different interpretations. A general class of these cases can be con-

structed from entailment scales containing more than two items, by creating a disjunction

out of two non-adjacent terms on the scale:

(5) Context: A and B are visiting a resort but are frustrated with the temperature of the

springs at the resort they want to bathe in.

A: The springs in this resort are always warm or scalding. [Understood meaning:

but never hot.]

(6) Context: A is discussing with B the performance of her son, who is extremely smart

but blows off some classes, depending on how he likes the teacher.

A: My son's performance in next semester's math class will be adequate or stellar.

[Understood meaning: but not good.]
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(7) Context: there are four people in a dance class, and at the beginning of each class,

the students are paired up with a dance partner for the remainder of the class. A,

who is not in the class, learns that one of the students in the class did not have a

dance partner at a particular session, and encounters B.

B: Any idea how many of the students attended the class?

A: One or three of the students showed up to the class. [Understood meaning: it

wasn't the case that either exactly two students or exactly four students showed up.]

These disjunctive expressions-warm or scalding, decent or stellar, one or three-pose

two serious challenges for neo-Gricean theories. First, in each case there are alternatives

disjunctive expressions with identical formal complexity (in the sense of having the same

syntactic structure and number of words) and literal meaning under standard assumptions

that the literal meanings of such expressions are lower bounds in the semantic space of the

scale, but different understood meaning: warm or hot, decent or good, one or two. 10 It is

not at all clear on a standard neo-Gricean account how these pairs of alternatives come to

have different pragmatic interpretations. Second, these expressions have the property that

their understood meanings are NON-CONVEX within the semantic space of the scale. This

property poses a serious challenge for standard neo-Gricean accounts: since all the alterna-

tives whose negation could be inferred through pragmatic reasoning have literal meanings

that are upper bounds in the semantic space, it is unclear how the resulting pragmatically

strengthened meaning of the utterance could ever be non-convex.

The basic lexical uncertainty framework developed in Section 2.3 does not provide

an explanation for these cases, which we will call NON-CONVEX DISJUNCTIVE EXPRES-

SIONS. That framework can only derive differences in pragmatic interpretation on the basis

of differences in literal meaning or complexity; in the current cases, the utterance pairs re-

ceive distinct interpretations despite sharing the same literal meaning and complexity. It

'()Explaining the difference in meaning between one or three and one or two is only a challenge for prag-
matic theories if numerals have a lower-bound semantics; if numerals have an exact semantics, then these
disjunctive utterances will receive different literal interpretations. However, this objection does not hold for
non-numeric scales such as <warm, hot, scalding>, in which each lexical item has an uncontroversial lower-
bound semantics. We will be using the numerical examples for illustrative purposes, but our claims will be
equally applicable to the non-numeric examples.
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turns out, however, that these cases can be elegantly handled by compositional lexical un-

certainty. Before introducing the compositional lexical uncertainty framework, it is worth

noting that alternative game-theoretic frameworks do not derive the appropriate interpre-

tations of non-convex disjunctive expressions. While the IBR model is able to derive the

distinction between some and some or all, it cannot derive the distinction between one or

two and one or three." The IBR model only derives different pragmatic interpretations

based on differences in semantic content or cost; the version of the IBR model which de-

rives the ignorance implicature for some or all relies on the difference in cost between

some and some or all in its derivation. Because the utterances one or two and one or three

have identical semantic content and complexity, the IBR model will assign these utterances

identical interpretations.

2.4.2 Compositional lexical uncertainty

In this section we further specify compositional lexical uncertainty, as sketched out above,

for the case of boolean atomic utterances composed by disjunction. This requires only a

small change to the original lexical-uncertainty model introduced in Section 2.3: the stan-

dard assumption that the literal listener interprets non-atomic utterances by composition.

Assume that the base semantic lexicon Ls maps a set 'A of atomic utterances to

Boolean-valued truth-functions (and maps "or" to the disjunction V, though we will sup-

press this in the notation below). The set of lexica A is derived by enrichment as before

as all possible combinations of valid refinements of the utterance meanings in Ls, each

augmented with the always-true utterance u,ull. From this we define denotations of (po-

tentially non-atomic) utterances inductively. First, for an atomic utterance u, we define its

denotation [uHL relative to lexicon L by:

[uJ L(w) = L(u, w) (2.38)

'The IQR model does not provide an account of the difference in interpretation between "some" and
"some or all." It is strictly more difficult to derive the appropriate implicatures in the current example -
because there are strictly fewer asymmetries for the model to exploit - and therefore the IQR model will
also not derive these implicatures.
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That is, the denotation of an atomic utterance relative to a lexicon is identical to its entry

in the lexicon. The denotations of complex utterances are defined in the obvious inductive

manner. For the disjunction "uI or u2":

[uI or u21L(w) { if [u;]L(w) = I or U2L(W) = 1 (2.39)
0 otherwise.

We could define the denotation of utterances built up from conjunctions and other Boolean

connectives similarly (though with the caveat indicated above pertaining to contradictions),

but won't need these for the below examples.

The literal listener now interprets utterances according to their denotations:

Lo(w, olu, L) f [L (W)P(W, o) (2.40)

In other words, the literal listener filters out worlds that are inconsistent with the denotation

of the utterance. The definitions of the higher-order speakers and listeners are unchanged

from the previous versions of the model.

2.4.3 Derivation of non-convex disjunctive expressions

We demonstrate the account of non-convex implicatures afforded by compositional lexical

uncertainty using the running example of one or three, though the same account would hold

for non-convex disjunctions on other scales such as warm or scalding and decent or stellar.

For discursive simplicity we limit the range of the space to the integers {1,2, 3}, though

the account generalizes to arbitrary convex subsets of the integers. The set of ATOMIC

UTTERANCES UA and possible observation states 0 are, respectively:

2 3

0= 1V2 1V3 2V3
UA = {one, two, three}

I V2V3

where the join-semilattice relationship among the seven members of 0 is depicted for ex-

pository convenience. The set of world states W contains what we will call only BASIC
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world states-in this case, 1, 2, and 3-and the mapping between world states and speaker

observation states is not one-to-one. Under these circumstances, an observation state is

compatible with all basic world states above it on the lattice, and observation states thus

vary in the degree of speaker ignorance.

Since utterance meanings are defined as sets of world states, the literal meaning of each

atomic utterance can easily be picked out as the set of world states that lie above a particular

node on the join semilattice. In our running example, these nodes are I V 2 V 3 for one, 2 V 3

for two, and 3 for three. Hence we have

[one ={1,2,3}

Ls = twoj = {2,3}

Jthree = {3}

for the simple indicative case.

The set of possible lexica consists of all logically possible combinations of valid refine-

ments (i.e., non-empty subsets) of each atomic utterance's meaning. In the simple indica-

tive case, one has seven possible refinements, two has three possible refinements, and three

has one, hence there are twenty-one logically possible lexica, a few of which are shown

below (together with denotations of complex utterances, for illustration, though they are

not strictly part of the lexica):

one ={,2,3} one = {3} one=}

twoB {3} {two ={2,3} tw{2}

three = {3} JthreeB = {3} three= {3}

one or twol = {1,2,3} > one or two] ={2,3} ><one or two = {112}

two or three = {3} two or three= { 2,3} two or three = {2,3}

one or three] ={1,2,3} one or three] = {3} one or three ={1,3}

one or two or three] = {1,2,3} oneortwoorthreef = {2,3} one or two or thre = {1,2,3}

To show how this account correctly derives understood meanings for non-convex dis-

junctive utterances, we need to complete the model specification by choosing utterance

costs and prior probabilities. Similar to the approach taken in Section (4), we make the

minimally stipulative assumptions of (i) a uniform distribution over possible observations,
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(ii) a uniform conditional distribution for each observation over all worlds compatible with

that observation; and (iii) a constant, additive increase in utterance cost for each disjunct

added to the utterance. We set the cost per disjunct arbitrarily at 0.05 and set X to 5, though

our qualitative results are robust to precise choices of (i-iii) and of X.

Here we examine in some detail how the model correctly accounts for interpretations

of non-convex disjunctive expressions in the simple indicative case. Even in this case there

are 21 lexica, which makes complete visual depiction unwieldy; for simplicity, we focus

on the twelve lexica in which the denotation of one has not been refined to exclude 1,

because it is in this subset of lexica in which one has already been distinguished from two

and we can thus focus on the inferential dynamics leading to different interpretations for

one or two versus one or three. Figure 2-8 shows the behavior of this pragmatic reasoning

system. The three leftmost panels show the twelve lexica and the resulting literal-listener

L0 and first-level speaker Si distributions respectively; the three rightmost panels show the

marginalizing listener LI and the subsequent speaker and listener S2 and L2 respectively;

by the L 2 level, pragmatic inference has led both atomic and disjunctive utterances to be

near-categorically associated with interpretations such that each atomic term in an utterance

has an exact meaning at the lower bound of the term's unrefined meaning (and such that

disjunctive utterances are thus disjunctions of exact meanings). The key to understanding

why this set of interpretations is obtained can be found in the asymmetries among possible

refinements of atomic terms in the lexica. Observe that under lexical uncertainty both two

and three can have refined meanings of {3}; but whereas three MUST have this meaning,

two has other possible meanings as well ({2} and {2,3}). Consequently, the set of lexica

in which one or two has {1,3} as its meaning (4 and 4) is a strict subset of the set of

lexica in which one or three has that meaning (which also includes L2, 4, L10 , and L12 ).

Pragmatic inference leads to a strong preference at the S, level in the latter four lexica

for expressing observation state 1 V 3 with one or three, even in 4 and L10 where that

observation state is compatible with the utterance one or two. Furthermore, there are no

lexica in which the reverse preference for expressing 1 V 3 with one or two is present at the

Si level. This asymmetry leads to a weak association between one or three and 1 V 3 for the

marginalizing LI listener, an association which is strengthened through further pragmatic
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inference.

2.4.4 Some or all ignorance implicatures with compositional lexical

uncertainty

For completeness, we briefly revisit the ignorance implicatures of some or all originally

covered in Section 2.3.6, now within the framework of compositional lexical uncertainty.

In short, compositional lexical uncertainty derives ignorance implicature for some or all for

similar reasons that it derives interpretations for the more difficult cases of non-convex dis-

junctive expressions: there are lexica in which some is refined to mean {3-V}, but no lexica

in which some or all can be refined to have this meaning. This asymmetry leads to a weak

association for the marginalizing L1 listener between some and 3-,V and between some or

all and the ? ignorant-speaker observation state. Further pragmatic inference strengthens

this association (S2 and L2).12

2.4.5 Implicature cancellation

Does lexical uncertainty preserve standard properties which are associated with implica-

tures? In particular, does lexical uncertainty allow for the cancellation of implicatures? For

example, consider the utterance "Some of the students passed the test, in fact they all did."

Lexical uncertainty allows the literal meaning of "some" to be refined to mean {-V}. If

"some" is refined in this manner, then the utterance will be contradictory, as it will assert

that some but not all of the students passed the test, and that all did. Thus, it may appear

that lexical uncertainty predicts that this utterance is contradictory-which would clearly a

problem for our account.

Implicature cancellation is in fact possible under lexical uncertainty. As discussed in

section 2.3.4, the derivation of the specificity implicature for "some" (or of other specificity

implicatures) under the lexical uncertainty model is not primarily driven by the refinement

121t is worth remarking that this asymmetry resulting from the constraints across denotations of utterances
imposed by compositional lexical uncertainty is strong enough to derive the empirically observed interpre-
tations and associated ignorance implicatures of disjunctive expressions even without any differences in ut-
terance costs. Thus compositional lexical uncertainty can be viewed as a fully-fledged alternative to the
"ignorance as a marked state" view of the basic ignorance implicatures of Section 2.3.6.
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Figure 2-9: Some or all ignorance implicature under compositional lexical uncertainty.

of the lexical entry for "some." That is, the pragmatic listener has a high degree of certainty

that the speaker intended to communicate {-,V}, but still considers it quite probable that

the lexical entry for "some" is the unrefined {3-V,V} (and that the narrow interpretation

comes from the standard effect of alternatives). This property is retained in the compo-

sitional model: after hearing an utterance like "Some of the students passed the test," the

listener L, will be uncertain about the lexical entry for "some."

Suppose that a listener then hears a cancellation utterance, such as the one above. In

the compositional model, this utterance is treated as the conjunction of two utterances:

"some" and "all." If the listener L only heard "some," they would be uncertain about

whether its lexical entry was {]-,V} or {-,V,V}, or less probably {V}. However, given the

conjunction of these two utterances, the listener is able to draw a stronger inference. If the

lexical entry for "some" had been {3-,V}, then the conjunction of "some" and "all" would

have been contradictory, and the speaker would not have chosen the utterance in this case.
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The listener therefore will infer that the lexical entry of "some" was {--,V,V}. This lexical

entry for "some" is consistent with V, and the literal content of "some and all" is V. The

listener will therefore cancel the implicature, interpreting "some and all" as V.

2.4.6 Downward entailing contexts

We have shown how to derive a particular class of embedded implicatures using composi-

tional lexical uncertainty. It is, moreover, possible to use the same machinery to straightfor-

wardly derive many other standard embedded implicatures. However, certain constraints

on these implicatures have been observed in the literature. We now consider whether lexi-

cal uncertainty can derive one such constraint: the observation that embedded implicatures

generally do not occur in downward entailing contexts [33, 46].

Consider the following example:

(8) John didn't talk to Mary or Sue.

Without embedding under negation, as in (9) below, the disjunction would license a prag-

matically strengthened, exclusive-or (XOR), meaning:

(9) John talked to Mary or Sue.

It has long been observed that when certain speaker knowledgeability assumptions are in

the common ground, (9) indeed gives rise to this strengthened meaning of John talked to

either Mary or Sue, but not to both. This a standard case of scalar implicature (through

negation of the alternative generated by substitution of and for or) and falls out of all

variants of our model, even without lexical uncertainty. If the disjunction were given this

stronger XOR meaning within (8), then the resulting sentence meaning would be equivalent

to John talked to both Mary and Sue, or neither. However, this appears to be a strongly

dispreferred reading of (8), which seems to convey that John did not talk to Mary, and that

he did not talk to Sue. For grammatical approaches to embedded implicatures, which use

an exhaustification operator to derive these implicatures, this observation has suggested

that exhaustification operators cannot be applied in downward entailing contexts. Though
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exhaustification of the disjunction (through refinement of or) is not a possibility in our

current formulation of lexical uncertainty, a nearly identical problem nonetheless arises

for our approach, arising from the possibility of refinement of the lexical entries for the

disjuncts. If we assign propositional representations to "Mary" and "Sue", denoted by M

and S respectively, the propositional representation for (8) will be -,(M V S). Under one

admissible refinement of these utterances, M will mean John talked to Mary and not Sue

and S will mean John talked to Sue and not Mary. The expression -,(M V S) will in this

case be equivalent to the unattested reading above: John talked to both Mary and Sue,

or neither. Lexical uncertainty therefore predicts that the dispreferred XOR reading is

available as a literal meaning of (8). It would be problematic for our theory if this reading

were propagated through pragmatic reasoning, and assigned relatively high probability by

the listener. We will show, however, that this is not the case: pragmatic reasoning under

lexical uncertainty generally reduces the availability of the XOR interpretation, thus our

theory predicts that this interpretation will be strongly dispreferred.

In order to demonstrate this, we will first present a formalization of Example (8) in our

framework. We assume that there are four worlds, W = { { }, {Mary}, {Sue}, {Mary, Sue}},

where each world is specified by the set of people that John talked to. We assume all

speaker epistemic states are possible: the set of observations 0 is maximal with respect

to the worlds, i.e. for every non-empty subset of W, there is a corresponding observation

that is consistent only with the worlds in that subset. We will use the term knowledge state

to refer to the subset of worlds which are consistent with a particular observation. We as-

sume that the prior distribution on observations, P(o), is uniform, and that the conditionals

on world given observation, P(wlo), are each individually uniform (over the worlds which

are compatible with that observation). (This implies that the marginal on worlds, P(w),

is uniform as well.) A refinement of an utterance is compatible with a knowledge state if

the knowledge state is a subset of the refinement. We will also compare the informativity

of utterances with respect to a given knowledge state o: of (refined) utterances u, u' both

compatible with o, u is more informative than u' with respect to o if u is compatible with

fewer alternative knowledge states than u.

Utterances are assumed to be generated from the following grammar:
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S -+ C, S - --,C

C--+mLs, C-+m, C-+ s

L-+V, L-+A

This grammar derives two atomic utterances (m, with [m]= {{Mary}, {Mary, Sue}}, and s,

with s] = {{Sue}, {Mary, Sue}}), and more complex utterances which are formed through

conjunction, disjunction, and negation. We assume that every utterance which is derived

by the grammar is available as an alternative. We assume that an utterance has cost pro-

portional to the total number of negations and disjunctions it contains, though our key

qualitative predictions are invariant to precise utterance costs. Semantic refinement and

composition are implemented in a manner nearly identical to the previous examples.' 3

For the models in this section and the next, we show the fixed-point interpretations

to which the pragmatically sophisticated listener converges-we denote these as L.-but

the same qualitative behavior is apparent in the model before the fixed point is reached.

Figure 2-10 shows the nine possible refined lexica for this model, and the ultimate predicted

pragmatic interpretation of Example (8), as well as the interpretation of the other alternative

utterances, when the cost per disjunct and the cost of negation are each 0.1, and the inverse-

temperature parameter X is 5.14 The pragmatic listener interprets -(m V s) as {{}} with

probability 1-thus, Example (8) does not generate an embedded implicature in the model.

To convey the key intuitions for this key behavior of the model, we will give a two-part

13The only additional complication in this example is that certain combinations of refinements result in
utterances with contradictory interpretations. For example, if the utterance Mary is refined to mean that John
talked to Mary but not Sue, and Sue is refined to mean that John talked to Sue but not Mary, then their
conjunction will be contradictory. We adopt the solution briefly discussed in Section 2.4, and introduce a
world state Werr which has positive probability if and only if all other world states have zero probability. The
alternative utterance "John talked to Mary and Sue" maps to this world state in 5 of the 9 lexica, as shown
in Figure 2-10. We assign zero prior probability to werr, equivalent to the speaker and listener assuming joint
communicative success (see also discussion in Footnote 9).

14The figure shows one unintuitive prediction of the model: that -,(m A s) will sometimes be interpreted as
the fully ignorant knowledge state {{} , {m}, {s} , {m,s}}. The association of the fully ignorant knowledge
state with this utterance occurs because -(mA s) has the least informative literal meaning among the non-null
alternative utterances: depending on the lexicon, the literal meaning of this utterance is compatible with at
least three, and often four, of the possible worlds. However, this association is sensitive to the cost of the
null utterance, which is best at literally communicating the fully ignorant knowledge state. When the null
utterance is sufficiently cheap, it will be used by the speaker in the fully ignorant knowledges state, and will
therefore block the association of -(m A s) with this knowledge state.

69



1(in A s)-

11) V s-

'ini A s-

'111

ZM

OM

Interpretation

Figure 2- 10: The set of lexica (left) in the negation/disjunction example (8), and the inter-
pretation that the listener L. assigns to each alternative utterance (right). The y-axis shows
the 9 alternative utterances, while the x-axis shows the 4 possible worlds for the lexica,
and the 15 possible knowledge states for the interpretation. The inverse-temperature X = 5,
the cost of each disjunct is set to 0. 1, the cost of negation is 0.1, and the knowledge states
receive uniform prior probability. Because there are a greater number of knowledge states
than utterances, most utterances are not specialized to a single meaning. The critical pre-
diction of the model - that utterance -i(m V s) will be interpreted as knowledge state {{ } }
- is robust across all settings of the cost parameters which we have examined, ranging
from 0 to 50.
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explanation. First, we will explain why a speaker who wants to communicate this world

will choose Example (8). Second, we will explain why the speaker would not choose

-(m V s) to convey any knowledge state other than {{}}. A pragmatically sophisticated

listener using this knowledge to reason about the speaker will infer from -,(m V s) that the

speaker intended knowledge state {{}}. Throughout this section and the next one, we will

be focusing on the reasoning of the listener L 1 , who interprets utterances by performing

joint-inference over the speaker's knowledge state and lexicon. This listener's reasoning

drives the effects which are discussed in this section; the reasoning of higher-order speakers

and listeners mostly amplifies these effects.

To explain why the speaker who wants to communicate knowledge state {{}} will

choose Example (8), consider the speaker who wants to communicate this world. This

speaker cannot use any utterance which entails that John talked to either Mary or Sue. For

any pair of refinements to m and s, the only utterances which satisfy this requirement are

those under the scope of negation, i.e. those generated by the rule S -+ -,C. All four of

these negated utterances--m, ,s, -,(m A s), and -,(m V s)-are always compatible with

knowledge state {{ } }. Crucially, however, as can be seen in the left panel of Figure 2-10,

under no refined lexicon is -,(m V s) less informative with respect to { {}} than any of the

other three negated utterances, and for each of these other three there are many refined

lexica in which -,(m V s) is more informative: all but L2 and L5 for 'm, all but 4 and

L5 for -s, and all but L5 for -,(m A s). The speaker who wants to communicate the world

{ } will, under any lexicon, thus find -,(m V s) at least as good as any other utterance; and

under most lexica, it will be better.

We will now explain why the speaker would be unlikely to use -,i(m V s) to communicate

any knowledge state other than {{}}. Note that there are a number of possible knowledge

states besides {{}} compatible with -, (m V s) under some refined lexicon, readable off of

the lexica panel of Figure 2-10:

{{}, {s}}, {{}, {im}, {s}},

{s}}, {{iM}, {s}},

{{}, {M}}, {{}, {ins}},

{{m}I, {{nM,s}}.
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We will give the explicit logic for why -,(m V s) is not the preferred utterance to express

the critical XOR knowledge state {{}, {Mary, Sue}}; a similar logic applies to all the other

knowledge states listed above. The first pragmatically sophisticated listener L, must rea-

son about speaker Si's behavior in the face of uncertainty about the lexicon that Si is using.

But, as can be seen in the lexica panel of Figure 2-10, -,(m V s) is compatible with the

XOR knowledge state {{}, {Mary, Sue}} in only one of the nine possible lexica (4). The

alternative utterance -i,m, in contrast, is compatible with the XOR knowledge state in three

lexica, in two of which it is the most informative for expressing this knowledge state. The

same is true for -is. The low prior probability of Si using a lexicon in which the utterance

-,(m V s) is compatible with the XOR knowledge state immediately disadvantages this ut-

terance for this state. This effect becomes stronger for more pragmatically sophisticated

speakers, who never choose -,(m V s) to communicate {{}, {Mary, Sue}}, but rather -,m or

,-s.

The model implementation we have just described illustrates why embedded implica-

ture for Example (8) is disfavored under compositional lexical uncertainty. Under all of the

parameter settings we have explored, this disfavoring is strong enough to lead to complete

unavailability of the locally strengthened interpretation after pragmatic inference. This

does not mean, however, that overall model behavior is completely invariant to parameter

settings. For example, a strongly skewed prior distribution over lexica which favors 4

could invalidate the second part of our logic as laid out above, and potentially lead to an

XOR knowledge-state interpretation of - (m V s). In this connection, we should note that

we know of no empirical evidence showing that the XOR interpretation of Example (8) is

categorically unavailable regardless of conversational context. We leave as an open em-

pirical and modeling question whether there are conversational contexts in which listeners

obtain strengthened XOR readings for utterances such as Example (8), and if there are,

whether parameterizations of our model corresponding to features of such contexts lead to

such readings.

In connection with this open question, it has previously been noted that embedded

implicatures can be generated in downward-entailing environments if accenting is placed

on the scalar term [46]:
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(10) John didn't talk to Mary OR Sue.

Under one reading, this utterance is compatible with John having talked to both Mary and

Sue. This suggests that the disjunction is being assigned an exclusive-or meaning, and

therefore that an embedded implicature has been generated. We have not presented an

account of how to treat accenting in our modeling framework. Whether accenting can be

properly treated in this framework, and if a proper treatment would derive the embedded

implicature in Example (10), thus remain as additional open questions.

2.4.7 Exceptional downward entailing contexts

The examples discussed in Section 2.4.6 seem to provide evidence that, in the absence of

accenting, embedded implicatures do not occur in downward-entailing contexts. Indeed,

there are several theoretical proposals which have been developed to account for this gen-

eralization [16, 27]. [16], who derive embedded implicatures using exhaustivity operators,

propose the following condition: an exhaustivity operator cannot be inserted into a sen-

tence if it results in an interpretation which is logically weaker than what the sentence

would receive in its absence. This straightforwardly accounts for the unavailability of the

embedded implicature in Example (8), as the reading associated with the implicature is log-

ically weaker than the attested reading. [27] propose an extension of this condition, which

makes the further prediction that Hurford-violating disjunctions cannot be embedded in

downward-entailing contexts.

We will present evidence, however, that these generalizations do not hold in all cir-

cumstances. In particular, it is possible to construct counterexamples using the non-convex

disjunctive implicatures identified in Section 2.4.1. Consider the following examples:

(11) Context: A and B are visiting a resort. B has very particular preferences about the

temperature of the springs at the resort: he will bathe in them if they are between

85-95 degrees F (30-35 degrees C), or between 105-115 degrees F (40-45 degrees

C), as he finds the lower temperatures relaxing and the higher temperatures invig-

orating. A knows about B's preferences, and has checked the water temperature
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for him.

A: The water isn't warm or scalding. [Understood meaning: the water is below 85

degrees F or between 95-105 degrees F.]

(12) Context: A and B are scientists who study cancer in mice. They are discussing a

tumor that one mouse has developed. If it is above 1 mm in size, then it cannot

be removed safely. If it is between 0.1-1 mm, then it can be surgically removed,

and the mouse can be saved; if it is between 0.01-0.1 mm, then it is too small to

be surgically removed, but may still be harmful to the animal; and if it is less than

0.01 mm, then it is so small that it will not harm the animal. These facts about

mouse tumors are common knowledge among A and B, and A has gotten some

information about the tumor size.

A: The tumor isn't small or microscopic. [Understood meaning: the tumor is larger

than 1 mm or between 0.01-0.1 mm.]

In example (11), the speaker embeds the Hurford-violating disjunction "warm or scalding"

under negation. As discussed in Section 2.4.1, this disjunction ordinarily generates the

non-convex implicature warm but not hot, or scalding. The current example demonstrates

that this implicature can be preserved under negation, as the utterance is interpreted as the

negation of warm but not hot, or scalding, i.e. cool or hot but not scalding. This pro-

vides evidence both that embedded implicatures can be generated in downward-entailing

contexts, and that Hurford-violating disjunctions can be felicitous in such contexts.

We have already shown that lexical uncertainty can explain the lack of embedded impli-

catures in Example (8). We will now show that it can simultaneously explain the embedded

implicature generated in Example (11). It is the distinctive structure of the sets of worlds

and alternatives in Example (11) which lead to this implicature. The conditions which pre-

vented an embedded implicature from being generated in Example (8) are absent in this

example.

In order to formalize this example, we assume that the set of worlds 'W = { 1,2,3,4},

where higher numbers correspond to higher temperatures. World 1 corresponds to water

below 85 degrees F, world 2 to water between 85-95 degrees F, world 3 to water between
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95-105 degrees F, and world 4 to water between 105-115 degrees F. The speaker's possi-

ble knowledge states are again the non-empty members of 2W, the powerset of 'W. The

speaker's knowledge states receive uniform prior probability. There are three atomic ut-

terances, with the following intensions: [w] = {2,3,4} ("warm"), [hj = {3,4} ("hot"),

[s] = {4} ("scalding"). The full set of utterances consists of the atomic utterances, dis-

junctions of arbitrary subsets of the atomic utterances, and the negations of the previous

two types of utterances.15 The utterance in Example (11) is represented by -,(w V s) in this

formalization.

Figure 2-11 shows the predicted pragmatic interpretation of each alternative utterance,

when, as in Figure 2-10, per-disjunct and per-negation costs are 0.1 and the inverse-temperature

constant k is 5. This behavior is qualitatively different than that seen for Example (8) as dis-

cussed in Section 2.4.6: here, -(w V s) conveys knowledge state { , 3} (that is, the water is

either warm or scalding, but not hot) with probability 1, corresponding to an interpretation

with local scalar strengthening of w ("warm").

Why the difference in the behavior of Examples (8) and (11) in our compositional

lexical uncertainty model? In our discussion the utterance in Example (8), we outlined the

following logic: for an utterance u and knowledge state o, is it the case that (i) o is better

expressed by u than by any other utterance? and (ii) will any alternative knowledge state

0' , o preferentially be expressed by u? If we can answer (i) in the affirmative and (ii) in

the negative, then the listener should preferentially interpret u as conveying o. In the case

of Example (8), we were able to answer (i) in the affirmative and (ii) in the negative for

the knowledge state corresponding to no local strengthening, or {{} }. In Example (11),

in contrast, it is the observation { 1,3} that allows us to answer (i) in the affirmative and

(ii) in the negative, corresponding to an interpretation with local strengthening of w. As

with the discussion in Section 2.4.6, a key component of the reasoning lies in considering

the number of different refined lexica in which various literal interpretations are available.

Figure A-2 in Appendix A.3 depicts the 21 refined lexica for this problem, though for

15We do not include conjunctions of the utterances, as in most cases, they are literally equivalent to the
stronger conjunct. In particular, because s = {4}, any conjunction which includes the utterance s will be
either contradictory or literally equivalent to s. Including the conjunctions as alternatives does not, however,
substantially change the predictions discussed here.
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Figure 2-11: The interpretation the listener L,, assigns to each alternative utterance, in our
formalization of Example (11). The y-axis shows the 15 alternative utterances, and the
x-axis shows the 15 possible knowledge states. The cost of each disjunct is 0.1, the cost
of negation is 0.1, the inverse-temperature ?1 is set to 5, and all knowledge states receive
uniform prior probability.

discursive simplicity we will not refer directly to specific lexica in this section.

We elucidate this logic first by explaining part (i): why the speaker with knowledge state

{ 1, 3} will use Example (11). The utterance ,(w V s) is always literally compatible with

world 1, due to the fact that refinements of the atomic utterances w and s must always be

monotonic enrichments. The utterance is literally compatible with knowledge state { 1,3}
in nine of the twenty-one possible lexica: six in which w is strengthened to {2} or {2,4},

and three in which w is strengthened to {4}. In the first six, the literal (post-refinement)

meaning of ,i(w V s) conveys { 1, 3} as informatively as possible. No other utterance has
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this degree of compatibility and informativity with respect to this knowledge state. -,s is

always literally compatible with the knowledge state, but is never maximally informative,

and in a number of lexica is less informative than an alternative. -w is literally compatible

with {1, 3} in the same nine lexica as -,(w V s), but is maximally informative in only three

of them, and thus less informative overall. Similarly, no other alternative is as informative

as -i(w V s).

We now turn to (ii): why no knowledge state other than {1, 3} will be preferentially

expressed with -,(w V s). We lay out the explicit logic for the two most crucial alterna-

tive knowledge states to consider, namely {1 } and {3}, but similar logic applies to other

knowledge states compatible with some refined literal meaning of -,(w V s). Knowledge

state { 1}, in which the speaker knows that the water is cool, would be the only knowledge

state compatible with -,(w V s) without an embedded implicature. But the speaker will not

choose -,(w V s) given knowledge state { 1}, because there are alternative utterances which

direct the listener more informatively toward this knowledge state. Of the seven possible

refinements of w, only two (appearing in six of the 21 possible refined lexica) result in a

literal interpretation of -,(w V s) as world 1; the other five yield weaker and thus less in-

formative literal meanings. The utterance -,(w V h), in contrast, has literal interpretation

{1 } in eight of the 21 refined lexica. The speaker in knowledge state {1 } is therefore more

likely to choose utterance -(w V h) than -,(w V s). We now consider knowledge state {3},

in which the speaker knows that the water is hot but not scalding. The utterance -, (w V s)

is compatible with {3} in only eight of the 21 lexica-those in which world 3 is not in the

refinement of w. Moreover, even in these eight lexica, -,(w V s) is not maximally infor-

mative as to this knowledge state, as the utterance is always compatible with world 1. In

contrast, the utterance h ("hot") is compatible with {3} in 14 lexica, and uniquely picks out

this knowledge state in seven of them. The speaker in knowledge state {3} will therefore

prefer utterance h over utterance -i(w V s).

The logic above characterizes why interpretations corresponding to embedded impli-

catures occur in our model under negation for non-convex disjunctions, even under cir-

cumstances where they do not appear for the more ordinary disjunctions explored in Sec-

tion 2.4.6. Unlike the case of Section 2.4.6, however, where qualitative model behavior
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was invariant to utterance costs and the inverse-temperature X, embedded implicature for

non-convex disjunctions is sensitive to these model parameters. In particular, once the

per-(disjunct/negation) cost rises beyond a threshold, the interpretation m4trix depicted

in Figure 2-11 crucially changes: the utterance -, (w V s) loses its embedded implicature

and takes interpretation { 11, and the interpretation of utterance -s is split 50/50 between

{ 1, 3} and { 1,2,3}. The precise cost threshold at which this change occurs depends on the

inverse-temperature parameter X: the cost threshold is about 0.35 for X = 5, the value used

in Figure 2-11; the threshold is higher for lower values of X.

Intuitively, this change of interpretation arises because the additional cost of the disjunc-

tion eliminates the pragmatic blocking effects of disjunctive utterances. As noted above,

for the speaker who wants to communicate knowledge state { 1}, the most informative ut-

terance is -(w V h). When the cost of disjunctive utterances is sufficiently low, the speaker

will always want to choose this utterance, and as a result, the utterance induces a blocking

effect: if the speaker did not choose utterance -(w V h), then that fact indicates that they are

not in knowledge state { 1}. When the cost of disjunctive utterances increases, this block-

ing effect disappears. If the speaker did not choose utterance ,(w V h), there are now two

explanations for this fact: either the speaker is not in knowledge state { 1}, or the speaker

is in this knowledge state, and they decided that the utterance is too expensive. When the

speaker uses utterance -(w V s), the interpretation { 1} is no longer blocked by utterance

-,(w V h). The utterance , (w V s) does provide information about knowledge state { 1}, and

as a result this knowledge state is a reasonable interpretation of the utterance. The addi-

tional cost of disjunction also means that -,(w V s) does not exhibit any pragmatic blocking

effects. In particular, though -i(w V s) is interpreted as knowledge state { 1}, it does not

block the interpretation of other utterances as this knowledge state. The simpler utterance

,-1w assigns 1 of its probability mass to this knowledge state.

The above discussion has illustrated that compositional lexical uncertainty model has

the expressive resources to account for the embedded implicature in Example (11), though

it does not predict this implicature in all cases. We briefly note that the implicature in

Example (11) does in fact appear to be quite fragile. In the absence of any background

context, the utterance does not appear to generate an implicature, or at least not as strongly
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(though further experimental evidence is needed to evaluate this intuition). The modeling

setup presented in this section did not include any of this background context. In particular,

the prior distribution was uniform over the speaker's possible knowledge states. Given dif-

ferent background information, such as low prior probability to knowledge states which are

irrelevant in the example, the model predicts the implicature more robustly across utterance

cost differentials. We leave for future work more comprehensive discussion, modeling, and

empirical testing of these issues.

To sum up, then: contrary to previous claims in the literature, we have argued that

embedded implicatures can be generated in downward-entailing contexts, and Hurford-

violating disjunctions may be permissible in these contexts. We have further shown that

lexical uncertainty can be used to generate these implicatures. Yet there are other downward-

entailing contexts in which embedded implicatures cannot be generated. Lexical uncer-

tainty accounts for this heterogeneity: the structure of the (un-refined) lexical denotations

and conversational context determines whether an embedded implicature will be generated

in a downward-entailing environment.

2.5 Conclusion

We have discussed a sequence of increasingly complex pragmatic phenomena, and de-

scribed a corresponding sequence of probabilistic models to account for these phenomena.

The first, and simplest, phenomena discussed were specificity implicatures, a generaliza-

tion of scalar implicatures: the inference that less (contextually) specific utterances imply

the negation of more specific utterances. These implicatures can be derived by the Ratio-

nal Speech Acts model [36], a model of recursive social reasoning. This model, which is

closely related to previous game-theoretic models of pragmatics, represents the participants

in a conversation as rational agents who share the goal of communicating information with

each other; the model's assumptions closely track those of traditional Gricean accounts

of pragmatic reasoning. In addition to using this model to derive specificity implicatures,

we showed that it can be used to provide a solution to the symmetry problem for scalar

implicatures.
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We next turned to M-implicatures, in which complex utterances are assigned low prob-

ability interpretations, while simpler but semantically equivalent utterances are assigned

higher probability interpretations. We showed that the rational speech acts model does not

derive these implicatures. The reasons for this failure are related to the multiple equilib-

rium problem for signaling games, a general barrier to deriving M-implicatures in game-

theoretic models. In order to account for these implicatures, we introduced lexical un-

certainty, according to which the participants in a conversation have uncertainty about the

semantic content of their utterances. We showed that, with this technique, the participants

in a conversation derive. M-implicatures by using pragmatic inference to resolve the seman-

tic content of potential utterances.

Both specificity implicatures and M-implicatures can be derived given the assumption

that the speaker is fully knowledgeable about the true world state (at the relevant degree of

granularity). Following our derivations of these inferences, we examined several classes of

inferences which require this knowledgeability assumption to be relaxed. The first of these

was the ignorance implicature associated with the expression some or all. The rational

speech acts model fails to derive this implicature for reasons which are nearly identical to

its failure to derive M-implicatures. Surprisingly, we showed that the lexical uncertainty

model does derive this implicature: according to this model, the ignorance implicature

arises because of the greater complexity of some or all relative to its alternative some.

This suggests that the lexical uncertainty model captures a generalized notion of marked-

ness, according to which complex utterances received marked interpretations, and where

markedness may indicate low probability, ignorance, and possibly other features.

We finally explored embedded implicatures, focussing on a general class of Hurford-

violating embedded implicatures, in which equally complex - and semantically equivalent

- utterances such as one or two and one or three are assigned distinct interpretations. Be-

cause the basic lexical uncertainty model can only derive distinct pragmatic interpretations

for a pair of utterances by leveraging either differences in semantic content or complex-

ity, it is unable to derive this class of implicature. We therefore considered extending the

framework to compositional lexical uncertainty, which respects the compositional structure

of utterances. By performing inference on the semantic content of sub-sentential expres-
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sions, this model derives the class of embedded implicatures we considered, and gives a

richer role to compositional structure. We further showed that lexical uncertainty predicts

heterogenous effects within downward-entailing contexts: while many embedded implica-

tures are canceled within downward-entailing contexts, some with particular scale structure

can survive.
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Chapter 3

The strategic use of noise in pragmatic

reasoning

3.1 Introduction

Prosody can be used in a highly productive manner to change the interpretation of utter-

ances in natural language. There are a number of systematic changes in meaning which are

associated with prosody. Consider the following sentence:

(1) JOHN went to the party.

(We use capital letters here to indicate that the speaker has placed stress on John; this

convention is used throughout.) The placement of stress in this example leads to several

inferences. First, it provides information about the speaker's communicative intentions, in

particular about the question that the speaker is trying to answer. In this case, it is likely

that the speaker wants to answer the question, Who went to the party? Second, it provides

information about first-order facts about the world. In most contexts, the placement of

stress on John will result in an exhaustive interpretation of the utterance. That is, it leads to

the inference that nobody but John went to the party. Finally, the use of stress can provide

information about the discourse context, in particular that the speaker is probably trying to

correct a misconception on the part of the listener. In the current example, the speaker may
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be trying to communicate that the listener holds an incorrect belief about who went to the

party, e.g. that Alice went rather than John.

These effects are highly general: the meaning of nearly any sentence in English can be

systematically shifted by the use of stress. The effects of stress are also highly heteroge-

nous, and the three which are discussed above do not exhaust their range. The interpretation

of stress is sensitive to the background context of the conversation, the grammatical struc-

ture of the sentence used by the speaker, and the semantic content of this sentence. Stress

can often strengthen the figurative use of utterances:

(2) Richard is an ANIMAL.

(3) She owes me A MILLION dollars.

(4) Yeah, I'd LOVE to edit your thesis for you.

The use of stress in these examples reinforces that the speaker intends them to be interpreted

figuratively (as metaphor, hyperbole, and sarcasm, respectively). These cases also fall

broadly into the category of emphatic uses of stress. The placement of stress on animal in

Example (2) indicates that Richard is especially animal-like along the dimensions which

are relevant in the context, and that the speaker has especially strong feelings about this,

e.g. of admiration, disgust, etc.

A third class of effects are tied to specific lexical items used in an utterance. In the

following cases, the placement of stress shifts the interpretation of only and even:

(5) Mary only introduced BOB to Alice.

(6) Mary only introduced Bob to ALICE.

(7) The police even ESCORTED the prince to the airport.

(8) The police even escorted the PRINCE to the airport.

These effects are typically labeled by the term association with focus. In Examples (5)

and (6), the interpretation of the lexical item only changes depending on whether stress

has been placed on Bob or Alice. If stress is placed on Bob, then the utterance indicates
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that nobody but Bob was introduced to Alice. In contrast, if it is placed on Alice then the

utterance indicates that Bob was introduced to nobody besides Alice. A similar shift in

interpretation occurs for even in Examples (7) and (8). When stress is placed on escorted,

the utterance indicates that the police did other things for the prince besides escorting him;

when it is placed on prince, the utterance indicates that the police escorted others besides

the prince.

This work will be studying these three classes of phenomena, along with several others.

While we will be presenting models of these phenomena, we do not intend these models

to be interpreted as a theory of stress interpretation per se. Rather, we will be using these

models to illustrate a set of pragmatic principles which can be used to explain these phe-

nomena. These principles are the primary object of study in this work: while we do not

propose that people use our particular models in order to derive the interpretation of stress,

we do propose that they use these more abstract principles (in concert, most likely, with a

number of others which have not yet been identified). These principles serve a second func-

tion, in helping to understand the structure of different stress-based phenomena. Different

principles are required in order to derive different phenomena, and thus the success of cer-

tain principles in deriving a particular phenomenon reveals information about the structure

of that phenomenon.

3.1.1 Stress and focus

Nearly all contemporary theories of stress interpretation make use of the notion of focus

[84, 99, 12, 58, 5, 80]. Under these accounts, the placement of stress within a sentence

is used to indicate which part of the sentence is focused. While stress refers to certain

acoustic properties of a sentence's pronunciation, focus refers to an abstract property of a

sentence's syntactic/semantic representation. Consider the following sentence:

(9) Mary fishes for BASS.

The claim that the word bass received stress is a claim about the acoustic properties of this

sentence. In particular, it is the claim that the loudness and duration of the word bass were
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increased relative to the rest of the utterance, that its pitch was changed, etc.

The focus of the utterance, in contrast, is meant to describe the part of the utterance

that is most prominent to the listener. In Example (9), if the placement of stress results in

bass being the most prominent part of the utterance, then this would be indicated by the

placement of focus on the word:

(10) Mary fishes for [bass]F.

The notation [bass]F indicates that bass has been focus-marked. The placement of focus

on bass clearest in this example if the utterance has been used to answer a question. For

example, suppose that the following question had been previously asked in the discourse:

(11) What does Mary fish for?

If the speaker is responding to this question, then it is common knowledge that the speaker

is trying to communicate what Mary fishes for. Intuitively, the most prominent part of

the sentence will be the answer to this question, namely bass. The placement of stress in

Example (9) thus would correspond directly to the placement of focus.

This direct correspondence between stress and focus does not, however, hold in all

cases. Consider a dialogue involving a different question:

(12) A: What does Mary do for fun?

B: Mary fishes for BASS.

Here, the placement of stress on bass remains the same, but the speaker is providing a

different answer through their utterance: they are communicating that what Mary does for

fun is fish for bass. Thus, the focus of the utterance is broader than before, attaching to the

entire phrase fishes for bass:

(13) Mary [fishes for bass]F.

Focus therefore exists at a higher level of abstraction than stress, and cannot be directly read

off of the placement of stress, or more generally the acoustic properties of the utterance.
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The precise relationship between stress and focus is a complex; there are a number of

proposals for how stress placement generates focus placement, and how the placement of

stress constrains the placement of focus [89, 50, 39, 82].

Under standard accounts, stress does not have any direct effect on the interpretation

of an utterance; the placement of focus mediates all of the interpretive effects of stress.

There are a number of theories of how the placement of focus changes utterance interpre-

tation. Here, we will review one of the best known, Alternative Semantics [83, 84], and in

the process illustrate some high-level properties which are common to most of the major

accounts.

According to Alternative Semantics, focus triggers a set of alternatives to what the

speaker said. For example, consider again the utterance with focus on bass:

(14) Mary fishes for [bass]F.

Under this account, the placement of focus on bass makes the listener consider a set of

alternative meanings to Mary fishes for bass. These alternative meanings can, to a first

approximation, be generated by replacing bass with other words: Mary fishes for trout,

Mary fishesfor carp, etc. More formally, this set of alternative meanings can be described

by a set of propositions (or, under other formulations, a set of properties):

{fishes(m,x)jfish(x)} (3.1)

Thus, when focus is placed on bass, its first effect is to make the listener consider other

propositions of the form Mary fishes for x. Alternative Semantics provides a fully com-

positional theory of how to generate the set of alternatives for an utterance given focus

placement, though we will not review the details of this theory here [73, 84].

Once a set of alternatives has been generated from focus, Alternative Semantics pro-

vides an account of how this set of alternatives will be used for interpretation. While the

details are somewhat subtle, the broad outline can be illustrated by the current example.

The theory states that the possible answers to the question under discussion must be a sub-

set of the set of alternatives. Certain questions under discussion will satisfy this constraint,
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while others will not. Consider first the question What does Mary fish for? The possible

answers to this question will be of the form Maryfishesfor x, and every answer of this form

will be a member of the alternatives set in Equation 3.1. Thus, the question What does Mary

fish for? satisfies the constraint imposed by Alternative Semantics. In contrast, consider

the question Whofishesfor bass? In this case, the possible answers to this question will be

of the form xfishes for bass. These possible answers are not members of the alternatives

set in Equation 3.1, and as a result Who fishes for bass? is excluded as the question under

discussion.

Alternative Semantics thus provides an account of how the question under discussion

is constrained by the placement of focus. These constraints translate fairly directly into

effects on the listener's interpretation of the utterance. If the listener knows that the speaker

is answering the question What does Mary fish for?, then they can infer that the speaker

is, to the best of their ability, providing a complete answer to this question. Thus, Mary

fishes for bass will be interpreted as meaning that Mary does not fish for anything besides

bass. In general, this mechanism allows focus to generate exhaustive interpretations, i.e.

the inference that the speaker has provided an exhaustive answer to the inferred question.

3.1.2 The noisy-channel proposal

Focus is a full-fledged part of a language's semantic/syntactic representation under Alter-

native Semantics and related proposals. As already discussed, focus is related to, but not

straightforwardly reducible to, the placement of stress within a sentence. Claims about fo-

cus within these theories therefore cannot be recast as claims about stress. Moreover, focus

is used to determine the set of alternatives under these accounts, which in turn drives the

semantic effects which these theories aim to explain. Focus plays a critical, and not easily

eliminated, role in these theories.

This work will present a theory of stress interpretation without focus. Under our pro-

posal, stress has no effect on the semantic/syntactic representation of an utterance. All of

the interpretive effects of stress will be derived from its acoustic properties, and the effects

that these properties have on pragmatic reasoning.1

'The pragmatic effects which we are interested in are not tied to acoustics per se. Indeed, it is possi-
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In the absence of focus, or any semantic/syntactic representation of stress, it is also less

natural to posit conventionalized rules for interpreting stress. Thus, in contrast to Alter-

native Semantics or other previous proposals, our account does not have any rules of the

form: The stress/focus of an utterance is used to generate alternative utterances according

to the following algorithm..., or Focus-sensitive adverbs such as "only" use stress/focus to

determine their interpretation using the following rules.... The interpretation of stress will

be derived solely from general-purpose pragmatic reasoning.

We propose that the use of stress is viewed as the intentional decision to reduce the

noise rate on the selected portion of the utterance. There are three main acoustic changes

associated with prosodic stress: increased loudness, duration, and changes to the funda-

mental frequency [11]. An utterance that is louder and longer is less likely to get swamped

by sounds in the environment, while changes in pitch will focus the listener's attention on

the utterance. Thus, by placing stress on part of an utterance, the speaker is choosing to de-

crease the noise rate on that part of the utterance. The speaker's choice to reduce the noise

rate is an intentional action, and thus will receive a pragmatic interpretation by the listener.

The listener considers which intended meanings would have motivated the speaker to re-

duced the noise rate on the chosen part of the utterance, and infers that stress is more likely

to indicate such meanings. The interpretive effects of stress are thus derived as pragmatic

effects of the decision to reduce the noise rate.

3.2 Inference in a noisy-channel model

Communication channels are limited in various ways, and successful communication often

requires complex inferences in order to overcome these limitations [90]. When a speaker

in a conversation tries to communicate something to the listener, their intended signal may

be corrupted by speech errors (e.g., if they are excited or intoxicated), environmental noise

(if they are in a loud setting, e.g. at a cocktail party), or perceptual noise (if the listener

is not paying attention). For the listener to successfully understand the speaker's intended

ble to derive the same effects for written communication, when stress is signaled by boldface, italics, or
capitalization.
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meaning, they must take into account these possible sources of noise, and infer whether

they heard what the speaker actually intended. A growing body of experimental evidence

suggests that people account for the possibility of noise when interpreting language; this

has been successfully modeled as probabilistic inference of the original message given the

received message [63, 64, 34, 8, 2, 19, 23].

In our pragmatics model, we will assume that the listener is aware of the possibility

of noise, and rationally accounts for this possibility when interpreting utterances. Our

model will draw on previous work which demonstrates how to optimally account for the

possibility of noise during interpretation. Suppose that the speaker intends to send utterance

ut to the listener, and chooses prosodic stress s. The distribution over utterances which

are perceived by the listener is given by PN(ui,s), where PN is the noise distribution.

In particular, the expression PN(uplui,s) is the probability that the listener will perceive

utterance up given that the speaker intended utterance ut and chose prosodic stress s.

When the listener hears an utterance ut, they have uncertainty about what utterance was

intended by the speaker. In general, there will be two explanations for why they perceived

this utterance: either there was no noise, and the speaker's intended utterance was faithfully

sent, or there was noise, and the speaker actually intended to send some other utterance.

We assume that the listener has access to the noise distribution PN. Therefore, in order to

recover the utterance that was intended by the speaker, they can invert this noise process,

by considering which intended utterances ui would have been most likely to produce the

utterance up which they perceived. This process of inverting the noise distribution PN is

defined by:

P(uilups) = P(Ui)PN(UplUiS) (3.2)
EujP(uj)PN(up Iuj,S)

cc P(ui)PN (up ui, S) (3.3)

This equation defines the probability P(uilup,s) that the speaker intended utterance ut,

given that the listener perceived utterance uP with prosodic stress s. By Bayes' rule, this

quantity is proportional to the product of two probabilities: the prior probability P(ui) that

the speaker intended utterance ut, and the probability PN (up I ui, s) that the listener would
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perceive utterance up given that the speaker intended ui and used stress s. Given a per-

ceived utterance up, the utterance ui is likely to have been intended if the speaker was

a priori likely to have used this utterance, and if the perceived utterance was a probable

corruption of this utterance.

3.3 Integrating RSA and Noisy-Channel Models

We will demonstrate that novel pragmatic inferences can be driven by the physical prop-

erties of the communication channel. Consider that agents in a conversation are typically

mutually aware of the physical limitations of their communication system, e.g. that their

utterances may be corrupted by noise. These agents can therefore take actions that exploit

these limitations, and their conversational partners' knowledge of these limitations. Al-

though noise is typically viewed as a problem for communication, we will argue that the

possibility of noise is in many circumstances a resource, without which certain types of

communication would not be possible.

We will model of the effects of noise on pragmatic reasoning by integrating the noisy-

channel inference model defined above with the Rational Speech Act model, defined in

Section 2.1. The literal listener, as defined in the RSA model, interprets utterances ac-

cording to their literal meaning. The process of literal interpretation is more complicated,

however, when the listener is uncertain about which utterance the speaker intended. In or-

der to deal with this uncertainty, we propose an extension of the RSA literal listener. The

listener in this case first tries to infer what utterance the speaker intended, and then consid-

ers the literal interpretation of this inferred utterance. More precisely, for each world w, the

listener first computes the probability K(wjup,s) that w is compatible with the speaker's

intended utterance:

K(wlup,s) = EP(ulup,s)1weiiUj (3.4)
ui

Here, lwelui is an indicator variable, which equals 1 if w E [ujI and 0 otherwise. The

listener considers all of the utterances ui which may have been intended by the speaker.

For each utterance ut, the listener determines whether the literal meaning of the utterance
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is compatible with the world w. Then, the listener weights utterance ut by P(u I up ,s), the

probability that ui was actually intended by the speaker. If an utterance is likely to have

been intended by the speaker, then it will have higher weight, and will contribute more

towards determining whether the world w is compatible with what the speaker intended.

By summing over all utterances ut, the listener computes the marginal probability that w is

compatible with the speaker's intended utterance.

The probability that the literal listener assigns to world w given utterance up is defined

by:

Lo(wlup,s) <x P(w)K(wlup,s) (3.5)

The term P(w) is the prior probability that the listener assigns to world w. The probability

that the listener assigns to w is proportional to the prior probability of w, and the probability

that the speaker's intended utterance is compatible with w. Worlds with higher prior prob-

ability, and which are more likely to be compatible with the speaker's intended utterance,

are assigned higher probability by the listener.

The speaker is defined in a manner which generalizes the RSA definition along two

dimensions. First, we assume that the speaker does not necessarily want to communicate

the exact world state that they are in. Rather, they may have a question-under-discussion

(QUD) which they want to answer. The QUD determines a partition on world states, and the

speaker wants to communicate the cell in this partition which their world state belongs to

[38]. Given a world state w and a QUD q, we first compute R,(up,sjw,q): the probability

that the listener Li assigns to the intended cell of the QUD partition, given that they

perceive utterance up with prosodic stress s:

R, (up, sIw, q) 1q(w)_q(_,)Ln(w' up, s) (3.6)

The indicator variable 1 q(W)-q(w) equals 1 when the world w' is in the same partition cell

as the actual world w, and 0 otherwise. We assume that the QUD q is a function, which

maps each world to its corresponding partition cell. The equation for Rn sums over all of

the worlds which are in the same partition cell as w, weighing each world by the probability

that it is assigned by the listener Ln.
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The information utility that the speaker receives if the listener perceives utterance u

(with prosodic stress s) is defined by:

In(up,sjw,q) = -log (3.7)

The quantity log R (t )is the surprisal that the listener assigns to the speaker's intended

QUD cell. In the RSA model, the speaker wants to minimize the surprisal that the listener

assigns to the intended world state. In the current model, the speaker wants to minimize

the surprisal that the listener assigns to the intended QUD cell.

These definitions generalize the RSA model to communication about the QUD, rather

than about the world. In order to model the current situation, we also need to generalize

the model along another dimension. When the speaker chooses an utterance ut, they do

not know which utterance the listener will actually perceive. In order to compute the value

of an utterance, they therefore need to consider the distribution over perceived utterances.

We assume that the speaker has access to the noise model PN, and therefore that they can

compute this distribution. The expected information utility of the utterance ui with prosodic

stress s is defined as:

EPN (' juj,s)In(' w, q -EN(upjuj, s)In fui, sjw, q) (3.8)
up

For each utterance up which the listener may perceive, the speaker first calculates the in-

formation utility that will be gained if the listener does perceive this utterance. The speaker

then weighs each of these utilities by the probability PN(up Iui,s) that the listener will per-

ceive utterance up, and sums across these possibilities to compute the average information

utility associated with intended utterance ut.

The speaker S, chooses an utterance and a prosodic stress in order to maximize their

expected information utility, while simultaneously minimizing their cost. The speaker's

utility function is defined by:

Un(ui,sjw,q) = EpN.ju,,sInI (.1w,q) - c(ui) - c(s) (3.9)
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Here c(ui) is the cost of utterance ut and c(s) is the cost of prosodic stress s. Note that the

speaker S, considers the listener Li 's interpretation of their utterance when computing

the expected information utility. As in the normal RSA model, the speaker uses a softmax

decision rule to choose utterances:

Sn(ui,slw,q) x eXUn(uj,sjw,q) (3.10)

The pragmatic listener L, (n > 0) interprets a perceived utterance up by integrating two

types of information. For each world w and QUD q, the listener first considers how likely

the speaker Sn would have been to choose a particular intended utterance ut, given this

world and QUD. Then, the listener considers how likely this intended utterance would have

been to produce the perceived utterance up, given the noise distribution PN. A particular

world and QUD are inferred to be likely, if they are likely to have produced the perceived

utterance up . The probability Ln(w, qIup, s) that the listener assigns to world w and QUD q,

given that utterance up and prosodic stress s were perceived, is defined as follows:

Ln(w,qlup,s) cc P(w)P(qlw) Sn(ui,slw,q)PN(uplui,s) (3.11)
Li

The term P(qw) is the conditional probability that the speaker's QUD is q, given that the

world is w.

3.4 Relationship between prosody and QUD

In this section, we will explain a primary factor which drives the interpretation of prosodic

stress in this model: inferences about the speaker's QUD. When the speaker places prosodic

stress on part of their utterance, they are making an intentional decision to reduce the noise

rate on that part of the utterance, at a certain cost. They will only make this decision when

the benefits from reducing the noise rate - and increasing the probability that the listener

will accurately perceive the selected portion of the utterance - exceed the cost of using
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prosodic stress. 2 Depending on the speaker's QUD, it may or may not be rational to use

prosodic stress whatsoever, and the optimal placement of stress within the sentence may

differ as well. The speaker will place prosodic stress on the parts of the utterance that are

especially important for accurately communicating the answer to their QUD. These are the

parts of the utterance, such that if the listener mishears these portions, they will infer an

incorrect answer to the speaker's QUD.

The listener knows all of this, and tries to find an explanation of the speaker's choice

to place stress on a portion of the utterance. The listener knows that the speaker only uses

prosodic stress when doing so is important for accurately communicating the answer to the

speaker's QUD. The listener therefore tries to identify the QUDs which would rationalize

this decision, i.e. which would make the selected portions of the utterance especially im-

portant for answering the QUD. Certain QUDs will rationalize this decision, and certain

QUDs will not. The listener will place higher probability on those QUDs which provide an

adequate explanation of the speaker's behavior.

In order to illustrate this reasoning, we will start with a minimal communication game,

which includes a highly simplified representation of prosodic stress. This game is intended

as a formalization of the contrast between the following examples:

(15) Bob went to the store.

(16) BOB went to the store.

We suppose that there are two people, Alice and Bob, who may have gone to the store,

either individually or together. These possibilities are represented as three possible worlds:

{Alice}, {Bob} , {Alice,Bob}. The speaker knows exactly who went to the store, while the

listener has a uniform prior distribution over worlds.

There are two different types of speaker QUDs in this example: polar-QUDs and list-

QUDs. A polar-QUD is a partition with two cells, i.e. a yes/no question. In this case, it is

a question of the form Did X go to the store? where X is either Alice or Bob. We denote

2This is not strictly speaking true, as the speaker's softmax decision rule will sometimes lead them to
make suboptimal choices. However, the speaker is still strictly more likely to choose an action with higher
utility than one with lower utility, and this informal reasoning will generally lead to valid conclusions about
the model's behavior.
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these QUDs by qA and qB. A list-QUD is a question which asks for an answer in the form

of an exhaustive list. 3 In this example, it is the question Exactly who went to the store? We

denote this QUD by qL. For convenience, both types of QUDs are represented as functions:

the polar-QUDs are represented as functions from the set of worlds to {T, _L}, and the list-

QUD is represented as a function from worlds to individuals (i.e. the value of the function

on a world is the set of individuals who went to the store in that world).

The distribution over QUDs is defined by:

P(qAI Alice}) = 0.5; P(qL| {Alice}) = 0.5

P(qBI Bob}) = 0.5; P(qL{I Bob}) = 0.5

111
P(qA| {Alice,Bob}) = -; P(qBI {Alice,Bob}) = ; P(qL { Alice,Bob}) = 1

3 3 3

In other words, if the speaker knows that Alice and only Alice went to the store, then they

are equally likely to want to communicate the following two propositions: that (at least)

Alice went to the store; and that only Alice went to the store. The situation is symmetric for

the speaker who knows that Bob and only Bob went. For the speaker who knows that both

Alice and Bob went, there is a uniform distribution over whether they want to communicate

that (at least) Alice went, that (at least) Bob went, or that both Alice and Bob went.

The speaker has three alternative utterances available: a, b, and a A b, with their se-

mantics given as follows: [a] = {{Alice}, {Alice,Bob}}, [b] = {{Bob} , {Alice,Bob}},

[a A b] = {{Alice, Bob} }. We assume that the atomic utterances a and b have cost 1, while

the conjunction a A b has cost 2. The qualitative effects in this section are robust to alterna-

tive cost values, given the constraint that c(a) = c(b) < c(a A b).

The prosodic stress term s is assumed to be binary: s E {0, 1}, where s = 1 indicates

that prosodic stress was used. If the speaker uses prosodic stress, then the probability of

noise is decreased by a factor of 2. There is cost 0 for not using prosodic stress, and cost 0.1

3This definition is clearly very informal, but there will usually be an obvious way to make it precise in the
examples which we consider.
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for using it. We assume that the noise distribution PN has an especially simple structure:

PN(ala, s) = I - (p - S ); PN(bla, s) = (p - s-p)2 2
s__ s.p

PN(blb,s) =1 -(p- );PN(alb,s)=(p- )
2 2

PN(aAblaAb) = I

This noise distribution can be illustrated by Figure 3-1, for the case that prosodic stress

is not used. The figure shows that if the speaker intends to choose utterance a, then this

--p
a a

b b

I

aAb - aAb

Figure 3-1: The noisy channel on the three utterances, when prosodic stress is not used.

message will be accurately transmitted with probability 1 - p, and it will be corrupted to

utterance b with probability p. The situation for utterance b is symmetric. In this simplified

model, utterance a A b is always assumed to be transmitted accurately. The quantity p is

the noise probability, and it is set to 0.01 in this example. If prosodic stress is used (and

s = 1), then the noise probability decreases from p to p - L = . The effects described in2 2*

this section are quite robust to variations in the noise model, to variation in the magnitude

of the noise-reduction effect from prosodic stress, and to changes to the cost of stress.

There are two more parts of the model which need to be specified. First, in Equation

3.2, the literal listener uses a prior distribution over utterances in order to determine the

speaker's intended utterance. This prior distribution is assumed to be uniform over utter-

ances. (In fact, the prior probability of utterance a A b does not in fact influence the model's

predictions, due to the structure of the noise distribution PN. All that is required is that

P(a) = P(b).) Finally, the inverse-temperature parameter A is set to 5.
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io - With Stress

aAb aAb

Cd

a) C

Interpretation Interpretation

Figure 3-2: The listener's interpretation of the utterances without stress (on the left panel)
and with stress.

3.4.1 Asymmetry between polar-QUDs and list-QUDs

Figure 3-2 shows the model's predicted listener distribution over worlds, given each utterance-

prosody pair. The model predicts that the listener will interpret prosodic stress as indicating

an exhaustive answer to the list-QUD. When the speaker places stress on utterance a, this

is interpreted as meaning that only Alice went to the store, and similarly when the speaker

places stress on b.

Consider a speaker in world {Alice}, i.e who knows that only Alice went to the store.

This speaker may have one of two QUDs, the polar-QUD qA or the list-QUD qL. Regardless

of which QUD they want to answer, this speaker will typically choose utterance a, which

states that Alice went to the store. This is the simplest and most informative utterance for

either QUD.

When the speaker chooses utterance a, they do not know which utterance the listener

will perceive. As illustrated in Figure 3-1, if the speaker intends utterance a, then there

is some probability that the listener will perceive utterance b instead. Therefore, when

modeling how the listener will interpret their utterance, the speaker must take into account
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the possibility that the listener will perceive this utterance b, and not a. The literal meaning

of utterance b is that Bob went to the store, so if if the listener perceives this utterance, then

they will form very different beliefs than if they heard a.

The speaker can reduce the probability of noise, by placing prosodic stress on their

utterance. In this case, if the speaker thinks that it is especially important for the listener

to perceive the intended utterance a, rather than utterance b, then they can use prosodic

stress to reduce the probability of misperception. As we will now explain, if the listener

misperceives the utterance a, then this is more damaging for the speaker with the list-QUD

qL than for the speaker with polar-QUD qA. As a result, it is more valuable for the speaker

with the QUD qL to reduce the noise rate than for the speaker with the QUD qA. The speaker

with QUD qL will be more likely to use prosodic stress, and the listener, who knows this,

will interpret prosodic stress as indicating this QUD.

The reasoning which drives the asymmetry between QUD types is quite general, and

holds independent of particular model parameterizations. First, consider the speaker who

wants to communicate the answer to the polar-QUD qA, Did Alice go to the store? In

the world {Alice}, the correct answer to this question is yes, so the speaker wants the

listener to believe that (at least) Alice went to the store. Importantly, the speaker can

correctly communicate the answer to this QUD, even if the listener has incorrect beliefs

about other aspects of the world, in particular about whether Bob went to the store. This

has the consequence that if the listener misperceives the speaker's intended utterance, the

speaker may still have communicated the correct answer to their QUD. Consider a scenario

in which the speaker has intended to use utterance a (which most directly communicates

the answer to their QUD), and the listener misperceives this as utterance b. The speaker

will still gain a substantial amount of utility in this case. There are two utterances which

are compatible with the literal meaning of the utterance b: {Bob} and {Alice, Bob}. In the

latter world, the answer to the QUD is the same as in the actual world. The listener's beliefs

are not so far from the meaning that the speaker wanted to communicate - the listener

still assigns relatively high probability to the correct answer to the QUD. It is therefore

not disastrous for the speaker if the listener mishears the utterance a as utterance b, and the

speaker will not have a large incentive to decrease the noise rate through the use of prosodic
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stress.

This contrasts with the situation for the speaker with the list-QUD qL. This speaker

wants to communicate the answer to the question, Exactly who went to the store? In the

world {Alice}, the correct answer to this question is Alice, so the speaker wants the listener

to believe that Alice (and nobody else) went to the store. The only world in which this is

true is {Alice} - in every other world in the current example, someone else besides Alice

went to the store. If the listener believes that the true world is any of these other worlds,

then the speaker will not have communicated the correct answer to the QUD. The speaker

will use utterance a in this situation, as every other utterance will communicate a false

answer to the QUD. If the listener mishears this intended utterance, and instead perceives

utterance b, then the speaker receives very low utility. The listener who hears utterance

b will have false beliefs about the answer to the QUD - they will believe that someone

else besides Alice went to the store. The speaker will therefore have a large incentive to

prevent this from happening, and will use prosodic stress to decrease the probability of

misperception.

The asymmetry between the list-QUD and the polar-QUD thus arises from an asymme-

try in the consequences of noise for the two QUD types. For the speaker with the list-QUD,

noise is disastrous: if the listener mishears the intended utterance, then the answer to the

QUD will not be communicated correctly. For the speaker with the polar-QUD, noise is

not disastrous: the correct answer to the QUD may still be communicated (with relatively

high probability), even if the intended utterance is misperceived.

We have so far explained why the speaker will be more likely to place stress on their

utterance if they have the list-QUD, and hence why the listener will be likely to interpret

stress as indicating the list-QUD. The model makes a further prediction, shown in Figure

3-2: if the speaker places stress on the simple utterance a (or, by symmetry, on b), then

the utterance is more likely to be assigned an exhaustified interpretation by the listener.

That is, the listener is more likely to interpret the utterance as world {Alice}, in which only

Alice went to the store, rather than world {Alice,Bob}, in which both Alice and Bob went

to the store. The explanation for this is closely linked to the listener's inferences about the

speaker's QUD. While the speaker in world {Alice} will use stress if they have the list-
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QUD qL, there is no QUD that will induce the speaker in world {Alice,Bob} to use stress.

As a result, when the listener hears stress on utterance a, they will infer that the speaker is

not in world {Alice,Bob}.

We have already explained why the speaker in world {Alice} with QUD qL is likely to

place stress on utterance a. We will now explain why the speaker in world {Alice,Bob}

will not use utterance a with stress. Suppose first that this speaker has the list-QUD q.

The speaker then wants to communicate that both Alice and Bob went to the store. The

utterance which communicates the maximal amount of information for this speaker is a A b,

as its literal meaning is that both Alice and Bob went to the store. However, this utterance is

costly (by assumption), and the speaker will sometimes choose a cheaper utterance which

still provides some information. Due to symmetry, the speaker will have no preference

among utterances a and b: the literal meaning of a rules out the world in which only Bob

went to the store, while the literal meaning of b rules out the world in which only Alice went

to the store. If the speaker chooses utterance a, then they will be indifferent about whether

the listener mistakenly hears utterance b instead (and similarly if they choose utterance

b). As a result, the speaker will have no incentive to place stress on their utterance if they

choose either a or b.

Next consider the speaker in world {Alice, Bob} with QUD qA. This speaker knows that

both Alice and Bob went to the store, and wants to communicate that (at least) Alice went.

Suppose that the speaker chooses utterance a, and this is misperceived as b by the listener.

The literal meaning of b is still compatible with the true world and the correct answer to

the QUD; b literally communicates that at least Bob went to the store, which is compatible

with both Alice and Bob going. It is therefore not disastrous for this speaker if the listener

mishears utterance a as b, and this speaker will not have a strong incentive to decrease the

noise rate using prosodic stress.

The reasoning in this section is worked through in more detail in Appendix B. 1. The

appendix provides explicit calculations for the speaker and listener distributions discussed

in this section. In addition, it provides a formal illustration of how the asymmetry between

the list- and polar-QUDs arises from model.
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3.5 Prosodic stress and compositional structure

So far, we have explained why the use of prosodic stress will provide information about

the speaker's QUD in a certain simple example. A crucial simplifying assumption in that

example was that prosodic stress could be represented as a binary choice: either the speaker

placed stress on the utterance, or they did not. This assumption clearly does not hold in

actual language use, and indeed, the choice of stress location typically carried information

about the speaker's intended interpretation:

(17) BOB went to the store.

(18) Bob went to the STORE.

In Example (17), the speaker is most likely answering the question Who went to the store?

and is conveying the information that only Bob went to the store. In Example (18), the

speaker is most likely answering a different question - Where did Bob go? - and is

conveying that Bob only went to the store. Thus, our account needs to be able to explain

the relationship between stress location and interpretation.

In order to provide a model of this relationship, we will extend our previous example

along several dimensions. Our goal will be to provide a minimal example which demon-

strates the link between stress location and interpretation; the same principles which gen-

erate this link in the example will also apply in more complex scenarios.

3.5.1 Model assumptions

We suppose that there are two people, Alice and Bob, and two locations, the store and the

restaurant. Each person may have gone to either or both of the locations, and these deci-

sions were made independently. The predicate S (R) indicates the set of individuals who

went to the store (respectively, restaurant). A world is specified by the set of individuals

satisfying each predicate. In the shorthand that we use, the world {{Alice}s, {Bob}R} de-

notes the world in which only Alice went to the store, and only Bob went to the restaurant.

We assume that at least one individual went to at least one location. As a result, there are 15
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possible worlds, corresponding to 42 - 1 permissible ways of assigning individuals to the

two predicates. The speaker is assumed to have complete knowledge of the world, while

the listener has a uniform prior distribution over worlds.

There are again two types of speaker QUDs: polar-QUDs and list-QUDs. The polar-

QUDs are questions of the form, Did X go to Y? We allow X to be filled in with either

of the two names, Alice or Bob, and Y to be filled in with either of the locations, store or

restaurant. We use the notation qp(xy) to denote each polar QUD. For example, qp(As)

denotes the polar question, Did Alice go to the store? There are two types of list-QUDs.

The Who-QUDs are questions of the form, Who went to Y? The variable Y may be filled in

with either of the locations. The Who-QUDs are denoted by qwho(Y)- For example, qwho(s)

denotes the QUD, Who went to the store? The Where-QUDs are questions of the form,

Where did X go? The variable X may be filled in with either of the individuals. The Where-

QUDs are denoted by qwhere(x). For example, qwhere(A) denotes the question, Where did

Alice go? The QUDs are given their obvious semantics.

Given a world w, the distribution over QUDs is uniform over those which satisfy the

following two properties: a) if the QUD is a polar-QUD, then its correct answer in world

w must be true; b) if the QUD is a list-QUD, its correct answer in w must not be the empty

set. For example, consider the world {{Alice}s, {},R} in which the only event that took

place was Alice going to the store. In this case there are three QUDs which satisfy these

properties: Where did Alice go?; Who went to the store?; and Did Alice go to the store?.

For every other QUD, the correct answer is either false, as in the case of Did Bob go to

the store?, or it is the empty set, as in the case of Who went to the restaurant? We exclude

QUDs which do not satisfy these two properties, in order to limit the number of required

alternative utterances. If these QUDs were to be included, then their correct answers could

only be communicated through utterances containing negation. In the previous example,

the correct answer to Did Bob go to the store? is false, so in order to effectively commu-

nicate this, the speaker would need to have the utterance "Bob did not go to the store" as

an alternative. Excluding these QUDs and utterances containing negation do not affect the

qualitative predictions of the model, but will simplify our explanations.

The speaker's alternative utterances are generated from the following grammar:
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S -P:L

P-+a, P-÷b, P-+aAb

L--+s, L-*r, L-4sAr

There are nine utterances generated by this grammar. Each utterance consists of a person

phrase (to the left of the colon), and a location phrase. The nonterminal P determines the

person phrase. This represents the set of individuals that the utterance is referring to -

either a (Alice), b (Bob), or a A b (Alice and Bob). The nonterminal L determines the

location phrase. This represents the locations that are being referred to - either s (the

store), r (the restaurant), or s A r (the store and the restaurant). These utterances are given

the obvious semantics. For example, the utterance a A b: s has the literal meaning that Alice

and Bob went to the store. The utterances are assigned cost in proportion to their length.

We assume that the atomic terms a, b, s, and r each have cost 1, and the total cost of an

utterance is computed by summing the number of atomic terms that it contains.

There are three possible choices of prosodic stress s: we assume s { I Left,Right}.

If s = I, then this indicates that no prosodic stress was used. Left (Right) indicates that

the speaker has placed stress on the phrase to the left (right) of the colon. For example, if

the speaker uses stress Left with utterance a : s, then this represents the speaker placing

stress on "Alice" in the utterance "Alice went to the store." If the speaker uses stress Left,

then this decreases the probability of noise on the left phrase of the utterance by a factor of

2, and similarly if they use stress Right.

The noise distribution is illustrated in Figure 3-3. The figure shows the noise distribu-

tion for person phrases (on the left) and location phrases (on the right). As in the previous

example, we assume that the atomic person terms (a, b) may be confused for each other, and

similarly for the atomic location terms (s, r), but the conjunctions (a A b, s A r) are always

perceived accurately. We assume that the noise is sampled independently for the person

phrases and location phrases. For example, if the speaker intends utterance a : s, then there

is probability p that a will be perceived as b, and probability p that s will be perceived as

r. Hence there is probability p2 that the listener will mistakenly perceive utterance b : r.
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Figure 3-3: Each utterance is composed of a left phrase and a right phrase. The noise distri-
bution for left phrases is shown on the left, while the noise distribution for right phrases is
shown on the right. We assume that noise applies independently to the left and right phrases
of the utterance. When prosodic stress Left is used, it decreases the noise probabilities in
the left figure by a factor of 2, and similarly for prosodic stress Right and the right figure.

3.5.2 Interpretation of stress placement

Figures 3-4 and 3-5 show the interpretation of the different types of prosodic stress in

this example. When the speaker uses prosodic stress, this indicates that they are trying to

answer one of the list-QUDs. If they use stress Left, the listener infers that they are trying

to answer a Who-QUD, and they interpret the utterance exhaustively with respect to this

QUD. For example, if the speaker places stress on utterance a : s, the listener interprets this

as meaning that nobody but Alice went to the store. In contrast, if the speaker uses stress

Right, the listener infers that they are providing an exhaustive answer to a Where-QUD. If

the speaker does not use prosodic stress, then this provides evidence that they are trying to

answer one of the polar-QUDs. The results generalize those of Section 3.4. In that section,

the lack of stress indicated a polar-QUD, while the use of stress indicated a list-QUD. In the

current example, there are multiple types of list-QUDs, and multiple locations for placing

stress. Different stress locations indicate different types of list-QUDs. We will address why

these associations are generated by the model.

The intuition for why prosodic stress indicates a list-QUD remains the same as in the

previous example: when the speaker has a list-QUD, rather than a polar-QUD, it is more

important for the listener to perceive their utterance accurately, and as a result they will

be more likely to use prosodic stress to reduce the noise rate. The crucial question in the

current example is why prosodic stress on the left location indicates a Who-QUD, rather

than a Where-QUD (and, by symmetry, why stress on the right location indicates a Where-
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Figure 3-4: The listener's interpretation of the utterances without stress.

QUD, rather than a Who-QUD).

To be concrete, suppose that the speaker is in world {{Alice}s , {BobR}, i.e. the world

in which only Alice went to the store, and only Bob went to the restaurant. Suppose further

that this speaker has QUD qwho(s), i.e. Who went to the store? The most informative

utterance for this speaker is clearly a : s, i.e. "Alice went to the store," and the speaker is

therefore likely to choose this utterance. The speaker has two choices of prosodic stress:

Left, in which case the noise rate on a will be reduced, and Right, in which case the noise

rate on s will be reduced. We will explain why this speaker is more likely to reduce the

noise rate on a rather than s, that is, why this speaker is likely to use stress Left.

When the speaker chooses utterance a : s, there are two types of noise that can occur

(with reasonably high probability). First, it is possible that phrase a will be corrupted

to phrase b, while phrase s will be communicated accurately. Second, it is possible that

phrase s will be corrupted to phrase r, while phrase a will be communicated accurately.4 If

41t is also possible that both a and s will be simultaneously corrupted. However, this case can be safely
ignored when considering the model's predictions. Under our noise distribution, noise events across different
parts of the sentence each occur independently with probability p. As a result, the probability of having two
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Figure 3-5: The listener's interpretation of the utterances with stress Left (on the left panel)
and stress Right.

a is corrupted, then the listener will mistakenly believe that Bob went to the store. If s is

corrupted, then the listener will mistakenly believe that Alice went to the restaurant. Which

of these outcomes is worse for the speaker?

Given the QU D qWh(S) the speaker's goal is to communicate that Alice, and only

Alice, went to the store. If the listener mishears a and forms the mistaken belief that Bob

went to the store, this is disastrous for the speaker. The listener in this case will believe an

incorrect answer to the speaker's QUD, as it is not possible in this case that only Alice went

to the store. In contrast, if the listener mishears s and forms the mistaken belief that Alice

went to the restaurant, this is not disastrous for the speaker. The listener's beliefs are still

consistent with the correct answer to the QUD; even if Alice went to the restaurant, it is still

possible that she (and only she) went to the store. 5 This produces an asymmetry between

the different types of noise. The speaker with QUD qwh,(s) will want to reduce the noise

simultaneous noise events is p2 , which is much smaller than p for plausible values of p. The speaker and
listener will effectively ignore such low probability events in their reasoning.

5The fact that it is a priori possible that Alice went to both the store and the restaurant is of course
contingent on our modeling assumptions. We will return below to the issue of whether the model's predictions
are sensitive to world knowledge assumptions, and whether this sensitivity is empirically appropriate.
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rate on the left part of the utterance more than they want to reduce the noise rate on the

right part. As a result, they will be more likely to use the prosodic stress Left rather than

Right. The same general reasoning shows that the speaker with any Who-QUD will prefer

to place prosodic stress on the name of the individual who is the answer to the question.

A symmetric result holds for the speaker with any Where-QUD. This speaker will prefer

to use prosodic stress Right rather than Left, i.e. to place prosodic stress on the name of

the location that is the answer to the question. For example, suppose that the speaker wants

to answer the QUD qwhere(A), Where did Alice go? Suppose further that Alice only went to

the store, and that the listener uses utterance a : s to communicate this. The speaker in this

case will prefer to place prosodic stress on s rather than a.

The listener knows that the speaker is more likely to choose prosodic stress Left given a

Who-QUD, and stress Right given a Where-QUD. The listener also knows that the speaker

is less likely to use prosodic stress of any sort to communicate a polar-QUD. As a result,

when the speaker places stress on the left phrase in the utterance, the listener will infer that

the speaker is more likely to have a Who-QUD. Similarly, the listener will associate stress

on the right phrase with a Where-QUD.

3.6 Knowledgeability

Stress can be used to signal the precision of the speaker's communicative intent. In Sections

3.4 and 3.5, we explained why the use of stress will convey that the speaker has a more

precise QUD, i.e. a list-QUD rather than a polar-QUD. As we will explain in the current

section, this is not the only sense in which stress can signal precision. If there is a priori

uncertainty about how much the speaker knows about a particular topic, then stress will

often indicate that the speaker has a greater degree of knowledgeability. That is, stress will

indicate that the speaker has a more precise knowledge state.

The interaction between stress and speaker knowledgeability can be illustrated using

scalar implicatures [84]. Consider a scenario in which the speaker, a teacher, has graded

(at least) some of the students' tests. The listener does not know whether all of them

have been graded, and hence does not know whether the speaker knows how many of the
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students passed. Consider the following two utterances:

(19) Some of the students passed the test.

(20) SOME of the students passed the test.

In Example (19), the speaker does not place stress on the scalar item some. Because the

speaker is not presumed to know whether all of the students passed, this utterance will

typically generate a weak scalar implicature: that the speaker merely does not know that

all of the students passed [46]. In contrast, when stress is placed on some, as in Example

(20), the utterance will generate a strong implicature: that the speaker knows that not all

of the students passed. The use of stress in this example thus signals a greater degree of

knowledgeability for the speaker. Without stress, the utterance signals that the speaker does

not know that the scalar alternative all is true. With stress, it signals that the speaker knows

that the scalar alternative is false.

We will explain why the noisy-channel account predicts this interaction between stress

and knowledgeability. In order to do so, we will need to introduce a modification to the

model of Section 3.3. In that version of the model, we assumed that the speaker had no

uncertainty about the true world, i.e. that the speaker was fully knowledgeable. We will

thus need to introduce the possibility of speaker ignorance into the model, and show how

to integrate this with the rest of our machinery.

3.6.1 Modeling speaker ignorance

Our model of speaker ignorance builds on that of [36]. We assume that the speaker has

made an observation o, which provides some degree of information about the world they

are in. There is a joint prior distribution P(w, o) over pairs of worlds w and observations o;

when the speaker makes an observation, this induces a posterior distribution over worlds

P(.jo).

When the listener hears an utterance up, they perform joint inference over the world

w and the speaker's observation o. The definition of K(wlup,s) remains the same as in
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Equation 3.4, while the literal listener is now defined by:

Lo(w,ojup,s) < P(w,o)K(w~uP,s) (3.12)

This differs from the previous definition of the literal listener, in Equation 3.5, only in that

the listener is now assigning a probability to a world-observation pair, and weighs this pair

by the joint prior probability P(w, o).

Our definition of the speaker differs most from Section 3.3. The speaker now potentially

has uncertainty about the true state of the world, in addition to a QUD which imposes an

equivalence relation on worlds. In order to properly define the speaker, we need to show

how to combine these two features. As before, a QUD q is a function which maps a world

w to its cell in a partition on worlds. Given a QUD q (which will often be left implicit), we

define the marginal probability of a partition cell by:

P(q(w), o) = Y Aq(W)=q(w)P(W', O) (3.13)

This is the sum of probability of all worlds in the same partition cell as w. We next define

the following equivalence relation on observations:

0 =q 0' <= Vw P(q(w)lo) = P(q(w)lo') (3.14)

Under this definition, observations o and o' are equivalent when they induce the same

distributions over partition cells. The QUD defines an equivalence relation on worlds, and

this definition lifts this equivalence relation to observations.

We now define:

Rn(uP, slq(w), o, q) = E J(q(w)=q(w))(oqo')Ln(WO /'|up, s) (3.15)
w1 01

This is the joint probability that the listener assigns to partition cell q(w) and observations

which are equivalent to o (under the equivalence relation =q). The speaker wants their

utterance to be informative about the answer to the QUD, i.e. they want the listener to as-
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sign high probability to the correct cell of the partition. However, the speaker is potentially

uncertain about which partition cell is the true one. In order to compute the informative-

ness of an utterance up, they therefore compute the average amount of information that the

utterance provides about each QUD cells:

In(up,slo,q) = - E P(q(w)|o) log (3.16)
q(W) R, (up, s Iq(w),o, q)

We use the notation Eq(,) to indicate that the sum ranges over cells of the partition induced

by QUD q.

The remaining speaker definitions are straightforward generalizations of those in Sec-

tion 3.3:

EPN ( us)I( o,q) = N (Up Ii, S)In (ui, sI o, q) (3.17)
up

Un(ui, slo, q) = EpN(Iuis)In1 ('o, q) - c(ui) - c(s) (3.18)

Sn(ui,slo,q) c eXU,,(ui,slo,q) (3.19)

The pragmatic listener is only minimally modified from the previous definition. This

listener has a model of how the speaker chooses utterances given an observation o and QUD

q, and a prior distribution P(w, o) over world-observation pairs. The listener performs joint

inference over the world, the speaker's observation, and the QUD:

Ln(w,o,q~up,s) c P(w,o)P(qlo) Sn (ui,slo,q)PN(uplui,s) (3.20)
tui

3.6.2 Deriving knowledgeability inferences

This model can be used to derive the inference that stress indicates greater speaker knowl-

edgeability. We will explain how this inference is derived in Example (20). For this ex-

ample, we assume that there are two worlds, V and ]-,V, corresponding to worlds in which

all of the students passed the test and in which some but not all passed, respectively. We

assume that there are three possible observations: the speaker could have observed that
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they are in world V, observed world -iV, or not gained any information about the world (in

which case they have a uniform distribution over worlds). These observations correspond

to the knowledge states {V}, {-iV}, and {V, ]-,V}, respectively, where each knowledge

state is the set of worlds that the speaker considers possible. For example, in knowledge

state {V, ]-,V}, the speaker is ignorant, and considers both worlds possible. The listener

has a uniform prior distribution over the speaker's observation. The speaker wants to com-

municate exactly which world is the true one, and there is no uncertainty about this QUD.

There are two alternative utterances, some and all, which are given their normal se-

mantics. Both utterances are assigned cost 1. The noise distribution over utterances is

illustrated in Figure 3-6. The baseline probability of noise p is set to 0.01. The speaker can

place stress on their utterance, which reduces the noise rate by a factor of 2. The use of

stress is assigned cost 0. 1.

'-p
some - some

all -P all

Figure 3-6: The noisy channel for Example (20), when stress is not used.

Figure 3-7 shows the predicted interpretation of stress in this example. When stress is

placed on utterance some, the listener is more likely to draw the strong implicature: that

the speaker knows that they are in world ]-,V. When stress is not placed on this utterance,

the listener draws the weaker implicature: that the speaker does not know that world V is

true, and that they are in the ignorant knowledge state {V, ]-,V}.

To explain this, we first consider the speaker who is in knowledge state {-V}, i.e. who

knows that not all of the students passed the test. This speaker will almost always choose

utterance some, as the only alternative, all, is literally incompatible with their intended

meaning. In deciding whether to use stress on their utterance, this speaker will consider

the consequences of having their intended utterance misheard by the listener. If the listener

mishears some as all, then the listener will believe that they are in world V with high prob-

ability, something which the speaker knows to be false. The speaker has a strong incentive

not to communicate things which they know to be false, and will want to reduce the noise
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Figure 3-7: The listener's interpretation of the utterances without stress (on the left panel)

and with stress.

rate on their utterance. This speaker will therefore be likely to place stress on some.

Next consider the speaker who is in the ignorant knowledge state {V, 3-,V}. Like the

first speaker, this one will also choose utterance some with high probability. The speaker

choice rule for this model, as defined in Equations 3.16-3.19, encodes a strong preference

for the speaker to only choose utterances which they know to be true. 6 The speaker there-

fore needs to determine whether to place stress on some. Suppose that the listener mishears

some as all. In this case, the listener will believe that world V is true. The speaker does

not know that this is the true world, but neither does this speaker know that it is not. This

is distinct from the case of the speaker who knows that the true world is 3-,V, considered

above. In that case, if the listener accidentally hears all, then they will have communi-

cated something which they know to be false. There is an asymmetry between the two

speaker types, corresponding to the difference between communicating something known

to be false, and communicating something not known to be true (but still considered pos-

sible). It is possible to show that this asymmetry is encoded in the model, and has the

consequence that noise decreases utility more for the knowledgeable speaker than for the

6More precisely, it encodes a preference for the speaker to only choose utterances which communicate
answers to the QUD which they know to be correct. These constraints are equivalent in the current example,
because the speaker's QUD is assumed to be maximally fine-grained.
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ignorant speaker. As a result, the ignorant speaker has less incentive to reduce the noise

rate of their utterance, and will be less likely to place stress on some.

The listener, in turn, knows that the speaker is more likely to place stress on some when

they are knowledgeable than when they are ignorant. When the listener hears stress on

some, they will infer that the speaker is more likely to be knowledgeable, i.e. they will

be more likely to draw a strong implicature from some. This reasoning is reinforced at

higher recursion-depths: the speaker knows that the listener is likely to interpret stress as

indicating knowledgeability, and will therefore be more likely to use stress to communicate

knowledgeability; the listener knows that the speaker knows this, and so on.

3.7 Disagreement and surprisal

We have so far explained several qualitative features of the interpretation of prosodic stress.

First, we have explained why stress indicates that the speaker has a list-QUD rather than a

polar-QUD. Second, we have explained why stress location can be used to indicate which

specific list-QUD the speaker is trying to answer. We have further explained why the

association between stress and QUD results in the exhaustive interpretation of stressed ut-

terances: the listener infers that the speaker is providing a complete answer to the question

that they are trying to answer.

There are certain features of stress interpretation which do not appear to be mediated

by inferences about the QUD. In particular, stress can be used to indicate which parts of the

utterance the speaker believes will be considered most surprising by the listener. Consider

the following dialogue:

(21) A: Alice went to the store.

B: BOB went to the store.

Speaker B places stress on "Bob" in order to indicate disagreement with Speaker A's utter-

ance. The speaker communicates that the locus of disagreement is who went to the store:

the speaker agrees that someone went to the store, but it was not Alice. Contrast this with

the next dialogue:
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(22) A: Alice went to the store.

B: Alice went to the RESTAURANT.

Here, by placing stress on "Restaurant," the speaker communicates that the locus of dis-

agreement is where Alice went: Alice went somewhere, but it was not the store.

More generally, speakers will use stress to indicate the parts of an utterance which they

believe their interlocutors will find surprising.

(23) Would you believe it? BOB went to the store.

(24) Would you believe it? Bob went to the STORE.

In Example (23), the placement of stress on "Bob" indicates that it is surprising that Bob,

rather than someone else, went to the store. That is, it indicates that the speaker believes

that the listener has a prior expectation that a) Bob did not go to the store; b) someone else

besides Bob would have been more likely to have gone to the store. It does not indicate that

the listener has a prior expectation that Bob would have been likely to have gone somewhere

else besides the store. In Example (24), the placement of stress on "store" indicates that it

is surprising that Bob went to the store, rather than somewhere else. That is, the speaker

believes that the listener has a prior expectation that a) Bob did not go to the store; b) it

would have been more likely for Bob to have gone somewhere else instead of the store.

It does not indicate that the listener has a prior expectation that someone else besides Bob

would have been more likely to have gone to the store.

The noisy-channel pragmatics model predicts these effects. These effects are not medi-

ated by listener inferences about the QUD; in fact, we will assume a deterministic (trivial)

QUD throughout our discussion in this section. These phenomena will instead be derived

through a distinct reasoning process.

3.7.1 Stress and disagreement

We will first present a model of scenarios such as Example (21). In this example, the

speaker uses stress to signal disagreement with a prior assertion in the discourse. Our
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modeling will in fact apply to a more general class of scenarios, in which it is common

knowledge that some proposition is assigned low prior probability by the listener. This

includes cases in which the listener has made a prior assertion in the discourse which con-

tradicts this proposition, but it also includes cases in which the proposition is known to have

low prior probability for some other reason, e.g. due to its obvious a priori implausibility.

This includes examples such as:

(25) A: I heard that the theorem was proved recently.

B:The LITTLE BOY proved it.

In such cases, the speaker uses stress to indicate that they are saying something which they

know will be considered a priori implausible.

Disagreement without compositional structure

Our modeling setup will be similar to the examples in Sections 3.4 and 3.5, with two

primary differences. First, we do not assume a uniform prior distribution over worlds.

Instead, there will be a distinguished world which is assigned high prior probability by the

listener; the speaker will know that this world does not hold, and will use stress to signal

disagreement with the listener's prior expectations. Second, we assume that the listener has

no uncertainty about the speaker's QUD. The speaker is assumed to always want to answer

the question, What happened? Given this QUD, the speaker wants to communicate to the

listener the exact world that they are in.7 Nothing in our model derivations depend on this

strong of an assumption, but more complex QUDs are not essential for understanding the

example.

For simplicity, we assume that there are two worlds, {Alice}, in which only Alice went

to the store, and {Bob}, in which only Bob went to the store. The speaker knows who went

to the store, and listener assigns prior probability P({Alice}) > 0.5 to world {Alice}.

There are two alternative utterances, a and b, which receive the same semantics as in

Section 3.4. Each utterance is assigned cost 1. Noise is assumed to occur with probability

7Note that this QUD is implicitly assumed in prior work using the RSA model [28].
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Figure 3-8: The probability that the speaker who wants to communicate world {Bob} will
use stress, as a function of the prior probability of this world.

p, and the noise distribution is the same as in Figure 3-1. Prosodic stress has the same effect

as in the previous examples: it reduces the probability of noise by a factor of 2. Stress is

assigned cost 0.1.

Suppose that the speaker wants to communicate world {Bob}, and chooses utterance

b to do so. Figure 3-8 shows the probability that the speaker will use prosodic stress as

a function of the prior probability P({Alice}) that the listener assigns to world {Alice}.

Higher values of P({Alice}) result in higher probability of the speaker choosing to use

prosodic stress. That is, if the listener has lower belief in the correct world, the speaker is

more likely to place prosodic stress on their utterance.

To understand why this occurs, consider the listener who assigns high prior probability

to world {Alice}, and who hears utterance b without prosodic stress. This utterance lit-

erally communicates that Bob went to the store, something which the listener believes to

be unlikely. There are two options for this listener: a) the utterance was actually intended

by the speaker, and the speaker wanted to communicate something a priori unlikely; or

b) the utterance was corrupted by noise, and the speaker actually wanted to communicate
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the more likely world {Alice}. When world {Alice} is sufficiently probable a priori, then

the possibility of noise becomes more likely than the possibility that the speaker actually

intended world {Bob}, and the rational inference for the listener is b). If, however, the

speaker has placed stress on their utterance, then the situation is somewhat different. The

listener knows that a stressed utterance is less likely to have been corrupted. As a result, the

listener will be less likely to infer option b). The listener is instead more likely to infer that

the speaker really intended to communicate something a priori unlikely. For sufficiently

high values of the prior probability P({Alice}), the listener will still infer that the utterance

was corrupted. However, prior probability threshold is higher when the speaker has used

stress than when they haven't.

Next consider the speaker who wants to communicate world {Bob}. This speaker will

clearly choose utterance b, as this is the only utterance that provides information about their

intended world. The speaker knows the listener's prior probability assignments, and how

the listener will interpret their utterance given this prior distribution. For sufficiently high

prior probability assigned to {Alice}, the speaker knows that their unstressed utterance will

be interpreted as world {Alice}. The listener will assign lower probability to this world

if they use stress. As a result, the speaker in this case will use stress to ensure that their

utterance is interpreted correctly.

Introducing compositional structure

We have shown how the model derives the use of stress to signal disagreement in simple

cases such as Example (21). We have so far only discussed an idealized setting in which

the choice to use stress is a binary decision, and stress signals global disagreement with

prior discourse assumptions. However, the contrast between Examples (21) and (22), re-

produced and expanded below, demonstrates that the placement of stress within a sentence

can convey information about what is being disagreed with:

(26) A: Alice went to the store.

B: a. No, BOB went to the store.

b. # No, Bob went to the STORE.
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(27) A: Alice went to the store.

B: a. No, Alice went to the RESTAURANT.

b. # No, ALICE went to the restaurant.

If the speaker wants to disagree with the claim that Alice, rather than Bob, went to the

store, then they will signal this by placing stress on "Bob" rather than "store." In contrast,

if the speaker wants to disagree with the claim that Alice went to the store, rather than the

restaurant, they will stress "restaurant" rather than "Alice." Our model must therefore be

able to explain why the choice of stress location provides information about which part of

the prior discourse is being disagreed with.

We will extend the previous example in order to model these inferences. We assume that

there are two individuals, Alice and Bob, and two locations, the store and the restaurant. In

every world, one individual went to one location, and nobody went anywhere else. There

are four worlds which fit these constraints. Using the notation of Section 3.5.1, these

worlds are denoted by {{Alice}s} (in which Alice only went to the store, and Bob did not

go anywhere), {{Alice}R}, {{Bob}s}, and {{Bob}R}. We assume that the prior probability

of world {{Alice}s} is greater than that of every other world, and that the other worlds are

assigned equal probability. This represents the listener's belief that Alice went to the store.

The worlds {{Alice}R} and {{Bob}s} will be the crucial ones for this example. They each

differ from the high-probability world {{Alice}s} in a single dimension. In {{Alice}R}

and { {Alice}s}, Alice went somewhere; the worlds are distinguished only with respect to

where Alice went (the restaurant or the store). In {{Bob}s} and {{Alice}s}, someone went

to the store; these worlds are distinguished only with respect to who went to the store (Bob

or Alice).

There are four alternative utterances: a : s ("Alice went to the store"), a : r, b : s, and

b: r. These utterances are assigned the same semantics as in Section 3.5.1. The speaker has

the option to place stress on the left phrase in the utterance, the right phrase, or on neither

of the phrases. Utterance cost, prosodic stress cost, and the effect of prosody on the noise

rate remain the same as in that section. The noise distribution remains the same as well,

and is shown in Figure 3-3.
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Figure 3-9: The probability that the speaker who wants to communicate world {{Bob}s}
will use stress Left, as a function of the prior probability of this world.

Figure 3-9 shows the model's predictions about the use of prosodic stress, as a function

of prior probability. The figure shows the predictions for the speaker who wants to com-

municate world { {Bob}s} (corresponding to Example (26)); the predictions are symmetric

for the speaker who wants to communicate world {{Alice}R} (corresponding to Example

(27)). As P({{Alice}s}) increases, and P({{Bob}s}) correspondingly decreases, it be-

comes more likely that the speaker in world {{Bob}s} will place stress on the left phrase

of their utterance ("Bob"). By symmetry, it becomes more likely that the speaker in world

{{Alice}R} will place stress on the right phrase ("restaurant").

We will explain why the speaker who wants to communicate world {{Bob}s} will place

stress on the left phrase of their utterance, "Bob." A symmetrical argument will explain why

the speaker in world {{Alice}R} will place stress on the right phrase. The speaker wants to

communicate that Bob went to the store, and will clearly choose the utterance b : s, as this

is the only utterance literally compatible with this world. In deciding where in the utterance

to place stress, this speaker will reason about how the listener who hears utterance b : s will

interpret this utterance.

120



By assumption, the listener assigns high prior probability to world { {Alice}s}. When

the listener hears b : s, they will have two options: 1) they can infer that b : s is really

the intended utterance of the speaker, and that the speaker wanted to communicate the

low-probability world {{Bob}}; or 2) they can infer that the speaker intended some other

utterance, and wanted to communicate the higher probability world {{Alice}s}. If the

listener infers 2), then their inference is that the speaker actually intended utterance a : s (as

this is the only utterance literally compatible with world {{Alice}s}), and that the phrase

a was corrupted to b. For sufficiently high prior probability of world {{Alice}s}, this is

the rational inference for the listener to make. If the speaker has placed stress on the right

phrase s, then this does not change the listener's inferences. Placing stress on s decreases

the probability that the listener mistakenly heard this phrase. However, the listener already

believes that they have accurately perceived the phrase s; in both scenarios 1) and 2), the

listener believes that the speaker intended phrase s, and their only source of uncertainty

is regarding the first phrase in the speaker's utterance. Thus, reducing the noise rate on s

does not provide evidence for 1) over 2), or vice-versa. In contrast, placing stress on the

left phrase b does change the listener's inferences. If the speaker believes that the utterance

was more likely to have been transmitted accurately, then they will be more likely to infer

that the perceived utterance b : s was actually intended, and that the speaker wanted to

communicate the low-probability world {{Bob}s}.

The speaker knows that placing stress on b will make the listener more likely to cor-

rectly interpret the utterance, while placing stress on s will not. As a result, this speaker

will be more likely to place stress on b.

3.7.2 Stress and surprisal

We have so far explained why the model predicts that stress can be used to indicate dis-

agreement with the listener's a priori expectations, when these expectations are common

knowledge among the speaker and listener. We will now address a more complex type of

scenario, in which the speaker uses stress to communicate both that some event occurred,

and that it is surprising. This is illustrated by Examples (23) and (24), which are repro-
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duced below:

(28) Would you believe it? BOB went to the store.

(29) Would you believe it? Bob went to the STORE.

In Example (28), the speaker uses stress to indicate that it is surprising that Bob, rather

than someone else, went to the store. The speaker can felicitously use this utterance even if

the listener does not know that it was unlikely for Bob to have gone to the store (and more

likely for someone else to have gone). In such a case, the speaker is communicating both

that Bob went to the store, and that the event was a priori unlikely. The second type of

information communicated can be considered a type of accommodation: the listener gains

information about the speaker's beliefs about the discourse context.

In order to model this type of accommodation, we will need to modify the model in-

troduced in Section 3.3. In that version of the model, it was assumed that the listener's

prior distribution over worlds was common knowledge among the speaker and listener. In

the current version of the model, we will assume that the speaker has beliefs about the lis-

tener's prior distribution over worlds, but that these beliefs are potentially unknown by the

listener. Thus, in order to interpret the speaker's utterance, the listener will need to perform

joint inference over both what world the speaker believes they are in, and what the speaker

believes the listener's prior expectations are.

The definition of the literal listener remains largely the same as in Section 3.3, except

that the listener is now parameterized by a prior distribution Pk:

Lo(wlup,s,Pk) cc Pk(w)K(w~up,s) (3.21)

This prior distribution may potentially vary from listener to listener. The definition of

K(wIup, s) remains unchanged from Equation 3.4.

The speaker is also defined in largely the same way. The only change is that the speaker

is now parameterized by the prior distribution Pk, which determines the speaker's beliefs

122



about the listener's prior distribution:

Rn(up,slw,q,P) = Eq(wI)=q(w)Ln(WIu'p,S,Pk) (3.22)

In(up, sIw, q, Pk) =- log (3.23)
Rn (up,s W, q,Pk )

E PN(' ui,s)In('iw,q,Pk) jN(up uj,s)Infujnsjw,q,Pk) (3.24)
up

Ulz(ui,slw,q,Pk) = EpN(.ui,)In -(-|w,q,Pk) - c(ui) - c(s) (3.25)

Sn(ui,slw, q,Pk) X e Un(ui,sjw,qPk) (3.26)

The most substantial change to the model is in the definition of the pragmatic listener

Ln. This listener has a prior distribution over worlds P. However, this prior distribution

may not coincide with the distribution Pk which the speaker believes that the listener is

using. The listener knows this, and is uncertain about which prior distribution the speaker

believes that the listener is using:

Ln(w,q,Pklup,s,Pj) oc Pj(w)P(qlw)P(Pk) ISn(ui,slw,q,Pk)PN(up ui,s) (3.27)
U,

The term P(Pk) is the prior probability that the listener assigns to prior distribution Pk. The

marginal probability of world w and QUD q can be computed by:

Ln(w,qup,s,Pj) o Pj(w)P(qlw)EP(Pk)(Sn(ui,slw,q,P)PN(uplui,s) (3.28)
k Ui

Given these changes to the model, we can now explain why the use of stress in examples

such as (28) can be used to communicate that something surprising occurred. We will

consider the simplest possible example of this reasoning; more complex cases will follow

from similar reasoning.

We will assume that there are two worlds, as in Section (25): {Alice} and {Bob},

corresponding to who went to the store. There are three possible prior distributions over
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these worlds:

Pi ({Alice}) = 0.5, Pi({Bob}) = 0.5

P2({Alice}) = p, P2 ({Bob}) = I - p

P3({Alice}) = 1 - p, P3 ({Bob}) = p

We assume that p > 0.5, so that P2 assigns higher probability to {Alice}, while P3 assigns

higher probability to {Bob}. The distribution Pi assigns equal probability to both worlds.

We assume that the speaker always knows which world is the true one. Each speaker is

parameterized by one of the prior distributions. This represents the speaker's beliefs about

the listener's prior expectations. For example, the speaker parameterized by P2 believes that

the listener expects {Alice} to be more likely than {Bob}. The pragmatic listener, in turn,

is uncertain about which prior distribution the speaker is parameterized by. We assume that

the listener has a uniform prior over the speaker's prior distribution parameter.

The rest of our modeling setup is the same as in Section (25). There are two utterances,

a and b, with our standard cost and noise assumptions. The speaker is assumed to have a

maximally precise QUD, i.e. they want to communicate exactly which world they are in.

When the speaker places stress on utterance a, the listener is more likely to infer that

the speaker is parameterized by prior distribution P3 , the distribution which assigns lower

probability to world {Alice}. That is, when the speaker chooses utterance a with stress,

the listener infers two things: that Alice went to the store (rather than Bob), and that the

speaker believes that this is surprising. By symmetry, when the speaker chooses utterance

b with stress, the listener infers that the speaker believes that it is surprising that Bob went

to the store. In addition, as the distribution P3 assigns less probability to world {Alice}, the

listener becomes more confident that the use of stress on utterance a signals this distribu-

tion.

The model makes these predictions for reasons which are closely related to its pre-

dictions in Section (25). In that section, we explained why the model predicts that stress

signals disagreement, i.e. why the speaker will use stress when they are conveying informa-
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tion which they know the listener assigns low prior probability. The same reasoning applies

in the current scenario. Suppose that the speaker wants to communicate world {Alice}, and

is parameterized by prior distribution P3 . This speaker believes that the listener assigns low

prior probability to the true world. As a result, as shown in Section (25), this speaker will

choose utterance a and will place stress on this utterance. They know that they are commu-

nicating something surprising to the listener, and want to ensure that the listener does not

mistakenly infer that they were trying to communicate something more a priori likely. In

contrast, the speaker who wants to communicate world {Alice}, and who is parameterized

by prior distribution P2 , will be unlikely to place stress on their utterance. This speaker

believes that the listener assigns high prior probability to the correct world. Because the

utterance a will only further confirm the listener's prior expectations, this speaker believes

that the utterance will be interpreted correctly even without the use of stress.

Next, consider the inferences of the listener who hears utterance a with stress. We

will assume that this listener has prior distribution P1 , i.e. that this listener assigns equal

probability to the two worlds. This listener knows that the speaker would have been likely

to use stress if they had been parameterized by distribution P3 , but unlikely to use it if they

were parameterized by distribution P2 . As a result, this listener will infer that the speaker

is more likely to have been parameterized by P3 . That is, the listener will infer that the

speaker believed that they were communicating something surprising to the listener.

3.8 Strengthening of underspecified utterances

In this section, we consider several interactions between stress and the interpretation of

semantically underspecified lexical items. The effects of stress that we consider in this sec-

tion are qualitatively distinct from those considered in the previous sections. In particular,

these effects are not driven by inferences about the QUD, as in Section 3.4, or by inferences

about prior information in the discourse context, as in Section 3.7. These effects have addi-

tional significance, as they cannot be straightforwardly derived within standard approaches

to stress interpretation, such as Alternative Semantics [84].

We will first consider semantic underspecification in the context of gradable adjectives,

125



such as tall, big, and expensive. These adjectives are each associated with a scale, for

example a height scale in the case of tall [54, 55]. When applied to an argument, the

adjectives conveys that the argument falls above (or below) some threshold on this scale.

For example, tall conveys that its argument is above some height threshold:

(30) Bob is tall. [Understood meaning: The man's height is greater than normal, e.g. it

is above 74 inches.]

An important property of such adjectives is that their interpretation is context-dependent.

In particular, an adjective's scale threshold is generally not fixed prior to the discourse;

rather, it is sensitive to the distributional properties of the relevant contrast-class, and to the

interests of the participants in the conversation [57, 55, 3]. Consider a situation in which

Bob is a professional basketball player (and the speaker and listener have been discussing

other basketball players):

(31) Bob is tall. [Understood meaning: Bob is taller than normal basketball players,

e.g. his height is greater than 82 inches.]

When tall is used in the context of adult men, it conveys that the individual is tall relative

to other adult men. When it is used in the context of professional basketball players, it

conveys that the individual is tall relative to other basketball players. In both cases, the

listener needs to infer the speaker's intended comparison class, and use the distributional

properties of this comparison class to infer the intended threshold. Gradable adjectives

such as tall are thus semantically underspecified: the scale (e.g. height) and structure (e.g.

lower-boundedness) of each adjective's meaning is fixed in advance, but the precise value

of the threshold is not.

Stress can be used to systematically strengthen the interpretation of gradable adjectives.

When the adjective is used predicatively, stress will often signal that an adjective should

receive an intensified interpretation, i.e. that its threshold should be especially high (or low,

depending on the direction of the adjective):

(32) Bob is TALL.
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(33) Alice is SMART.

(34) The watch is EXPENSIVE.

In these examples, we assume that the utterance is not being used contrastively, e.g. that

someone in the discourse has not previously asserted that Bob is short. Given this assump-

tion, the use of stress in Example (32) indicates that Bob is especially tall - taller than

would be expected from Example (30) - and similarly in the other examples. As these ex-

amples illustrate, the effect appears to be quite general, occurring whenever stress applied

to a lower- or upper-bounding adjective in a predicative setting.

In addition to gradable adjectives, we will consider the effects of stress on a different

class of semantically underspecified lexical items, quantifiers with underspecified domains.

We will be focusing in particular on universal quantifiers:

(35) Every girl came to the party.

(36) Bob always arrived at work on time.

In certain respects, the universal quantifiers every and always have a fixed, clearly spec-

ified semantics: each ranges over a domain (of individuals and events/time-points, respec-

tively), and predicates each member of this domain with some property. However, the

domain of quantification is not fixed in advance, as part of the semantics of these lexical

items [59, 4, 98, 67]. The listener must infer the quantifier domain from the discourse con-

text: from what is salient in the context, and what they believe the speaker wants to talk

about. In Example (35), the speaker is not asserting that every girl in the world came to the

party. Rather, the speaker is asserting that some contextually relevant set of girls - e.g.,

all of the girls in the third grade - came to the party. In Example (36), the speaker is not

asserting that Bob arrived at work on time at every time point, or even that Bob arrived at

work on time every single work day. Rather, they are asserting that, for some contextually

relevant set of work days, Bob arrived at work on time on those days.

When stress is placed on one of these universal quantifiers, it signals an expansion of

the quantifier domain:
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(37) EVERY girl came to the party.

(38) NOBODY brought presents.

(39) The bus went NOWHERE.

(40) Bob ALWAYS arrived at work on time.

In Example (37), the use of stress indicates that every quantifies over a larger set of girls

than in the unstressed Example (35). For example, consider a scenario in which some girls

in the third grade class did not receive invitations to the party. The unstressed utterance

may indicate that all of the invited girls came to the party, while the stressed utterance may

indicate that the uninvited girls (surprisingly) came too. In Example (40), the use of stress

indicates that always quantifies over more time points than in Example (36). The unstressed

Example (36) may indicate that Bob routinely arrived at work on time, while the stressed

Example (40) may indicate that Bob was unusually punctual, e.g. that he even showed up

for work on time on holidays or following natural disasters.

Both gradable adjectives and quantifiers are semantically underspecified: gradable ad-

jectives have a free parameter which specifies a scale threshold, while quantifiers have a

free parameter which specifies the domain of quantification [68, 98]. For both types of

lexical items, the application of stress strengthens the interpretation of the utterance, either

by pushing the threshold parameter towards a more extreme value for the adjectives, or by

expanding the size of the domain for universal quantifiers.

These effects have theoretical interest, as they do not have straightforward derivations

within an Alternative Semantics approach to stress interpretation. Under such an account,

stress is used to indicate the focus of an utterance. The placement of focus, in turn, deter-

mines the set of alternatives to the utterance. Any effect of stress placement on interpre-

tation will be mediated by these alternatives. In particular, the effects of stress in simple

declarative utterances (in the absence of any focus-sensitive operators) will typically be

derived through exhaustification of the alternatives: the listener infers that none of the al-

ternatives are true. In Example (32), the listener may consider the expression Bob is short

as an alternative, and take the negation of this. But this will not derive a strengthened read-
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ing of the utterance: the literal meaning of Example (32) already communicates that Bob

is not short. Similarly, for Example (37), exhaustifying with respect to the obvious alter-

natives will not derive a strengthened interpretation of the utterance. This utterance will

clearly have Most girls came to the party and Some girls came to the party as alternatives.

But taking the negation of these alternatives will lead to a contradiction: it is not possible

for all of the girls to have gone to the party, if it is not the case that some (or most) did.

Thus, it does not appear that exhaustification is sufficient for deriving the interpretation of

stress in these cases.

3.8.1 Inference over free semantic variables

Here, we will explain how to integrate semantic underspecification into the noisy-channel

pragmatics model. In order to specify this model, we first need to fix a representation of

semantic underspecification. We will follow much previous work in using afree variable

representation of underspecification [66, 72]. Under this approach, an underspecified ex-

pression is parameterized by a free variable. This variable supplies all of the information

which is necessary for interpreting the expression. The lexical entry for the expression

does not contain a fixed value for the variable; rather, this value needs to be filled in during

pragmatic inference.

In general, an expression A with a free semantic variable is represented by [60]:

[A = XO~x[FA (x, 0)] (3.29)

The variable 0 is the free variable in this expression, and FA is a semantic interpretation

function for a. For example, the lexical item tall will be represented by:

tall] = X0ta1XX[Pheight(X) Otaill] (3.30)

The term Otall is the free variable for tall, which takes on real-numbered values; an object is

tall if its height is greater than the value of Otall. The lexical representation for the quantifier
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all is:

[all] = Xeai1 XXY[(x nr6all) C Y] (3.31)

The free variable Oall specifies the quantifier domain. For sets A and B, the expression

((([alll(Oall))(A))(B) is true iff all of the mutual elements of A and eall are also elements

of B. We will use the notation [AI 0 to denote the interpretation of A after the value of 0 has

been fixed:

AJe = X0Xx[FA(xJ)](0) = Xx[FA(x, 0)] (3.32)

If the expression A contains multiple semantic free variables, then we will use the vector

0 to represent the value of these variables, and we will denote the interpretation of A with

respect to these values by [AI 0 .8

We model the resolution of the semantic free variables as a statistical inference problem.

In particular, we follow the reformulation of lexical uncertainty [] proposed in []. Under

this model, the literal listener and the speaker Si have no uncertainty about the values of

the semantic free variables. That is, they have fixed beliefs about the literal interpretation

of each utterance, e.g. about which height threshold qualifies an object as being tall. All of

the uncertainty is lifted to the listener L1 . This listener is a priori uncertain about values of

the variables. They thus do not know how the speaker S1 expects utterances to be literally

interpreted. In order to infer the speaker's intended meaning, this listener must thus reason

jointly about which meanings and semantic specifications would have made the speaker

likely to have chosen the perceived utterance.

We will now present our formal model definitions. The literal listener is largely the

same as in previous versions, with one exception. This listener is now parameterized by

the vector 0, representing the values of all of the semantic free variables necessary for

interpretation. We thus assume that the literal listener has no uncertainty about the value of

the free variables:

K(w~uP,s, 0) = EP(uiJup,s)1 q iOe (3.33)
U1

Lo(wlup, s,0) oc P(w)K(wlup, s, 0) (3.34)

8Though we have not formally defined the interpretation of an expression with respect to multiple free
variables, this can be done straightforwardly as an extension of our previous definitions.
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In contrast to the previous versions of the model, we define the speaker Si and the

higher-order speakers S, (n > 1) separately. Like the literal listener, the speaker S1 is

parameterized by the vector 6, representing the values of the semantic free variables in

the available alternative utterances. This speaker has no uncertainty about the values of

these variables, and thus no uncertainty about how the literal listener will interpret their

utterance. The speaker is defined by:

Ro(up,sIw,q,O) = [1q(wI)_q(w)Lo(W'|Up,S,6) (3.35)
WI

Io(up, sw, q, 0) -log (3.36)
Ro(up,s w,q, 0)

EpN (I Ut,s,O)Io(' w,q) = YPN(up ui,s)Io(ui,s w,q, 9) (3.37)
up

U1 (ui,sjw,q,0) = EpN(. 1u 1s)Io(.Iwq,') - c(u) -c(s) (3.38)

S1 (ui, siw, q,6) cc ekU1(ui,sJw,q,O) (3.39)

The definition of listener Ll represents the most substantial change from our previous

models. This listener does not know the values of the semantic free variables in advance,

but rather has a prior distribution P(O) over these values. The joint probability of a world

w, QUD q, and vector of semantic values 0 is defined by:

Ll (w, q, 0|up, s) cc P(w)P(qjw)P(0) ESi (ui, slw, q, 6)PN(upui, s) (3.40)
Ui

Using this joint distribution, the listener can compute the marginal probability of a world-

QUD pair w and q, or of a vector of semantic values 6:

L (w,q~up,s) c< P(w)P(qlw) EP(O)YS1 (ui,s~w,q,6)PN(up ui,s) (3.41)
0 Ui

L1 (01up, s) cc P(6) EP(w) FP(qlw) SI (ui, sjw, q, 6)PN(up ui,s) (3.42)
w q ui

The higher-order speakers S, and listeners L, (for n > 1) are defined exactly as in

Section 3.3. Though inference over the value of the semantic variables is limited to the
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listener LI, its effects are not limited to this listener; as we explain below, asymmetries

arising from this listener are propagated through the inferences of the higher-order speakers

and listeners.

3.8.2 Adjective strengthening

We will now explain why the use of stress is predicted to intensify the interpretation of

gradable adjectives. We will specifically consider the use of stress in Example (32). We

will assume that the speaker knows Bob's exact height, and that the speaker's QUD is What

is Bob's exact height? The set of possible worlds is { 1,..., n}, where each integer represents

a possible height for Bob. The elements of this set are given their natural ordering, so that

higher elements represent greater heights. For the current example, we set n = 7, but

the qualitative predictions of the model are not sensitive to this choice. We assume that

the speaker wants to communicate the exact value of Bob's height. The listener's prior

distribution is uniform over worlds.

There are three alternative utterances: tall, short, and Unull. The semantics for tall is

given in Equation 3.30, and the semantics for short is defined similarly:

shortj = XeshorIxIJheight (x) < Oshort] (3.43)

The utterances tall and short are assigned cost 1. The utterance Unull is included in order

to make the model well-defined; the technical issues motivating its inclusion are discussed

further in [9]. This utterance is given a trivial semantics, so that it is true in every world,

and is assigned very high cost, so that it is rarely used by the speaker and has minimal effect

on pragmatic reasoning. Here it is assigned cost 10.

The two alternative utterances tall and short have semantic free variables Otali and

Oshort, respectively, which specify their height thresholds. The listener LI must have a

prior distribution over the values of these variables. We assume that each variable is in-

dependently and uniformly distributed across the possible heights in { , ... , n}. Thus the

listener does not have any prior information about the height thresholds associated with the

utterances.
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The noise distribution is illustrated in Figure 3-10. The figure illustrates that the ut-

terances tall and short may be confused for each other with probability p. As in previous

examples, we set p = 0.01. We assume that the speaker may place prosodic stress on any

I-p
tall tall

short short
I-p

unull unull

Figure 3-10: The noisy channel for Example (32), when prosodic stress is not used.

of the utterances, decreasing the probability of noise by a factor of 2. Stress is assigned

cost 0.1.

Figure 3-11 shows the effect of stress on utterance interpretation in the model. When

the speaker places stress on tall, the listener infers that Bob has a greater height; when the

speaker places stress on small, the listener infers that Bob has a smaller height.

In order to explain these effects, consider a speaker S1 who believes that Bob has height

7, i.e. the maximal height in this example. This speaker will almost always choose ut-

terance tall: this utterance almost always increases the probability of world 7, while the

alternative short is almost always incompatible with this utterance. 9 Thus the speaker only

needs to decide whether to place stress on tall. If the listener mishears tall as short, then

they will almost always form beliefs which are incompatible with the speaker's intended

meaning. For all values of Oshort < 7, if the listener hears short, then they will conclude

that Bob has height less than 7; this occurs with probability . As a result, the speaker will

have a strong incentive to transmit the utterance tall accurately, and will be relatively likely

to use stress to reduce the noise rate.

Next consider a speaker Si who believes that Bob has a somewhat lower height, e.g.

5. This speaker will typically choose utterance tall rather than short. Whenever 0 ta11 < 5,

the utterance tall will be compatible with world 5. This occurs with probability . In

9 The only exception to the first claim is when OtaI/ = 1, and the only exception to the second is when

Oshort 7.
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L-NS - With Stress

tall - tall

C short - short

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Interpretation Interpretation

Figure 3-11: The listener's interpretation of the adjectives without stress (left panel) and
with stress. The figures show the probability that the listener assigns to each height, as
indicated on the x-axis.

contrast, the utterance short will be compatible with the world only when Oshort > 5. This

occurs with probability 7. Thus, the utterance tall has a higher probability of being literally

compatible with the world than the utterance short. Moreover, it is straightforward to show

that, on average, tall will be more informative about this world than short. This means that,

as in the previous case, the speaker will choose tall with high probability. How likely is

this speaker to place stress on the utterance? If the listener mishears tall as short, then they

will infer that Bob's height is less than or equal to Oshort. Thus, if Oshort < 5, then they

will infer that Bob's height is less than 5, and their beliefs will be incompatible with the

speaker's intended meaning; this occurs with probability 4. Thus, though the listener has a

relatively high chance of forming beliefs which are incompatible with the intended world

if they mishear the speaker's utterance, this occurs with lower probability than in the case

that the speaker wants to communicate world 7. The speaker has less incentive to reduce

the noise rate in this case than in the case that they want to communicate world 7, and

therefore will be less likely to use stress.
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We have so far explained why the speaker is more likely to place stress on tall if they

are in world 7 (or, more generally, worlds in which Bob is especially tall) than if they are

in world 5 (or, more generally, worlds in which Bob is less tall). We next consider the

inferences of the listener L, who hears stress on tall. This listener knows that the speaker

S, is more likely to place stress on this utterance if Bob is especially tall. As a result, if

the utterance tall is stressed, the listener will infer that it is likely that the speaker wants

to communicate that Bob is especially tall; if tall is unstressed, they will be less likely to

believe this. This asymmetry between the stressed and unstressed utterance is strengthened

by the higher-depth speakers and listeners. The speaker S,, (for n > 1) knows that the

listener will interpret stress on tall as indicating a high value for Bob's height, and as a

result is more likely to place stress on tall in order communicate greater heights. The

listener L, (for n > 1) knows that the speaker is more likely to use stress for greater values

of Bob's height, and as a result will infer that stress indicates a greater height.

3.8.3 Quantifier strenghtening

In the previous section, we explained why the use of stress will strengthen the interpreta-

tion of gradable adjectives. In the current section, we explain why stress will strengthen the

interpretation of certain quantifiers. We will first explain the model's predictions for Ex-

ample (37), in which the use of stress expands the domain of the universal quantifier. We

will then consider the model's predictions for other quantifiers, including most and some.

Modeling assumptions

We will assume that there was a party which was attended by some set of girls, and that

worlds are specified by the set of girls who went to the party. The set of girls G is equal to

{, ... n}, and therefore each world is specified by a subset of G. For the current example, we

set n = 6, though the qualitative predictions of the model are robust to alternate values of n.

We assume that at least one girl went to the party, so that the set of worlds 'W = 2G \ { f 11.

The speaker knows who went to the party, and their QUD is assumed to be, Which girls

went to the party? The listener has a uniform prior distribution over worlds.
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There are three alternative utterances: all, some, and uull. The semantics for the utter-

ances are given by:

jall = XXXXY [(X no) c Y] (3.44)

some] = XokXXY[ I(XrnYno)| > 0] (3.45)

The variable 0 is the domain for the quantifiers.' 0 This domain can be any nonempty subset

of the set of girls G. The listener is assumed to have a uniform prior distribution over the

quantifier domain. The three quantifiers are assigned cost 1. As in the previous section,

the utterance Unuil is defined to be true in every world, and is much more costly than every

other utterance (cost 10). It is included only for technical convenience.

The noise distribution is shown in Figure 3-12; it is a slight generalization of the noise

distributions used for previous examples. We set the noise probability p = 0.01 The speaker

has a binary choice of whether to use stress; if the speaker uses stress, this reduces the noise

probability by a factor of 2. As in previous examples, stress has cost 0.1.

all -P all

some - some
i-p

Unull -Unull

Figure 3-12: The noisy channel for Example (37), when stress is not used.

Strengthening of the universal quantifier

Figure 3-13 shows the predicted effect of stress on utterance interpretation. When the

quantifier all is stressed, the listener assigns higher probability to all 6 girls having gone to

the party; almost all of the listener's probability mass is concentrated on 5 or 6 girls having

gone. In contrast, when this utterance is unstressed, the listener infers that fewer girls went

to the party.

1t is also possible to assign distinct domains to each of the quantifiers. This does not change the qualitative
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LNS - With Stress

all - all

4-) A -D

some some

I I I I I I --I

1 2 3 4 5 6 1 2 3 4 5 6

Interpretation Interpretation

Figure 3-13: The listener's interpretation of the quantifiers without stress (left panel) and
with stress. The figures show the marginal probability that the listener assigns to n girls
having gone to the party, where n is indicated on the x-axis.

We will first explain why placing stress on all results in the inference that more of

the students went to the party. Consider the speaker Si who wants to communicate world

{1,...,6}, i.e. that all 6 girls went to the party. For simplicity, suppose that the domain

variable 0 equals the full domain; the reasoning here will generalize, in a slightly weaker

form, to other values for the domain variable as well. In this case, the literal meaning of

utterance all is maximally informative, as it means that all 6 girls went to the party. The

literal meaning of utterance some, in contrast, is maximally uninformative in this case, as

it only states that at least one out of the 6 girls went to the party - something that does not

rule out any worlds. The speaker will choose the utterance all with very high probability,

as its literal meaning exactly picks out the intended world, and the alternative utterances do

not. The speaker will have a strong incentive to ensure that the listener accurately perceives

this utterance. If the listener mishears the intended utterance all as some, then they will gain

no information about the speaker's intended meaning; the posterior probability of world

predictions of the model. We assume that there is a single domain primarily to simplify our explanations.
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{ 1,..., 6} will be same as the prior probability. The speaker will therefore want to decrease

the probability that the listener mistakenly hears some, and will be likely to place stress on

all.

Next consider the speaker S1 who wants to communicate a world in which fewer girls

went to the party, e.g. a world in which 4 girls went. Suppose for concreteness that the

speaker wants to communicate world { 1,...,4} (the situation is symmetric for speakers

who want to communicate other 4-element worlds). If the domain variable 8 contains

elements outside of { 1,...,4}, then the speaker will not use the utterance all, as the literal

meaning of the utterance in this case will be false. We will therefore consider the case in

which the quantifier domain equals { 1,...,4}; in this case, the domain is maximally large,

subject to the constraint that utterance all is literally compatible with the intended world.

Our argument generalizes to other, smaller domains as well. The speaker in this case will

be likely to use utterance all: the utterance will literally communicate that all of the girls in

{ I, ... , 4} went to the party, while the alternative some will not do this.

Relative to the speaker who wants to communicate world { 1,...,6}, however, the speaker

who wants to communicate { 1, ... , 4} will have weaker incentive to place stress on their ut-

terance. If all is not faithfully perceived by the listener, then this is not as much of a problem

for this speaker, for two reasons. First, the utterance all is not as informative for this speaker

as it is for the speaker who wants to communicate world { 1,..., 6}. When the speaker wants

to communicate { 1,..., 6} (and the domain is sufficiently large), utterance all will exactly

(or nearly exactly) pick out this world. In contrast, when the speaker wants to communicate

world { 1,...,4}, the literal strength of all is necessarily limited by its restricted domain.

Even when the domain is the maximal one consistent with this world (8 = {1,...,4}), it

does not provide any information about the individuals outside of the domain (individuals

5 and 6), and therefore does not uniquely pick out the intended world. The second reason

that noise is less of a problem for this speaker, is that the alternative utterances are more

informative than for the speaker who wants to communicate world {, ... ,6}. Suppose that

the listener mishears all as some, with the quantifier domain 0 = { 1,...,4}. The listener

will then infer that at least one element of {1,...,4} went to the party. While this clearly

is less informative than if the utterance all had been accurately transmitted, it nonethe-
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less increases the probability that the listener assigns to world {1, .. ,4}, as it rules out the

worlds in which only the individuals 5 and 6 went to the party. Thus there are two factors

which reduce the speaker's incentive to lower the noise rate. The speaker Si who wants to

communicate world { 1, ... ,4} will be less likely to place stress on utterance all.

When the listener L1 hears that the speaker has placed stress on utterance all, they will

interpret the use of stress as indicating that a greater number of girls went to the party.

The listener Ll does not know which quantifier domain the speaker S, believes is being

used for literal interpretation. The listener will therefore interpret the speaker's utterance

by averaging over the different possible quantifier domains. On average, the speaker Si

is more likely to use stress when they want to communicate a world in which a greater

number of girls went to the party, e.g. world { 1,...,6}. The listener Li will therefore

interpret stress as indicating one of these larger cardinality worlds. This interpretation of

stress will propagate to the higher-depth speakers and listeners. Higher-order speakers will

know that stress on utterance all signals that more girls went to the party, and will use stress

to communicate this; higher-order listeners know that stress will be used on all when more

girls have gone to the party, and will interpret stress as conveying this meaning.

Referential interpretation of some

We have so far explained the model's predictions for how stress influences the interpretation

of utterance all. Figure 3-13 also shows the model's predictions for the interpretation of

some. When some is stressed, the listener infers that fewer of the girls went to the party.

Stress therefore has opposite effects in the cases of some and all: rather than signaling an

expansion of the set of elements with a certain property, as in the case of all, stress on some

signals a contraction of this set.

It is important to clarify the interpretation of this prediction. Previous work [84] has

discussed stress in the context of strengthening scalar implicatures, as in the following

contrast:

(41) Some of the students passed the test.

(42) SOME of the students passed the test.
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In Example (41), in which the utterance is left unstressed, the scalar term generates a weak

implicature: the speaker merely does not know that the scalar alternative all is true. The use

of stress, as in Example (42), generates a stronger implicature: that the speaker knows that

the scalar alternative all is false. This type of scalar implicature strengthening is discussed

in more detail in Section 3.6. Crucially, the distinction between weak and strong implica-

tures depends on the possibility of speaker ignorance. If the speaker is assumed to know

whether the alternative all is true, then the weak implicature (in which the speaker does

not know that all is true) and the strong implicature (in which the speaker knows that all is

false) are equivalent. Indeed, standard models of pragmatic reasoning [33, 28, 29] predict

that the scalar term some should generate the strong implicature, even in the absence of

stress, if it is part of the common ground that the speaker is knowledgeable. Thus, it is not

clear that these models predict any differences in interpretation between the stressed scalar

item and the unstressed one, in the case that the speaker is presumed to be knowledgeable.

The distinctive feature of the prediction in Figure 3-13 is that it applies even given

the assumption of speaker knowledgeability. When stress is placed on some, it leads to

a contraction of the set of individuals being predicated with the property. This prediction

was derived given the assumption that the speaker knows which exact world they are in.

Standard accounts of pragmatic reasoning do not derive this effect, or comparable ones.

Until now, we have left open the question of whether this prediction is realized by any

actual empirical phenomena. The following examples suggest that it may:

(43) Context: Bob is addressing his students before class. He looks at a particular stu-

dent.

Bob: SOME of you didn't hand me your homework yesterday. [Understood mean-

ing: The student that Bob is looking at did not hand in his homework yesterday.]

(44) Context: Alice is judging a cooking contest. She has a row of pastas from different

teams in front of her, and she looks at one.

Alice: SOME of the pastas were overcooked. [Understood meaning: The pasta

that Alice is looking at was overcooked.]
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In these examples, the quantifier some is being used in a referential manner: it conveys

that a particular individual has some property, e.g. that of not handing in their homework.

Though this claim requires further empirical evaluation, this referential reading is most

salient when stress is placed on some. In the absence of stress, Example (43) most clearly

conveys that some but not all of the students handed in their homework, and nothing more,

while Example (44) most clearly conveys that some but not all of the pastas were over-

cooked. The use of stress therefore appears to drive the referential reading.

This reading of some is distinct from the normal existential reading of some, which

posits that at least one individual has some property. It is also not straightforwardly re-

ducible to the strengthened scalar implicature discussed above, which only would imply

that not all individuals (in Example (43), not everyone in the class) have the property. The

reading is, however, congruent with the predictions of our model. The model predicts that

the use of stress on some will restrict the predication to a single individual, or a small set

of individuals. In the absence of stress, the model predicts that the set of individuals being

predicated is expanded, and that the referential reading will be less available. The model

therefore correctly predicts that stress will be more likely to signal a referential reading of

the quantifier.

Though the model appears to capture some features of stress interpretation in Exam-

ples (43) and (44), this claim needs to be qualified. In both scenarios, it appears that the

quantifier some is being used in order to avoid stating the intended meaning more directly.

In Example (43), Bob uses some in order to avoid referring to the offending student by

name; in Example (44), Alice uses some in order to avoid directly naming the only poorly-

performing team. In both examples, the speaker's use of the quantifier appear to be driven

by politeness. More precisely, they appear to be driven by the speaker wanting to avoid

being impolite, by directly criticizing someone in public. Our model does not represent

politeness norms, and therefore potentially excludes an important feature driving these in-

ferences. Our claim that the model explains the inferences in Examples (43) and (44) is

therefore provisional. Further work is required to determine whether politeness norms are

indeed necessary to explain these cases, and, if so, whether the model's predictions are
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robust to the inclusion of these norms. I

We will now explain the predicted effect of stress placement on some in the model. Our

modeling assumptions remain the same as in Section 3.8.3: the speaker knows how many

girls went to the party, and wants to communicate this to the listener. We will first consider

the speaker S1 . We will explain why this speaker will be more likely to place stress on

some when they want to communicate that a smaller number of girls went to the party,

rather than a larger number. Suppose first that the speaker wants to communicate world

{ 1}, i.e. the world in which only individual 1 went to the party (the situation is symmetric

for other one-element worlds). The speaker will always choose utterance some when the

quantifier domain variable 0 satisfies: { 1 } C 0. In this case, the utterance some is literally

compatible with world { I } (because it literally conveys that at least one element of 0 went

to the party), and it is the only utterance literally compatible with this world (because the

alternative, all, would communicate that some individual outside of { I } went to the party).

The speaker will also have a strong incentive to reduce the noise rate in this case. If the

listener mishears some as all, then they will infer that some element outside of {1 } went

to the party - something which the speaker knows to be false. The speaker who wants to

communicate world {1 } will therefore be likely to place stress on some.

The speaker who wants to communicate a world in which more girls went to the party

- e.g., world {1,2,3} - will be less likely to place stress on some. As just noted, the

speaker who wants to communicate world {1 } will have a strong incentive to use some,

and place stress on it, whenever the domain variable 0 is such that {1} 0. Consider any

value of 0 such that {1} 0 C {1,2,3}. We will argue that the speaker who wants to

communicate world { 1,2,3} will be unlikely to place stress on some given these values

for the domain variable. Thus, this speaker will be unlikely to place stress on some in

'An initial hypothesis is that politeness can be modeled as a set of restrictions on what meanings the
speaker can literally convey. For example, if it is considered impolite to publicly criticize someone, then
this can be modeled as a restriction on the speaker's alternative utterances, which eliminates any utterances
which literally express that a particular individual has a negative attribute. In this case, a model which
represents politeness would actually coincide with the one presented in this section. A crucial assumption of
the model in this section is that the speaker cannot name individual objects; the only alternative utterances
are quantifier expressions. If object names are included among the alternative utterances, then the model no
longer predicts the availability of the referential reading for some. This referential reading disappears due to
pragmatic competition from the object names. Thus, it is possible that we have in fact provided an adequate
representation of the scenarios in Examples (43) and (44).
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certain scenarios in which the speaker in world { I } would be likely to use stress. It is

straightforward to show that there are no values for e such that the speaker in world { 1, 2, 3}

will be more likely to use stress than the other speaker. Thus, this speaker will be on average

less likely to use stress. To make this argument, suppose that {1 } 0 C { 1,2, 3}, and that

the speaker in world {1,2,3} chooses utterance some. Suppose that the listener mishears

some as all. In this case, the listener will believe that all of the elements in 0 C { 1,2, 3}

went to the party - something which the speaker actually knows to be true. Thus, there is

no problem for the speaker if the listener mishears some in this case. As a result, the speaker

will not have an incentive to reduce the noise rate, and will be unlikely to use stress.

3.9 Hyperbole

Stress interacts with several types of figurative language. In the current section, we will

consider the effect of stress on the interpretation of hyperbolic utterances. Consider a

hyperbolic utterance, as in Example (45):

(45) Bob owes me a million dollars.

Under most circumstances, this utterance will communicate two things: that Bob owes

the speaker a large amount of money, and that the speaker is unhappy about this. More

generally, hyperbolic utterances are typically used for two communicative purposes [81].

First, they are used to communicate information about the state of the world, typically that

it has an extreme value along some dimension. Second, they are used to communicate

information about the speaker's attitude towards this state, e.g. the speaker's affect.

Stress is often used to amplify the effect of hyperbolic utterances:

(46) Bob owes me A MILLION dollars.

(47) It weighs a TON.

(48) He NEVER says hello.

In each of these examples, the use of stress gives the utterance a more extreme interpre-
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tation. In Example (46), stress indicates that Bob owes the speaker an especially large

amount of money, and that the speaker is especially unhappy about this. More generally,

stress is used to communicate that the state of the world is especially extreme along some

dimension, and that the speaker has an especially strong opinion about this.

The interaction between stress and hyperbolic utterances is not easily modeled within

the framework of Alternative Semantics or other standard models of focus interpretation.

A first challenge for these accounts is providing a formal semantics and pragmatics for

hyperbole. To the best of our knowledge, the only existing formal account of hyperbole

is the one presented in [53], which extends the Rational Speech Acts model (and which

is discussed in more detail below). The questions of how to properly integrate Alternative

Semantics or related frameworks with RSA, or how to develop different formal models

of hyperbole, are nontrivial ones, and further research would be necessary to determine

how Alternative Semantics interacted with models of hyperbole. There is, however, a more

fundamental challenge for Alternative Semantics. As previously discussed, Alternative

Semantics proposes that the effects of stress are derived through the following mechanism.

When the speaker places stress on part of their utterance, this triggers a set of alternatives

to this utterance. The listener uses these alternatives to draw inferences about the speaker's

intended message. For structurally-simple declarative sentences, the listener will typically

infer that the speaker intended to communicate that the alternatives are false, i.e. they will

take the negation of the alternatives. It is not clear how to use this mechanism to derive

the effects of stress on the interpretation of hyperbole. In Example (46), the alternatives

generated by the placement of stress on a million (to a first approximation) will be sentences

of the form Bob owes me X dollars. Exhaustifying with respect to these alternatives will not

derive an amplified interpretation of Example (46). Taking the negation of the alternatives,

such Bob owes me a thousand dollars or Bob owes me a billion dollars, will result in the

inference that Bob owes the speaker exactly one million dollars - not the inference that

Bob owes the speaker an especially large amount of money, or that the speaker is especially

unhappy about Bob. The reasoning here can be generalized: the inferences generated by

Alternative Semantics do not appear to have the appropriate form for capturing the effect

of stress on hyperbolic utterances.
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3.9.1 A model of hyperbolic utterances

In order to explain how the noisy-channel model derives these phenomena, we will present

a formalization of Example (46) in this model. This formalization will serve two func-

tions. First, it will demonstrate the principles which allow the model to derive hyperbolic

interpretations of utterances - a necessary precursor for explaining the inferences we are

interested in. Second, it will demonstrate why the model assigns stress an emphatic inter-

pretation when it is used in hyperbolic utterances. In developing this formalization, we will

build on the approach presented in [53]. That work showed to how extend the RSA model

in order to explain the interpretation of hyperbolic utterances, but did not address the use

or interpretation of stress.

We will use the noisy-channel/QUD model presented in Section 3.3. Our representa-

tion of the communicative scenario in Example (46) will be highly simplified in several

respects, in order to simplify our explanations and distill the reasoning principles captured

by the models. We assume that there are three money states, 10, 100, and 1,000,000, corre-

sponding to the amount of money that Bob owes the speaker.12 There are two affect states,

I and T. The affect state T indicates that the speaker has affect (i.e. that they are un-

happy about the amount of money that Bob owes), while I indicates that they do not have

affect. Each world consists of a money-affect pair (M = x,A = y), where x represents the

amount of money M that Bob owes, while y represents the speaker's affect A [78]. The set

of worlds is assumed to be maximal with respect to money and affect states, so that there

are 3 .2 = 6 worlds. The speaker is assumed to know exactly how much Bob owes and

what their affective state is. The listener's prior beliefs are assumed to satisfy the following

constraints. First, P(A = TIM = 10) < P(A = TIM = 100) < P(A = TIM = 1,000,000).

This captures the intuition that the speaker is more likely to be unhappy when Bob owes

greater amounts of money. Second, P(M = 1,000,000) < P(M = 100) < P(M = 10), that

is, Bob is less likely to owe a million dollars than he is to owe smaller amounts of money.

The particular values of the prior that we use for model simulations are shown below. The

qualitative predictions of the model are robust across a wide range of values for the prior,

1
2 The qualitative predictions of the model do not change if the set of worlds is made denser, i.e. by

including a greater range of worlds between 10 and 1,000,000.
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subject to some constraints which are imposed by the noise rate and which are discussed

below.

M P(M) P(A = TIM)
10 0.495 0.1

100 0.495
1,000,000 0.01 0.9

Table 3.1: The prior distribution over worlds. The column labeled P(M) provides the
marginal probability of each value of M, while P(A = TIM) provides the conditional prob-
ability of affect T.

There are three possible speaker QUDs. First, the speaker may have the QUD qm, in

which case they want to communicate the value of M, i.e. how much money Bob owes

them. Second, they may have the affect QUD qA, in which case they want to communicate

the value of A, i.e. their affect state. Finally, they may have the joint QUD q(MA), in which

case they want to communicate the values of both M and A, i.e. which exact world they are

in. We assume that the listener has a uniform prior distribution over the speaker's QUD.

The speaker has three alternative utterances: ten, one hundred, and one million. These

are given an exact semantics, though the predictions of the model do not differ if they are

given a lower-bound semantics:

[ten] = X(M, A).[M = 10]

Ione hundred = X(M,A).[M = 100]

[one million]j = X(M,A).[M = 1,000,000]

The utterances are assigned cost 1.

The noise distribution is our standard substitution channel, applied to the three alterna-

tive utterances, and is shown in Figure 3-14. The noise probability is set to p = 0.01. The

speaker has the binary choice to use stress or not, and using stress decreases the noise rate

by a factor of 2. Stress has cost 0.1 for the speaker.

The model's predictions are shown in Figure 3-15. When the speaker uses utterance one

million without stress, it is interpreted hyperbolically: the listener assigns high probability
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I-p
ten > ten

a hundred a hundred

a million a million

Figure 3-14: The noisy channel for Example (46), when prosodic stress is not used. Utter-
ances are transmitted correctly with probability 1 - p, and are corrupted with probability
p. When an intended utterance is corrupted, the perceived utterance is sampled uniformly
from its alternatives.

to Bob owing a large amount of money (though not an implausibly large amount), and to the

speaker being unhappy about this. When this utterance is used with stress, the hyperbolic

interpretation is amplified: the listener assigns even higher probability to Bob owing a large

amount of money, and to the speaker being unhappy.

We will first explain how the model derives a hyperbolic interpretation for the utterance

one million. In order to simplify this discussion, we will assume that there is no noise, and

that stress is unavailable to the speaker (and that this is common knowledge amount the

speaker and listener); these assumptions will be relaxed below when we discuss the effects

of stress. We start by considering the speaker S who is in world (100, T), i.e. in which

Bob owes a hundred dollars and in which they are unhappy about this. Suppose that this

speaker has QUD qA, so that they want to communicate their affect. The speaker has three

alternative utterances available. Neither ten nor one hundred will effectively communicate

the correct answer to their QUD. If they choose ten, then the literal listener LO will infer

that Bob owes ten dollars, and hence, by Table 3.1, that the conditional probability of affect

T is 0.1. Similarly, if they choose one hundred, then listener LO will infer that Bob owes

a hundred dollars, and that the conditional probability of affect T is 1. The utterance

one million will be more effective at communicating affect T: if the listener hears one

million, they will infer that this affect has probability 0.9. The speaker will therefore choose

utterance one million with high probability if they want to communicate affect T.

Next consider the pragmatic listener L who hears the utterance one million (without

stress). This listener will consider several possible interpretations of the utterance. The
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L - Without Stress

million -million -
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hundred - hundred

ten ten
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Interpretation Interpretation

Figure 3-15: The listener's interpretation of the utterances with and without stress. The
x-axis indicates the possible money-affect pairs.

speaker would have been likely to choose this utterance if they had wanted to communicate

the state M = 1,000,000, or if they had wanted to communicate the worlds (1,000,000, L) or

(1,000,000, T). However, the state M = 1,000,000, and both of these worlds, are extremely

a priori unlikely, i.e. Bob is very unlikely to actually owe a million dollars. What is more

likely is that the speaker is in the a priori probable world (100, T). As discussed above, the

speaker who wants to communicate T will be likely to choose the utterance one million.

Thus, the speaker being in world (100, T) and wanting to communicate their affect provides

a plausible explanation for this choice of utterance.

This example illustrates the general principles by which the model derives hyperbolic

interpretations. A speaker who wants to communicate high affect can do so effectively by

stating that the world is unusually extreme along some dimension. In the current example,

worlds in which Bob owes a lot of money are likely to be those in which the speaker is

unhappy, and therefore, by literally expressing that Bob owes a lot of money, the speaker

will effectively communicate their unhappiness. The speaker will choose utterances which

literally express extreme world states (which they know to be false), in order to communi-
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cate their affect. The listener knows this, and when they hear an utterance which expresses

that the world is surprisingly extreme along the relevant dimension, they will infer that the

speaker did not actually want to communicate something extremely implausible. It is more

probable that the speaker is in a high-affect world, and that they chose the utterance to

communicate this. Typically, the listener will not only gain information about the speaker's

affect from hyperbolic utterances, but also information about the state of the world. This

is because of the listener's a priori knowledge that the state of the world and the speaker's

affect are likely to be linked. In the current example, if the speaker is especially unhappy,

then it is likely that they are in a world in which Bob owes a lot of money (though less than

a million dollars).

Given this explanation of how hyperbolic interpretations are derived in the model, we

will now turn to the effects of stress. For this part of the discussion, we will remove our sim-

plifying assumption of noiseless communication. Suppose that the speaker St is in world

(100, T), and has QUD qA, i.e they want to communicate their affect. For the reasons dis-

cussed above, this speaker is likely to choose the utterance one million; this utterance is

the most effective at communicating that the speaker has affect T. Given the possibility of

noise, however, the situation is more complicated than it was above. If the literal listener LO

hears one million, then they have several options for interpreting this utterance. They can

interpret this utterance according to its literal meaning, and infer that Bob actually owes

a million dollars. This is, however, implausible under the listener's prior distribution. An

alternative interpretation is that the speaker's utterance was corrupted by noise, and that the

speaker may have intended some other, more literally plausible utterance. If the listener

infers that some other utterance was actually intended, then the speaker will likely fail to

communicate the intended affect state T; this affect is less likely under the literal interpre-

tation of the alternative utterances. Noise therefore poses a serious problem for the speaker

who wants to communicate affect T, and they will have a strong incentive to prevent the

listener from inferring that the utterance was corrupted. If the speaker places stress on one

million, then the listener L0 will know that the noise rate has been reduced, and will be

more likely to infer that one million is actually the speaker's intended utterance. Given

stress, the listener will be more likely to infer the correct answer to the speaker's QUD, that
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the speaker is in affect state T. As a result, the speaker who wants to communicate affect

state T will be likely to place stress on one million, in order to convince the listener LO that

this literally implausible utterance was actually intended.

We next consider the listener L, who has heard the utterance one million, either with

or without stress. Due to its a priori implausibility, the listener knows that the speaker is

unlikely to have intended to communicate that Bob actually owes a million dollars. Rather,

it is more likely that the speaker has affect T, and was using the utterance non-literally

in order to communicate this. The listener knows, from the reasoning above, that if the

utterance is used without stress, then it will be less effective at communicating this affect

than if it is used with stress. The listener will therefore be more certain of the speaker's

intentions if they hear one million with stress: they will infer that the speaker wanted to

communicate the affect T, and chose the utterance and stress which are most effective at

doing so. 13 Thus, the use of stress provides a stronger signal that the speaker is unhappy.

This example illustrates a general pattem of reasoning which is captured by the model.

Hyperbole arises in the model, when the speaker wants to communicate a strong affect, and

does so by convincing the listener that the world has an extreme value along some (relevant)

dimension. When the world is extreme along some dimension, the listener will infer that

the speaker is likely to have a strong attitude towards this. Given the possibility of noise,

however, communicating that the world takes on an extreme value is more challenging than

it may first appear: if the literal listener hears an utterance which expresses that the world is

implausibly extreme along some dimension, then they may infer that the speaker intended

some other, more plausible utterance. The speaker will therefore have a strong incentive to

reduce the noise rate by placing stress on the utterance. When the pragmatic listener hears

stress on the utterance, they will infer that the speaker wanted to communicate a strong

affect, and used stress in order to ensure that the listener would not dismiss the literal

content of their utterance.

13The reasoning here is somewhat subtle. The unstressed utterance will sometimes be explained away
by the literal listener, who will interpret it as expressing some alternative, more plausible meaning. As a
result, the speaker will sometimes use the unstressed utterance to communicate one of these more plausible
meanings. The literal listener is less likely to explain away the stressed utterance, and as a result, the speaker
is less likely to use it to communicate one of the alternative meanings. The pragmatic listener knows that the
stressed utterance will be more restricted in its use, and is therefore more likely to interpret it as indicating
the affect T.
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3.10 Association with focus

A central topic in the study of stress interpretation is the interaction between stress place-

ment and so-called focus-sensitive lexical items. Consider the following example:

(49) The translator only SPEAKS Chinese.

(50) The translator only speaks CHINESE.

Example (49) communicates that the translator speaks Chinese, but does not write it. Ex-

ample (50) communicates that the translator speaks Chinese, but does not speak anything

else. This contrast may initially appear similar to the one studied in Section 3.5:

(51) The translator SPEAKS Chinese.

(52) The translator speaks CHINESE.

As in Example (49), when stress is placed on repairs, Example (51) will communicate

that the mechanic repairs engines, and does nothing else to them. As in Example (50),

when stress is placed on engines, Example (52) will communicate that the mechanic repairs

engines and nothing else. It is therefore not clear what role the lexical item only is playing

in Examples (49) and (50); it may seem initially plausible that it is semantically vacuous,

and that stress has the same effect both with and without this lexical item.

This hypothesis can be ruled by by considering the interpretation of the examples in

embedded contexts:

(53) If the translator only speaks CHINESE, then we can hire him.

(54) If the translator speaks CHINESE, then we can hire him.

In both of these examples, stress is placed on Chinese. If only is semantically vacuous, then

both examples should be interpreted identically. But consider the conditions under which

these utterances can be felicitously used. Suppose that there are three types of translators:

those that speak Chinese and French, those that speak Chinese but not French, and those
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that speak French but not Chinese. Suppose first that the regulations prohibit the hiring of

translators who speak French. Example (53) can clearly be felicitously used in this case.

Example (54), however, cannot be used in this case: it expresses that the translator can be

hired if he speaks at least Chinese, which includes translators who also speak French. Thus,

the lexical item only contributes to the semantic content of the antecedent in Example (53).

A similar contrast can be observed when stress is placed on speaks rather than Chinese:

(55) If the translator only SPEAKS Chinese, then we can hire him.

(56) If the translator SPEAKS Chinese, then we can hire him.

Suppose that there are translators who speak and write Chinese, translators who speak but

do not write it, and translators who write but do not speak it. Suppose further that the hiring

of translators who write Chinese is prohibited. Example (55) could be felicitously used in

this case, while Example (56) could not.

The behavior of only in embedded contexts provides evidence that it contributes to ut-

terances' truth conditions. In Example (49), only conveys that the translator does not bear

any other (relevant) relation to Chinese, e.g. he does not know how to speak Chinese. In

Example (55), only maintains this semantic force, conveying that the antecedent of the con-

ditional is only satisfied if the translator does not bear any other relation to Chinese. This

contrasts with the simple declarative sentence in Example (52), which loses its exhaustive

interpretation when embedded in a conditional, as in Example (56).

The lexical item only is described as associating withfocus because its semantic force

appears to be sensitive to the placement of stress within an utterance. As already noted, the

use of only in Examples (53) and (55) changes the semantic content of the antecedents in

these utterances. This semantic content is not simply a function of the lexical items used

in the antecedent. Though both utterances are lexically identical, they receive different

interpretations, owing to the distinct stress placement within them. In Example (53), the

placement of stress on Chinese indicates that the translator bears the relation of speaking

with no other (relevant) language; in Example (55), the placement of stress on speaks

indicates that the translator bears no other relation with Chinese. The placement of stress
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thus appears to change the semantic force of only.

The term association with focus is used to describe this type of semantic dependence

between lexical items and stress placement. This terminology is, however, an unfortunately

theoretically-loaded way of labeling the phenomenon. Focus refers to a theoretical entity

which is posited by most theories of stress interpretation. Under these accounts, focus

is part of the semantic representation of a sentence, attaching to some phrase within the

sentence, while stress is the externalized marker of this representation. This distinction

between the semantic representation of focus and its externalization is not an idle one in

these accounts: focus location is claimed not to correspond in a fully one-to-one manner

with stress location, and various rules and sets of constraints have been proposed in order to

explain how focus may percolate from the stress location. Though the details differ widely,

the accounts posit that the semantic force of only is sensitive to the placement of focus

within the utterance, rather than the placement of stress directly. Association with focus

describes the general type of dependence that may exist between focus placement and the

semantic interpretation of a lexical item.

In our account of stress interpretation, focus does not exist as a part of the semantic rep-

resentation, and therefore association with focus does not properly exist as a phenomenon.

This does not, of course, mean that the underlying empirical phenomena do not exist. We

simply describe these phenomena in a somewhat less theoretically loaded manner, as the

systematic dependence of the semantic interpretation of certain lexical items on the place-

ment of stress. In the current section, we will be trying to explain the dependence between

stress placement and the interpretation of only.

3.10.1 Association without focus

Our account of the stress-dependence of only is a purely pragmatic one. All theories of only,

to the best of our knowledge, propose that it is semantically underspecified. That is, they

propose that the lexical entry for only leaves certain aspects of its semantic interpretation

underdetermined, and that the full semantic interpretation of only can only be resolved in

the context of an utterance (or conversation). These theories differ in how they propose
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the semantic interpretation of only is resolved. Most accounts [83, 84, 5, 10, 99] propose

a conventionalized relationship between focus and the interpretation of only. That is, part

of the semantics for only (or the rules for semantic composition) specify how the focus

position within an utterance should be used to resolve the semantic interpretation of only.

Our proposal differs from these semantic resolution accounts. We posit that there is no

conventionalized association between the meaning of only and the placement of stress (or

focus). Rather, in the spirit of the account of [80], we propose that the semantic content of

only is resolved through pragmatic reasoning.

Our semantics for only follows a standard free-variable approach. For simplicity, we

will consider the interpretation of only in the following example; this will illustrate our

approach, and our discussion can be straightforwardly generalized to more complex cases.

(57) John only introduced Bob to Alice.

We will treat only as a sentential operator. Only first of all asserts (or presupposes)' 4 the

truth of its prejacent, which is in this case John introduced Bob to Alice [44, 1, 47, 48]. In

addition, it expresses the following condition:

XR.V p E R (true(p) -+ p = introduced(j,b,a)) (3.46)

Here, R is a free variable which specifies a set of propositions, and introduced(j,b, a)

is the proposition that John introduced Bob to Alice. Only exhaustifies with respect to the

propositions in R. The semantics in Equation 3.46 states that Example (57) is true precisely

when every proposition in R other than introduced(j, b, a) is false. Only can thus be seen

as quantifying over the propositions in R, and asserting that they are false.

We will use the model of semantic free variable resolution from Section 3.8.1 in order

to explain how the value of R is resolved. Under this model, inference over semantic free

variables is lifted to the listener L1 . The literal listener Lo and speaker Si are each parame-

terized by the values of the semantic free variables, and therefore have no uncertainty about

14 The distinction between asserted and presupposed content will not be relevant for the discussion in this
section.
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these values. The listener L interprets utterances according to the literal meaning implied

by the assigned values for the free variables. The speaker Si chooses utterances in order to

be interpreted correctly by the listener L, given that this listener will interpret utterances

using the speaker's assigned values for the free variables. The pragmatic listener LI is a

priori uncertain about values of the free variables, i.e. about what values L and Si believe

these variables have. When the listener LI hears an utterance, they perform joint inference

over the values for the free variables and the other model parameters: the true state of the

world, the speaker's QUD, and the speaker's intended utterance.

Given the definitions from Section 3.8.1, we will now present the modeling setup which

we use to explain the interpretation of only in Example (57). We will assume that each

possible world is specified by the set of people who were introduced to each other by

John. That is, each world is specified by a set of pairs {(xi,yi),..., (xn,yn)}, where the

membership of (xi,yi) in the set indicates that John introduced xi to yi. There are two

individuals who can occupy the x role in this relation (i.e. individuals who may have been

introduced to someone else), Bob and Charlie, and two other individuals who can occupy

the y role (i.e. individuals who may have had someone introduced to them), Alice and Eve.

Bob was introduced to some (possibly empty) subset of Alice and Eve, and similarly for

Charlie. We only assume that at least one person was introduced to someone. There are

thus 22 . 22 - I = 15 possible worlds. The speaker is assumed to know exactly who was

introduced to whom, and the listener has a uniform prior distribution over worlds.

The speaker has two possible types of QUDs. First, the speaker may want to answer

a question of the form Who did John introduce to Y? Here, Y is someone who may have

had someone introduced to them, so Y is either Alice or Eve. This QUD type is denoted

by q.y. For example, q.A refers to the question Who did John introduce to Alice? Second,

the speaker may want to answer Who did John introduce X to? Here, X is someone who

may have been introduced to someone by John, so X is either Bob or Charlie. We use the

notation qx. to denote this QUD type. The questions are given their standard semantics.

The listener has a joint prior probability distribution over worlds and QUDs. Given a

world w, the conditional distribution over QUDs is defined as follows. For every world,

some subset of the QUDs have non-empty answers in that world. For example, in the
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world {(B,A)}, in which Bob was introduced to Alice, and nobody else was introduced

to anyone, there are two questions with non-empty answers: qB. (Who did John introduce

Bob to?) and q.A (Who did John introduce to Alice?). For each world, the conditional

prior distribution over QUDs is defined to be uniform over the QUDs which satisfy this

condition. 15

The alternatives utterances for the speaker are generated from the following grammar:

S-4P:L, S-+O:P:L

P-+b, P-*c, P->bAc

L--a, L-+e, L-4aAe

O-4o

The atomic terms b, c, a, and e refer to Bob, Charlie, Alice, and Eve, respectively. The

atomic term o indicates that only is being used. All of the utterances are either of the form

x : y, where this indicates that John introduced the individuals in x to the individuals in y, or

of the form o : x : y, where this indicates that John only introduced the individuals in x to the

individuals in y. For example, o : b : a corresponds to the utterance John only introduced

Bob to Alice. We will refer to the phrase in x as the direct object of the expression, and

the phrase in y as in the indirect object. The semantics for only is given by Equation 3.46

and the preceding discussion. The utterances are assigned cost in proportion to their length.

Each atomic term receives cost 1, and the cost of whole utterances is computed by summing

the atomic terms it contains.

A distinctive feature of the model defined in Section 3.8.1 is that the listener Ll per-

forms inference over the value of semantic free variables. In the current case, there is one

semantic free variable, R, which determines the set of propositions that only exhaustifies

over. In order to specify the model for listener L 1 , we need to define this listener's prior

distribution over the value of R. The propositions in R will be drawn from the following

15As in Section 3.5.1, we exclude QUDs which do not satisfy this condition merely in order to simplify
the example. If we were to include QUDs with empty answers, then the speaker could only express these
answers by using utterances containing negation (e.g. John did not introduce anyone to Alice). By excluding
these QUDs, we can considerably simplify the set of alternative utterances that need to be considered.
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set:

= {introduced(j,b,a), introduced(j, b, e),

introduced(j,c,a), introduced(j, c, e)}

The proposition introduced(j, b, a) expresses John introduced Bob to Alice, and similarly

for the other propositions. These propositions correspond to the atomic utterances gen-

erated by the grammar above. That is, for each atomic utterance of the form x : y, the

proposition expressed by this utterance is contained in R. We assume that the variable R

is such that R E 2R. The listener's prior distribution is uniform over the members of 2R.

Importantly, this implies that the listener has no prior information about whether only will

provide information about Bob rather than Charlie, or about Alice rather than Eve.

As in Section 3.8.1, the speaker has three available choices of prosodic stress, _, Direct,

and Indirect. For an utterance x : y or o : x : y, the stress I indicates that no stress was used,

Direct indicates that stress has been placed on the direct object x, and Indirect indicates

that it has been placed on the indirect object y. For simplicity, we assume that stress cannot

be placed on only. The use of stress Direct decreases the probability of noise on x by a

factor of 2, and similarly for stress Indirect.

The noise distribution is shown in Figure 3-16. The atomic terms in the direct object

can be confused for each other, and similarly for the atomic terms in the indirect object.

As in previous examples, we assume that conjunctions are accurately perceived. When the

speaker uses only in the utterance, indicated by o, the listener is assumed to perceive this

accurately. Noise is sampled independently for the direct object and indirect object.

Figures 3-17-3-19 show the predicted interpretation of the alternative utterances. When

the speaker uses only, with stress placed on the direct object, the listener interprets this by

exhaustifying over the direct object. For example, when utterance o : b : a receives stress

on b, it is interpreted as indicating that Bob, and nobody else, was introduced to Alice.

In contrast, when stress is placed on the indirect object, the listener exhaustifies over the

indirect object. When utterance o : b: a receives stress on a, it is interpreted as indicating

that Bob was introduced to Alice and nobody else.
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Figure 3-16: Each utterance is composed of a direct object and an indirect object. The
noise distribution for indirect objects is shown on the left, while the noise distribution for
direct objects is shown on the right. We assume that noise applies independently to the
two phrases of the utterance. We assume that only, when it is used, is always perceived
correctly.

To explain how the model derivations work, we will first consider the speaker S1 . This

speaker is parameterized by three variables: the world that they are in, their QUD, and

the value for the free variable R, which they believe is being used for literal interpreta-

tion. The interaction between these three types of variables makes this scenario especially

complicated. We will therefore break our argument down into several parts.

We will consider the speaker with QUD q.A, i.e. the speaker who wants to answer

the question, Who did John introduce to Alice? (The situation for the other three QUDs

is symmetric.) There are three possible answers to this QUD: Bob, Charlie, or Bob and

Charlie.16 The first two answers are symmetric, and we therefore can restrict our attention

to speakers who want to communicate either the answer Bob or the answer Bob and Charlie.

We will argue that there are two asymmetries between these speakers. First, the speaker

who wants to communicate the answer Bob is more likely to use only than the speaker

who wants to communicate the answer Bob and Charlie. Second, the speaker who wants to

communicate the answer Bob is more likely to use the stress Direct than the stress Indirect.

We will next consider the influence of the semantic free variable R on the speaker's

choices. Again, we restrict our attention to the speaker with QUD q.A who wants to com-

municate the answer Bob. There are 16 possible values of the free variable R, but we

will focus on two of these values: R = {introduced(j, c, a)} and R = {introduced(j, b, e)}.

These settings for R will illustrate a critical asymmetry predicted by the model. We will ex-

16These denote exhaustive answers to the question. For example, the answer Bob indicates that Bob but
not Charlie was introduced to Alice.
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Figure 3-17: The listener's interpretation of the utterances without stress.

plain why the speaker will be more likely to use stress, and in particular to use stress Direct,

when R = { introduced(j, c, a) than when R = {introduced(j, b, e)}. This asymmetry will

mean that the placement of stress will provide information about the propositions that only

exhaustifies over.

We will now explain the asymmetry between the speaker S1 who wants to communicate

the answer Bob and the speaker who wants to communicate the answer Bob and Charlie

(given QUD q.A). We will first explain why the speaker who wants to communicate Bob

will be more likely to use only in their utterance. Suppose that the speaker wants to com-

municate Bob. This speaker will almost always choose utterance b : a (John introduced Bob

to Alice) or utterance o : b : a (John only introduced Bob to Alice), as no other utterances

provide more literal information about the speaker's intended answer to the QUD (and

most provide less). For every value of the free variable R, the utterance o : b : a is literally
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Interpretation

Figure 3-18: The listener's interpretation of the utterances with stress Direct.

compatible with the speaker's intended answer to the QUD. When introduced(j, c, a) E R,

the utterance o : b : a will communicate the answer to the QUD exactly: it will imply that

Bob was introduced to Alice, and that Charlie was not. When introduced(j, c, a) R, the

utterance o : b : a will not be any more informative for this speaker than b : a, but it will

still be literally consistent with the intended answer to the QUD. Thus, the speaker who

wants to communicate the answer Bob to the QUD q.A will be relatively likely to use ut-

terance o : b : a. Next consider the speaker with this QUD who wants to communicate the

answer Bob and Charlie. The utterance b A c : a will be maximally informative for this

speaker, but it is somewhat costly due to the conjunction. As a result, this speaker will

also sometimes choose utterances b : a and c : a, which communicate partial answers to

the QUD. This speaker will be unlikely to choose utterances containing only, i.e. o : b : a

or o : c : a. Depending on the value of the free variable R, the utterance o : b : a (and, by
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Figure 3-19: The listener's interpretation of the utterances with stress Indirect.

symmetry, o : c : a) is sometimes inconsistent with the speaker's intended answer to the

QUD, and is never more informative for this speaker than the cheaper utterance b : a. If

introduced(j, c, a) E R, then o : b : a will literally convey that Bob but not Charlie was in-

troduced to Alice, something which is incompatible with the intended answer to the QUD.

If introduced(j, c, a) E R, then o : b : a will communicate the same information about the

QUD as the simpler utterance b : a. The speaker who wants to communicate the answer

Bob and Charlie to the QUD q.A will therefore be unlikely to use only in their utterance.

We will next explain a second feature of the speaker who wants to communicate Bob

as an answer to the QUD q.A: why this speaker will be more likely to use stress Direct

(i.e. place stress on the direct object) than stress Indirect. The reasoning for this point is

nearly identical to the reasoning in Section 3.5.2. As discussed above, the speaker who

wants to communicate the answer Bob is likely to choose either utterance b : a or utterance
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o : b : a. This speaker will decide whether, and where, to place stress by considering the

consequence of having the different parts of their utterance misheard by the listener. Sup-

pose first that the listener L0 mishears the direct object b, and instead hears c. In this case,

whether the speaker intended utterance b : a or o : b : a, the listener will believe that Charlie

was introduced to Alice, something which is incompatible with their intended answer to the

QUD. The speaker will therefore have a strong incentive to decrease the noise rate on the

direct object. Suppose instead that the listener mishears the indirect object a, and instead

hears e. If the speaker's intended utterance was b : a, then this is not a large problem for

the speaker. The listener will believe that Bob was introduced to Eve. While this is not

something that the speaker wanted to communicate, it is nonetheless compatible with the

intended meaning that Bob but not Charlie was introduced to Alice. The speaker will there-

fore not have a strong incentive to reduce the noise rate on the indirect object of b: a. Next

consider the case in which the speaker intended utterance o : b : a. Whether the speaker

has a strong incentive to reduce the noise rate on the indirect object a will depend on the

value of the free variable R. If introduced(j, b, a) E R, then if the listener mistakenly hears

o : b : e, then the listener will conclude that introduced(j, b,a) is false, i.e. that Bob was

not introduced to Alice. This is incompatible with the intended answer to the QUD, and

therefore the speaker will want to reduce the noise rate on the indirect a in this case. But

consider instead the case in which introduced(j, b, a) V R. If the listener mishears o : b: a

as o : b : e, then the speaker will not have communicated that Bob was introduced to Alice,

but the listener's beliefs will not be incompatible with Bob having been introduced to Alice

(or with Charlie having not been introduced to Alice). As a result, the speaker will not have

a strong incentive to reduce the noise rate on the indirect object in this case. Thus, while

the speaker will always have a strong incentive to reduce the noise rate on the direct object,

they will only sometimes have such an incentive to reduce the noise rate on the indirect

object. The speaker will, on average, be more likely to use stress Direct than Indirect, for

either utterance b : a or o : b : a.

We will now explain the final relevant feature of the speaker Si's behavior: that given

QUD q.A with answer Bob, this speaker is more likely to use stress when the free vari-

able R = {introduced(j, c, a)} than when R = {introduced(j, b, e)}. As noted above, this
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speaker will choose either utterance b : a or o : b a with high probability. The value of

the free variable R is only relevant for utterance o : b a, so we will restrict our attention

to this utterance. Suppose first that R = {introduced(j, c, a) }. In this case, the utterance

o : b : a is maximally informative for the speaker: the utterance communicates that Bob

was introduced to Alice, but that Charlie was not, which is exactly what the speaker wants

to communicate. If the listener mishears the direct object b as c, then the listener will

no longer draw either of these inferences. The speaker will therefore have an especially

strong incentive to decrease the noise rate in this case: transmitting the utterance accu-

rately means communicating precisely the correct answer to the listener. Contrast this with

the case that R = {introduced(j, b, e)}. When the listener hears o : b : a in this case, they

will infer that Bob was introduced to Alice but not Eve. This will partially communicate

the speaker's answer to the QUD, but not fully, as it does not imply that Charlie was not

introduced to Alice. If the listener mishears the direct object b as c, then this is still a

problem for the speaker, as it will communicate something which the speaker knows to

be false (just as in the previous case). However, the payoff from accurately transmitting

o : b : a is not as great when R = {introduced(j, b, e)} as when R ={introduced(j, c, a)},

and hence the listener will have less incentive to reduce the noise rate on the direct object

when R ={introduced(j, b, e)}. The speaker with R {introduced(j, c, a)} will therefore

be more likely to choose stress Direct.

Using these facts about the speaker S1, we will now explain the listener L]'s interpre-

tation of utterance o : b : a when the direct object b receives stress. In particular, we will

explain why the listener interprets this utterance as indicating that Charlie was not intro-

duced to Alice, as opposed to indicating that Bob was not introduced to Eve; this is the

basic asymmetry which is labeled by association with focus. Ignoring stress, for the mo-

ment, the first argument above established the following: the speaker with QUD q.A, who

wants to communicate the answer Bob, will be more likely to choose utterance o : b : a

than the speaker with this QUD who wants to communicate the answer Bob and Charlie.

A symmetric argument establishes that the speaker with QUD qB-, who wants to commu-

nicate the answer Alice, will also be more likely to use this utterance than the speaker with

this QUD who wants to communicate the answer Alice and Eve. As a result, when the
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listener LI hears utterance o: b: a, they will conclude that either the speaker wants to com-

municate the answer Bob to QUD q.A, or they want to communicate the answer Alice to the

QUD qB.. The placement of stress on the direct object b with break the symmetry between

these interpretations. By the argument above, the speaker S is more likely to place stress

on the direct object than on the indirect object given QUD q.A. A symmetric argument

shows that they are more likely to place stress on the indirect object given QUD qB.. Thus,

given utterance o : b : a with stress on the direct object, the listener will infer that it is more

likely that the speaker wanted to communicate the answer Bob to QUD q.A, than that the

speaker wanted to communicate the answer Alice to the QUD qB--

We have so far explained the listener's inferences about the state of the world and the

speaker's QUD. The listener draws a further type of inference in this case: that the literal

meaning of o : b: a, as determined by the semantic free variable R, is more likely to exhaus-

tify over the proposition introduced(j, c, a) than over the proposition introduced(j, b, e).

That is, the utterance is more likely to literally convey that Charlie was not introduced to

Alice, than that Bob was not introduced to Eve. Given the utterance o : b : a with stress

on the direct object, the listener assigns highest probability to the speaker who wants to

communicate the answer Bob to QUD q.A. We argued above that the speaker Si with this

goal will be more likely to place stress on the direct object, when R = {introduced(j, c,a)}

than when R = {introduced(j, b, e) }. As a result, the listener will assign higher probability

to R = {introduced(j, c, a)} than to R = {introduced(j, b, e)} when they hear stress on the

direct object.
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Chapter 4

Conclusion

In this chapter, we will discuss several conceptual questions about the modeling framework

proposed in this work, and will note some further applications of these ideas.

4.1 Interpretations of lexical uncertainty

Lexical uncertainty posits that the literal interpretation of a word-string is not fully fixed

prior to its use in a conversational context. On its own, this claim is clearly not distinctive

or new. Any string containing a lexically ambiguous word will also have its literal mean-

ing left unfixed prior to use. A natural question is therefore whether lexical uncertainty

is equivalent to positing an especially pervasive type of lexical ambiguity. Under such an

interpretation, the different possible refinements of a word's semantic content correspond

to different senses of that word in the lexicon. For example, in the simplified setting con-

sidered above, the word "some" would have three senses in the lexicon, corresponding to

its three admissible refinements, {V, -,V}, {V}, {]-,V}. The conditions on admissible re-

finements from Section 2.3.3 would be used to determine which senses of a word to include

in the lexicon; however, this representation seems un-parsimonious given that all of these

senses are systematically related.

If lexical uncertainty amounts to a variety of lexical ambiguity, then ordinary lexical

ambiguities could be resolved according to the principles considered in this work. This is a

non-trivial commitment; it makes several predictions about ambiguity resolution, that must
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be empirically evaluated. We sketch these predictions in case they are useful in provoking

future work.

The most straightforward implementation of word-sense ambiguity resolution in the

lexical uncertainty framework treats the union of senses as the underlying meaning, and

thus allows refinement to any one of the senses. For example, the word "bank" could be

refined to the financial sense or the river sense (or left un-refined as a place that is both

river and financial, though this is presumably ruled out by world knowledge). The model

predicts that the listener will prefer word senses which are compatible with high probability

states of the world. For instance, if Bob is a banker, then "Bob went to the bank" will tend to

be interpreted in its finAncial sense. However, the model also predicts that the listener will

generally prefer disambiguating to an informative word sense rather than an uninformative

word sense. For example, consider a situation in which it is common knowledge that

the speaker went to a financial bank, but there is uncertainty about whether the speaker

also went to a river bank. The lexical uncertainty account predicts that the listener will

disambiguate "bank" to its river sense, because the alternative sense would have provided

little information in the context. Word-sense disambiguation will be an interaction of these

pressures (as well, potentially as linguistic factors, such as frequency of use for each sense,

not treated in the models of this work).

If these predictions are correct it would suggest a unification of disambiguation and the

richer implicature phenomena considered in this work. On the one hand implicature would

be seen as a combination of disambiguation and the Gricean effect of alternatives. On the

other hand ambiguity would be given a formal description and extended in scope to include

additional cases not normally noticed. Alternatively, the above predictions may be incor-

rect, in which case ambiguity and lexical uncertainty are different flavors of uncertainty in

language understanding.

4.2 The granularity of lexical refinement

A key aspect of our proposal is that lexical meanings admit refinements, and that a prag-

matic listener reasons about which refinement is in use in a given context. We have re-
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mained mute on the appropriate granularity of context up to now. That is, at what level

of temporal, or discourse, detail are refinements individuated? At one extreme, there is a

single true refinement of each word that the pragmatic listener spends her whole life trying

to pin down. In this case lexical refinement amounts to lexical learning. At the other ex-

treme, a separate refinement is entertained for every use of every word: lexical uncertainty

is token-level. In between these two extremes, refinements could vary from sentence to

sentence or from conversation to conversation-realizing a form of semantic adaptation.I

The examples we have considered in this work have been restricted to have only one token

of each word, and hence are insensitive to the granularity of refinement.

It will be important to explore the granularity of refinement in future work. It is, how-

ever, surprisingly difficult to find phenomena which clearly distinguish between possibil-

ities. Lexical refinement only has an indirect effect on interpretation, i.e. it is possible

to derive pragmatic interpretations which are stronger than the inferred lexical refinement,

and also possible for strengthened lexical refinements to have little effect on interpretation.

Consider, as an example, the sentence "Some of the children laughed, and some of the

adults laughed, in fact they all did." On first glance it seems that this sentence must be

interpreted by assigning a different refinement to each token of "some": the first restricted,

some but not all, the second unrestricted, at least some. However, the correct interpreta-

tion can be achieved even if both tokens are given the unrestricted meaning: in the lexical

uncertainty model alternative utterances still affect interpretation, and alternatives are still

entertained independently for each token.

As discussed in section 2.3.4, when the listener L, hears the utterance "Some of the

children laughed" on its own, they will derive a specificity implicature, and will infer that

not all of the children laughed. Although the specificity implicature associated with this

utterance is quite strong, the inference about the lexical content of "some" is weak: the

listener is uncertain whether "some" has been refined to mean some but not all or at least

some, i.e. both of these refinements are compatible with the implicature. Now consider

again the sentence "Some of the children laughed, and some of the adults laughed, pos-

'Another possibility is that refinements can vary at multiple timescales, being perhaps more conservative
at longer timescales. A hierarchical Bayesian prior could capture this notion, effectively unifying short
timescale adaptation and long timescale learning.
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sibly all of them." Suppose both instances of "some" are assigned the refinement at least

some. The listener will still draw the specificity implicature (i.e. not all) for "Some of the

children laughed," because the specificity implicature is not dependent on a strengthened

literal meaning for "some." At the same time, the refinement for "some" is literally com-

patible with all of the adults having laughed. In conjunction with the speaker's claim that

all of the adults did laugh, the utterance "Some of the adults laughed" will be interpreted

strongly: they all did. This example therefore demonstrates that it is not possible to simply

read lexical refinements off of available pragmatic interpretations; relatedly that restric-

tions on lexical refinements do not straightforwardly translate to restrictions on pragmatic

interpretations.

4.3 The flexibility of lexical refinement

In section 2.3.3, we suggested a procedure for building the set of lexica, A, from an un-

derlying propositional meaning. This procedure allowed nearly any refinement of an ut-

terance's propositional content. Is it possible that this flexibility would have unpleasant

consequences in more complex models? For instance, if we simply relax the simplifying

assumptions we made on spaces of worlds in sections 2.3.4 and 2.3.5, additional refined

meanings become available. If the world contains an is raining? feature, then "some of the

students passed the exam" could be refined to mean "some of the students passed the exam

and it is raining." Is it the case that such spurious refinements will lead to incorrect inter-

pretations? While it is beyond the scope of this work to address the issue conclusively, we

see three reasons to be optimistic that the lexical uncertainty approach is relatively robust

to spurious refinements (or can be made so). These three reasons rely on symmetry along

irrelevant dimensions, ignorance of irrelevant dimensions, and the regularizing effect of a

question under discussion.

Recall the example of specificity implicatures used in section 2.3.4. In that example,

there were only two worlds, V and 3-V (representing the number of students who passed

the test). The worlds in this example were individuated in a maximally coarse-grained man-

ner: we collapsed all worlds which did not differ with respect to whether all of the students
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passed the test. This had the consequence of restricting the set of possible refinements of

the items in the lexicon. In particular, the utterance "all" had only one possible refinement,

the set {V}, and the utterance "some" had only three possible refinements, corresponding

to the three non-empty subsets of the set of worlds. If the worlds had been individuated

in a more fine-grained manner, then there would have been a greater number of possible

lexical refinements. For example, suppose that the worlds were individuated along two di-

mensions: whether all of the students passed the test and whether it is raining outside. This

would produce four worlds: V A R,V A -,R, 3-V A R, and ]-V A -,R. In this scenario, there

are considerably more possible refinements of the lexicon. For "all," there are now three

refinements: {VAR,VA -R},{VAR}, and {VA -,R}. For "some," there are 15 refinements,

corresponding to the nonempty subsets of the four worlds. Many of these refinements carry

propositional content which would never be conveyed by the lexical items in an actual con-

versation. For example, if "all" is refined to {VA R}, then "all" will imply that it is raining

outside. Such spurious implications will be possible whenever worlds are allowed to vary

along dimensions which are orthogonal to the utterances' semantic content. What effect do

these spurious refinements have on the model's overall predictions?

In many simple cases, there are symmetries among the different spurious refinements,

which have the consequence that the pragmatic listener gains no information about irrel-

evant dimensions. Suppose in the example above that the speaker is fully knowledgeable

about both the number of students who passed the test, and whether it is raining. If "all" is

refined to {V A R}, then it will communicate that it is raining outside. Similarly, if it is re-

fined to {V A -,R}, then it will communicate that it is not raining. The listener L 1 , however,

is uncertain about which refinement was being used by the speaker. As a result, the listener

will not gain any information about whether it is raining, and their pragmatic interpretation

of "all" (and similarly "some") will remain the same.

Suppose, on the other hand, that the speaker knows how many of the students passed

the test, but does not have any information about the weather. In that case, if the refinement

of the utterance communicates any information about the weather, then the speaker will not

use it - to use the utterance in this case would communicate something that the speaker

does not know, which is something that the speaker never does. As a result, when the
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listener hears. the utterance, they will infer that it communicated no information about the

weather, and thus their pragmatic interpretation of the utterance will be the same as before.

This reasoning can be generalized, to provide one sufficient condition under which

spurious refinements will not communicate any spurious information to the listener. In ap-

pendix A.4, we show that the listener will not gain any information about the dimensions

along which the speaker is ignorant despite the availability of spurious refinements of lex-

ical items in these dimensions. The intuition for this result is the same as in the example

above: the speaker will never choose an utterance which communicates information about

the unknown dimensions, and therefore the listener will infer that their perceived utterance

only provides information about the known dimensions.

Yet it seems that ignorance is a stronger condition than is needed to avoid spurious

entailments-irrelevance also seems to be enough. Consider, for example, a speaker who

is fully knowledgeable about how many students passed the test and whether it is raining,

but who only cares about answering the question Did all of the students pass the test? In this

case, however the alternative utterances are refined with respect the weather, they should

have no effect on the speaker's choice of utterance. As a result, the listener will not gain any

information about the weather from the speaker's choice of utterance. This reasoning can be

formalized by combining the question under discussion (QUD) extension to RSA proposed

in [53, 52, 61] with the lexical uncertainty extension. Using much the same argument,

it is possible to show that, if the QUD is common knowledge between the speaker and

listener, then the speaker will never communicate information about dimensions which are

collapsed (irrelevant) under the QUD.

We have suggested three situations (symmetry, ignorance, irrelevance) under which

spurious entailments will be resisted by the lexical uncertainty model despite the availabil-

ity of spurious refinements. A different theoretical option is to embrace much stronger

restrictions on the possible refinements: only refine along the "direction" of semantic con-

tent, or in other lexically specified ways. Indeed, the free variable formulation of lexical

uncertainty lends itself naturally to this approach.

This alternative formalization uses semantic free variables as a locus of uncertainty.2

2Lexical uncertainty, as first proposed in (author?) [7], assumes that the lexicon fully specifies the se-
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These semantic free variables are used to assign underspecified semantic content to utter-

ances. This is done in the usual manner [66, 72]: certain variables in a lexical entry are left

un-bound; the semantic content of a lexical item is fully specified once all of the free vari-

ables in its lexical entry have been assigned values based on context. Semantic uncertainty

can be represented as uncertainty about the values of the relevant variables. For example,

we might assign the adjective "tall" the lexical entry Xxky.height(y) > x, where the value

of the threshold variable x is left unspecified in the lexicon [60]. The value of this variable

is inferred during pragmatic inference, jointly with the world state, in a manner identical to

the lexical inference procedure described in this work.

Though the semantic free variable technique can be seen as an instance of the general

principle of lexical uncertainty (by viewing the lexica as the set of groundings of the free

variables), it diverges from the flexible refinement procedure we have used for the results in

this work. In the latter, all refinements of an initial meaning are considered; the meanings

that are generated by filling in free variables may be a very restricted subset of these. An

important implication of the free-variable interpretation of lexical uncertainty is that any

case previously identified as containing semantic underspecification potentially supports

the kinds of complex pragmatic interactions described here. That is, our formalization of

pragmatic inference formalizes the pragmatic resolution of contextual variables that have

been used since the dawn of compositional semantics [66, 72]. Further research will be

needed to determine if this is the right theory of inference for all free variables.

4.4 Psychological implications of the models

The models presented in this work make predictions about how utterances will be inter-

preted, in different types of communicative contexts. They are intended as theories of

pragmatic competence, or, in the terminology of [70], as computational-level theories of

pragmatic knowledge. This is a surprisingly subtle claim, due to how the models were de-

fined. We defined the models in a procedural manner, first specifying how the listener LO

mantic content of each lexical item. The formulation in terms of semantic free variables was proposed in
(author?) [60].

171



interprets utterances, then how the speaker S chooses utterances given LO, etc. The output

of the model is defined to be the output of this process, either stopping at a particular re-

cursion depth or iterating until a fixed point. Given the procedural nature of this definition,

it may at first appear that we are making a claim about the algorithmic implementation of

pragmatic reasoning: when people perform pragmatic reasoning, they reason in this recur-

sive manner. Though this is possibly true, this is not our intended claim. The recursive

procedure associated with the models is primarily a device for defining these models, i.e.

for defining the function from utterances to their pragmatic interpretations. We do not

currently know of alternative ways of defining the relevant functions from utterances to

interpretations, but such alternative definitions may exist, and may not involve a similar

recursive formulation. We have not presented any evidence in this work which would ad-

judicate between different methods for defining these functions; to the extent that we are

presenting a theory of pragmatic competence, no such evidence could exist.

In particular, the psychological process which implements our competence model is

constrained only loosely. It is possible that people reason recursively online, in the way

suggested by our model's recursion. It is more likely, given the computational demands

of such a process, that people at least cache their previous inferences, and possibly use a

different procedure altogether. Understanding the process of pragmatic inference consistent

with our approach will first require a better understanding of the space of algorithms that

can be used for inference-itself a hard theoretical question.

A more empirically tractable question concerns the correct parameters of our model.

There are a number of latent parameters in our pragmatics models, which jointly determine

pragmatic interpretation: utterance costs, recursion depth, the inverse-temperature X, etc.

In general, estimating the pragmatics model that best fits an individual's or population's

inferences requires jointly estimating these parameters. Some existing empirical work sug-

gests that the recursion depth is low (about LI) and X is moderate but greater that one

[36, 22, 30]. More work is needed to pin this down completely, especially for the com-

plex implicatures dealt with here. A further complication for addressing this psychological

question is that people may not reason to the same depth across scenarios. It is possible,

for example, that they reason to higher depths when this is easy to do so (e.g. when they
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have encountered similar scenarios in the past), and lower depths when it is hard to do so.

This issue complicates the interpretation of experimental results showing, for example, that

people only compute to a particular depth in games which were introduced to them in the

laboratory [43, 13].

A related question concerns how precisely people calibrate their reasoning to particular

conversational contexts. Speakers may, for example, optimize their utterances for an "av-

erage" listener, or may optimize for the particular conversation that they are in. Though it

may appear that optimizing for an average interlocutor will decrease the cost of pragmatic

inference, this is in fact not so clear. For the speaker to be able to communicate effectively

under such a scheme, the listener would need to know what the speaker considers an av-

erage listener. Otherwise, the speaker may systematically communicate meanings which

they did not intend to communicate. There are a large number of possibilities here; it is

not clear if any will reduce computational complexity relative to case-by-case optimiza-

tion, and which will produce successful protocols for communication. The experimental

findings in this area mirror this complexity: there is no consensus on the extent to which

speakers in these experiments optimize for the local conversational context [75, 40, 56].

4.5 Utterance cost and complexity

The notion of utterance cost plays an important role in the explanations of a number of

phenomena discussed in this work. The proposed solution to the symmetry problem relies

on assigning non-salient alternatives a higher cost than salient alternatives; the derivation

of M-implicatures requires a cost asymmetry between the utterance that will be assigned

a high-probability meaning and the one that will be assigned a low-probability meaning;

and the more general treatment of markedness requires that utterances receiving marked

interpretations be more costly.

We follow many previous authors in using cost to derive certain pragmatic inferences.

Grice's Maxim of Manner provides the following conversational norm [37]: "Be brief

(avoid unnecessary prolixity)." Grice illustrated the use of this maxim with the follow-

ing example: "Miss X produced a series of sounds that corresponded closely with the score
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of 'Home sweet home."' The speaker uses a needlessly complex expression to describe

Miss X's act of singing, and therefore violates the maxim; the listener infers from this vi-

olation that the speaker did not want to convey an ordinary sequence of events, and that

Miss X's singing must have been abnormal in some way. In general, when utterances are

(apparently) too complex, they will lead to violations of this maxim, and will trigger an im-

plicature suggesting that something unusual happened. Horn uses his division of pragmatic

labor in order to describe the effect of utterance complexity on interpretation, and to derive

phenomena which are similar to those that Grice treated with the Maxim of Manner [45].

Horn explicitly proposes that brief or simple utterances will tend to be assigned common

meanings, while longer or more complex utterances will tend to be assigned uncommon

meanings. He thus predicts that M-implicatures, as we have called them in this work, rep-

resent a systematic pattern of interpretation in natural languages. For Horn, the division

of pragmatic labor is itself derived from competition between two more basic pragmatic

principles, the Q-Principle and the R-Principle. Levinson's M-Principle is closely related

to the division of pragmatic labor [62]: it states that marked expressions will be used to

describe abnormal situations, while unmarked expressions will be used to describe normal

situations.

Our approach shares several features with these previous accounts. We represent speak-

ers as preferring utterances with lower cost; ceteris paribus, an increase in an utterance's

cost leads to a decrease in the speaker's utility. As in the case of the Maxim of Manner and

Horn's R Principle, this induces a listener expectation that the speaker will not use utter-

ances which are overly complex. When the listener hears an (apparently) overly complex

utterance, they try to rationalize this choice of utterance, i.e. they try to find a meaning

which would have made the use of this utterance rational. The reasoning here is quite

similar to the reasoning which follows a violation of the Maxim of Manner under Grice's

account, or a violation of the R Principle under Horn's account. In both of those cases,

the speaker's apparent violation triggers a search for alternative interpretations of the ut-

terance, which would render the speaker's use of the utterance appropriate. Under Grice's

and Horn's accounts, as well as the current one, the interpretive effects of cost are derived

from the listener trying to avoid attributing irrationality to the speaker.
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Though cost plays an important role in prior accounts as well as the current one, there

is no consensus on the proper operationalization of cost. That is, there is no consensus

about which precise features of an utterance determine its costliness to the speaker. One

interpretation of the cost parameter in our models is that it represents how much effort

is required for the speaker to convey an utterance. This effort may reflect the length of

the utterance (in, e.g., syllables); the difficulty of correctly pronouncing it; the amount

of energy required to produce the sounds required for the utterance; the effort to recall

appropriate words from memory; or still other possible factors. An interpretation of the

cost parameter in this manner constitutes a theory of how the speaker chooses utterances,

as well as a theory of how the listener believes the speaker chooses utterances.

An additional feature of utterances that may affect utterance choice, one which is less

clearly related to effort, is the utterance complexity under the speaker's theory of their lan-

guage. That is, the speaker may be less likely to use a particular utterance, not necessarily

because it is difficult to say, but because it is a complex utterance according to their gram-

mar. For example, the speaker may be unlikely to use the locative-inversion construction,

"Onto the table jumped the cat," even though by all appearances it is no more difficult to

say than, "The cat jumped onto the table"; this is attested in the corpus frequencies for

these constructions, where the locative inversion is much less common. A theory of how

the speaker chooses utterances should thus be sensitive to some notion of linguistic com-

plexity. It is possible that effort indeed tracks complexity (for instance a resource-rational

analysis might predict that language is processed in such a way that more common utter-

ances are easier to access and produce). Or it may be that this is an orthogonal aspect of

speaker utility that must be encoded in the utterance cost. Fortunately it is straightforward

to represent linguistic complexity in our models (e.g. by adding log of the probability of the

utterance under a PCFG to the utility), and to derive exactly the same predictions starting

from differences in complexity rather than differences in difficulty. Future work will be

required to clarify the specific form and nature of the cost model.
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4.6 Embedded implicatures

[20] was the first to identify embedded implicatures as a challenge for Gricean theories of

pragmatics. In that work, it was observed that implicatures associated with conjunction

ordering can be preserved under embedding. Consider the following examples, slightly

modified by [14]:

(1) The old king died of a heart attack and a republic was declared.

(2) If the old king died of a heart attack and a republic was declared Sam will be happy,

but if a republic was declared and the king died of a heart attack Sam will be un-

happy.

Example (1) conveys information about the temporal ordering of events: the king first

died of a heart attack, and a republic was declared subsequently. [37] proposed that the

conjunction in this example has a classical semantics, and analyzed the temporal ordering

inference as an implicature, which is derived from his orderliness maxim. Example (2)

presents a problem for this analysis. In this example, the sentence in (1) has been embed-

ded in a conditional, but it still conveys ordering information: Sam will be happy if the king

first died of a heart attack and then a republic was declared, but not if a republic was first

declared and then the king died of a heart attack. In other words, it appears that the con-

ditional applies both to the semantic content of the embedded phrase, and to the ordering

implicature that this phrase generates when it is asserted. Like the other embedded impli-

catures discussed in this work, this provides a primafacie problem for the Gricean account.

It is not straightforward to extend the Gricean derivation of the orderliness implicature of

Example (2) to this case.

Relevance theorists such as [93] and [14] (though see [62] for related suggestions)

propose an alternative account of semantic and pragmatic content, which can explain cases

like Example (2). Under this account, the semantic content of the embedded phrase in

Example (2) is underdetermined, i.e. its propositional content is unfixed prior to its use in

the sentence. Following the assertion of Example (2), the listener uses pragmatic inference

to determine the semantic content of the antecedent of the conditional. During pragmatic
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inference, the listener concludes that this embedded phrase conveys information about the

ordering of events - that it conveys the proposition that the king died first, and then a

republic was declared - and this ordering information is included as part of the semantic

content of the embedded phrase. The utterance (2) therefore carries an explicature, so that

the antecedent of the conditional literally conveys a certain ordering of events, and the

conditional as a whole literally conveys that Sam will be happy if this ordering of events

holds (and unhappy if the reverse ordering of events holds). The theory posits that a single

pragmatic principle - the expectation that utterances will be relevant - drives inferences

about both the pragmatic content of utterances and their semantic content.

Like relevance theory, our account posits that the literal interpretation of utterances is

underdetermined, and that pragmatic inferences can intrude on literal interpretation. Also

like relevance theory, our account states that the same pragmatic principles which are used

to determine pragmatic inferences also are used to fill in the literal content of utterances. At

this high level of abstraction, the accounts primarily differ in the pragmatic principles which

they use to derive these inferences. While relevance theory uses its relevance principle, our

account uses a game-theoretic formalization of Gricean reasoning principles, which have

been amended with the lexical uncertainty principle in order to explain the flexibility of

literal interpretation. The accounts also clearly differ in the degree of their formalization.

The question of whether and how relevance theory can be formalized is, to the best of our

knowledge, an outstanding question in the field.

The particular class of embedded implicatures that we have focused on were not identi-

fied in the relevance theory literature, but rather by those supporting grammatical accounts

of implicature computation [16]. We have focused on implicatures arising from Hurford-

violating disjunctions because they pose a particularly strong challenge for Gricean/game-

theoretic models of pragmatics. In particular, it has been argued that they provide evidence

that certain implicatures must be computed locally in the grammar, through the use of an

exhaustivity operator [16]. The arguments for this position are closely related to the pre-

viously discussed challenges in deriving these implicatures using game-theoretic models:

A Hurford-violating disjunction is semantically equivalent to one of its disjuncts. As a re-

sult, pragmatic theories which posit only global pragmatic computations will not be able to

177



straightforwardly derive the implicatures associated with these disjunctions, because these

theories typically rely on differences in semantic content between whole utterances to de-

rive pragmatic inferences. These embedded implicatures differ in a crucial way from many

others discussed in the literature: in these other cases, the implicature-generating utterance

is semantically distinct from its relevant alternatives [15, 24]. For example, the sentence

Kai had broccoli or some of the peas last night has a distinct semantic interpretation from

its nearby alternatives, and in particular, from any alternative which has a distinct set of

implicatures. The argument that global approaches to pragmatic reasoning cannot derive

these implicatures is therefore much less straightforward for these utterances; the most one

can typically show is that a specific model of pragmatic reasoning does not derive the im-

plicatures in question. Indeed, it has been argued that many of these implicatures can be

derived by global pragmatic reasoning [88, 86]. The lexical uncertainty approach also pre-

dicts many of these weaker, but more discussed, embedded implicatures, though we will

not give details of these derivations here. The success of lexical uncertainty in deriving

the Hurford-violating embedded implicatures, which pose the greatest challenge, provides

an encouraging piece of evidence that the general class of probabilistic, social-reasoning-

based models can explain the empirical phenomena of embedded implicatures.

Equally important, the class of models we have introduced here captures a wide variety

of M-implicatures (such as doing something unusual to "get the car started"), which are not

addressed by theories based on exhaustification. Correctly predicting embedded scalar im-

plicatures while unifying them with this broader set of implicatures represents an important

expansion of empirical coverage.

4.7 Conclusion

In this work we have explored a series of probabilistic models of pragmatic inference.

The initial Rational Speech Acts model [36] straightforwardly captures the Gricean imper-

atives that the speaker be informative but brief, and that the listener interpret utterances

accordingly. This model predicts a variety of pragmatic enrichments, but fails to derive M-

implicatures and several other implicature patterns. We have thus moved beyond the tradi-
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tional Gricean framework to consider pragmatic reasoning over lexical entries-inferring

the "literal meaning" itself. In this framework the impetus driving pragmatic enrichment is

not only alternative utterances, but alternative semantic refinements. Thus uncertain or un-

derspecified meanings have the opportunity to contribute directly to pragmatic inference.

We showed that this lexical uncertainty mechanism was able to derive M-implicatures,

Hurford-violating embedded implicatures, and a host of other phenomena.

In the second part of this work, we demonstrated the surprising power of noise in prag-

matic reasoning. We have argued that the interpretive effects of stress result from the

strategic exploitation of noise, which emerges naturally when noisy channel and proba-

bilistic pragmatics models are integrated. This approach was used to explain a number of

phenomena related to the interpretation of stress. We first demonstrated that our model

derives a number of standard stress-related phenomena: exhaustive interpretations, scalar

implicature strengthening, the association between stress and disagreement, and the in-

terpretation of the focus-sensitive adverb only. We then showed that it can account for

several phenomena which are, to the best of our knowledge, outside of the scope of previ-

ous accounts of stress interpretation: the effects of stress on quantifier domain inferences,

the intensification of gradable adjective interpretation, and the strengthening of hyperbolic

utterances.
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Appendix A

Pragmatic Reasoning through Semantic

Inference

A.1 Experimental validation of ignorance implicature

Here we will describe an experimental evaluation of the linguistic judgments discussed in

Section 2.3.6. For ease of exposition, we will reproduce the examples from that section

here:

(1) Some or all of the students passed the test.

(2) Some of the students passed the test.

The experiment evaluated two claims about the interpretation of example (1). The

first claim is that while example (2) implicates that not all of the students passed the test,

example (1) does not carry this implicature. The second claim is that this example carries

an ignorance implicature: it implicates that the speaker does not know whether all of the

students passed.
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A.1.1 Methods

Participants Thirty participants were recruited from Amazon's Mechanical Turk, a web-

based crowdsourcing platform. They were provided with a small amount of compensation

for participating in the experiment.

Materials We constructed six items of the following form:

Letters to Laura's company almost always have checks inside. Today Laura

received 10 letters. She may or may not have had time to check all of the

letters to see if they have checks. You call Laura and ask her how many of the

letters have checks inside. She says, "{ Some/Some or all I of the letters have

checks inside."

The name of the speaker (e.g. "Laura") and the type of object being observed (e.g. checks

inside letters) were varied between items. The speaker's utterance was varied within items,

giving two conditions for each item, "Some" and "Some or all." Each participant was shown

every item in a randomly assigned condition.

After reading an item, participants were asked two questions:

A: How many letters did Laura look inside?

B: Of the letters that Laura looked inside, how many had checks in them?

Question A was used to assess whether the speaker knows all, which in this example would

mean that Laura knows that all of the letters have checks inside of them. This question

assesses whether the speaker meets a necessary condition on knowing all. If, for example,

Laura has not looked inside each letter, then she cannot know that all of the letters have

checks inside. Question B was used to assess whether the speaker knows not all, which

in this example would mean that Laura looked inside letters which did not have checks in

them. If the numerical response to the first question exceeds the response to the second

question, then Laura knows that not all of the letters have checks in them.
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ance. Error bars are 95% confidence intervals. ance.

Figure A- 1: Interpretation of the two speaker utterances.

A.1.2 Results

We first analyzed the effect of the speaker's utterance on judgments of whether the speaker

observed the full world state, as measured by responses to Question A. In particular, we

analyzed the effect on the probability that the speaker examined all 10 objects, which we

denote by P(A = 10). This analysis was performed using a logistic mixed-effects model,

with random intercepts and slopes for items and participants. Responses in the "Some or

all" condition were significantly less likely to indicate that the speaker examined all 10

objects than in the "Some" condition ( = -5.81; t = -2.61; p < 0.01). This result is

shown in Figure A-la.

We next analyzed the effect of the speaker's utterance on judgments of whether the

speaker knows not all. This was measured using the probability that the number of to-

tal observations (as measured by the response to Question A) was greater than the num-

ber of positive observations (as measured by Question B). This probability is denoted by
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P(A > B). The analysis was performed using a logistic mixed-effects model, with random

intercepts for participants, and random intercepts and slopes for items.' Responses in the

"Some or all" condition were significantly less likely to indicate that A > B than those in

the "Some" condition ( = -4.73; t = -7.22; p < 0.001). This result is shown in Figure

A-lb.

These results provide evidence for the two claims about the interpretation of "Some or

all." First, while "Some" carries a specificity implicature, and indicates that the speaker

knows not all, "Some or all" does not carry this implicature, and instead indicates that

the speaker does not know not all. Second, "Some or all" indicates that the speaker also

does not know all. Together, this provides evidence that "Some or all" carries an ignorance

implicature, providing information that the speaker does not know the full state of the

world.

A.2 Two incorrect definitions of lexical uncertainty

In Section 2.3.3, we defined lexical uncertainty, and in Section 2.3.5, we used this technique

to derive M-implicatures. The definition of lexical uncertainty contains several subtle as-

sumptions about the speaker's and listener's knowledge of the lexicon. In this section, we

will examine these assumptions in more detail, and will demonstrate that two alternative

definitions which violate these assumptions fail to derive M-implicatures.

Consider the definition of lexical uncertainty in Equations 2.24, 2.26, and 2.27. These

equations can be taken to represent the following set of claims about the speaker's and

listener's beliefs: a) the listener L, believes that the speaker Si believes that the listener

Lo is using a particular lexicon; b) the listener L, believes that the speaker S, is certain

about which lexicon the listener LO is using; and c) the listener L1 is uncertain about which

lexicon is being used by Si and 4.

This description of the model highlights one of its non-intuitive features: the listener L I

is uncertain about the lexicon, but believes that the less sophisticated agents Si and L0 are

certain about it. The description also suggests two natural alternatives to this model which

'The model which included random slopes for participants did not converge.
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one might consider. Both of these alternatives involve removing the lexical uncertainty

from listener LI and placing it elsewhere. Under the the Lo-uncertainty model, the literal

listener LO is defined as being uncertain about the lexicon. Under the S1 -uncertainty model,

the speaker Si is defined as being uncertain about the lexicon.

We will first show that the Lo-uncertainty model does not derive M-implicatures. The

definition of this alternative model requires a single modification to the rational speech acts

model from Section 2.1. The literal listener is now defined as being uncertain about which

lexicon to use for interpreting utterances:

L8nc"(o,wlu) c EP(L')P(o,w)L'(u,w) (A.1)
L'

Whereas the rational speech acts model uses a fixed lexicon L for interpretation, the literal

listener in this model interprets utterances by averaging over lexica. The distribution P(L)

over lexica is defined to be the same as in Section 2.3.3.

Lemma 3. For every distribution P(L) over lexica, there exists a lexicon Lp such that

L" .un U) = LO( -u, LP ).

Proof Let P(L) be the distribution over lexica in equation A. 1. Define the lexicon Lp as

follows:

Lp(u, w) = P(L)L(u, w) (A.2)
L

Then it follows from equation A. 1 that:

Lg"c(o, w~u) c< EP(L')P(o, w)L'(u, w) (A.3)
L'

= P(o, w)EP(L')L'(u, w) (A.4)
L'

P(o, w)Lp(u, w) (A.5)

C< Lo(o, wIu, LP) (A.6)

The last line follows by noting that this is identical to the definition of the literal listener

in equation 2.2. Because both L1",(_Iu) and Lo(.-u, Lp) define distributions, it follows that
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Lgnc( -u) =Lo(-Iu,Lp).

This lemma shows that the literal listener in the Lo-uncertainty model can be equiva-

lently defined as a literal listener who is certain that the lexicon is Lp. The listener LO in

the new model is therefore equivalent to a listener LO in the rational speech acts model. Be-

cause the Lo-uncertainty model is identical to the rational speech acts model for all agents

other than L4, it follows that the LO-uncertainty model is an instance of the rational speech

acts model.

Lemma 4. Let lexicon Lp be as defined in Lemma 3. Suppose u,u' are utterances that

have identical interpretations according to the semantic lexicon Ls. Then Lo(-Iu, Lp) =

LO(- lul, LP).

Proof Let A be the set of lexica as defined in Section 2.3.3, and let P(L) be the distribution

over lexica defined there. Let f : A -+ A be the bijection that results from swapping the lex-

ical entries for u and u' in each lexicon. By the definition of f, L(u, w) = f(L)(u', w) for all

lexica L and worlds w. Because u and u' have the same interpretations in the semantic lex-

icon LS, it follows that f(L) is an admissible lexicon iff L is admissible. Furthermore, be-

cause P(L) is the maximum entropy distribution over admissible lexica, P(L) = P(f(L)).

Given this bijection f,

Lo(o, wIu, Lp) 0C P(o, w)Lp(u, w) (A.7)

= P(o, w)EP(L')L'(u, w) (A.8)
L'

= P(o, w) P(f(L'))f(L')(u', w) (A.9)
L'

= P(o, w)Lp(u', w) (A. 10)

C Lo(o, wIu', Lp) (A. 1l)

Equality between Lo(-.u, Lp) and Lo(.u', Lp) follows from the fact that both define

probability distributions. E

These two lemmas have established that the LO-uncertainty model is an instance of the

rational speech acts model, and that the listener L0 interprets utterances u, u' identically if
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they are assigned identical semantic interpretations. Combining these results with Lemma

2, it follows that the Lo-uncertainty model does not derive M-implicatures.

We will now show that the Si -uncertainty model does not derive M-implicatures. The

definition of this model also requires a single modification to the rational speech acts model.

The change comes in the definition of the utility for speaker Si:

1
U1 (ufo) = EpO log - c(u) (A.12)

La(-Iu)

where La is defined by:

La(-U) = EP(L)LO(-ju, L) (A.13)
L

This model represents the speaker S, as having uncertainty about the lexicon, and as trying

to minimize the distance between their beliefs and the expected beliefs of the listener LO.

As the definition suggests, the expectation over the listener's beliefs can be represented by

an average listener La. The distribution P(L) over lexica is again defined to be the same as

in Section 2.3.3.

Lemma 5. Let utterances u, u' be assigned identical interpretations by the semantic lexicon

Ls. Then, as defined by equation A.13, La(. Iu) = La( |u' ).

Proof Let f : A -+ A be a bijection on the set of lexica as defined in Lemma 4. By expand-

ing the definition of La, we see that:

La(o, wIu) = P(L)L(o, wIu, L) (A. 14)
L

= EP(L) P(o, w)L(u, w) (A.15)
L ZuL

P(o, w)f(L)(u', w) (A.16)
=EP(f(L)) (.6

L ZUIf(L)

= E P(f(L))L(o, wlu', f(L)) (A. 17)
L

= La(O, wlu') (A.18)

The term Zu,L is the normalizing constant for the distribution Lo(-|u, L), and the equality
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Z,,L = ZuI,f(L) follows from the fact that L(u, w) = f(L)(u', w) for all lexica L.

This lemma establishes that if two utterances are equivalent under the semantic lexicon,

then the average listener La will interpret them identically. For all agents more sophisticated

than the average listener La, the Si -uncertainty model coincides with the rational speech

acts model. By Lemma 2, this is sufficient to show that the S 1-uncertainty model does not

derive M-implicatures.

A.3 Refined lexica for non-convex disjunctions

For reference, Figure A-2 depicts the 21 refined lexica in our formalization of Example (11)

in Section 2.4.7.
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A.4 Irrelevance of unobserved dimensions

In this section we will show that, if the speaker is presumed to lack knowledge about a

dimension of the world, then the lexical uncertainty model predicts that the listener will

not gain any information about this dimension from the speaker's utterances. We assume

that each world is specified by a vector (x,y) E X x Y.2 Suppose that the semantic content

of each utterance u conveys no information about the dimension Y, i.e. if (x,y) E [u , then

for all y' E Y, (x,y') E [uj. Suppose further that the speaker's observations only provide

information about dimension X: for each observation o, P((x,y) o) = P(X = xjo)P(Y = y).

Proposition 1. Given the assumptions above, Lj(Y = yIu) = P(Y = y) for all utterances u,

values y of Y and i > 0.

Proof By the definition of L, and the assumption of lack of speaker knowledgeability,

L, ((x,y), olu) < P(o, (x,y)) EP(L)SI (ulo, L) (A. 19)
L

= P(o)P((x,y) o) EP(L)Si (ulo, L) (A.20)
L

= P(o)P(X = xlo)P(Y = y) EP(L)SI (ulo, L) (A.2 1)
L

= P(Y = y)F(x, o, u) (A.22)

where F(x, o, u) is defined as a function of the values x, o, u:

F(x, o, u) = P(o)P(X = xlo) EP(L)Si (ulo, L) (A.23)
2

2 The arguments in this section generalize to worlds specified by an arbitrary number of dimensions.
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It follows that

L 1 (Y yju)= P(Y = y) Ex F (x, o, u)

E' P(Y = y') Exou F(x, o, u)

P(Y =y)Ex,o,uF(x,o,u)

Ex,O,u F(x, o, u) -Y' P(Y = y')

_ P(Y=y)-

L' P(Y = y')

=P(Y = y)

(A.24)

(A.25)

(A.26)

(A.27)

The proof for listeners Li, i > 1 is similar. El

This proposition says that the listener gains no information about the dimension Y from

the speaker's utterances; given any utterance, their posterior distribution over the value of

Y is the same as their prior.
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Appendix B

The Strategic Use of Noise in Pragmatic

Reasoning

B.1 Worked example

B.1.1 Distribution over intended utterances

Using the model specification from Section 3.4, we will now illustrate how the listener

and speaker computations work, and how particular QUDs get associated with prosodic

stress. In order to compute the literal listener's interpretation of utterances, we will start by

computing this listener's inferences over which utterance the speaker intended. Suppose

first that the listener perceives utterance a, with prosodic stress s = 0 (i.e. without prosodic

stress). Then the distribution over intended utterances P(uiIup = a, s = 0) can be computed

as follows, using Equation 3.2:

P(ui a)PN(ala, 0)
P(ui = aup = a,s = 0) =

u, P(ui = uj)PN (a Iuj,0)
P(ui = a)PN(aja,O)

P(ui = a)PN(aja,0) +P(ui = b)PN(ajb,O) +P(ui = a A b)PN(ala Ab,0)

-0.99

0.99+ 1 -0.01+ 1 -0

= 0.99
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ui

a b aAb
a 0.99 0.01 0

uP b 0.01 0.99 0
aAb 0 0 1

Table B. 1: Distribution over intended utterances ut, given each perceived utterance up. The
speaker is assumed to have not used prosodic stress.

ui
a b aAb

a 0.995 0.005 0
UP b 0.005 0.995 0

aAb 0 0 1

Table B.2: Distribution over intended utterances, when the speaker has used prosodic stress.

Given that the listener perceived utterance a without prosodic stress, the probability that the

speaker intended utterance a is 0.99. In other words, the literal listener believes that they

perceived the speaker's utterance accurately with probability 0.99. The probability that the

speaker's intended utterance is b can be computed as follows:

P(ui = blup = a, s = 0) = I - P(ui = a up = a, s = 0)

= 0.01

When the literal listener perceives utterance b, the probabilities can be computed in an

identical manner, due to the symmetry of the noise channel. In addition, because the utter-

ance a A b is never corrupted under the noise channel (by assumption), if the listener per-

ceives utterance a A b, they always believe that they have accurately perceived the speaker.

Table B. 1 shows the listener's inferences about intended utterances, given each perceived

utterance.

We next provide the literal listener's inferences in the case that the speaker has used

prosodic stress. We assume that the use of prosodic stress decreases the noise rate by a

factor of 2. When the listener perceives the utterance a, the probability that the speaker
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intended this utterance can be computed as follows:

= = P(ui = a)PN(ala, 1)
P(ui = aiup = a, s = E1) u =u)P~~u,1

LujP(ui = uj)PN aluj, 1 )

P(ui = a)PN(ala, 1)

P(ui = a)PN(aIa, 1) +P(ui = b)PN(alb, 1) +P(ui = a A b)PN(ala A b, 1)

-0.995

.0.995+ 1 .0.005+ 0

= 0.995

In other words, when the speaker uses prosodic stress the listener now believes that they

have accurately perceived the speaker's utterance with probability 0.995. The remaining

probabilities in this case are shown in Table B.2.

B.1.2 Literal interpretation of utterances

We have shown how the literal listener draws inferences about the speaker's intended utter-

ance, in the presence of the noisy channel. This allows us to consider how the literal listener

will interpret each utterance, i.e. what distribution over worlds the listener will assign to

each utterance. We will first show how to compute Lj({Alice} a,0), i.e. the probability

that the listener assigns to world {Alice} given the perceived utterance a and no prosodic

stress. In order to use Equation 3.5, we first need to compute the quantity K(wla,0) for

each world w. This is the probability that world w is literally consistent with the speaker's

intended utterance. Using Equation 3.4 and the probabilities from Table B.1, the quantity

K({Alice}| a,0) can be found as follows:

K({Alice} a,0) = EP(uilup = a,s = O)JI{Aice}E[ui

= P(ui = alup = a,s = 0)j1{Alice}ea +P(ui = blup = a,s = 0)1{Alice}ej bh

= 0.99l- 1 +0.01 -0

= 0.99
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World w
{Alice} {Bob} {Alice,Bob}

a 0.495 0.005 0.5
UP b 0.005 0.495 0.5

aAb 0 0 1

Table B.3: L0 distribution over worlds, when the speaker has not used prosodic stress.

World w
{Alice} {Bob} {Alice,Bob}

a 0.4975 0.0025 0.5
-b 0.0025 0.4975 0.5

aAb 0 0 1

Table B.4: LO distribution over worlds, when the speaker has used prosodic stress.

This means that when the listener hears utterance a without prosodic stress, they infer that,

with probability 0.99, the literal meaning of the speaker's intended utterance is compatible

with world {Alice}. The probabilities K(wla,0) for the other worlds w can be computed

in a similar manner. Combining these probabilities with Equation 3.5, we can compute

Lo({Alice}| a,0):

_ P({Alice})K({Alice} a,0)
Lo({Alice} Ia,0) - ~ PwKwa0

EwP(w)K(wla, 0)
P({Alice})K({Alice} a,0)

P({Alice})K({Alice} Ia,0)+ P({Bob})K({Bob}| a,0) + P({Alice, Bob})K({Alice, Bob} Ia, 0)

-0.99

-0.99+ 1 -0.01 + I -I

=0.495

The LO probabilities for other worlds w can be computed similarly, and are shown in

Tables B.3 and B.4. Table B.3 shows the listener's interpretation when the speaker has not

used prosodic stress, while Table B.4 shows the listener's interpretation when the speaker

has used prosodic stress. When the speaker uses prosodic stress, the listener Lo's inter-

pretation of their perceived utterance is closer to that utterance's literal meaning, than in

the case that the speaker leaves the utterance unstressed. For example, when the listener
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hears utterance a used with stress, they only assign probability 0.0025 to the world {Bob}

(the world in which only Bob went to the store). This world, which is literally incom-

patible with utterance a, is assigned twice this probability (0.005) when the speaker does

not use prosodic stress. When the listener hears the utterance a with stress, they infer that

the speaker is more likely to have intended this utterance, and less likely to infer that the

utterance b was actually intended. Thus, by placing stress on the utterance, the speaker

can make the listener L4 more likely to infer a world which is literally compatible with this

utterance.

B.1.3 Speaker information utility

The speaker S1 knows the state of the world w, and wants to communicate the answer to

the QUD q to the listener LO. First consider the speaker who knows the world {Alice}, i.e.

that only Alice went to the store. There are two possible QUDs for this speaker: qA (Did

Alice go to the store?) and qL (Exactly who went to the store?). Suppose that this speaker

has QUD qA. In order to compute the speaker probabilities according to Equation 3.10,

we first need to compute the information utility of each utterance, using Equation 3.7. The

information utility of the utterance a with prosodic stress 0 is given by:

Ii(a,01{Alice},qA) = -log
R 1 (a, 01{Alice}, qA)

logRI(a,01{Alice} ,qA)

= log Y. IqA (w)=qA ({Alice})LO(w1 a, 0)

log(1qA({Aice) =TLo({Alice} Ia,0) + 1qA({Bob})=TLO({Bob} a,0) (B.1)

+ 3 qA({Alice,Bob})=TLo({Alice,Bob} a,0))

= log(l -0.495+0-0.005+ 1.0.5)

= log(0.995)

We used the probabilities from Table B.3 to fill in the L terms in this equation. There is

one subtle part of this computation: the calculation of R1 (a, 0{1 Alice} , qA), the probability

that the listener L0 will assign to the correct answer to the speaker's QUD. In order to
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Prosodic stress
0 1

a log(O.995) log(O.9975)
UP b log(O.505) log(O.5025)

aAb log(l) log(l)

Table B.5: Each cell shows the information utility II (up,sj {Alice} ,qA), i.e. the information
utility of the perceived utterance and prosodic stress, for the speaker who knows that the
true world is {Alice} and wants to communicate QUD qA.

calculate this probability, we sum over all of the worlds in which the speaker's QUD has

the same answer as in the actual world. The actual world in this case is {Alice}, and

the speaker's QUD is whether Alice went to the store, so the two worlds with the same

answer to this question are {Alice} and {Alice,Bob} The computation shows that if the

listener L0 perceives utterance a with prosodic stress 0, then they will infer the correct

answer the speaker's question with probability 0.995, and therefore the speaker will receive

information utility equal to log(O.995). The information utilities for the other utterances

are shown in Table B.5.

Given the information utilities for each individual utterance, we can compute the ex-

pected information utility from choosing utterance a with prosodic stress s = 0, using Equa-

tion 3.8:

E PN(-|aO)II(' (I {AlCe} , = N(up a,O)Il (up|I{Alice} ,qA)

up.

= PN(aa,0)II(al {Alice} ,qA) +PN (bja,0)II(b{Alice},qA)+PzN(aAbla,0)I1(aAbI {Alice} ,qA)

= 0.99- log(0.995) + 0.01 .log(0.505) + 0. log(1)

= 0.99 -log(0.995) +0.01 .log(0.505)

(B.2)

Next, we will compute the speaker's expected information utility from choosing utter-

ance a with prosodic stress s = 1. This will allow us to evaluate the relative value of using

prosodic stress for this speaker. Again, we assume that the speaker is in world {Alice} and

has QUD qA. The information utilities for each perceived utterance with prosodic stress
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s = 1 are shown in Table B.5. Substituting the information utilities from this table into the

computations in B.2, we can find the expected information utility:

EPN(- a,1)II (.1 {Alice}, qA) = 0.995 -log(O.9975) + 0.005 -log(O.5025) (B.3)

Taking the difference between the two expected information utilities, we see

EPN(.a,l)Il I {Alice},qA) - EPN(.Ia,O)Il( I {Alice},qA) ~ 0.01 (B.4)

That is, the expected information utility from using prosodic stress is higher than the ex-

pected information utility from not using stress. Prosodic stress reduces the noise rate, and

makes the listener more likely to accurately perceive the utterance a. As a result, this lis-

tener will be more likely to believe that Alice went to the store, and hence will be more

likely to believe the correct answer to the speaker's QUD.

Equation B.4 shows the gain in information utility from using prosodic stress, for the

speaker with QUD qA. We will compare this to the gain in information utility for the

speaker with QUD qL. The speaker with QUD qt wants to answer the question Exactly

who went to the store? Suppose that the speaker knows that the true world is {Alice}. The

information utility of the utterance a with prosodic stress 0 can be calculated by:

II (a,01 {Alice} ,qL) = logR1 (a, 0 {Alice} ,qL)

= logY IqL(w)=qL({A1ice)L(w'la, 0)

= log(][ qL({Alice}) ={Alice)Lo({Alice} a, 0) + 1qL({Bob})={Alice}LO({Bob} a, 0) (B.5)

+ l qL({Alice,Bob})={Alice}Lo({Alice, Bob} Ia,0))

= log(1 -0.495+0.0.005 + 0.0.5)

= log(0.495)

As in the calculation in B.1, we use the probabilities from Table B.3 to fill in the LO terms

in this equation. The crucial difference between this calculation and the one in B. I is in

how the term R, (a,0| {Alice} ,qL) is computed. This is the probability that the listener LO
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Prosodic stress
0 1

a log(O.495) log(0.4975)
UP b log(0.005) log(0.0025)

aAb log(0) log(0)

Table B.6: Each cell shows the information utility Ii (up, sI {Alice}, qL), i.e. the information
utility of the perceived utterance and prosodic stress, for the speaker who knows that the
true world is {Alice} and wants to communicate QUD qt.

assigns to the correct answer to the QUD qt. The correct answer in this case is that Alice,

and only Alice, went to the store. In order to compute RI (a, 01 {Alice}, qL), we therefore

sum over worlds in which only Alice went to the store. There is only one world satisfying

this condition: {Alice}. The probability that the listener assigns to the correct answer is

therefore the probability that they assign to this world, 0.495. The remaining information

utilities for this speaker are shown in Table B.6.

The expected information utility from not using prosodic stress can be found using the

information utilities in Table B.6:

EPN(-ia,O)I1(-I {Alice}, q) = 0.99. log(0.495) +0.01 -log(0.005) (B.6)

The speaker's information utilities from using prosodic stress are also shown in Table

B.6. Using these utilities, we can compute the expected information utility in this case:

EPN(-a,l)I (.I {Alice},qL) = 0.995 -log(0.4975) +0.005 -log(0.0025) (B.7)

The difference between the expected information utilities can be found by:

EPN(-a,l)Il( H{Alice}, qL) - EpN(.-a,0)1 (-I {Alice} , qL) (B.8)

= 0.995 . log(0.4975) + 0.005 . log(0.0025) - 0.99 - log(0.495) - 0.01 -log(0.005) (B.9)

0.005 -log(0.0025) - 0.01 -log(0.005) (B.10)

~0.02 (B. 11)
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In other words, for the speaker who has QUD qL, using prosodic stress leads to an increase

of 0.02 in expected information utility. This increase is approximately twice what was

found for the speaker with QUD qA, in Equation B.4, leading us to conclude:

E PN(-|a,])1 I J\Alice},qL) -EpN(.|a,O)I1 H' AliCe},qL) > E PN(. a,1III.|{Alice},qA) -EpN(-|a,,O)j . f 1i~A)

(B. 12)

Using prosodic stress therefore leads to a greater increase in information value for the

speaker with QUD qL than for the speaker with QUD qA.

B.1.4 Speaker utterance choice

We have so far shown how to compute the expected information utilities for the speaker

in world {Alice} with either the polar-QUD or the list-QUD. We will now compute the

distribution over utterances and prosodies for this speaker. Suppose that the speaker wants

to communicate the answer to the polar-QUD qA. Using Equations 3.3, B.2, and B.3, we

can compute the overall utilities for this speaker:

Ui (a, 01{Alice} , qA) =EPN(. a,O)II (- I{Alice}, qA) - c(a) - c(O) (B. 13)

= 0.99 -log(0.995) +0.01 -log(0.505) - c(a) - c(0) (B.14)

Ui (a, I I {Alice}, qA) = 0.995 -log(0.9975) +0.005 -log(0.5025) - c(a) - c(I) (B.15)

Similarly, we can compute the utilities for the speaker with the list-QUD qL with Equations

B.6 and B.7:

U1 (a,0| {Alice},qL) = 0.99 -log(0.495) +0.01 -log(0.005) - c(a) - c(0) (B.16)

Ui(a, ill {Alice}, qL) = 0.995 - log(0.4975)+0.005 . log(0.0025) - c(a) - c(l) (B.17)

Given the overall utilities from each utterance-prosody pair, we can find the distribution

over the speaker SI's choices. Following Equation 3.10, the probability that the speaker
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with QUD qA will use utterance a with prosodic stress is given by:

eXUI (a,1{Alice},qA)
S (a, II{Alice}, qA) = Euis eXUI (ui,sI{Alice},qA) (B.18)

The odds of using prosodic stress given QUD qA are therefore:

Si(a,1{Alice},qA) S1(a,I{Alice},qA)
< (B.19)

1 - S(a, II{Alice}, qA) S1(a,0.{Alice}, qA)

= eX(U1 (a, I{I Alice},qA)-Ui (a,OI{Alice},qA)) (B.20)

= eX(EPN(Ia,I)I (.I{Alice,qA)-~EPN(-a,o)I (.I{jAlice},qA)-c( 1)+c(O)) (B.21)

The inequality in Equation B. 19 holds because (1 -S (a, I I{Alice}, qA)) > Si (a, 01 {Alice}, qA).

This is a measure of how likely the speaker is to use prosodic stress given QUD qA; higher

odds indicate a higher likelihood.

The probability that the speaker with list-QUD qL will use utterance a with prosodic

stress is:

~~~~~(a, i XI(,1{Alice},qL)

Si ( {Alice} , qL) UeXI(u,sI{Aice},qL) (B.22)
Eui's XIuis lieqL

e XUj(a, I I{Alice},qL)

eXUI (a,OI{Alice},qL) + eXU (a, fl {Alice},qL) (B.23)

(B.24)

The approximation in Equation B.23 holds because the speaker with QUD qL receives very

low utility from any utterances other than a (because these other utterances will communi-

cate false answers to the QUD), and therefore these utterances contribute only negligibly

to the sum in the denominator. This approximation implies that 1 - Si (a, I I{Alice} , qL) ~

Si (a,01 {Alice},qL), i.e. if the speaker does not use utterance a with prosodic stress, then

they will use utterance a without stress (and not some other utterance). The odds of the
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speaker with QUD qL using prosodic stress are:

Si(a, 1, {Alice},qL) Si(a, 1{Alice},qL) (B.25)
1 -Si(a, I I{Alice},qL) S1(a,01{Alice},qL)

= eX(UI (a,1 I{Alice},qL)-UI (a,OI{Alice},qL)) (B.26)

- e (EPN(.IaI)II ( IA1ice},qL)-EN(a,o)I] (I{Alice},qL)-C(1) C(O)) (B.27)

In order to determine which QUD type will induce the speaker to use prosodic stress

more often, we will compute the ratio of the two odds:

Si(a, I I{Alice}, qL)/(1 - Si(a, I I{Alice},qL)) Si (a,I I{Alice}, qL)/SI (a,01{Alice}, qL)
S1 (a, If Alice} , qA)/(l - S (a, I |{Alice}, qA)) S1 (a, IIf{Alice} , qA)/SI (a, 0|{Alice}, qA)

(B.28)

e X(EPN(daJ)I1 (.I{Alice},qL)-EpN(.jao)I (I{A1icej,qL))C(1)+C({))

= ( PN -('1), (-IfAli ej,qA)-E PN(-aO)II (.f{AliCej,qA)-C(1)+c(60) (B.29)

= e ((EPN(9-j1)/I1(I{AliCe},qL) 1EPN(-ja,O)11( jAie~L (PN(-la1I dAieA) E N(|:)1d(lj)q )

(B.30)

> e =1 (B .31)

The first inequality follows from Equation B. 19, while the second inequality follows from

Equation B. 12, which showed that gain in expected information utility from prosodic stress

is greater for the speaker with QUD qL than the speaker with QUD qA. This odds ratio in-

dicates that the odds of using prosodic stress are greater with qL than with qA, and straight-

forwardly implies that the probability of using prosodic stress given qL is greater than given

qA, i.e. Si (a, I {Alice}, qL) > Si (a, I {Alice}, qA ). The derivation shows that there is one

factor driving this difference: the gain in information utility from using prosodic stress is

greater with qL than with qA.
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