Model-Based Techniques in Motor Learning and
Task Optimization
by
Sherif Maher Botros

B.Sc., Cairo University (1985)
M.Sc., Case Western Reserve University (1988)

Submitted to the Department of Brain and Cognitive Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1994

(© Massachusetts Institute of Technology 1994

Signature of Author e
Departmeé: of Brain and Cognitive Sciences
January 28, 1994

Certified by...—......piiiiiit N E e

Christopher G. Atkeson
Associate Professor
— Thesis Supervisor

. R A

Acceptedby..‘..f,,,,,, -

d | Gerald Schneider
Chairman, Departmental Committesonusradsate Students

FEB 15 1994

LiDbnAnico

ARCHIVES

Model-Based Techniques in Motor Learning and Task
Optimization
by
Sherif Maher Botros

Submitted to the Department of Brain and Cognitive Sciences
on January 28, 1994, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis we address the problem of learning to perform dynamic tasks optimally
with respect to given objectives and subject to the constraints imposed by the envi-
ronment. We focus in particular on indirect methods. These methods are based on
first acquiring a model of the system to be controlled, and then using this model to
find the optimal actions. Key problems associated with learning task optimization
include the representation of the acquired knowledge, algorithms of adaptation and
learning, exploration and identification of the environment and optimal exploitation of
previous experiences. Using computer simulations, we propose and test different ap-
proaches to the solution of these problems. We use HyperBasis Functions (HyperBF)
to model the dynamics of the system. We propose a heuristic method for the estima-
tion of the HyperBF parameters. This method separates the estimation of the norm
metric from the other parameters. We address the exploration-exploitation problem
in the context of the optimization of multi-dimensional functions. We propose and
test a method for the solution of this problem which is based on the confidence in
the acquired model. We also explore the problem of learning open and closed loop
trajectory optimization. We discuss and test different approaches to learning optimal
closed loop controllers. Finally, we explore the problem of finding the optimal actions
in noisy environments. We conclude the thesis with a discussion of possible links
between the algorithms used here and those used by biological systems.

Thesis Supervisor: Christopher G. Atkeson
Title: Associate Professor

Acknowledgments 1

I would like to express my sincere gratitude to the many people who have contributed,
in their own way, to making this thesis possible.

First, I would like to thank my advisor, Professor Chris Atkeson, for his valuable help
and financial support during the completion of this thesis. I would like also to thank
the other members of my committee: Professor Michael Jordan, Professor Tomaso
Poggio and Professor Ron Williams for their valuable suggestions, criticisms and
encouragements. I am also very grateful to Professor Emilio Bizzi and Jan Ellertsen
for solving many of the problems I encountered during my study at MIT.

‘Special thanks are due to my family and my dear friends who provided me with the
moral support and encouragement.

Finally, I am grateful for the Fairchild foundation for their financial support during

part of this research.

Contents

1

Introduction

1.1 Different Levels of Learning and Optimization.

1.2 Thesis Objectives
1.3 Why Model Based 7 oo oot AU
1.4 Function Approximatien in Motor Learning and Task Optimization .
1.5 Thesis Contributions
Knowledge Representation

21 Introduction

2.2 Radial Basis Functions for Function Approximation
221 Background.
2.2.2 Mathematical Interpretationof RBFs

2.2.3 Extensions to RBF: GRBF and HyperBF

2.2.4 Estimating the Weight Matrix W for Gaussian RBF's

225 TestResults
23 Conclusion e

Optimization Using Function Approximation

3.1 Introduction
3.2 Active Exploration
3.3 Function Approximation in Optimization
3.4 Sequential Optimization Algorithm
35 TestResults

13
13
17
19
20
23

26
26
29
29
30
33
35
39
51

CONTENTS 3

3.5.1 Optimization of Branin’s RCOS Function. 62
3.5.2 Optimization of Rosenbrock’s Banana Function 63
3.5.3 Optimization of Wood’s Function 64
3.5.4 Optimization of the Helical Function 64
3.5.5 Optimization of Hartman’s Family of Functions 65

3.6 Summary and Conclusion 66
4 Learning Trajectory Optimization 73
4.1 Introduction 73
4.2 Learning Optimal Trajectories 76
4.3 The Exploration Problem 79
4.4 Solution of the Optimal Control Problem 81
4.5 Computer Simulations 86
4.5.1 One link minimum torque change trajectory 86
4.5.2 Minimum torque change of a two link manipulator. 88
4.5.3 Trajectory Following 97

4.6 Feedback Control 101
4.6.1 Dynamic programming around the optimal trajectory 103
4.6.2 Learn an optimal feedback law using the field of extremals . . 103
4.6.3 Use linear optimal feedback 108
4.6.4 Use a real-time open loop controller 108

4.7 Finding Control Trajectories For Difficult Control Problems 130
4.8 Relation to other methods 131
5 Optimization in Stochastic Environments 135
5.1 Introduction, 135
5.2 Methods for Finding the Optimal Actions 138
5.2.1 Direct Optimization Techniques 139

5.2.2 Indirect Methods 142

CONTENTS 4

5.3 Basketball Shooting : Learning the Best Launching Velocity 159
5.4 Bouncing a Ball with a Racquet: Learning the Optimal Periodic Tra-

JECLOTY . o o o e e e e e e e e e e e e e e 167

54.1 Directmethod, 168

5.4.2 Optimizingexpectedcost 168

55 Conclusion L 173

6 Conclusion 176

6.1 Practice and Optimization 176

6.2 Storage and Recall of Optimal Actions 178

6.3 Relation to Models of Motor Learning 178

List of Figures

1-1
1-2

2-1

2-3

2-4

Learning the inversemodel

Learning the forward model

Kernel shapes 1(x,x;) for query points at 0.05 (solid lines) and 0.5
(dotted lines) using a cubic RBF. Location of data points are marked.
RBF centers are located at every other data point.
The values of the parameters of W used in approximating the banana
function, using different optimization methods. Note how the param-
eters converge towards an asymptotic line that is estimated using the
heuristic method for the choice of parameters described in the text.

The values of the parameters of W used in approximating Wood’s
function, using HyperBFs and different optimization methods. The
parameters converge towards an asymptotic line that is estimated using
the estimated average derivatives of the Wood’s function with respect
to the different input variables.
Normalized RMS error on a test set using exact interpolation with
different radial basis functions as a function of the width parameters.
Normalized RMS error on the test set using the recursive method de-

scribed in the text as a function of the iteration number

42

47

LIST OF FIGURES

3-1

3-3

4-1
4-2
4-3

4-4

4-5

Comparison between density based spacing (upper graph), randomly
spaced (center) and value-based spacing (lower graph) of the data for
the Rosenbrock’s banana function.
Contour of Branin’s Function and result of 35 iterations of the sequen-
tial optimization algorithm. The symbol ‘x’ represents an exploration
step and the symbol ‘o’ represents an optimization step.

Probability P(opt, k) as a function of iteration number % for 50 itera-

Result of the first 30 iterations of the Gaussian RBF based optimization
of the Rosenbrock’s banana function. The solid curve represents the
minimization of the higher cost term of the banana function. The
symbol * x * and ‘ o ’ represent an exploration and optimization step

respectively. L e

Schematic representation of the learning optimal control algorithm

One Link Manipulator
Initial distribution of angles, angular velocities and torques used to
generate the initial HyperBF model. The symbol ’0’ represents the
location of the data points, the symbol ’x’ represents the initial location
of the centers of the HyperBFs. The continuous trajectory represents
the learned minimum torque change trajectory.
Learned Minimum Torque Change Trajectory for a One Link Manipu-
lator. Also shown in the figure are the correct model minimum torque
change and minimum jerk trajectories for the same movement for com-
PATISON Lt e e e e e e e e e e e e e e e
A two link manipulator. Points A;, A; and A3 are used as initial or

final position in the simulations described in the text

71

LIST OF FIGURES 7

4-6 Torques, angular positions, velocities and accelerations at both joints

at four different iteration numbers. The dotted, dashed, dotdash and

solid lines represent iteration 1,5,10and 20 93
4-7 X, Y positions, tangential velocities and accelerations for the move-

ments shown in the previous figure. The dotted, dashed, dotdash and

solid lines reprecent iteration 1, 5, 10 and 20 respectively. 94
4-8 Torques, angular positions, velocities and accelerations at both joints

at four different iteration numbers. The dotted, dashed, dotdash and

solid lines represent iteration 1,5,10and 20 95
4-9 X, Y positions, tangential velocities and accelerations for the move-

ments shown in the previous figure. The dotted, dashed, dotdash and

solid lines represent iteration 1, 5, 10 and 20 respectively. 96
4-10 Comparison of torques, angular positions, velocities and accelerations

using dynamic optimization on the exact and the learned models. The

solid lines represent the minimum torque change trajectories obtained

using the exact model and the dashed lines represent the trajectories

after 20 iterations of the learning optimization algorithm. These tra-

jectories represent moving the arm vertically upwards. 98
4-11 The accumulated minimum torque change cost as a function of time

for the trajectories generated by the HyperBF controller and the ideal

ones. The solid lines represent the computed minimum torque change

cost using the exact model, while the dotted lines show the minimum

torque change cost obtained by optimizing the learned dynamic model. 99

LIST OF FIGURES

4-12

4-13

4-14

4-15

4-16

4-17

Comparison of torques, angular positions, velocities and accelerations
using dynamic optimization on the exact and the learned models. The
solid lines represent the minimum torque change trajectories obtained
using the exact model and the dashed lines represent the trajectories
after 20 iterations of the learning optimization algorithm. These tra-
jectories represent moving the hand horizontally from left to right.

Circular trajectory tracking for a 2 joint manipulator. Dotted, dashed
and dotdash curves represent trials number 1, 5 and 20 respectively.
Solid curves represent the reference trajectory.
Performance of the learned optimal controller. The solid lines repre-
sent the minimum torque change trajectories obtained using the exact
model and the dashed lines represent the trajectories generated by the
optimal controller. These trajectories represent moving the hand ver-
tically upwards.
The accumulated minimum torque change cost as a function of time
for the trajectories generated by the HyperBF controller and the ideal
ones. The solid lines represent the computed minimum torque change
cost using the exact model, while the dotted lines show the minimum
torque change cost using the HyperBF controller.
Comparison of the open loop and the optimal linear feedback closed
loop angular positions of the simulated 2-joint robot arm as a func-
tion of time. The upper plots represent the open loop performance,
while the lower plots represent the closed loop optimal linear feedback
performance at the two links. The solid lines represent the reference
trajectories and the dotted lines represent the trajectories generated
using the optimal controls. L.

A closed loop controller based on a Hopfield type optimizing network

100

102

106

107

111

LIST OF FIGURES

4-18

4-19

4-20

4-21

4-22

4-23

4-24

4-25

5-1

Optimal control u*(t) and state trajectories z,"(t), z,*(t) obtained us-
ing the gradient projection Hopfield network
Convergence of the gradient projection Hopfield network for a time
constant (1/e) =0.0lmsec
Optimal control u*(t) and state and costate trajectories z,*(t), z2"(t),
A17(t) and \;7(¢t) obtained using the Lagrange Hopfield network
Convergence of the Lagrange multiplier Hopfield network as measured
by the norm of the time derivatives of the state, for a time constant
(I/e) =0.001msec i
Nonlinear optimal control network. =z, Ay and u; are the states,
costates and controls at time step k. Dashed lines represent nonlinear
weights that are computed using the learned forward model and its
partial derivatives with respect to zx and u. Solid lines represent lin-
ear weight values. z.* and u.* represent any constraint on the values
of Tporuk. e
Trajectories of the joint angles 8, and 6; obtained using a dynamic
neural network implementing augmented Lagrange multipliers (solid
lines) superimposed on the reference trajectories (dotted lines)
Convergence of the network as measured by the norm of the gradient
of all the units. The time constant (1/¢) used in this simulation is 0.01
MSEC. + « o v v v e
Phase plot of the computed optimal trajectory (upper plot), and the
computed optimal torque as a function of time (lower plot). The solid
lines represent the trajectory computed using the ideal model and the
dashed lines represent the trajectory obtained using the approximated

forward dynamics. L

A general system with stochastic response

123

127

128

129

LIST OF FIGURES

5-2

5-3

I
1)
-

5-6

5-7

5-8

5-10

5-11

5-12

5-13

Probability of success as a function of the action space (a;,a;) for the
model of example 1.o

Distribution of the training examples used to train the HyperBF net-

work of example 1; 1’ represents a success and ’o’ represents a failure.

Estimated probability of success for example 1 using 1000 data points
in the training set. The top figure is the output of the HyperBF net-
work trained using the logistic function, and the lower figure is the
output of the HyperBF network using the iterative direct method.
Estimated probability of success for example 1 using 5000 data points
in the training set. The top figure using the logistic function and the
lower figure using the iterative direct method.
Estimated probability of success for example 1 using 5000 data points
in the training set and using smoothed bins.
Location of the optimal actions for example 1. The optimal actions
are superimposed on the model equal probability curves.
Ideal probabilities of success as a function of iteration # for the prob-
lem described in example 1. L.
Contours of simulated probabilities of success as a function of the
launching speeds and launching angles. The highest probabilities of
success arc then projected as a function of the launching angles
Estimated optimal actions for the basket ball simulation. The optimal
actions are superimposed on the model equal probability contours.
Estimated probabilities of success of the optimal actions for the bas-
ketball simulation as a function of iteration number.
Estimated probability contours (solid lines) versus true model proba-
bility contours (dotted lines) for the basket bal! simulation.
Position and velocity of the racquet as a function of time before (dashed

line) and after (solid line) learning

10

148

149

150

152

153

155

162

163

LIST OF FIGURES

5-14 Expected cost estimated using a HyperBF network with 30 centers.

5-15 Comparison between the real cost data and the estimated expected
cost as a function of the velocity of the racquet. The expected cost is
estimated at a phase of 0.03, while the real data are the measured cost
for experiences with phases that lie between zero and 0.01.

5-16 Position and velocity of the racquet as a function of time using esti-

mated expected cost and dynamic optimization and 500 experiences.

11

171

174

List of Tables

21

2.2
2.3

3.1

The mean and standard deviation of the normalized RMS error on the
test set using different RBF optimization techniques (See text).

Parameter values used in the simulation of the robot equations
Scaling Weights and Errors Using Different Methods. 500 centers are
used in the Levenberg-Marquardt algorithm and true function method,

but only 250 centers are used in the recursive method

Comparison between the RBF model-based optimization with BFGS
methed

12

41
49

49

Chapter 1

Introduction

Learning a new motor task can be defined as using previously collected knowledge and
experience of the task to guide the system’s future actions and responses. There are
many different ways by which a dynamical system, such as a human being, can acquire
this knowledge and experience to improve his actions. For example, the human being
may get verbal instructions from a teacher, can watch skilled (or even unskilled)
individuals perform the task, may physically practice the task, or even mentally
practice it. Previous experience on a closely related task may sometimes help, but
also can sometimes interfere with the learning of the new task. Motor learning is not
only knowledge acquisition and retrieval, but also includes the efficient use of this
knowledge to infer and plan new ways of solving a motor task. Humans and animals
are not only capable of learning the basic skills required to perform complex motor

tasks but they are also able to optimize their performance by practicing.

1.1 Different Levels of Learning and Optimiza-
tion

We can distinguish different levels of motor learning. All the levels of learning involve

some transformation of data and previous experiences into conclusions and models

13

CHAPTER 1. INTRODUCTION 14

of the environment and the use of these conclusions to guide actions. At the lowest
level, what is known in the neural network literature as supervised learning, the
system is given the desired output response, by a teacher for example, and is required
to find the actions which will produce the desired behavior. An example of this is the
learning of trajectory following by a robot arm. This problem is essentially solved if
we are able to build an association between the different sets of possible actions and
the outcomes of those actions under the different states of the environment and the

dynamical system, i.e. we would like to find a map

f:axsr—o (1.1)

where a € A, s € S and o € O; A is the set of all possible actions, S is the set of
all possible states of the environment and the system and O the set of all possible
outcomes (typically O = §).

There are many theoretical and practical issues that are involved in building such
a map. In order to make the problem of learning this map tractable in terms of
the amount of training needed, the learning system has to find among the almost
infinite attributes of the nossible actions and states, the ones that are relevant to
the particular task that it is required to learn. This process is called dimensionality
reduction. Another important issue is the issue of generalization, that is how to infer
which actions to take based on previous experience when the learning system is faced
with new situations that it has not encountered before. To solve this problem it is
generally assumed that actions that are close in some space produce similar outcomes
giv.n similar states of the environment. The problem here is how to automatically
find this measure of closeness based on the available data. Finally the question of
finding which representation of the previous experiences is most useful remains.

At a second level of learning, the learning system is given only the goal of the task
and is required to learn the actions that best achieve this goal. This level of learning

is more general than the first level and includes it as a special case (e.g. the goal of

CHAPTER 1. INTRODUCTION 15

first level learning can be defined as: reproduce the desired response as accurately as

possible). Learning task optimization usually comprises the following components:

e A data collection mechanism for exploring the environment and determining its
response to the different action alternatives. This mechanism is responsible for

action generation and exploration.

e A mechanism for the evaluation of actions with respect to a goal. When a
sequence of actions is involved in achieving a goal, this process of temporal

credit assignment is usually difficult.

e A mechanism for the modification of actions. This mechanism: is responsible
for finding and choosing the actions that are more successful at achieving the

desired goal.

The learning system may also include other elenients in addition to the above. For
instance, it may include creating and identifying a model of the environment. This
model can then be used for predicting the response to novel actions and for action
modification.

To illustrate the issues and problems involved with this type of learning, which we
call here task optimization, consider the following example. The way a tennis player
chooses to kit a ball may have the goal of maximizing his chance of winning the point
under such constraints as the time he/she has to react, the quality of the racket he/she
has, the uncertainty she/he has in observing and predicting the trajectory of the ball
and in performing the desired movement; and given her/his knowledge and previous
experience about the dynamics of the ball and racket and his/her model about the
opponent’s strengths and weaknesses. Intuitively, having more knowledge and more
accurate models of the task should result in better performance with respect to the
same goal and under the same constraints. The knowledge that the player uses may
be just the previous successes and failures when he/she previously applied different

actions in the same situation, or a more detailed dynamical model that he/she formed

CHAPTER 1. INTRODUCTION 16

with experience. Since more relevant knowledge about the task will probably result in
better performance, the player may seek to acquire more knowledge as he/she plays.
However the goal of acquiring more knowledge requires different exploratory actions
from the player that may be in conflict with the actions that maximize immediate
success. The choice of the goal, hence the action, depends on the situation, for
example whether the player is winning or whether the game is a practice game or in
the world championship. This choice of goal also may depend on the player previous
experience, whether he/she “feels” that he/she “knows” enough and is confident in
his/her knowledge, or that he/she needs to explore more actions. This also brings
another important issue in task optimization, which is how to maximally exploit and
use the experience gained from previous trials to reduce the amount of search needed
to find the optimal action. The player may elect to use some form of a gradient search.
For example if he/she notices that lower hits resulted in success, then probably she/he
will try even lower hits. Another technique he/she may use is some kind of random
search. Random search techniques would probably work better if the outcomes of the
different actions are stochastic.

The above example illustrates the major differences between optimal control and
learning optimal control. Unlike optimal control, in learning the optimal action we
do not have full a priori information about the consequences of the different actions
under the different states of the system and environment. This information is built
and updated as the learning system performs the task. In this case, the system’s
actions should be a mixture of exploration as well as optimizing performance under
the given goal and constraints. This mixture of exploration and optimization has
been recognized by control theorists and has been given the name of dual control by
Feldbaum [Feldbaum, 1965]. Another issue, illustrated by the tennis player example,
is the issue of choosing an action. We have seen that this action depends on an
immediate goal and that this goal may depend on an even higher goal. This issue has

also been mentioned by Bellman [Bellman, 1978]. For example, in the tennis player

CHAPTER 1. INTRODUCTION 17

example, the immediate goal could be maximizing information gain or exploration, or
maximizing the probability of winning a point. The choice between these goals may
be governed by the higher goal of winning the game, which may still be governed by
more ulterior motives and goals.

We may think of yet another level of optimization, which I prefer to call here
development. In this type of learning, the constraints themselves that restrict the
learning behavior or restrict the possible set of actions are modified in order to improve
performance. For example a better representation of previous experiences, or better
choice of relevant measurable parameters may lead to better generalization. A better
choice of hardware parameters may increase the range of available actions. In the
case of the tennis player for example, muscle properties may change with practice,
so that the player may gain more speed and strength and flexibility. Indeed a big
part of the training of athletes in different sports is designed to improve the biological
hardware of the system. In the case of a robot arm, for example, this type of learning
for example could guide the choice of the different parameters of the arm, e.g. masses,
inertias, number of joints and their shapes. This type of task optimization is beyond
the scope of this thesis and will not be addressed further.

All the levels of learning and task optimization mentioned above can be viewed as a
closed loop feedback system. Some feedback from the environment drives the learning
and the change in the actions performed. There is another type of learning, called
unsupervised, where the learner tries to find the similarities between the experiences
in order to better classify and represent them. However, this type of learning is not

explored here.

1.2 Thesis Objectives

The goal of this work is to explore the practical problems of learning and task op-

timization through simulation of simple motor tasks. Algorithms for the solution of

CHAPTER 1. INTRODUCTION 18

these problems will be proposed based on techniques adopted from different fields.
We will focus primarily on model based task optimization techniqges. The main role
of the model is to allow the learner to simulate the outcome of its actions before
acting. Through this mental practice, the learner can find good solutions. This is
particularly desirable when real experimentation is expensive.

This research can be divided into two main parts. In the first part I will focus
in particular on the problem of representation of previous experiences and building
models. I will study and implement a particular non-parametric technique called
radial basis functions (RBF) and its variants, generalized basis functions (GRBF)
and Hyper basis functions (Hyper BF) [Poggio and Girosi, 1990]. I will show how
this technique can be successful in learning the inverse dynamics of robot arms [Botros
and Atkeson, 1991], and how it can be implemented efficiently. I will also demonstrate
how to apply this technique, or any other function approximation technique for the
optimization of static and dynamic systems. The second part of this research will
focus on the problem of task optimization: how to learn the best possible action
relative to a particular objective, given our current knowledge and experience, and
how to increase this knowledge and modify it to achieve better performance through
the use of a model. I will address the problem of learning actions in both deterministic
and non-deterministic environments. I will explore the problems involved in non-
deterministic environments by simulating a simple problem of basketbail shooting.
I will also talk about how to optimize actions and action parameters by simulating
the task of bouncing a ball with a racquet. I will show through simulation how the
trajectory of the racquet can affect the success rate and quality of bouncing, and how
the learning system can optimize those parameters automatically.

The main approach I am taking in this research is a synthetic approach, imple-
menting learning and optimization algorithms on artificial systems. We hope, this
approach will help us appreciate the problems involved in biological motor learning

and task optimization and evaluate the possible different approaches to solving these

CHAPTER 1. INTRODUCTION 19

problems. From the technological point of view, our ultimate objective is to try to
automate the design of machines (both hardware and software) based on learning
and task optimization, especially in the case where the machine and the task to be

achieved is difficult to model a priori.

1.3 Why Model Based ?

Although many of the task optimization problems we present in this thesis can be
solved without using a model, we will mainly focus here on model based techniques
for the exploration and optimization of actions. We believe that building models of
the response of the environment can serve many useful purposes in task optimization

and results in better use of the previous experiences.

o It allows for a better directed search for the optimal action, for example along

a gradient.

e Models may also help in better credit assignment, that is finding which actions
are responsible for the achieved performance. This credit assignment may be

difficult in cases where the effect of actions is delayed.

e Models also allow for the transfer of knowledge in the case when the goal of the

task changes.

e For humans, the availability of a mental model aids in the simulation and pre-
diction of the response of the environment. This will help in better planning
of actions. For example, in the case of the tennis player, the availability of a
mental model of the dynamics of the ball will allow the player to anticipate
where the ball will land and then plan his/her movement so that he/she can

intercept the ball from the best possible position.

Work on mental imagery and mental rehearsal has shown that humans can

improve their performance by merely imagining the performance of a task

CHAPTER 1. INTRODUCTION 20

[Adams, 1990]. A model based task optimization may partially explain this

behavior.

A model can have many forms based on the nature of the task and the available
information. In this thesis, we will only explore tasks that have continuous state and
action spaces. We will use general function approximation techniques to represent

the models built from experience.

1.4 Function Approximation in Motor Learning
and Task Optimization

There are many different ways that function approximation techniques such as neural
networks may be applied to motor learning and task optirnization problems. These
techniques are summarized by Atkeson [Atkeson, 1991]. A recent survey for the ap-
plication of neural networks in control is given by Hunt et al. [Hunt et al., 1992].
Over the past few years, there have been many attempts for applying neural networks
in control, using different control and network architectures, with varying degrees of
success. [Psaltis et al., 1988; Khalid and Omatu, 1992; Narendra and Mukhopad-
hyay, 1992; Schiffmann and Geffers, 1993; Chen and Khalil, 1992; Pao et al., 1992;
Levin and Narendra, 1993; Kuschewski et al., 1993; Sanner and Slotine, 1992; Jordan
and Rumelhart, 1992; Atkeson, 1991] and the papers cited therein are among the
recent papers that have examined the application of neural networks in control.
The most direct way for using a neural network as a controller is what is called an
inverse model. This is simply an association, having as its input the desired output(s)
o4 and the states of the system s, and as its output the action(s) that should be applied
as shown in Figure 1-1. One problem of this approach is that this mapping may not
exist as in the case where there are many possible actions that have the same desired
outcome. In this case preprocessing of the dat> may be necessary to prevent such

conflict and erroneous results. In the case where the inverse model is used with an

CHAPTER 1. INTRODUCTION 21

optimal control scheme, only one action is chosen as optimal for each desired outcome
and state of the system. In this case the inverse model is just a way of encoding an op-
timal control policy as used by Jordan for example [Jordan, 1989]. Psaltis, Sideris and
Yamamura [Psaltis et al., 1988] have also distinguished between generalized and spe-
cialized inverses. Kawato and Gomi proposed another training algorithm for learning
the inverse model by feeding back a function of the error between desired and ac-
tual performance [Kawato and Gomi, 1993]. However, the feedback-error-learning
algorithm does not necessarily result in a correct inverse model. Kawato and Gomi
also proposed that the feedback-error-learning may be a good model for cerebellar
learning, where the feedback error is provided by the climbing fibers input to the
Purkinje cells of the cerebellum [Kawato and Gomi, 1992]. Based on experimental
measurements during eye-tracking experiments, inverse dynamics computations have
also been proposed as a possible model for the processing of eye position, velocity
and acceleration by the Purkinje cells of the ventral paraflocculus of the cerebellum
[Shidara, Kaeano, Gomi and Kawato, 1993].

Another possible way for using function approximation to encode the previous
experiences is to encode the outcome of an action as a function of the states and
actions. This has been called forward modeling. Unlike inverse models, forward
models always exist for deterministic systems. When using a forward model, the
answer to a particular query, i.e. to find the action to take to achieve a certain
desired outcome for a given set of states, is not as straightforward to obtain as in the
case of the inverse model and can be performed using root finding or optimization
techniques [Atkeson, 1991]. Ito proposed another possible configuration in which the
forward dynamics model is used in an internal feedback loop [Ito, 1993]. In this
configuration, the forward model receives an efferent copy of the motor command,
and provides error feedback which improves the motor command. This internal loop
acts in conjunction with the limb feedback loop.

There may exist more than one function approximation network in a single control

CHAPTER 1. INTRODUCTION 22

system. For example, forward models can be used for the plant dynamics and for a
controller. The role of the plant dynaraics forward model is to predict the response of
the environment and to propagate back the error in the output[Jordan, 1989]. More
generally, it can be used to propagate back any performance gradient in order to
adjust the controller parameters. An inverse model may be used to make ar: initial
guess for the root finding algorithm for the forward model and also to correct the
errors in approximating the forward model.

Function approximators used as classifiers are another potential application for
function approximation in conirol. The classifier acts as a nonlinear switch, which
switches between a discrete set of controilers based on the states and desired outputs
of the system. The switch may also change smoothly from one controller to the
next. This can be thought of as a more generalized method of gain scheduling which
is used in the control of nonlinear systems. The controllers themselves need not
be fixed and can be some other function approximators, which may be useful, for
example, when the controller function varies considerably in the different areas of the
state and output space (e.g. the controller or the behavior of the system depends on
the different sets of states in different areas of the state space.). This is one possible
application for the competitive networks paradigm described by Jacobs et al. [Jacobs,
Jordan, Nowlan and Hinton, 1991]. Narendra and Mukhopadhyay [Narendara and
Mukhopadhyay, 1993] have also suggested the use of neural network classifiers as a
switch to select a controller for the case when it is known a priori that the controlled
plant can only be in one of a finite number of configurations.

Neural netwcrks may also be used as state observers for state feedback control
when not all the states can be measured. Recurrent neural networks have been
previously proposed and tested for such tasks.

Another potential use of function approximaticn in control is to build a model of
some measure of performance of the system as a function of the states, actions and

outputs, and then use this model to find the actions that optimize this measure of

CHAPTER 1. INTRODUCTION 23

performance using optimization techniques such as dynamic programming or calculus

of variations.

a” = {a|min f(a, s, 0)} (1.2)

subject to the constraint:

Sk41 = 9(3k,ak) (1-3)

where a* is the optimal action or action sequence that minimizes the approximated
cost function f. The function g describes the state evolution of the system. Both f
and g can be modeled using function approximation. Reinforcement learning tech-
niques are examples of such use of function approximation techniques [Sutton, 1992].
Pao, Phillips and Sobajic [Pao et al., 1992] have proposed a similar approach for find-
ing the optimal control trajectory with respect to some cost function, by modeling
this cost function as a function of the control trajectory using a neural network and
then optimizing it. Some researchers have also studied and applied Hopfield Net-

works for finding the optimal control law of linear systems [Mears et al., 1993; Lan

and Chand, 1990].

1.5 Thesis Contributions

e We have studied the approximation of forward and inverse dynamics using Ra-
dial Basis Functions. It is shown using simulations that the norm metric used to
scale the experiences plays a very important role for good modeling and general-
izations from examples. Previous heuristic methods to choose this norm metric
did not take into account the relationship between the inputs and outputs of the
system and used only the distribution of the inputs to find the metric. Through
simulations, it is shown that this is not sufficient to obtain good approximation,
especially when the dependency of the output of the network on the different

inputs varies considerably. We have developed an efficient heuristic method for

CHAPTER 1. INTRODUCTION 24

finding a good norm metric for the case of Gaussian HyperBF's that takes into
account the sensitivity of the output to the different inputs. It is found that
the results obtained with this method approximate those obtained by using

nonlinear optimization techniques, but the new method is much faster.

e We have developed a neural network based function optimization algorithm.
This algorithm attempts to model the objective function using a neural network.
The algorithm adaptively selects an exploration strategy based on the estimated
prediction error of the network. Using many simulations, it is found that this
algorithm can reduce the amount of experimentation needed to find the optimal
parameters. In addition it is less prone to noise in observation than gradient

based optimization algorithms.

e We have developed and tested a general method for learning the optimal ac-
tions of an unknown dynamical system given a performance index. This method
works by incrementally updating a model of the dynamical system and then us-
ing this model to find the open loop optimal actions. We have identified and
solved some of the problems associated with the implementation of this ap-
proach, and we have implemented it successfully in a variety of simulations. We
have also proposed and tested, using simulations, different possible approaches

for learning a closed loop optimal controller.

o We have implemented and demonstrated the use of model based techniques in
learning the optimal actions for systems with stochastic outcomes. We show
how function approximation can be used to learn both probabilities of suc-
cess/failure and expected reinforcement which then can be optimized subject

to any additional constraints.

CHAPTER 1. INTRODUCTION

States (s)
———
Actions (a)
Inverse Model _— -
Desired Outputs (Od)
—

Figure 1-1: Learning the inverse model

States (s)
R |

Outputs (O)
Forward Model

Actions (a)

Figure 1-2: Learning the forward model

25

Chapter 2

Knowledge Representation

2.1 Introduction

In order to make use of past experiences, both in the case of supervised learning
and task optimization, the learning system has to have a mechanism of knowledge
representation in order to store those experiences in an efficient way where the infor-
mation can be easily modified, added and retrieved. There are many possible different
paradigms that exist for knowledge representation derived from different fields such
as classical artificial intelligence, statistics and mathematics. Among these methods

are:

1. Symbolic representations where the experiences are transformed and encoded
into a set of rules. Decision trees may be considered as one example of those

techniques.

2. Statistical representations where the knowledge is represented by a set of prob-
ability distributions that are modified by experience. Bayesian techniques may

fall under this category.

3. Fuzzy representations, where the knowledge is coded as fuzzy associations be-

tween inputs and outputs.

CHAPTER 2. KNOWLEDGE REPRESENTATION 27

4. Function approximation techniques of knowledge representation which include
methods such as parametric structured models, nearest neighbors, local regres-
sion, feedforward neural nets, generalized splines, other basis functions and

other non-parametric methods.

Hybrid techniques which combine the best features of some of these techniques may
also be used. The best method to use for a particular knowledge representation appli-
cation depends on the quality and amount of data that is available and the properties
of the function to be approximated. The amount of the a priori knowledge incor-
porated into the function approximation reduces the search for the best parameters
and the number of examples required. For example a structured dynamical model
with few parameters to estimate is best if we can accurately model the dynamics
of the system. It requires relatively very few experiences and generalizes very well.
Non parametric techniques are generally more flexible about what functions they can
model but require much more training. The ability to generalize from examples de-
pends or the degree of smoothness of the function to be approximated, the number
of examples available, the number of dimensions of the input space and the approxi-
mation method used. The simplest example that illustrates the effect of the different
factors is the well known digital uniform sampling of a continuous function. We can
only recover the original function from its samples exactly if the frequency of sampling
in each dimension is higher than twice the highest frequency in that dimension and
if we convolve the samples with a sinc function which has a width that depends on
the frequency content of the function along that dimension. This example illustrates
that the number of samples needed to recover the function increases linearly with
the frequency content of the function in a given direction and exponentially with the
number of dimensions. In the case of non-uniform samples the problem is much more
complex. In general, the optimal rate of convergence of a function as a function of the
smoothness p, the number of samples n and the number of dimensions d is of the form

€n = N~ [Poggio and Girosi, 1989). This equation shows the problem of the curse

CHAPTER 2. KNOWLEDGE REPRESENTATION 28

of dimensionality, as the number of dimensions increases, the number of samples n
required to achieve a specified error rate increases almost exponentially (if p is small).
Therefore if the number of dimensions increases, it becomes very important to exploit
the smoothness of the function in the different directions and detect directions where
the function is slowly varving. This will help us achieve better generalization for the
same amount of data.

In this thesis, we focus primarily on the method of radial basis functions (RBF)
and its variations, generalized RBFs and Hyper-BFs. Some researchers have criticized
the use of the local radial basis functions such as Gaussians on the ground that the
number of RBF's required to cover the space becomes very large with the increase
in the number of dimensions. This is based on the need to cover the whole input
space where there is data with basis functions, regardless of irrelevant dimensions
[Weigend et al., 1990; Hartman and Keeler, 1991]. Other researchers believe that the
problem of scaling the width of RBFs in different dimensions is hard [Hartman and
Keeler, 1991]. In this chapter, I will show how it is possible to efficiently improve
the generalization properties of RBFs by finding efficient methods for scaling the
variables in the different dimensions. The scaling factors are also a measure of the
relative dependence of the function on the different input variables. Moreover, with
a good norm metric it is possible to cover the input space with relatively very few
RBFs.

However, it should be emphasized that the method of RBFs with one global set
of scaling parameters is not always suitable for all applications. For example, it does
not work well if the distribution of the data in the input space is not very uniform.
Some prefiltering of the data is sometimes needed to remove data that are very close

together in the input space, so that the problem does not become ill-conditioned.

CHAPTER 2. KNOWLEDGE REPRESENTATION 29

2.2 Radial Basis Functions for Function Approx-

imation

2.2.1 Background

The Radial Basis Functions (RBF) approach to approximating functions consists
of modeling an input output mapping as a linear combination of radially symmetric
functions [Powell, 1987; Poggio and Girosi, 1990; Broomhead and Lowe, 1988; Moody
and Darken, 1989]. It was first developed as an exact interpolation approach, that is, it
reproduces the outputs of the given examples exactly. The output of the interpolating

function is described by the following equation :
y(x) = Y Cig(llx: — x||) (2.1)
i=1

For the exact interpolation case, n is equal to the number of examples, C; ’s are the
coefficients to be estimated, x; is the vector of inputs at the example . Sometimes
a polynomial term of the form $%_, pj P/"(x;) is added to the above equation for
certain types of RBFs. In this case, since the number of parameters is larger than
the number of data, the following extra constraints are added to make the parameter

estimation problem well posed [Powell, 1987].

S CPM(x;)=0 i=1,...,p (2.2)

i=1
Examples of RBFs include :
o Gaussians ¢(r;) = exp(:gl)
o Hardy Multiquadrics [HMQ] ¢(ri;) = \/r% + ¢

e Hardy Inverse Multiquadrics [HIMQ] ¢(ri;) = 7;-21=_'=_-§
i

CHAPTER 2. KNOWLEDGE REPRESENTATION 30

(2k-d)

. . Tii logri; d even
e Thin Plate Splines [TPS] ¢(ri;) = 2k >d
r,; (269 d odd

ij
where d is the dimension of the inputs and k is a smoothness parameter.

e Cubic Splines [CS] ¢(r;) = r};
e Linear Splines [LS] ¢(ri;) = ry;

where r;; = ||x; — x;]| . Some of these RBFs (e.g. Gaussians and multiquadrics)
have an explicit width parameter c that needs to be determined. However we can also
fix this width parameter, for example to have the value 1 and scale the data instead.

To find the coefficients C; for exact interpolation, we have to invert a square
matrix which is theoretically guaranteed to be nonsingular for a wide class of radial
basis functions given of course distinct data [Micchelli, 1986]. Since the equations are
linear, there are a number of batch and recursive algorithms that exist for finding
the exact value of the coefficients. The linearity of the function with respect to the
coeflicients C; guarantees the convergence to the globally optimal parameters. Since
many of the optimization algorithms require the inversion of a matrix of rank n, the
computational complexity for finding the optimal parameters is O(n?), where n is
the number of data points and also the number of coefficients in the case of exact
interpolation. Exact interpolation may not be desirable if the data are noisy or if the

computational burden is high.

2.2.2 Mathematical Interpretation of RBFs

As mentioned by Poggio and Girosi [Poggio and Girosi, 1989], many of the radial
basis functions are the Green functions obtained by solving different regularization

problems of the form :

S (0 = F(x:)) + MPAI? (23

i=1
as A — 0. Where P in the above ecuation is a radially symmetric differential operator,

and || - || is the L? norm. For example Gaussian RBF's result from operators P of the

CHAPTER 2. KNOWLEDGE REPRESENTATION 31

form:

/R o S an(P™f(2))? (2.4)

m=0
where P?™ = V2™ and P?™+! = VV?™ V2 is the Laplacian operator and the coeffi-
g3m

cients ¢, = oo

Interpolation using thin plate splines minimizes the functional:

Ji(f) = _/Rd dr z (D” f)? (2.5)

lvl=k
Since regularization is also related to Bayesian estimation, we can think of RBFs as
a special case of Bayesian estimation [Girosi, Poggio and Caprile, 1990], where the

prior probability of the function f is assumed to be
P(f) x exp"\"P-'"2 (2.6)

Another interesting interpretation for some forms of RBFs made by [Schagen, 1980)
is to regard the given training examples as point realizations of a stationary stochastic
process Z(x). The staticnarity of Z(x) implies that the mean and variance of the
process at any point are constants and that the covariance between two points is only
a function of the difference between these two points. If we make the stronger as-
sumption that the covariance depends only on the distance between two points, that
is Cov[Z(X,), Z(X,)] = 0%g(]| X — Xs]|), where o is the variance of the process, and
given that the function g(r) should satisfy the covariance properties, namely ¢(0) = 1,
g(r) <1 for r > 0 and that the covariance matrix should be nonnegative definite,
some RBF solutions may be interpreted as the best linear unbiased estimate of the
stochastic process given the data points. For the derivation of this result we refer the
reader to the paper by Schagen {Schagen, 1980]. Gaussian RBFs satisfy all these as-
sumptions and constraints. Note that not all RBF functions mentioned above satisfy

all the assumptions required for this interpretation. RBFs with increasing function

CHAPTER 2. KNOWLEDGE REPRESENTATION 32

values as the distance from the center increases can not model a covariance since
g(r) = ¢(0) for some r > 0

Both of the above interpretations of radial basis functions make some a priori
assumptions about the degree of smoothness of the function to be approximated.
These a priori assumptions determine the shape of the radial basis function used.

We can also think of RBF approximation as another adaptive linear kernel tech-
nique for approximation, similar to local weighted averaging. The approximation at a
particular input can be viewed as a weighted average of the neighboring data points.
The shape of the kernel is determined entirely by the distribution of the input data
and varies from one point to the next. It is very important to differentiate between
the shape of the RBF bases and the shape of the associated kernel. The kernel asso-
ciated with a particular RBF ¢(x) can be expressed mathematically in matrix form

by the following equations:

§(x) = anwb(x,x.-)y.- (2.7)

i=1

Yx,x:) = OT(x)(A(x)TA(x))Ax)" (2.8)

where A(x) for an RBF network with n. centers and n, data points is an n, X n,

matrix with elements
A,‘j=¢("X|‘—CJ‘|I), L = la Tty Np, .7 = la"'anc (29)

and ®(x) is an n.— dimensional vector representing the response of the different RBF
units at a particular input x . An example of a kernel in one dimension for a data
set uniformly spaced in the input space from [-1, 1] is shown in figure 2-1 for the
cubic RBF. Note that although for a cubic RBF ¢(r) — oo as r — oo, the kernel
associated with it is local. The shape of the kernel depends on the distribution of the
data and the centers and on the location of the query point. This effect is higher near

the boundaries of the data set. The localization properties of RBFs are discussed in

CHAPTER 2. KNOWLEDGE REPRESENTATION 33

more detail in [Powell, 1988; Jackson, 1988].

2.2.3 Extensions to RBF: GRBF and HyperBF

To reduce the problems of exact interpolation, many researchers have suggested us-
ing a smaller number of basis functions [Broomhead and Lowe, 1988; Poggio and
Girosi, 1989; Moody and Darken, 1989]. In this case it is not possible to reproduce
the exact outputs in general. To choos= the centers of the basis functions we can
use optimization techniques [Poggio and Girosi, 1989 or also heuristic algorithms
based on the distribution of the data [Moody and Darken, 1989]. The RBF approx-
imation with movable centers has been called Generalized Radial Basis Functions
(GRBF) [Poggio and Girosi, 1989]. The estimation of the location of the centers of
the GRBFs using least square error optimization techniques is not an easy problem.
This is because the error surface is not convex and the number of parameters to be
estimated is large. From my personal experience with different computer simulations
and using second order nonlinear optimization techniques, I found that it is very hard
to adjust the centers and that usually the gain in performance is small.

Another extension to the RBF approach, described also by Poggio and Girosi
[Poggio and Girosi, 1989] is known as Hyper Basis Functions (HyperBF). This is
a further generalization of the GRBF technique which includes using radial basis
functions of different widths or also non-radial basis functions. Similar types of basis
functions have been described by Saha et al. [Saha et al., 1991] for image coding and
analysis and have been termed Oriented Non-Radial Basis Functions (ONRBF). Saha
et al. suggested a gradient descent algorithm to find the parameters of the ONRBFs.
Varying the widths of the RBF's is also equivalent to using a general norm rather than
the Euclidean norm to compute the distance of a point from the center of the basis

function. The equation describing the output in terms of the basis functions and the

CHAPTER 2. KNOWLEDGE REPRESENTATION 34

0-6 1 Ll Ll L LI 1 I I 1

1 | 1 1 1 1

-1 08 06 04 -0.2 0 0.2 0.4 0.6 0.8 1
Data Points

0.2 :

Figure 2-1: Kernel shapes 1(x,x;) for query points at 0.05 (solid lines) and 0.5
(dotted lines) using a cubic RBF. Location of data points are marked. RBF centers
are located at every other data point.

CHAPTER 2. KNOWLEDGE REPRESENTATION 35

different inputs is as follows :
y(x) =Y Cig(lIxi — x[ly) (2.10)
1=1

where ||x; — x;|i3, = (xi — x;)TWTW(x; — x;) and W is a square matrix. Since
the matrix Q = WTW is symmetric and at least positive semidefinite, it is possible
to factorize it into Q = LL7, where L is a lower triangular matrix. Therefore only
d(d + 1)/2 elements need to be estimated. The rest of the elements are redundant. It
is also possible to estimate the elements of the symmetric matrix Q directly, but in
this case there is no guarantee that the matrix Q will be positive definite and matches
the definition of a general norm. Another important point is that if the matrix W
is singular, it is important to redefine the input variables and remove the irrelevant
dimension, otherwise Micchelli’s results about the uniqueness of the coefficients of
the basis functions C; do not apply, since in this case two different input vectors may
appear to be the same if the difference between the two input vectors lie in the null
space of the matrix W. From practical experience, it is found that the W matrix
plays a very important role in the quality of generalization. This is especially true for
functions which do not meet the smoothness assumptions implied a priori by using
a certain type of RBFs. In the next section I will describe different possiblc ways
for estimating the W matrix, and in section 2.2.5 I will show the results of applying

these techniques for approximating different muitidimensional functions.

2.2.4 Estimating the Weight Matrix W for Gaussian RBF's

There are many possible ways for estimating the weight matrix W. One class of
methods, based on optimization techniques, is to find a W which minimizes the sum
of the square of the errors between the output of the RBFs and the training set output.
Nonlinear optimization techniques that could be used include gradient descent, second

order nonlinear optimization techniques or variations of random search. Gradient and

CHAPTER 2. KNOWLEDGE REPRESENTATION 36

second order methods are not guaranteed to converge to the glebal minima and are
sensitive to the initial choice of parameters. Also, for large amounts of data and RBF's,
the amount of computation involved in second order methods becomes very large. In
random search the amount of computation for each step is relatively small, but a
very large number of steps may be needed to converge, especially when the number
of parameters to be estimated is large. The main advantage of random search is that
it can escape from local minima. Caprile and Girosi present a simple random search
technique that have been found to work well in practice [Caprile and Girosi, 1990].
Another alternative method for determining the best W for diagonal W is by
using cross-validation techniques to estimate the W’s in the different directions. This
has the advantage, over minimum training error techniques, that it will attempt to
minimize the predicted mean square error as opposed to the mean square error of the
training set only and therefore may generalize better. Hutchinson et. al. [Hutchin-
son, 1984] have attempted to use generalized cross validation to find scaling parame-
ters for one input variable. More work is needed to generalize this technique to more
than one input variable in an efficient way. However, in general, cross validation
techniques tend to be computationally very expensive and it may be very difficult to

adapt these techniques to real time applications.

Empirical estimation of Gaussian RBF widths

Many researchers have explored some heuristic methods for the estimation of the RBF
widths and center locations. Moody and Darken [Moody and Darken, 1989] describe
methods based on adaptive clustering of the input data. In their analysis, they
totally ignore the characteristics of the function to be approximated. Platt describes
a resource allocating network that adaptively adds basis functions based on a novelty
measure [Platt, 1991]. The novelty measure is based on two factors: the accuracy
of the approximation and the distance of the new experience from the previous data

points. The width of the RBFs is proportional to the distance to the k-nearest

CHAPTER 2. KNOWLEDGE REPRESENTATION 37

neighbor. Although the output data in this method are used in the choice of the center
locations, the estimation of the RBF widths is still completely dependent on the input
distribution only. Hutchinson proposes a heuristic algorithm for finding a reasonable
set of initial values of the parameters of the RBFs [Hutchinson, 1993]. His algorithm
is a generalization of Moody and Darken algorithm and allows for the possibility
of estimating the widths of RBFs based on the output as well as the input data.
Methods that depend only on the input distribution to determine the RBF width
parameters may not work well if the dependence of the function to be approximated
in the different directions is not uniform. Mel and Omohundro describe a method
that depends on the second order derivatives of the function to be approximated with
respect to the different input variables [Mel and Omohundro, 1991]. In this chapter I
will describe new methods for estimating a diagonal W for Gaussian RBFs based on
approximating the first order partial derivatives of the function to be approximated
with respect to the different input variables. Although this class of methods is not
proven to optimize any cost function, it is found to approximate and sometimes
surpass the results obtained using nonlinear optimization techriques. The diagonal
width parameters are assumed to depend on the average variation of the function in
each direction, as measured by the sum of the square of the first partial derivatives in

each direction, in addition to the variance of the input data in the different dimensions.

Le]
t 5=/, [(%)2(%)2 (ifn)zJ dx (2.11)

and g = ﬁgﬁ' We found empirically that a good approximation for the diagonal of W

is as follows :

k
Wii = Gy 2.12
(- ur))

where the subscript i denotes the i** input variable, £ denotes the expected value
and ¢; is the i"* component of the centers of the RBFs. & is a constant that can be

determined by cross validation or least mean square optimization. From simulations

CHAPTER 2. KNOWLEDGE REPRESENTATION 38

we found that the approximation is not very sensitive to a range of the values of k.
However, the choice of a good k is important for the conditioning of the coefficients
of the RBF. The bigger the value of k, the smaller will be the equivalent width of the
RBF's and the estimation of the coefficients will be less singular.

To understand why this suggested form of W makes sense, we can divide the
equation for W into two terms. The first term is the normalized gradient functional
and the second is a normalization factor that normalizes the input space so that the
different inputs have approximately similar range of values. The gradient functional
term results in making the first order terms in the regularizer operator for Gaussian
RBF's (equation 2.4) to have approximately equal magnitude. This, in turn, satisfies
the assumptions made by the regularizer. Intuitively, the width of the Gaussian
functions will be smaller in the directions where the approximated function varies the
most. Note also that if one variable is irrelevant, its derivative function will be zero
and therefore the corresponding w component will also be zero.

The idea of separating the estimation of the norm metric from the estimation of
the other function approximation parameters has been recognized by many other re-
searchers [Girosi, 1992; Moody and Darken, 1989; Samarov, 1991; Li 1992; Zhao, 1992].
Some of these researchers have also suggested the use of different forms of derivative
functionals for other function approximation techniques [Samarov, 1991; Zhao, 1992;
Li, 1992]). Both Samarov and Li have described methods for estimating these deriva-
tive functionals or expected derivatives from the data and mentioned the assumptions

under which these estimations are valid.

Iterative Estimation of the Diagonal Weight Matrix W

I will describe here a new iterative procedure for estimating the derivative functional
that seems to work well in practice. This procedure starts by first estimating the func-
tion using a diagonal W matrix equal to the inverse of the variance of the input data

in the different directions for example, and then estimating the derivative functional

CHAPTER 2. KNOWLEDGE REPRESENTATION 39

using the approximated function. We then use the derivative functional to update
the value of the W matrix and use this latter to improve the function approximation.
In practice, this procedure usually converges in 3 or 4 iterations. However a more
detailed mathematical analysis is needed to understand the convergence properties
of this algorithm. From the limited number of simulations I have done using this
algorithm, it is found that it always converges to some value for W, however in cases
where the original approximation is very bad (high RMS error), it may not find the
best answer.

The second term in the suggested approximation for W is added to normalize the

input variables originally so that they will have approximately similar variances.

2.2.5 Test Results
Approximating a 2-D function

The first numerical example is the approximation of the Rosenbrock’s banana function
[Luenberger, 1973). This is a function of two variables with a steep ravine shaped like

a banana described by the following equation:
f(z) =100(zy® — 2,)* + (1 — z,)? (2.13)

We used 40 training and test points distributed randomly and uniformly over the
range from [-2, 2] in each of the input dimensions, and used 25 Gaussian RBFs to

approximate the function under the following conditions:
1. The centers and shapes of the Gaussians are fixed.

2. The centers are fixed. but the diagonal weight matrix W is estimated using the

sequential technique described above.

3. Asin 2, however in this case the true function is used to estimate the derivative

functional.

CHAPTER 2. KNOWLEDGE REPRESENTATION 40

4. Asin 2, but a2 Levenberg-Marquardt optimization technique is used to estimate

the parameters.

The average RMS errors on the test set of 10 independent simulations (each one has
a different training and test sets) are shown in table 2.1 for the 4 different methods
described above, together with their standard deviations. As is shown in the table,
the results obtained using the derivative functional are better than the other methods
and are less varied in both the cases where we use the true expression for the derivative
functional and when we use the new sequential method. The average RMS error when
using the Levenberg-Marquardt algorithm to estimate W (column 4 in table 2.1) is
worse than the sequential method and the RMS error is more varied. The reason
for this large variation in the erior is that the optimization technique sometimes
converges to a local minimum and is also sensitive to the initial conditions. It is
important to note here that the sequential algorithm usually converges in 2 to 3
iterations and the computation is much faster than the optimization algorithm. An
advantage that the sequential algorithm has over the optimization one is that in the
sequential algorithm we can set the number of centers equal to the number of data
in the training set, since we do not use optimization to estimate W. This is not
possible in the direct optimization case since the number of parameters to estimate
will be larger than the number of data points, and the problem will be singular.
Setting the number of centers equal to the number of data points reduces the error
in the trairing set to zero and also considerably improves the error in the test set
and the algorithm still converged faster than the Levenberg-Marquardt optimization
technique. Another important point to mention here is that although the error on
the test set for using Gaussians with fixed centers and shapes is very bad in this case,
this method will give good results if the number of training data is increased and the
number of Gaussians increased, i.e. the effect of a good choice of a weight matrix W

is much less isnportant when data and RBF's are abundant.

CHAPTER 2. KNOWLEDGE REPRESENTATION 41

number of simulations = 10 1 2 3 4
mean 0.2445 0.0967 0.0933 0.1285
std 0.1437 0.0406 0.0439 0.1101

Table 2.1: The mean and standard deviation of the normalized RMS error on the test
set using different RBF optimization techniques (See text).

To show the relation between the W matrix obtained using the derivative func-
tional and the Levenberg-Marquardt optimization, I plotted wy; vs. w, in figure 2-2.
In this figure, the slope of the line drawn by the “x” symbol represents the ratio
of wz; to wy; computed using the derivative functional from the true function. The
open circles represent the values of W plotted at each iteration of the Levenberg-
Marquardt algorithm. The “*” symbol represents the values of W after each iteration
of the sequential method. The second iteration for that particular run falls almost
exactly on the true derivative functional line. It is also interesting to note that the
values obtained from the Levenberg-Marquardt method approaches this same line
asymptotically. This is the case in most of the simulations performed, given that the

optimization does not get stuck in a local minimum.

Approximation of Wood’s function

Wood’s function is another function used to test optimization algorithms. It is a 4

dimensional function described by equation 2.14.

y = 100(172 - 1‘12)2 + (1 - .'1,‘1)2 + 90(.‘1:4 - .1332)2 + (1 - .'173)2 +
10.1((z2 — 1)* + (74 — 1)%) + 19.8(z2 — 1)(z4 — 1) (2.14)

Like in the banana function case, the rate of change of the function is different in
the different directions. This is a good example to illustrate the effect of the norm
metric and the choice of W in approximating this function using HyperBFs. The
range of the input data is assumed to be from [-2, 2] in all directions. The train-

ing set contained 100 data points uniformly and randomly distributed in the input

CHAPTER 2. KNOWLEDGE REPRESENTATION 42

121 ;
3 0639t
@
0,
2t '
NIFEL
0 0.638 1.276

Wi

Figure 2-2: The values of the parameters of W used in approximating the banana
function, using different optimization methods. Note how the parameters converge
towards an asymptotic line that is estimated using the heuristic method for the choice

of parameters described in the text.

CHAPTER 2. KNOWLEDGE REPRESENTATION : 43

range. We used 40 HyperBF functions with fixed centers, distributed randomly in
the 4 dimensional space. We compared the use of nonlinear optimization techniques
with the heuristic sequential method we developed. These results confirm the results
obtained in approximating the 2-D banana function. The trajectory of the estimated
parameters obtained using the Levenberg-Marquart nonlinear optimization technique
is shown superimposed on the parameters obtained using the heuristic method in fig-
ure 2-3. As shown in the figure the parameters converge to approximately the same

values.

Modeling the Inverse Dynamics of a Robot Arm

In this example I will describe the modeling of the ideal inverse dynamics of a simu-
lated two joint planar robot arm. The inverse dynamics equations of the arm model

are given in equation 2.15.

T, = 51(11 + I + 2maez, [y cos 0; — 2macy, 1y sin ;)
+0“2(12 + macz,ly cos Oy — macy, 1y siny)
—2110.10.2(m2c:.,2 sin @2 + macy, cos b2)
—110'22(m2c5,,2 sin 8, + macy, cos 6;)

T, = é.l(mzc:,ll cosf; — macy, lysinby + 1) + 6,1,

+110.12(m2cIz sin 2 + macy, cos 8;) (2.15)

where 0;, 6;, 0; are the angular position, velocity and acceleration of joint z. 7 is the
torque at joint ¢. I, m;, l;, c;; and c,; are respectively the moment of inertia, mass,
length and the x and y components of the center of mass location of link . The values
chosen for the different parameters are shown in table 2.2.

The input vector is formed of 6 variables (01,02,0.1,0'2,9‘1,95). The outputs to be
estimated are the two joint torques. Separate function approximation networks are

used, one for each of the two torques. The training and test sets are formed of one

CHAPTER 2. KNOWLEDGE REPRESENTATION 44

0.8 . y ; 0.8
0.6}
T 0.4}
0.2t
. . . 0 . .
0.2 0.4 0.6 0.2 0.4 0.6
wi wi
0.8 ; ; y 0.8

Figure 2-3: The values of the parameters of W used in approximating Wood’s func-
tion, using HyperBF's and different optimization methods. The parameters converge
towards an asymptotic line that is estimated using the estimated average derivatives
of the Wood’s function with respect to the different input variables.

CHAPTER 2. KNOWLEDGE REPRESENTATION 45

thousand random noiseless experiences each; uniformly distributed across the space
of the inputs. The different inputs are selected from the following ranges: [-4, 4] for
the joint angles, [-20, 20] for the joint angular velocities and [-100, 100] for the joint
angular accelerations. Three different methods of optimization for approximating the
two torques T7 and T3, given joint angles, velocities and accelerations, have been tried

and compared :

1. Exact interpolation with centers located at the training examples and using
different radial basis functions. No distance metric is used in this case. The ex-
act interpolation is repeated at different widths of the radial basis functions to
determine the effect of the width parameter on the generalization of the RBF's.
The coefficients of the RBFs are computed using matrix inversion. A Singu-
lar value decomposition matrix inversion algorithm is used to avoid singular

matrices.

2. Using less centers than examples and using a diagonal matrix W. The non
zero elements of W are estimated using a nonlinear least square Levenberg-

Marquardt algorithm.

3. Asin 2, but using the derivative functional to obtain W. The derivative func-
tional is estimated using the iterative method described above. We also com-
pared the derivative functionals obtained with the iterative method with the

ones estimated directly assuming we know the true dynamic equations.

For the exact interpolation case, the input variables are scaled such that the input
space is limited to the six dimensional hypercube [—1,1]®. This resulted in reducing
the error on the test set.

The results of using exact interpolation for different types of RBFs are shown in

figure 2-4. ¢? represents the width parameter when relevant. The normalized error in

CHAPTER 2. KNOWLEDGE REPRESENTATION 46

estimating the test set is computed using the following equation:

. \[2 0y (T = T)? 2.16)

2 «n 2
Yk=1 i1 T

where T}; is the approximated torque at the k** joint for test point i. The error on
the training set is zero in this case, since this method performs exact interpolation.
The results for LS and CS shown in this figure are obtained after the addition of a
first order polynomial to the RBFs. A third order polynomial for TPS is also tried.
As shown in this figure, the normalized error is more sensitive to the width pa-
rameter (i.e. c?) for the Gaussian RBFs than for Hardy multiquadrics and inverse
multiquadrics. This is in agreement with Franke’s observation (Franke, 1982). The
best normalized error for any RBF that has been tested here is 0.338 for HMQ with
a value of ¢? = 4 . Also, contrary to our expectations and to results reported by
others (Franke, 1982), the TPS with a third order polynomial had a normalized error
of 0.5003. This error value did not change significantly when only lower order poly-
nomials are added to the (r?logr) RBFs. Using Generalized Cross Validation (Bates
et al., 1987) to optimize the tradeoff between smoothness and fitting the data, we got
similar normalized error for TPS. These results are much worse than the results ob-
tained using other methods on the same problem and using the same data sets. (See
for example Atkeson, 1989 or Zhao, 1992). Using 500 Gaussian RBFs (250 Gaussians
only for the recursive method) and a diagonal matrix W, the error on the test set
using the different methods to estimate W are shown in table 2.3. Shown also in this
table are the values of the six diagenal elements of W. As shown in the table, the
value of wy; which corresponds to the joint angle 6, is very close to zero which reflects
the irrelevancy of this variable to the output and which also justifies the use of the
derivative functional in the estimation of W. The same is true for the value of w44 for
the 2™ joint which corresponds to 0.2 which indeed does not affect the computation

of the torque for the second joint as it is obvious from equation 2.15. The normalized

CHAPTER 2. KNOWLEDGE REPRESENTATION 47

- =S
1.0 - - CSS
— TP
o.9k ¢-— ¢ Gaussians
08 ¥ HMQ
1 | o—e HMO
l

RMS TORQUE ERROR / RMS TORQUE

02
0.1}
0.0 1 ! I]
0 5 10 15 20
ch2

Figure 2-4: Normalized RMS error on a test set using exact interpolation with differ-
ent radial basis functions as a function of the width parameters.

CHAPTER 2. KNOWLEDGE REPRESENTATION 48

RMS error at each iteration for the iterative method is shown in figure 2-5, using 100
Gaussian radial basis functions only. As shown in this figure, the error approaches
zero after about 4 iterations. Using 250 Gaussian radial basis functions for the itera-
tive method instead of a 100, makes the error on the test set converges almost to zero
in one iteration only. It is important to mention here that the convergence depends
also on the initial condition. If the initial set of parameters, or the number of centers
and their widths is not appropriate, then this recursive method will converge to a
wrong solution, albeit always better than the original solution. The RMS error on
the test set obtained by optimizing the metric used in the RBF approximation was
smaller than any other function approximation method that have been tried on the

same problem using the same data sets.

CHAPTER 2. KNOWLEDGE REPRESENTATION 49

L, I, 0.33333
my,my 1.0
Cz1,Cz2 0.9

Gy 0.0

Table 2.2: Parameter values used in the simulation of the robot equations

W L-M ALG. TRUE FUNC. REC. METH.

Joint 1 Joint 2 Joint1 Joint 2 Joint 1 Joint 2
Wii(6,) 0.000021 5.48237e-06 0.000000 0.000000 5.82823e-08 4.23936e-09
Wi (62) 0.382014 0.443273 0.456861 0.456449 0.449958 0.449939
Waa(dl) 0.004177 0.0871921 0.005531 0.010150 0.0002817 0.0010549
W44(0'2) 0.004611 0.000120948 0.007490 0.000000 0.000560 0.000000
W55(0~1) 0.000433 0.00134168 0.000271 0.000110 0.0000025 0.00000065
W53(0-2) 0.000284 0.000955884 0.000059 0.000116 0.00000017 0.00000041

RMS 0.0098 0.0001 0.003079

Table 2.3: Scaling Weights and Errors Using Different Methods. 500 centers are
used in the Levenberg-Marquardt algorithm and true function method, but only 250
centers are used in the recursive method

CHAPTER 2. KNOWLEDGE REPRESENTATION 50

10,

09f R
08} %

%------% No initial scaling

0.7} —= |nitial scaling

06
05p
04}
03}
02}
0.1}
0.00 ;

RMS TORQUE ERROR / RMS TORQUE

iteration number

Figure 2-5: Normalized RMS error on the test set using the recursive method de-
scribed in the text as a function of the iteration number

CHAPTER 2. KNOWLEDGE REPRESENTATION 51

2.3 Conclusion

Knowledge representation for continuous input / output systems may be regarded as
function approximation. One major issue for function approximation is the removal
of irrelevant variables and the appropriate scaling of all the relevant variables. This
is very important, especially in applications where the data are sparse relative to
the number of dimensions. Appropriate scaling will improve the quality of approx-
imation considerably and will reduce the amount of data required to achieve good
generalization. We have investigated and tested this claim on one particular function
approximation technique called radial basis functions. Although many radial basis
functions could be interpreted as optimal solutions to some approximation problems,
they do not perform well in practice because the assumptions associated with RBF's
inherently assume that the sensitivity of the underlying function is the same in all the
directions in the input space. One way to change these assumptions is by changing
the norm metric used to compute the distance of the input vector from the center of
the RBF by making an affine transformation of variables [Poggio and Girosi, 1989).
The optimization of the norm metric can be done using nonlinear optimization tech-
niques (e.g. gradient descent, second order methods, random search, ...). However
these techniques are usually slow to converge. A method that works well for Gaussian
RBF's was described and successfully applied in different test problems. Although this
heuristic approach was successful in many test problems, there remain some impor-

tant questions that need to be answered. Among these questions are:

e What are the limitations of this approach? For example what are the types
of functions that it can and cannot approximate? What are the convergence
properties of the iterative method described above? One possible problem that
may arise with the approach described above is that one global scaling of the
input variables may not be adequate for some functions where the effect of

some variables in one area of the space is different than the effect of the same

CHAPTER 2. KNOWLEDGE REPRESENTATION 52

variables in another area of the input space. A possible solution to this problem
is to use a local RBF method, where we use only the “neighbors” to the point
at which we want to determine the output. The definition of neighbors may be

adaptively redefined after scaling.

e How to automate the choice of the width of the Gaussians? A very small width
results in poor approximation (large oscillations) which result in a bad initial
estimate of the derivatives needed to estimate the metric norm which, in turn,
results in bad final approximation. A large width of the Gaussian makes the
system of equations almost singular and results in very large ccefficients. In
the examples above, a heuristic criterion is used based on the average distance
between the daia points to estimate a reasonable width. This is related to

criteria used by other researchers [Moody and Darken, 1989 ; Platt, 1991 |

e Can we find better methods that improve the choice of the centers of the RBFs
and the number of basis functions to use? Current methods either use optimiza-

tion techniques or heuristic methods based on the distribution of the inputs.

e Can we extend this approach to other types of radial basis functions? One
way to possibly extend this approach is to look at the different terms in the
equivalent regularizers of the different radial basis functions and then make
these terms of the same order of magnitude by making an affine transformation

of the input variables.

From the computational point of view, the iterative heuristic method described
here saves a considerable amount of time relative to the nonlinear optimization tech-
niques, however since the norm metric obtained depends on the output values, the
norm metric used for the network associated with each output can be different. This
requires that we treat each output as a different problem which results in an increase
in computation linearly as the number of outputs increase. This is not the case for

other heuristic methods to determine the norm metric (Moody and Darken, 1989)

CHAPTER 2. KNOWLEDGE REPRESENTATION 53

which do not depend on the outputs and are determined exclusively using the distri-

bution of the input variables.

Chapter 3

Optimization Using Function

Approximation

3.1 Introduction

The goal in task optimization problems is to find the set of actions or action param-
eters that results in the best possible performance with respect to some objective.
When there ig only limited knowledge about the response of the environment, the
search for the optimal set of actions is performed by first trying an action and ob-
serving its performance, then selecting a new action based on the collection of prior
performances. In this chapter we will explore and compare the different techniques
of searching for the optimal actions assuming no prior knowledge about the envi-
ronment. It is assumed that the actual physical evaluation of the performance of a
particular action is possible but expensive. Therefore the objective here is to find
the optimal set of parameters with the minimum physical experimentation. This goal
is different than classical nonlinear optimization techniques where the objective is to
find algorithms that minimize computation time. In this chapter we will only consider
the optimization of objective functions that can be described by static, determinis-

tic cost functions that have a continuous parameter space. Dynamic and siochastic

34

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 55

system optimization will be addressed in later chapters. Dynamic systems with pa-
rameterized control variables can still be optimized using the approaches that will be

described in this chapter.

3.2 Active Exploration

The strategy used for exploring the environment depends on the goal of exploration.
For finding the optimal actions given a certain goal, the role of exploration may be
to find the optimal answer with a certain accuracy while minimizing the amount of
search. If the goal function is assumed to be smooth, exploration may be performed
along the gradient for example. On the other hand, for learning a nonlinear map-
ping, the role of exploration may be defined as minimizing the degree of uncertainty
about the environment in the particular region of interest in the input space. In this
case, a more distributed exploration may be'needed, with more data points located
where there is large variations in the function output. A related problem is addressed
by the theory of optimal experiment design for parameter identification. The goal
of selecting the data in this case is to minimize the uncertainty in estimating the
parameters of a model of the environment. Prior assumptions about the structure
of the model and the error distribution restrict the application of these techniques
to the active exploration problem for general nonlinear systems. Beyer and Smieja
define and compare density based versus error based exploration for function approx-
imation [Beyer and Smieja, 1993]. Intuitively, effective exploration should take into
account all previous experiences. This has been called reflective exploration [Beyer
and Smieja, 1993]. In addition to the goal of exploration and effective use of previ-
ous experiences, exploration should also depend on the data representation and all
knowledge known about the environment to be explored (e.g. number of variables,

sensitivity to different variables, smoothness).

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 56

3.3 Function Approximation in Optimization

One possible approach for finding the optimal parameters of a general nonlinear cost
function is to approximate the cost function and constraints using function approx-
imation techniques, then use classical nonlinear optimization techniques to find the
optimal parameters which minimize the approximated cost function given the approx-
imated constraints. Similar approaches have been previously proposed and explored
by many researchers for the purpose of global function optimization [Devroye, 1978;
Schagen, 1980, 1984, 1986] using different types of function approximation techniques.
Powell has suggested that RBF interpolation may be a highly successful technique for
function optimization due to its ability of approximating non-uniformly distributed
data points[Powell, 1987]. The use of function approximation in optimization may
be most useful when the objective function and its derivatives are expensive to mea-
sure or when the measurements are noisy and some kind of averaging is required.
Another important advantage of this technique over other optimization techniques is
that, unlike other methods, this method can potentially make use of all the previ-
ous searches for the optimum whereas other techniques forget most of the previous
searches. This can potentially reduce the number of function evaluations required to
achieve a specified performance.

Although the work of previous researchers has shown some advantages for using
function approximation techniques for optimization over other nonlinear methods in
some examples, it is not yet clear how function approximatiocn methods for opti-
mization will perform for general nonlinear 6ptimization problems. One of the major
problems associated with the use of function approximation is the choice of the explo-
ration strategy. There is always a conflict between choosing an action that increases
the knowledge of the learner, and an action that exploits the current knowledge of
the learner about the environment in order to find the estimated best action. This
problem has been termed the exploitation-exploration problem. Thrun [Thrun, 1992]

presents a survey and a taxonomy of the different approaches to the exploitation-

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 57

exploration problem. He classifies the different exploration strategies into directed
and undirected techniques. He proposes the method of selective attention as a ba-
sis for switching between exploration and exploitation. His method works well for
problems with a finite number of states and actions. In addition to the goal of explo-
ration, the exploration strategy may also depend on the acquired knowledge and its
representation. For a model-based exploration, the role of the exploration may be to
minimize the uncertainty in the objective function approximation at the beginning of
the search. At later stages of the search, the emphasis of exploration may be shifted
towards finding the parameter values that optimize the objective function. Schagen
suggested and implemented a method of exploration based on estimating a weighting
factor which strikes a balance between the conflicting goals of exploring unknown
regions and optimizing the function in known regions [Schagen, 1984]. The weighting
factor used depends on the number of data points evaluated so far, as well as the
apparent variation of the objective function. In another paper [Schagen, 1986], Scha-
gen also examined the use of another criteria for exploration suggested by Mockus
[Mockus, 1989] based on minimizing the expected deviation from the optimum. Both
these exploration strategies are based on approximating the objective function us-
ing Gaussian RBF's and interpreting the Gaussian RBF's as the correlation function
between data points.

In this chapter, we will explore the use of function approximation in the optimiza-
tion of an unknown multivariable objective function. We propose an algorithm for
multivariable function optimization using RBF approximation. Our approach for ex-
ploring the function and representing previous experiences is similar to the approach
used by Schagen. However, instead of having a weighting factor that balances between
optimization and exploration, we use two different objectives, one for exploratory ac-
tions and the other for optimizing actions. The probability of switching between these
objectives is based on a parameter that reflects the average error in prediction of the

RBF network. Using many computer simulations, we will try to compare optimiza-

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 58

tion using function approximation with general nonlinear optimization techniques.
We will explore the effect of the nature of the problem, for example the number of
dimensions, degree of nonlinearity and smoothness, desired accuracy and presence of
local optima on the performance of the different techniques. We will also explore and
compare the effect of using different function approximation techniques and different

exploration strategies on the amount of searcn.

3.4 Sequential Optimization Algorithm

The algorithm we propose here is closely related to Schagen’s optimization algorithm
[Schagen, 1984]. To balance the often conflicting goals of exploratory and optimizing
actions, Schagen used a cost function formed of two terms, weighted by a factor that
depends on the size of the unexplored region relative to the estimated variability of
the function as measured by the estimated width of the Gaussian RBFs used to ap-
proximate the function [Schagen, 1984]. The two terms in the cost function represent
the optimization and exploration phases respectively. In the first few iterations of the
algorithm, when only few data points are available, the exploration term is dominant
and as more data are accumulated, the optimization term becomes dominant. One
problem with this approach is that the objective function that is optimized does not
reflect the function we want to optimize until the optimization term becomes dom-
inant, and even then it will not be completely accurate. Another difficulty of the
approach is that the weighting factor used to balance between exploration and opti-
mization is based on many assumptions about the function to be optimized such as
assuming that it is a stochastic process with symmetric Gaussian correlation between
points. These assumptions may not necessarily hold for general nonlinear functions.

In the algorithm proposed here, a new data point is selected based on optimizing
one of two separate objective functions. One objective function J;(x) represents the

approximated model of the real function to be optimized. We use Gaussian RBF's with

CHAPTER 3. OPTIMIZATION USING FUNCTION .: PPROXIMATION 59

variable diagonal weight matrix to approximate this function as shown in equation 3.1.

N
X, = argmin Ji(x) =) C; exp(—|x — til[%) (3.1)

i=1

where N is the number of Gaussian RBF's used. In the simulations that follow, we
choose N to be equal to k/2, where k is the iteration number and also the number
of data points accumulated. The coefficients C; and the diagonal W matrix are
estimated using the iterative algorithm developed in the previous chapter. However,
instead of using straightforward least squares, a weighted least squares algorithm is
used, where the weights are inversely correlated with the true value of the function
as described in equation 3.2. We have found that this cost function works better in
practice, since it tends to increase the accuracy of estimation for small values of the
function, which is the area of interest. We assume here that the minimum is a small

positive value, which is often true for quadratic cost criteria.

N . 2 .
)=§(_3l?+—c2)*(yi_yi) . (3.2)

where C is a vector of the parameters to be estimated. The centers of the RBF's t; are
chosen randomly to span the range of input variables. The goal of the minimization
of the second objective function J;(x) shown in equation 3.3 is to select new data

points as far as possible from each other in the desired range of data.

x'"2 (b. ot .’1:,')2

o2

+2exp(@2 4 expi(-)

(3.3)

X, = argmin J(x) Zexp
1=1
where d is the input dimension and z; is the i** component of the vector x. The
parameters a; and b;, i = 1,---,d define the region of search. Equation 3.3 is similar
to the exploratory term used by Schagen [Schagen, 1984]. It provides a much better
distribution of data compared to uniform random selection. This better distribution

is due to the dependence of the current selection of data points on all the previous

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 60

selections, unlike a random uniform distribution which does not have a memory. The
exploration based on optimizing J>(x) is based only on the density of the data in the
different areas of the input space. Another possible strategy for exploration may take
into account the performance at the different data points. This may be accomplished,
for example, by multiplying the different terms in the summation of J; by the corre-
sponding true value of the function at the data point. A comparison between these
two different strategies for exploration and data selected randomly and uniformly in
two dimensions is shown in figure 3-1. From simulation results, we decided against the
use of value-based exploration since it resulted in poor identification of the objective
function and a larger number of trials to achieve the same level of performance. The
best exploration strategy found was the density based spacing of the data. In all the
simulations that follow we used this method of exploration.

The switch between the exploratory and optimizing objective functions is based
on a probability that depends on the average normalized prediction error of the ap-
proximation network. At each iteration of the algorithm, the average normalized

prediction error E,(k) is estimated using equation 3.4.

E,(k) = aE,(k — 1) + bmax('-”"(’Ty:(llc)_"l’ﬁ(fc‘ DIy (3.4)

where a, b, ¢, are constants chosen to be 0.9, 0.1 and 0.1 respectively. y,(k) and y.(k)
are the observed and predicted value of the function at iteration k. E,(0) is chosen
to be equal to one. For the values of a, b and ¢ chosen the equation for E,(k) above
is guaranteed to be stable. Using E,(0) = 1 guarantees that the value of E,(k) will
lie in the range (0, 1]. The probability of choosing to optimize the approximated
cost function Jy(x) instead of using the exploration cost J3(x) is determined using a

monotonically decreasing function of E,(k). In the following simulation, we chose

P(opt, k) = 1 — E,(k) (3.5)

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 61

where P(opt, k) is the probability of selecting to optimize the approximated function
at iteration k. As the predicted error decreases, the probability of choosing the opti-
mization objective over the exploration objective increases. In summary the proposed

algorithm works as follow :

1. Initialize the algorithm. This includes the selection of variables x , the range of

interest and the initialization of E,(0) = 1.

2. At iteration k, find x(k) that optimizes either Ji(x) or J3(x) based on the
probability P(opt, k) described by equation 3.5.

3. Perform an experiment using the value of x(k) found, and observe the output

yo(k). Also predict the value of the output y.(k) using Ji(x) .

4. Add the new data point {x(k),y,(k)} to the training set and update the function

approximation.
5. Find E,(k + 1) and P(opt, k + 1) using equations 3.4 and 3.5 respectively.

6. Go to 2.

We did not use an explicit stopping criterion for the algorithm described above. There
are many possible stopping criteria that can be chosen depending on the nature of
the problem. In the case when the value at the optimal point is known, the algorithm
can be stopped when the optimal value obtained approaches the correct value. In
the case when the optimal value is not known a priori, we can choose to stop the
algorithm when the average predicted error falls below a certain level and then choose
the optimal value found so far. From our experience with the simulations below, we
found that the algorithm finds the optimal value with a good accuracy while the
average predicted error is still relatively high (e.g. above 0.5 in most cases). This
is due to the relatively high density of data points near the optimal value compared
to other areas of the input space, which results in an increased accuracy near the

optimal point.

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 62

3.5 Test Results

We tested the sequential model-based optimization algorithm described above on the
optimization of many different objective functions. The objective functions chosen
were selected because they represent classical benchmarks :n the nonlinear and global
optimization literature. Branin, and Hartman functions are taken from [de Biase
and Frontini, 1978]. The Rosenbrock’s, helical and Wood’s functions can be found in
most nonlinear optimization textbooks (for example [Scales, 1985]). In all the follow-
ing examples we compared the performance of the model-based algorithm with the
Broyden-Fletcher-Golfarb-Shanno (BFGS) gradient based minimization algorithm.
The BFGS algorithm is chosen due to its superior performance in many of the test
problems used here [Scales, 1985]. The BFGS algorithm used here requires a much
fewer number of function evaluations, including function evaluations required to com-
pute the derivatives, than methods of optimization that do not require derivatives.
For example Powell’s method requires 125 function evaluations to reach an error of
less than 0.001 for optimizing the Rosenbrock Banana function [Fletcher, 1965). Gra-
dient methods and the model-based method proposed here require only about 30
function evaluations to reach the same accuracy (see below). For all the examples
shown below, the number of function evaluations reported for the BFGS algorithm
includes the number of function evaluations needed to compute the derivatives and
represents the average of many trials. The number of function evaluations reported
for the sequential model-based algorithm is for one trial only. We found that this is

adequate since this algorithm is relatively insensitive to changes in the starting point.

3.5.1 Optimization of Branin’s RCOS Function

Branin’s RCOS function is a 2-dimensional function described by 3.6

J(z1,22) = a(z; — bzy? + ez, — d)’ + e(1 — f)cos(z;) + € (3.6)

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 63

a=m; b=51/(4.07*); ¢=50/r; d=6.0; e=100r ; f=1.0/(8.0m)

There are three global minima with minimum value equal to 1.25 in the region [—5 <
Z1 < 10; 0 < z; < 15]. The coordinates of the minima are (—m,12.275), (m,2.275)
and (37, 2.475). The contour of the function together with the output of 35 iterations
of the sequential optimization described above is shown in figure 3-2. As shown in fig-
ure 3-2, the algorithm was able to discover 2 of the three global minima in less than 35
iterations. The algorithm was able to discover the first minimum with accuracy less
than 0.01 in 29 iterations. In the first 35 iterations of the algorithm, 22 iterations are
exploratory and the other 13 are optimizing (represented in figure 3-2 by the symbols
‘x” and ‘o’ respectively). The probability P(opt, k) for performing optimization rather
than exploration is shown in figure 3-3 as a function of iteration number. The average
number of function evaluations to reach only one of the global minima using a non-
linear second order technique such as the Broyden-Fletcher-Golfarb-Shanno (BFGS)
method for 10 trials with random starting points is equal to 28.2, which is compa-
rable to the number of function evaluations for the proposed sequential model based
optimization. The number of function evaluations includes 2 function evaluations to

estimate the gradient at each iteration.

3.5.2 Optimization of Rosenbrock’s Banana Function
The Rosenbrock’s Banana function is a 2-dimensional function, characterized by a
banana shaped curvature described by equation 3.7

J(z1,22) = 100(z; — 2,%)? + (1 — ;)2 (3.7)

This function has one global minimum at the point (1,1) which has a value of 0.
The region of interest is defined to be (2<z,€2; -1< T, < 3]. The first

30 iterations of using the sequential algorithm is shown in figure 3-4. The first 30

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 64

iterations consisted of 19 exploratory actions reprsented by the symbol “x” and 11
optimizing actions represented by the symbol “o”. The desired accuracy was set to
¢ = 0.001. The algorithm reached a value of 0.0092 at the point (1.035,1.073) after
26 iterations. The performance of the sequential model based algorithm was much
better in this case than the performance obtained using the BFGS method which
reached the minimum in an average of 86.4 function evaluations (including derivative

calculations), based on 100 different trials with random starting points.

3.5.3 Optimization of Wood’s Function

Wood’s function is a 4-dimensional function described by equation 3.8

J(x) = 100(z,% — z2)2 + (1 — z1)® + 90(z3% — z4)? + (1 — z3)? (3.8)
+10.1(z5 ~ 1) + 10.1(z4 — 1)* + 19.8(z2 — 1)(z4 — 1)

There is one global minimum at x = (1,1,1,1). We limited the search to the hy-
percube [—2,2]%. Based on an average of 10 trials, the BFGS nonlinear optimization
method reached a value lower than 0.001 after 197.7 function evaluations. Using the
sequential model based optimization we reached a value of 0.0036 after 160 obser-
vations with x = (0.9738,0.9414,1.0208,1.0505). No further improvement could be
made with more experimentation, up to the iteration limit of 200 iterations. Out of

200 iterations, 89 were optimizing steps and the rest was exploratory.

3.5.4 Optimization of the Helical Function

This is a function of 3 variables which has a helical valley. It is described by equa-
tion 3.9.
J(x) = 100((z3 —)® + (r — 1)?) + 22 (3.9)

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 65

where

210 = tan~!(zy/z)

r o= (z12+:c22)1/2

The minimum for this function occurs at (1, 0, 0). The BFGS algorithm requires an
average of 343 function evaluations (including gradient evaluations) to reach a value of
[|J(x) — J(x*)|| <0.001 based on the average of 10 trials with random starting points
in the region [—2, 2] and an average of 251 function evaluations to reach a value below
0.005. Using the sequential RBF based optimization algorithm, the minimum value
reached was 0.0044 after 108 iterations with input values [0.9377, 0.3424, 0.0520).
However, the error level did not improve with further iteration of the algorithm up to

the iteration limit of 2006. The number of optimization steps in 200 iterations is 91.

3.5.5 Optimization of Hartman’s Family of Functions

Hartman’s family of functions consists of shifted and inverted multidimensional Gaus-
sian functions of different amplitudes. The number of local minima is controlled by
the number of Gaussain functions and the location of the minima is controlled by the
centers of the Gaussians. The shape and amplitude of attraction regions is controlled

by the coefhcients a;; in equation 3.10.

J(x) = Zc.exp(Eau(z; pi') (3.10)

i=1

We tested the optimization algorithm on a seven dimensional Hartman function con-
taining five local minima. The parameters of the function are chosen randomly and
are shown below : ¢, ¢y, c3, ¢4, c5 = 0.6641,0.3234,0.8692, 0.4424,0.9180

a; = 0.5533,1.9035, 0.2345, 0.8320, 1.6728,1.9251, 0.6659

a; = 1.0524,1.0719,1.6362, 1.8598,1.3258, 0.4865, 1.8829

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 66

as = 1.1934,0.2521,0.4939, 1.7735, 0.3924,0.3259, 1.6720

as = 1.2048,1.2465,1.6774,1.3433,0.7831, 1.7426,1.3347

as = 0.2312,0.0,1.3521,1.2575,0.9091, 1.1487,0.0645

my = —0.5944,1.4203, —.5167,0.6457,0.3057, —1.7602, 0.9779

m; = —0.8820, —0.2295, —1.2943, —1.6328,1.5890, 1.9697, 0.3766

ms = —1.8680,0.7637, —0.0512,0.2774,1.5829, ~0.2620, 0.7544

me = —1.1874, —0.0731, —0.9102, 1.7885, —1.0228, 1.8130, —0.0922

ms = —1.4916,1.8457,1.4286, —1.1304, —1.9720,1.1299, —1.7984

minima = —0.6827, —0.3235, —0.8693, —0.4424, —0.9180

Using the BFGS algorithm and based on 10 ¢rials, the global minimum was reached
only 3 times at the value of -0.918. Two times the algorithm converged to a local
minimum (-0.6827). In the other 5 times, the performance did not improve. This
reflects the large volume of the parameter space where the cost function is relatively
flat. The region of attraction of the global minimum is relatively small compared to
the volume of the input space of interest. The average number of function evaluations,
including derivative calculations, based on the 3 successful trials is 167.6. Using 250
iterations of the sequential model based optimization the minimum value reached was
-0.712 after 232 iterations. The sequential method was unable to locate the global
minimum. The prediction error as computed using equation 3.4 hovered around 20%

after a fast drop in the first 50 iterations.

3.6 Summary and Conclusion

In this chapter we explored through many simulations the use of function approx-
imation techniques for the optimization of nonlinear functions. One of the major
problems for using function approximation in optimization is the choice of the se-
quence of input variables to explore. To solve the conflicting goals of optimization

and exploration, we represented the problem as a two-objective optimization problem,

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 67

one for exploring the area of interest for better identification of the function, and the
other objective function represents the optimization process for finding the optimal
input variables. We proposed a probability of performing an optimization step which
is a monotonically decreasing function of the prediction error. We used Gaussian
RBFs with a variable scaling of the inputs, to represent the approximated objective
function. The scaling of the inputs was performed using the iterative algorithm pro-
posed in the previous chapter. The coeflicients of the RBFs were estimated using
singular value decomposition to obtain the pseudoinverse of the matrix of RBFs.
Table 3.1 shows a summary of the number of function evaluations required to
find the optimal value for the different functions tested, together with the results ob-
tained using the Broyden-Fletcher-Golfarb-Shanno (BFGS) gradient based nonlinear
minimization algorithm. It is obvious from this table, that the algorithm performed
well in many of the test problems. However, the performance of the model-based
optimization deteriorates, relative to the second order gradient based algorithms, as
the number of dimensions increases especially in the case of highly varying functions
such as Wood’s function. This is not surprising since the number of sarnples required
to achieve a certain accuracy in approximation is determined by the degree of vari-
ation of the function and the number of dimensions. The algorithm performs best
for functions of low dimensions or slowly varying functions which may contain many
local minima. In such a case, the model-based optimization may recover most of the
local minima in a much lower number of function evaluations. Another case where
model-based function optimization might be more efficient, is when the physical ob-
servations of the function to be optimized are noisy. Gradient based optimization
techniques may not work in such cases. The performance of the algorithm depends
on the approximation of the objective function. We found that a weighted least
squares, where low value data are weighted more than observations of higher values,
works slightly better than plain least squares. Since it approximates the data better

near the minima. Other possible improvement to the objective function approxima-

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 68

RBF BFGS
of evaluations accuracy # of evaluations accuracy

Branin’s 29 < 0.01 28.2 < 0.01
Rosenbrock 26 0.001 86.4 < 0.001
Wood 160 0.0036 197.7 < 0.001
Helical 108 0.0044 251 < 0.005

Hartman 232 -0.712 167.6 -0.918

Table 3.1: Comparison between the RBF model-based optimization with BFGS
method

tion, may result in an improvement in the optimization algorithm. Possible ways
to improve approximation may include limiting the range of input space adaptively

based on previous performance and using local function estimators.

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION

2 T T v T T T
o o
o
i o o o
1.5 =y o o
i o
o o
1+ o o
o ° o
o o o o
o.s} ©
o o o o
o o
ol ° e o
o
o =] o
-0.5| ° e
o o o o o
-1 o o o o
o o
o o o °
-1.5 o ° o ° o o
o o o
.2 " . L : 2 N
-2 -1.6 -1 -0.5 o 0.5 1.5
x1
2 r —s T . —s -
o 4 °© o o
o o A o
1.6
o o (=]
© co °
1 o
o
o ° %
o o o
[0 R of o o [«]
o
° o
or o . o o
° &
o o
-0.5 i o i
o
o
-1} o o ©O
o o o
o o
1.5+ ©0o° o® oo =]
o
o
-2 L N N . . .
-2 -1.5 -1 -0.5 (o] 0.5 1.5
X1
2 T T T T T T
o
o
o
1.5} o o
o o
o
1 o o o
o © (=4 (=}
o o o®
o.6} ° o
o o o o &
e > o o e
o} o o o
o o © o
o
-0.5 i o
o o o
o
-1 o e o
o
o
-1.5
o o o o
-2 I — 1 1 had 1 1
-2 -1.6 -1 -0.6 o 0.5 1.6
x1

69

Figure 3-1: Comparison between density based spacing (upper graph), randomly
spaced (center) and value-based spacing (lower graph) of the data for the Rosenbrock’s

banana function.

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 70

Figure 3-2: Contour of Branin’s Function and result of 35 iterations of the sequential
optimization algorithm. The symbol ‘x’ represents an exploration step and the symbol
‘o’ represents an optimization step.

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 71

0-9 1 I I I I 1 1 1 I

T

0.8

0.7

P(opt, k)
o o
' (3

o
N
T

1 1 ! |

0 5 10 15 20 25 30 35 40 45 50
Iteration Number

0 | 1 1

Figure 3-3: Probability P(opt, k) as a function of iteration number k for 50 iterations

CHAPTER 3. OPTIMIZATION USING FUNCTION APPROXIMATION 72

N
[$4)
T

—
[$4)
T

0.5

Figure 3-4: Result of the first 30 iterations of the Gaussian RBF based optimization
of the Rosenbrock’s banana function. The solid curve represents the minimization of
the higher cost term of the banana function. The symbol ¢ x ’ and ¢ o ’ represent an
exploration and optimization step respectively.

Chapter 4

Learning Trajectory Optimization

4.1 Introduction

In the previous chapter we discussed different methods for searching for the best
action given a certain objective. However most motor activities involve a sequence
of actions. The learning system has to plan the sequence of actions that optimizes
a given goal. Very limited knowledge is assumed initially about the dynamics of the
environment to be controlled. This limited knowledge varies with the method used
to find the optimal control.

As an example of learning trajectory optimization, consider a violin player. The
patterns of motion of his/her arms are optimized in such a way as to obtain the best
music quality. This process of optimization and learning may take many years of
practice. Many other examples of learning optimal motion by practice abound in
the different fields of sports and performing arts to optimize many different objective
functions such as speed, force, accuracy, gracefulness and smoothness of motion.

What makes the learning and optimization of trajectories a difficult problem is the
dynamic nature of the system. An action taken at one instant in time will affect the
behavior of the system at future times. Therefore in order to determine the best, action

to take now, it is necessary to assess its contribution to the future behavior of the

73

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 74

system. This problem has been termed temporal credit assignment. Many different
approaches for learning and optimizing a sequence of actions have been proposed in
the literature. These approaches can be generally divided into direct and indirect
methods. Direct methods involve finding the control actions or control laws directly
without explicitly forming a model of the dynamics of the system that we want to
control. Methods such as reinforcement learning [Sutton, 1992] and genetic algorithms
[Goldberg, 1989] are capable of direct optimization of the control action or control
law and may be classified under this category, although these methods can also make
use of a model of the system dynamics. Indirect methods, on the other hand, involve
an explicit modeling of the dynamics of the system to be controlled and then use this
model to find the optimal trajectory (open loop control) or the optimal control law
as a function of the states of the environment (closed loop control), using dynamic
optimization techniques such as calculus of variations and dynamic programming.
In this chapter we will focus only on indirect methods. We will only explore the
variational indirect methods based on differential dynamic programming and calculus
of variations. First [will give a brief introduction to the learning optimal control
problem that I will attempt to solve and then describe in more detail the solution
approach that will be followed. Some simulation examples of trajectory optimization
of robot arm motions will then be presented to illustrate the applicability of the
approach. The problem of choosing the objective functions to be optimized will not
be discussed here. These objective functions are sometimes given explicitly by a
teacher {e.g. jump as high as possible, or run as fast as possible), although more
often, the criteria governing the choice of the objective function are not as clear and
may depend on many factors and personal preferences (e.g walk or move comfortably
or in an aesthetically pleasant manner). It is important to mention that the objective
functions may be a function of either or both the control and output variables. Jordan
[Jordan, 1989] views some objective functions in the context of motor learning as

“active constraints on the process of learning” and gives some examples of these

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 75

constraints that can be applied in different coordinate systems. Objective functions
used in most of the engineering applications are quadratic functionals of the states
and controls. These are selected primarily for the ease of computation.

Unlike dynamic programming methods, which generate an optimal control law
(closed loop control), trajectory optimization techniques based on variational princi-
ples generate only an open loop optimal trajectory which is generally only optimal
in the neighborhood of some initial state. Nevertheless, finding a good open loop
control trajectory is very important in fast motions especially when there exists a
delay in the feedback loop. In addition, a good open loop optimal trajectory may
help simplify the feedback loops and reduce the feedback gains required to achieve a
desired performance level. More importantly, to obtain a closed loop optimal solution
for general nonlinear systems using dynamic programming is still a challenge for real
world applications involving more than few states. This is due to the curse of dimen-
sionality, which is the exponential increase in storage and computation requirements
as the number of dimensions increases [Bellman, 1962). From a biological point of
view, it has been argued that learned fast movements are probably performed in an
open loop fashion. This argument is based on the long delay associated with feedback
loops (usually of the order of 100 msec.). Moreover, feedback control by itself can
not explain the ability of deafferented monkeys to make fairly accurate movements
[Polit and Bizzi, 1979]. However, open loop control alone is not desirable due to
the presence of disturbances. If the effect of these disturbances is not reduced by
the use of feedback, they may get integrated over time and we may end up with a
different trajectory than the optimal one. This is a serious problem especially in the
cases where the model used to obtain the optimal trajectory is not very accurate
and when the system near the optimal trajectory is unstable. We will discuss in this
chapter different possible techniques for extending the open loop learning optimal
control methods aeveloped here to closed loop optimal and suboptimal control and

give different simulation examples of robot arm motion optimization. Also, if it is

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 76

possible to obtain an almost real-time open loop optimal control, it may be possi-
ble to compute this open loop control more often based on the current state of the
system, generating a feedback optimal control. Methods for parallelization of the
computation of the open loop trajectory, such as a Hopfield network implementation,
may prove to be useful to implement the optimal control. We will discuss at the
end of the chapter, how to map an open loop optimal control problem into a stable
Hopfield network. The optimizing network connections will depend on the goal of
the movement and the dynamic model of the environment. Starting from any initial
conditions, the network will converge to the optimal trajectory in a short time that

also depends on the strength of the connections.

4.2 Learning Optimal Trajectories

The problem we would like to address in this chapter can be stated as foilows :
Given an unknown dynamical system with known initial conditions, we would like to
find the optimal control trajectory u{t) that minimizes a cost function by practicing.
The unknown dynamical system can be represented by a set of ordinary nonlinear
differential equations of the form 4.1. The cost function is usually a functional of the
states and controls histories as shown in equation 4.2. In these equations we assume

that the system to be controlled is time invariant.
x = f(x,u), x(to) = Xo (4.1)

J=8(x(t)ty) + [Lix(t)u(t)d (4.2)

where x(1) € R™ describes the state of the system as a function of time, and u(t) € R™
represents the set of controls as a function of time. The different components of
the state and control vectors needed to uniquely describe the system evolution as a

function of time are assumed to be known and to be fully observed. This assumed

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 7

prior knowledge is needed to model the dynamical system but may not be necessary
in the case of direct optimization techniques. L(x(t),u(t)) is the cost accrued at each
instant of time and ®(x(%),t;) is the cost of being in a certain final state at a certain
final time.

We search for the optimal trajectory by repeating the motion several times and
at each time refining and adjusting the control trajectory based on the accumulated
experiences from the previous trials which are used to build a forward model of
the dynamics of the system. The approach we are taking can be divided into two
separate phases as shown in figure 4-1. The first phase is a learning phase and the
second an optimization phase. These two phases are iterated until the cost functional
stops improving. During the n** iteration, a movement is generated using the control
action obtained from the (n — 1) iteration with some noise added to it. The addition
of the noise is important to avoid the convergence of the learning algorithm to a local
minimum and to insure the continuous addition of information at each iteration. This
is also very important for the learning phase of the algorithm, especially when the
measurements are noisy, to avoid overfitting of the dynamic function in one small
area of the input space and very poor fitting in other areas. This will result in
instability. The level of the noise is reduced gradually as the number of iterations
grows so as to allow the algorithm to eventually converge to the optimal solution.
The dynamics of the system are represented using function approximation techniques
to represent the rate of change of the state vector as a function of the states and
controls (i.e. f(x,u) in equation 4.1). We used the HyperBF technique with Gaussian
basis functions to represent the different components of f(x,u) using one separate
network for each component. The forward model is used to predict the effect of the
current control trajectory on the final cost, and to estimate the rate of change of
the cost with respect to this trajectory. This information is then used to update
the control sequence. We use classical optimal control theory based on variational

calculus to estimate the gradient of the cost functional with respect to the control and

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION

Noise
Y
+\ . _ Real System Dynamics
v > X
”‘/ x=f(u,x)
*
u

Neural Network Forward Model

Ao
- x=f(u,x)

Optimization of Cost J -

Figure 4-1: Schematic representation of the learning optimal control algorithm

4
»
-

78

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATICN 79

to find the open loop optimal control trajectory. This is done using the dynamical
system constraints 4.1, which are approximated by the Gaussian HyperBF networks,
in addition to any other extra constraints on the control or the states of the system.
The estimation of the Gaussian HyperBF distance metric parameters is performed

using the iterative algorithm described in chapter 2.

4.3 The Exploration Problem

In order to build a forward model of the system to be optimized, it is necessary
to be able to explore the effect of different inputs in the area of the state space of
interest. As mentioned in the previous chapter the goal of exploration conflicts with
the goal of finding the optimal control. For example, if the purpose of the optimal
controller is to hold the state at a fixed value, ithe controller will not be able to
do this in a stable and robust manner without first knowing what is the respense
of the system for different input values. In the previous chapter, we discussed the
active exploration problem as it applies to the optimization of cost functions that do
not depend on dynamics. In such a case, it is possible to freely choose to explore
any region of interest in the input space. However, the behavior of the optimization
algorithm depended on the exploration strategy used. We proposed an algorithm for
exploration, which memorizes the previous areas explored and tend to explore more
in areas of low density of data points. We also tested a modification of this algorithm
which tended to explore areas of the state space where the outcome has been more
favorable, in addition to the density of data points. We found that for the global
RBF functien approximator used, exploration based on density only worked better
than exploration based on the outcome of the function in addition to the density of
points. For dynamic systems, however, there are many different problems that may
restrict the exploration of the input space. Issues such as stability, and reachability

of the different states from a given initial condition and initial time play a major role

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 80

in the choice of exploration strategy. On the other hand, in order to better identify
the model of the system it is necessary to always excite the system to discover all
the possible modes. This issue has been recognized early by adaptive control and
systems identification theorists and has been called persistence of excitation. Another
constraint on the exploration is that we are interested in finding the optimal control,
therefore we have to strike a balance between identification and optimization. This
is the exploitation-exploration problem discussed in the previous chapter. It has also
been termed the dual control problem in the control literature [Feldman, 1966]. As
also discussed in the previous chapter, the system identification part should not be
treated separately and should depend on the purpose of the model that we would like
to develop, and the representation of the model. For example, if the need is adaptive
regulatory control, stability issues are very important, and indeed modern theories
of adaptive control use Lyapunov stability results in order to design a stable control
system [Narendra and Annaswamy, 1989; Sastry and Bodson, 1989]. For iterative
learning of the optimal control, as is the objective we would like to achieve in this
chapter, stability is not critical since we test the system only for a short period of
time. The persistence of excitation requirement depends on the representation of
the model. For models represented with a linear combination of nonlinear functions
of the states, such as the RBF forward modeling approach we use here, in order to
identify the linear coeflicients of the nonlinear functions, it is necessary to use inputs
that excite those functions. This has been termed functional persistence of excitation
by Sanner and Slotine [Sanner and Slotine, 1992]. Although these constraints on the
control input have been well known and studied by adaptive control theorists, there is
no general methodology for the choice of inputs. Control inputs are chosen mostly in
a heuristic fashion in order to satisfy the persistence of excitation requirement. Guez,
Rusnak and Bar-Kana propose the use of a two-objective function optimization, one
representing the control objective and the other representing the estimation objective

given some a priori information about the class of tasks that the system may be

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 81

required to do in the future {Guez, Rusnak and Bar-Kana, 1992]. In the simulations
we report here, we use a heuristic approach to the exploration problem. Exploration
is performed along the gradient of the estimated cost function, in addition to a smail
random component. We found that such a heuristic scheme works fine for most

problems.

4.4 Solution of the Optimal Control Problem

In this section we will describe briefly the theory of dynamic optimization based on
the calculus of variations and Pontryagin maximum principle, as applied to dynam-
ical systems described by HyperBF functions. We will only focus here on continu-
ous, time invariant systems. Many of the mathematical relations will be stated here
without proof. Proofs of these relations and a detailed analysis of the theory can
be found in [Bryson and Ho, 1975]. Dyer and McReynolds offer a parallel analysis
based on the principle of optimality and dynamic programming approach [Dyer and
McReynolds, 1970].

Given the cost functional J described by equation 4.2 above, and the constraints
that govern the evolution of the dynamical system approximated by the HyperBF
functions, we would like to find the optimal control u(t) as a function of time. Based
on Lagrange theory, this constrained optimization of the cost functional J is equiv-
alent to the unconstrained optimization of the augmented cost functional J’ given
by adjoining the constraints to the cost equation J through the use of Lagrange

multipliers.
I =ox(t)) + [Lix(t)u) + MOTER@Ou@) - %) &t (1)

The vector A(t) € R" represents the Lagrange multipliers. Since the constraints
represented by the dynamical system equations should be satisfied at all times from ¢

to ¢y, the Lagrange multipliers also have to be functions of time. Any additional static

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 82

constraints, such as constraints on the final state of the system could be adjoined to
the cost functional in the same way, but using a constant Lagrange multiplier instead.
However, we will only focus on the special case described by equation 4.3 to simplify
the analysis. The Lagrange multipliers A(t) have many different interpretations. It
can be shown that, on the optimal trajectory, A(t) represent the partial derivatives of
the cost functional J*(¢) with respect to the different components of the state vector
x(t) while holding the control u(2) constant; where J*(t) is the optimal cost to go
from time ¢ to t;. A(t) is also referred to in the literature as influence functions

[Bryson and Ho, 1975] or costates. If we define the Hamiltonian function as:
H(x(t), u(t)) = L(x(t), u(t)) + Mt)"£(x(t), u(t)) (4.4)
Then the augmented cost functional J’ could be rewritten as in equation 4.5

7= 8lx(t)ty) + [(HO(),u(0) - N0 de (45)

The Hamiltonian can also be inteipreted on the optimal trajectory as the negative of
the partial derivative of the optimal cost to go with respect to time (equation 4.6).
This relation could easily be derived from calculus of variations principles.

aJ" . aJ*
ot =-H (.’B, oz) (4‘6)

/
The superscript * defines the differert variables at the optimal trajectory. Equa-

tion 4.6 is also called the Hamilton-Beliman-Jacobi equation [Bryson and Ho, 1975]
and it provides the link between the calculus of variations approach and dynamic
programming. The optimal value of the cost functional J’ occurs when the increment

dJ' is equal to zero. This is a necessary condition for optimality. If we ignore second

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 83
and higher order terms, dJ’ can be represented using equation 4.7
tf .
dJ' = (Q(x(tf),t,)—)\(t))de(tf)+/ [(He 4N 6z 4+ H,T6u+(Hy—%)T6A)dt (4.7)
to

The necessary condition of optimality leads to the following canonical optimal control
equations :

State equation :

X = QA{- = f(x,u) (4.8)
Costate Equation :
i 9H _ Ofyr, OL
—A= Oz _(6:1:) A+6.1: (4.9)
Stationarity Condition :
OH
50 =0 (4.10)
Boundary conditions :
x(to) = %o (4.11)
Aty) = . (t)) (4.12)

In deriving these equations, we have assumed a specified final time ¢; and no ad-
ditional hard constraints on the state. For more general continuous optimization
problems, only the boundary conditions are changed, the other canonical equations
of the states and costates remain the same. [Bryson and Ho, 1975! provides an excel-
lent introduction to the more general dynamic optimization cases. The solution of the
optimization problem reduces to the solution of the 2n first order ordinary differential
equations representing the state and costate equations with mixed boundary condi-
ticns, in addition to m algebraic equations representing the stationarity conditions.
There are many classical iterative numerical methods for solving such problems. In
general, these methods work by guessing one of the unkrowns, such as initial or ter-

minal states or a control trajectory, and then integrating the differential equations

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 84

and compute the different trajectroies, and then use the necessary conditions to iter-
atively improve the guess until all the necessary conditions are satisfied or no further
improvement is obtained. For example if the optimal control u(t)* could be written
in terms of x(t) and A(t) using the stationarity conditions (as is the case in linear and
bilinear systems for example), then the problem reduces to a normal two-point bound-
ary value problem and could be solved by any of the numerical methods available for
solving such problems such as the shooting or mesh methods [Numerical Algorithms
Group, 1984]. In the following simulations, only general first order and second order
gradient methods have been used. These start by guessing a control u°(¢) and then
integrating the state and costate equations forward and backward respectively, then
update the control in a direction that reduces the objective function. The simplest of

such methods, gradient descent, updates the control in the direction of the gradient.

3_H
Ju

wt! = ul —¢(e>0 (4.13)
Second order gradient methods, such as the successive sweep algorithm, take into
account the second derivative of the objective function with respect to u and z. The
second order terms are computed recursively from the final time ¢; backwards. The
change 6u in this case is similar to a time varying linear feedback law. Second order
methods are much more computationally expensive, requiring the solution of a matrix
Riccati equation (n(n + 1)/2 differential equations) in addition to the solution of the
n state equations. These methods have very good convergence near the optimal
point, but require that the initial guess u°(t) satisfies the constraint that H,, be
positive definite. In all the simulations that follow, a conjugate gradient algorithm
has been used. The conjugate gradient method behaves like a first order gradient
method in the first few iterations and then gradually approximates a second order
method as the number of iterations increases. However, unlike second order methods,
it does not require the computation of second order partial derivative matrices and is

computationally much simpler. The basic conjugate gradient algorithm for optimal

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 85

control is illustrated by the following steps :

1. At iteration j, use the control u?(¢), and integrate the state equations forward

from the given initial conditions z,.

2. Integrate the costate equations backward starting from the final conditions

Mts) = ®.(x(ts)), and compute M(t)

3. Simultaneously with setp 2, compute the gradient %j, using the relation

80 = L.+ ATf,

4. Set u*!(t) = u(t) + Pa’, where the direction a’ is a conjugate direction and

is found by the equation : a’+! = —%—’:-JH + m’a’, I is a scalar that minimizes
S . qedit
J(w +Pa’), and m’ = uﬁmr"
Su

The conjugate gradient algorithm is used here because of its relative ease of compu-
tation over the second order methods, and the relatively faster convergence compared
to the first order algorithms. Moreover, since the computed gradients are derived
from the Gaussian HyperBF function approximation and are not very accurate, there
is practically no advantage of using methods with higher convergence rates, such as
second order methods. in addition, the second order methods require approximat-
ing the second derivatives and further care to guarantee the stability of the Riccati
equations. In the simulations that follow, second order optimization techniques are
only used after a few iterations of the optimization-lc arning cycle to compute optimal

linear feedback gains in the vicinity of the open loop trajectory.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 86

Figure 4-2: One Link Manipulator

4.5 Computer Simulations

4.5.1 One link minimum torque change trajectory

The first simulation represents a simple one link ideal manipulator shown in figure 4-2

and whose dynamics are described by equation 4.14.
0=T— Lmgcos (4.14)

where T represent the torque, L is the length of the link, m represents the mass,
and g is the acceleration due to gravity. The objective is to find the sequence of
torques that moves this link from rest at 8o = 0 to rest at §; = %, while minimizing
the change in torque applied over time. This minimum torque change criterion,
described by equation 4.15 has been proposed by Uno et al. [Uno et al., 1989] as a
possible criterion governing human arm trajectory planning. Uno has shown, using

this criterion, that it is possible to simulate motions similar to those observed in

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 87

humans and to explain the asymmetry of the motions under gravity.
ty OT
J = / —)? dt 4.15
M (4.15)

Other possible criteria have also been proposed [Nelson, 1983; Hogan and F lash, 1987],
among them the minimum Jerk hypothesis has been the most popular. The minimum
Jerk hypothesis is purely kinematic and does not depend on the configuration of the
arm. For the simple one link manipulator under gravity, as in this example, and
for a large range of movements, the minimum torque change criterion yields results
very close to the minimum Jerk criterion, and the minimum torque change trajectory
appears to be very close to symmetric.

The forward model is represented by a Gaussian HyperBF network with three
inputs (8, 4, T) and one output (5) Although the angular velocity does not
appear in equation 4.14, and therefore does not have any effect on the evolution of
the system, it is included here as one of the inputs to the HyperBF network to show the
ability of the HyperBF approximation to deal with irrelevant variables. Since the cost
function J contains derivatives of the torque and hence does not have the canonical
form described in equaticn 4.2, the state equations are augmented with a fictitious
state described by equation 4.16, so that the cost function will be a function of the
states and controls only and reduce to th2 form of the cost described in equation 4.2
This augmentation of the state equations can also be used for higher order derivatives
of the states or controls. It js assumed here that the learner knows the correct order

of the system.

T = u (4.16)
J = /t" u(t)? dt (4.17)
(4.18)

To initialize the HyperBF model, we used 90 random data points near posture to

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 88

estimate the HyperBF coeflicients. We used 10 Gaussian RBF's distributed randomly
in the same range as the data points. The centers of the RBFs remain fixed, but
tneir number increases as more data are accumulated. The distribution of the initial
data points as well as the location of the initial centers are shown in figure 4-3. This
figure also shows the final optimal trajectory obtained after learning. As shown in the
figure, the range of velocities and accelerations used in the initial estimation are very
small and close to posture. The range of the initial velocities used to learn an initial
model is about 2% of the range of values of the final learned trajectory. The range
of initial acceleration used is about 10% of the range of accelerations of the optimal
trajectory. Figure 4-3 also shows the ability of Gaussian HyperBF networks to linearly
extrapolate from a narrow range of data. We used a zero-torque initial trajectory to
initialize the learning-optimization algorithm, that is we let the arm swing freely under
gravity. We then used this trajectory to update the HyperBF forward model, and
used the conjugate gradient algorithm to find the optimal trajectory. The trajectory
obtained after the first iteration of the algorithm is shown in figure 4-4. As shown
in the figure, the trajectory found by the algorithm approximates very well the ideal
trajectory. This ideal trajectory is obtained numerically using the exact model and
the same conjugate gradient dynamic optimization. Also shown in the figure is the
ideal minimum jerk trajectory obtained analytically. This latter trajectory can be
modeled by a fifth order polynomial for the position. All the subsequent motions

after the first trial were essentially equal to the ideal movement.

4.5.2 Minimum torque change of a two link manipulator

This example shows how to apply the algorithm described above to learn the minimum
torque change trajectory for a two link manipulator. The goal is to plan a trajectory
from a starting initial position to a final position in a specified time so as to minimize
the sum of the rate of change of torques applied at the joints, without prior knowledge

of the dynamics of the arm, except for a complete measurement of the states as a

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 89

204

105

Torque
o
L

-104

-20

Angular Velocity

Angle

Figure 4-3: Initial distribution of angles, angular velocities and torques used to gen-
erate the initial HyperBF model. The symbol 'o’ represents the location of the data
points, the symbol ’x’ represents the initial location of the centers of the HyperBFs.
The continuous trajectory represents the learned minimum torque change trajectory.

CHAPTER 4.

8.0

Angutar Velocky

-20.0

LEARNING TRAJECTORY OPTIMIZATION

Minimum Jerk
Ideal Tra]lgctory
Leamed Trajectory

Minimum Jerk Angular Velocity
Ideal Angular Velocity
Leamed Angular Velocity

Minimum Jerk Angular Acceleration
Ideal Angular Acceleration

Leamed Angular Accoleration

90

Figure 4-4: Learned Minimum Torque Change Trajectory for a One Link Manipulator.
Also shown in the figure are the correct model minimum torque change and minimum
jerk trajectories for the same movement for comparison

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 91

Figure 4-5: A two link manipulator. Points A;, A; and Aj are used as initial or final
position in the simulations described in the text

function of time (e.g. angular positions and velocities), in addition to the torques and
accelerations. Three points A;, A, and Aj in figure 4-5 are selected to be either the
starting or the final position in all the simulations that follow. In the simulations, the
forward model of the dynamics is represented by two Gaussian HyperBF networks,
the outputs of which model the argular accelerations at the two joints. Each HyperBF
network has six inputs representing the angles, angular velocities and torques at the
two joints. The HyperBF networks are also used to generate the derivatives of the
angular accelerations with respect to the different states and torques. These will be
used by the dynamic optimization subroutine. Since the objective function is not in
the general canonical form and contains derivatives of torques, two fictitious states

are added to the forward model. The time derivatives of the torques are considered

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 92

to be the control variables, and the torques at the joint are considered to be two
additional state variables. This representation reduces the problem to the general
canonical form.

We initialize the HyperBF networks using 120 random data points near posture
selected at relatively low accelerations and velocities. The ranges of velocities and
accelerations are the same as used in the one link case. An initial movement is then
generated using zero torques at the joint and starting from the initial states. The
torques are then updated using the conjugate gradient algor’:hm and the forward
Gaussian HyperBF networks. The new torques are then applied after the addition of
random white noise and the forward model is updated using the new experiences. A
new data point is only added to the pool of experiences if the distance between this
point and all the previous points is larger than a minimum distance 6. The distance
metric used to define 6 is the same as the one used in the HyperBF approximation.
We iterate the procedure until the trajectory stops improving. The torques, angular
positions, velocities and accelerations at the two joints are shown in figures 4-6 and 4-
8 at four different iteration numbers. As observed from the figures, the learned
trajectory landed at the desired states in relatively few iterations of the algorithm
(less than 20). The trajectory of the end point for the movements represented in
figures 4-6 and 4-8 are shown in figures 4-7 and 4-9 respectively. As clear from the
figures, these trajectories are not symmetric, and curved and depead on the starting
and final positions, unlike the minimum Jerk trajectories which are straight lines and
symmetric.

Unlike the minimum jerk trajectories, there is no closed form solution for the
minimum torque change trajectories. Therefore, in order to test the accuracy of the
learned minimum torque trajectories obtained, we compare them with those obtained
numerically using the exact model of the two link arm and the same numerical con-
Jugate gradient optimization algorithm with the same initial conditions. Figure 4-10

and 4-12 are plots of the trajectories that minimize the sum of the rate of change

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 93

400

10.0

Torque at joint 2

s
«
2
g

0.0

Angular velocity 2

b 20l
'g 15.0, E 150,
10.0 g 100}

5.0 g 5.0

]

% 00 S oo
-5.0 g 50k
-10.0 100}
150 -150L

Figure 4-6: Torques, angular positions, velocities and accelerations at both joints at
four different iteration numbers. The dotted, dashed, dotdash and solid lines represent
iteration 1, 5, 10 and 20

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 94

7.0 =

6.0 |-

50

Tangential Velocity

4.0 -

150

100 |-

50

0.0

Tangential Acceleration

-10.0 |-

-15.0 L

Figure 4-7: X, Y positions, tangential velocities and accelerations for the movements
shown in the previous figure. The dotted, dashed, dotdash and solid lines represent
iteration 1, 5, 10 and 20 respectively.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 95

8
o

= N 200,
c <
-3 S
@ ®
® o 100
3]
5 §
- [
0.0
-10.0

Angle 1

Angular velocity 2

<o}
<ol sol
- 100 F g 100
: =R
so (4.’ ==\ 8 Solf.
E 2 §
0o . b s e '
g 0.20 0, 0.60 0.80 10 & 0o
g‘ scl ,/ g sof
P
a0t W72 -100}
-15CL -150L

Figure 4-8: Torques, angular positions, velocities and accelerations at both joints at

four different iteration numbers. The dotted, dashed, dotdash and solid lines represent,
iteration 1, 5, 10 and 20

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 96

| e o ———

1.0} e A2

-20L

»
o
1

Tangential Velocity
w
(=}

N
o

1.0

0.8-

15.0
10.0

5.0

Tangential Acceleration

0.0

-5.0

-10.0

-15.0 L

Figure 4-9: X, Y positions, tangential velocities and accelerations for the movements
shown in the previous figure. The dotted, dashed, dotdash and solid lines represent
iteration 1, 5, 10 and 20 respectively.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 97

of torques obtained by numerical optimization on the exact model and the learning
optimal control algorithm described above. As shown in the figures, both trajectories,
although not exactly the same, agree very well, except for the second joint trajectory
when moving the arm upwards. The reason for this discrepancy is due to the presence
of local minima that result from the use of high penalties in the cost function to en-
force the end constraints. This is illustrated by figure 4-11 which shows a comparison
of the accumulated torque change cost between the ideal and the learned trajectories
of figure 4-10. As shown in this figure, the accumulated cost is approximately the
same at the end of the trajectory.

It is important to stress here that the forward model of the dynamics obtained after
learning is only accurate around the optimal trajectory. Although the forward model
predicts very well the dynamics near the optimal trajectory, it looses its accuracy in

other areas of the state space.

4.5.3 Trajectory Following

There are many different methods for learning trajectory following using function
approximation techniques or neural networks. These include directly modeling the
inverse dynamics and /or modeling the forward dynamics as described in chapter 2. In
this section, we describe another method for trajectory following using forward mod-
eling and dynamic optimization, by representing the problem as an optimal control
problem. The cost function in this case is a measure of the error between the desired
and actual trajectories in addition to any other constraints or costs of the control
variables. We use the learning optimal control paradigm to generate the open loop
control trajectory for a two link planar robot, so that the end-point follows a vertical
circular trajectory with a constant angle of rotation. The cost function is described in
terms of the end-point cartesian coordinates. Although the objective function could
also be described in terms of the joint coordinates, there are some advantages for

using the end-point cartesian coordinates instead. First, errors in end-point coordi-

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 98

T 400 N 209,
£ €
o k=3
-]]
© o 100
g 200 g
(e} (o]
[[
0.0
0.0
-100}
-200L -200L
-
@
=)
[=
<
2 1 L Il 1 J] 1'4 1 L L | Jd
8.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
o 4or time S 20F time
= 2
3 3
e g
e 20 B [
o o
3 3
o [=]
[= c
¢ 0.0 1 1 1 1 L=
0.20 0.40 0.60 0.80 1.00
time

20}

-40L 20L
~ 100 N 100~
g - g
s fud
o SOf)
® o 50}

Q
§ 0,0 1 L 1 ' '} 2
5 0.20 0.40 .60 0.80 00 00
> tife >
E 50} E
£0
-100}
asol 100l

Figure 4-10: Comparison of torques, angular positions, velocities and accelerations
using dynamic optimization on the exact and the learned models. The solid lines
represent the minimum torque change trajectories obtained using the exact model
and the dashed lines represent the trajectories after 20 iterations of the learning opti-
mization algorithm. These trajectories represent moving the arm vertically upwards.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 99

30,

20}

Accumulated Torque Change Cost

] L]
0.00 0.20 0.40 0.60 0.80 1.00
Time

Figure 4-11: The accumulated minimum torque change cost as a function of time for
the trajectories generated by the HyperBF controller and the ideal ones. The solid
lines represent the computed minimum torque change cost using the exact model,
while the dotted lines show the minimum torque change cost obtained by optimizing
the learned dynamic model.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 100

T 400 N 200,
c £
-1 K=
= ®
o 200} o 100}
3 3
g g
2 2
oo L 1 J 0.0 L 1 1
. . 0.60 0.80 1.00 0.20 0.40 .60 0.80 1.00
time time
-20.0 100}
400l 200l
e N
T 20r P 20,
=) =]
c
& <
18}
16}
1_4 L L L '}
0.00 0.20 0.40 0.60 0.80 1.00
- N 20- i
2 > time
) °
2 > 10 -/\
s 8
= p=]
o (=]
c
E < 00 1 1 : 1]
0.20 0.40 0.60 0.80 00
time
10}
_4'8 1 L 1 1] 20L
- 100'00 0.20 0.40 0.60 0.80 100 100
A - ume A -
§ 3
E so} g
® s Sof
g a3
0.0 L 1 1 A 2
F 0.20 0. 0.60 0.80 100 5 00 R . .)
a time 2 020 \ 040 060 7 080 1.00
g scf g time
50}
-100}
asol 100l

Figure 4-12: Comparison of torques, angular positions, velocities and accelerations
using dynamic optimization on the exact and the learned models. The solid lines
represent the minimum torque change trajectories obtained using the exact model
and the dashed lines represent the trajectories after 20 iterations of the learning
optimization algorithm. These trajectories represent moving the hand horizontally
from left to right.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 101

nates are in general a nonlinear function of the errors in joint coordinates, and what
matters most for this task is to keep the magnitude of the errors in end-point coordi-
nates as small as possible. In addition there may be more than one solution for the
trajectory following, and using the end point coordinates wili result in not restricting
ourselves to any particular solution a priori. However, for the particular two joint
arm simulation described here, there are only two possible soluticns. Which one will
be chosen depends on the initial conditions and/or the limitations on the joint angles.

The cost function used is described by equation 4.19 :
ty . .
J = [%l 0,0) = Xrep)"Qxep(0,6) = Xreg) + 77 R 7t (4.19)
to

where x,.s is a vector € R* describing the reference z,y positions and velocities,
Xep € R* represents the end point z and y positions and velocities and is a function
of the joint angles positions and velocities. The term 77 R 7 represents the torque
cost. We assume complete knowledge of the kinematics of the robot, although these
also may be learned from examples.

The simulation resuits for following a vertical circular trajectory are shown in
figure 4-13. This figure shows the open loop simulation, using the learned optimal
trajectory for the first, 5'* and 20** iteration of the algorithm. As shown in the figure,
at around the 5% iteration, the open loop trajectory obtained is already very close
to the reference one. Another point to note from the figure is that even after 20
iterations, there exist a very small error in the open loop trajectory. This reflects of
course the small inaccuracies of the forward dynamics model and shows the need for

feedback to obtain exact trajectory tracking.

4.6 Feedback Control

All the simulations of the previous section were done using the optimal open loop

control trajectory obtained from the dynamic optimization routine. However, in

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 102

10}

05|

°8s < s Ex

Angle 2

X3 3

-1oL) I L L 1 1
° 8 00 020 0.40 0.60 0.80 1.00

time
Figure 4-13: Circular trajeciory tracking for a 2 joint manipulator. Dotted, dashed
and dotdash curves represent trials number 1, 5 and 20 respectively. Solid curves
represent the reference trajectory.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 103

practical applications, open loop control is undesirable due to its lack of robustness
in the presence of uncertainties and noise. There are many possible ways we can
include feedback control in order to make the current open loop method more robust.
We will discuss some of the possibilities and show, using simulations, how these
techniques can be used to obtain an optimal feedback controller. These simulations

will also show the difficulties associated with the use of these techniques.

4.6.1 Dynamic programming around the optimal trajectory

Dynamic programming provides a global optimal control law. Unfortunately, due to
the curse of dimensionality, dynamic programming can not be used for more than few
dimensions. Both the amount of memory and the nnmber of computations needed to
compute the optimal law grow exponentially as the number of dimensions increase.
However, one of the advantages of dynamic programming is that the problem becomes
simpler as the set of possible actions and states is reduced. Therefore, if the number
of input and control dirnensions is small (3 or 4), we use dynamic programming in a
narrow tube around the optimal trajectory. The advantage is that we can discretize
the state space at a higher resolution inside this tube and we can obtain a higher
resolution control law. However, the curse of dimensionality problem is not solved.
We can also add a supervisory control whose role is to return the state of the system
to the tube around the optimal trajectory, if it leaves that tube. Sliding control could
be used for that purpose. This type of feedback is beyond the scope of this thesis and

will not be addressed further.

4.6.2 Learn an optimal feedback law using the field of ex-

tremals

We have seen that for more than 3 or 4 dimensions, dynamic programming becomes

unpractical due to the curse of dimensionality. Basically, the problem is that as the

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 104

number of dimensions increase, the state/control space volume increases exponen-
tially, and the number of possible alternatives at each instant of time becomes very
large. One possibility to solve this problem is to sample this huge volume randomly
near the desired trajectory and then use the generalization power of function approx-
imation to obtain an approximate control law in the neighborhood of interest. The
algorithm for learning a control law using approximated dynamic programming works

as follows :

1. First, a model of the dynamic system is learned by approximating the experi-

ences from previous trials using a neural network (HyperBF for example).

2. Using the calculus of variation and the model developed in 1, we generate many
optimal trajectories using many different initial conditions to the same final

hypersurface.

3. Again use function approximation, or neural networks, to approximate the op-
timal control u” as a function of the states x. In general, optimal trajectories
do not intersect except in very special circumstances, which makes the control
u® as a function of the different states defined. However, one important point
to keep in mind is that the optimal policy u* is in general a function of time,
in addition to the states, if the final time is specified. This is true even if the
instantaneous cost and the dynamic system are not functions of time. There-
fore in that case time should be used as an input variable in addition to the
state variables, to determine the optimal policy u(x,t). The optimal policy is
independent of time when the final time is unspecified and when both the in-
stantaneous cost and the dynamic equations are not explicit functions of time,

as is the case of minimum time trajectories of time invariant systems.

Although the use of this approach is much more robust than open loop trajectory
generation, there exist some difficulties associated with this approach: for example,

the extremal fields generated by the dynamic optimization routine should represent

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 165

the same local minima, otherwise the control law may not be smooth, and the ap-
proximated control law will be very inaccurate. Arnother difficulty, is that in the
case where the control law is time varying, and there are hard constraints to be met
exactly at the final time, the control law is very sensitive to the states near the final
time, which makes it very hard to represent using neural networks. Therefore, we
do not recommend using this approach by itself for finite horizon systems since the
dependence on time may complicate the approximation. It should be augmented with
additional feedback controllers to prevent instabilities due to inaccuracies of modeling
the controller.

We used this approach to learn the minimum torque change optimal control law
for the two link robot arm. The optimal trajectories used to learn the optimal control
were generated using the exact model of the robot. The learned HyperBF optimal
controller had 7 inputs (angular positions, velocities and torques in addition to time),
and 2 outputs (one-step-ahead torques). An example of the trajectories generated
using this approach to learning optimal feedback is shown in figure 4-14 for moving the
two joint arm vertically upward. The trajectory generated using the optimal control
law approximated by the Gaussian HyperBF network differs from the optimal one
generated using open loop optimal control with full knowledge of the dynamics. The
difference in the cost functiocn between the optimal trajectory and the approximated
suboptimal one, is shown as a function of time in figure 4-15. As obvious from the
figure, although the final state reached is very close to the desired state, the final
cost is about 25% higher when the HyperBF network optimal controller is used. We
attribute this higher cost to the difficulties mentioned above. It is interesting to note
that most of the increase in cost was generated during approximately the first fifth
of the trajectory, which shows the problem of the controller near the start of the

trajectory.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 106

T 40, N 200,
€ =
K- 2 ;
s 5 ;
® o 100k,
=] 3
5 5
= [
0.0
-100}f
°
g
1 L 1 1 Al J
3.00 0.20 0.40 0.60 0.80 1.00
> S 20 time
g g |
g 2
s k-
20}
40L 20L
~ 200, N 150,
$ 3
g g 100} .
g 100} g : '..
- < sof
< 2]
L 3 /
g g oo
-10.0
I sol
-200L -100L

Figure 4-14: Performance of the learned optimal controller. The solid lines represent
the minimum torque change trajectories obtained using the exact model and the
dashed lines represent the trajectories generated by the optimal controller. These
trajectories represent moving the hand vertically upwards.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 107

[t
(=]
1

20 e

Accumulated Torque Change Cost

Time

Figure 4-15: The accumulated minimum torque change cost as a function of time for
the trajectories generated by the HyperBF controller and the ideal ones. The solid
lines represent the computed minimum torque change cost using the exact model,
while the dotted lines show the minimum torque change cost using the HyperBF
controller.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 108

4.6.3 Use linear optimal feedback

The use of calculus of variations with linear systems and quadratic cost functions
results in an optimal linear feedback law. By linearizing the state dynamic equations
of a nonlinear system around the optimal trajectory, and expanding the cost function
to second order, we obtain an equivalent linear quadratic problem. We can then
use the same linear quadratic dynamic optimization theory to obtain a suboptimal
linear feedback gain around the optimal trajectory. This method will work as long
as the perturbations around the optimal trajectory are kept small. The optimal
linear time varying gains can be generated using the learned model of the dynamic
system. We tested the application of this method on the robot trajectory tracking
simulation shown in the previous section. Figure 4-16 shows a comparison between
the open loop and the closed loop trajectories using the optimal linear feedback gains
generated using this technique. As shown in the figure, when there are perturbations
in the states, the open loop performance deteriorates considerably, while the closed

loop error decreases with time.

4.6.4 Use a real-time open loop controller

One possibility for obtaining a closed loop feedback control, is to use an open loop
optimal controller which is updated often relative to the rate of change of the system
states. Practically, this is a difficult task since the amount of computation involved in
computing the optimal control makes it very hard to be useful for real time applica-
tions. Recently, however, there have been an increased interest in solving optimization
problems using parallel processing and some neural networks models such as Hopfield
Networks. Parallel processing may allow us to solve optimal control problems in real
time. In this section we will discuss some possible alternatives for implementing opti-
mal control problems in parallel analog hardware. In particular, we propose different
Hopfield like neural networks that implement the optimal control problem for linear

systems with quadratic costs. For linear systems, these networks are guaranteed to

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 109

- [41] 25,
o o
o o
[=4 [=
< <
08}l
1 1 1 L L J 1. - L L I]]
800 0.20 0.40 0.60 0.80 1.00 8.00 0.20 0.40 0.60 0.80 1.00
time time
L ol N _
P 00 ® 25
[=.] o
[= .o [=4
< o2} <

0.4

08

08}

A L 1 1 1) 1 L — 1 4
86— o2 o o060 ow 100 30602 o4 G0 060 1.00

time time

Figure 4-16: Comparison of the open loop and the optimal linear feedback closed loop
angular positions of the simulated 2-joint robot arm as a function of time. The upper
plots represent the open loop performance, while the lower plots represent the closed
loop optimal linear feedback performance at the two links. The solid lines represent
the reference trajectories and the dotted lines represent the trajectories generated
using the optimal controls.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 110

be stable and converge to local minima (Global minima for the case of linear systems
with quadratic costs). Other researchers have also proposed similar techniques for the
solution of optimal control problems [Lan and Chand, 1990; Mears, Smith, Chandler
and Pachter, 1993]. We will also explore extending the same techniques to non-linear
optimization problems. Unlike linear systems, stability of the optimization process
and convergence to the global minima are not automatically guaranteed for nonlinear
systems. A block diagram that describes a general closed loop optimal nonlinear con-
troller based on a Hopfield type optimization network is shown in figure 4-17. System
identification is used to estimate the forward model. The learned forward model and
its partial derivatives with respect to the states of the system and controls, are then

used to estimate the nonlinear connectivity matrix of the Hopfield network.

Hopfield optimal control implementation using penalty functions

Lan and Chand [Lan and Chand, 1990] and Mears et al. [Mears et al., 1993] have
proposed transforming the dynamic optimization problem to a static one by using a
penalty function to append the dynamic constraints iato the cost function as shown

in equation 4.20.
N
J'(x,u) = 3 xF Qxx + ul Ruy + &|[Xx41 — Axxx — Bruy| (4.20)
k=1

where & is a scalar in this case that does not depend on time. Using the update
formula 4.21, they were able to prove Lyapunov stability, provided that the matrices

@ and R are positive definite.

. aJ’'
Xy = —éan (4.21)
l'lk = ——(-:—ai (4.22)

6uk

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 111

u
—»gz; Controlled System > X

Forward Model

f(x,u)
“x f(x,u)

yv“ f(x,u)

Hopfield Network
Optimal Controller

A

Objective Function
Desired Trajectory
Constraints

Figure 4-17: A closed loop controller based on a Hopfield type optimizing network

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 112

Stability can be proven by showing that '%' is negative. They proposed the use of
a Hopfield Network to implement the static optimization problem. There are some
disadvantages to the above procedure due to the penalty function implementation of
the dynamic equations. In order not to violate the dynamic constraints, the penalty
coefficients should be very high. This makes the optimization problem ill-conditioned
and consequently results in very slow convergence to the optimal point. Reducing the
penalty coefficient on the other hand may result in completely erroneous results. To

see this, consider the simple example shown in equation 4.23

Ty = 09z, +0.1uy z0=1; 2,=0 (4.23)
10

J(z,u) =) (z® 4 u?)dt (4.24)
k=0

(4.25)

One simple solution that will minimize the augmented cost function J' is to have ux =
0 and z, = 0 for £ > 0. This of course will violate the dynamic constraint at ¥ = 0. In
the next section, we propose different Hopfield implementation of the linear quadratic
optimal control problem, that exactly implement the dynamic constraints and which
are also guaranteed to be stable and converge to local optima. All the techniques
proposed may also be extended to nonlinear systems. In all these techniques, the
optimal control problem is considered as a static nonlinear programming problem,
and then standard first order gradient based techniques are used to map the problem

to a neural network.

Constraint satisfying Hopfield Networks

We discuss in this section few different implementations of Hopfield networks opti-
mal controllers which are based on well known constrained optimization techniques
[Luenberger, 1984]. In particular, the networks we propose here are based on the

following methods:

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 113

o Gradient projection [Kirk, 1970; Luenberger, 1984]
e Lagrange multipliers [Bertsekas, 1982]
e Augmented Lagrange multipliers (Method of multipliers) [Bertsekas, 1982]

We compare the advantages and disadvantages of each method. Using simulations,
we show how these methods can be used for the very fast computation of the optimal
control.

1. Gradient Projection Hopfield Network

One possible exact numerical solution to the optimal control problem is through
the use of gradient projection [Kirk, 1970]. The idea of this approach is to first
discretize the cost function so that it is transiormed into a static optimization problem,
then use a form of gradient descent to update the states and controls. The gradients
of the objective function are first projected into the hypersurface representing the

dynamic constraints. This procedure is summarized by the following equations :

N
minimizeJ(x,u) = Y _ x7 Qxx + uj Ruy (4.26)
k=1
XKg41 = Axe+ Bu, £=0,...,N (4.27)

The dynamic equations can be transformed into the following form :

MTv =c (4.28)

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 114

where : MT is an Nn x N(n + m), N is the number of time steps, n the dimension

of the states and m the dimension of the controls.

I _B 7
—A 1 -B
MT = —A I -B (4.29)
—A I -B
X
X
v=| " (4.30)
Ug
-uN—l -

and the vector ¢ depends on the boundary conditions. Define the projection matrix
P:
P=I-MM™M)'MT (4.31)

The projection matrix projects any change in x or u to the hypersurface of the con-
straints 4.29, provided that we start from a valid solution that satisfies the constraints
[Kirk, 1970]. The projection matrix P is symmetric, idempotent and positive semidef-
inite. If we then use the updating rule 4.32, we are guaranteed to converge to a stable

local minimum that satisfies the constraints, given a positive definite quadratic cost

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION

and an initial feasible trajectory.

Proof

; 2J
xl 23,9
: BJ
x2 230
: aJ
XN —— P Xy
’ 2J
uo dug
y BJ
ul 6u1
- aJ
| UN-1 | dun-;

115

(4.32)

Using Lyapunov stability theorem, if there exists an energy function E(v) which is

bounded from below, and dE(v)/dt < 0 , the system of differential equations 4.32 is

stable.

Let
E(v) = J(x,u)
dE _ 0BT dv
dt Ov dt

Using equation 4.32, equation 4.34 becomes:

e _ 0BT , 0B
dt_eav ov
<0

(4.33)

(4.34)

(4.35)

In this derivation we made use of the fact that the projection matrix P is positive

semidefinite.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 116

For quadratic cost functions, we can substitute for the value of dE/dv in the

update equation 4.32. In this case the update rule can be expressed by equation 4.36

v=—e Wy (4.36)

where W is a symmetric positive semidefinite matrix represented by equation 4.37

W =P H
where)
[Q
Q
H = Q (4.37)

R

Equation 4.37 may be implemented using an analog Hopfieid network formed of simple
RC elements. The value of the coefficient € together with the eigenvalues of the
connectivity matrix W determine the rate of convergence to the local optima.
Equivalence between gradient projection and penalty methods
It is important to note here that the gradient projection method may be viewed as
a modified penalty method with an infinite penalty coefficient, but well-conditioned
connectivity matrix. Let us rewrite the energy function of the penalty method (equa-

tion 4.20) in terms of the M, v, H and ¢ matrices defined above:

J(x,u) = vIHv 4+ k(M7v — ¢)T(MTv - ¢) (4.38)

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 117

A gradient descent update rule for the above energy yields :

‘;—: = -Wv + Mc (4.39)

where W = H + kMTM, the matrices H and M have the same definitions as above,
and « is the penalty coefficient. Our goal is to modify the update rule in the above
equation without changing the equilibrium point. This can be easily done by multi-

plying the right hand side of the above equation by a nonsingular matrix F :
— = —-FWv + FMc (4.40)

The matrix F which has the same dimension as W is added to improve the eigenvalue
ratio of the linear system of equations 4.40. Since the ill-conditioning is mainly due
to the penalty coefficient, one way to reduce this ill-conditioning is by approximately

cancelling the effect of x by using
F = [E+sM"M]™! (4.41)

where E is a symmetric positive definite matrix. The best value of E is of course H

which will result in all eigenvalues being equal. Another possibility is to use
E=1 (4.42)

where I is the identity matrix. Using the matrix inversion lemma [Bertsekas, 1982]

and taking the limit as kK — oo, the matrix F reduces to :
F=1-MM"M)"'M” (4.43)

which is the same as the projection matrix P defined in equation 4.31 above.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 118

Example:
We have tested the gradient projection method for the generation of the optimal
control trajectory of an unstable second order system with a quadratic cost. The
continuous system A, B, Q and R matrices and the initial conditions x, are given
below:
0 1 0 20 —4

A= , B= , Q= , R=05, x,= (4.44)
2 -1 1 01 4

4

This example is taken from [Kirk, 1970]. For a time horizon of 6 seconds and a
sampling rate of 50 Hz, the number of variables of the equivalent Hopfield network is
900. The output of the Hopfield network after convergence of the network is shown
in figure 4-18. The trajectories obtained are similar to the trajectories obtained
using an LQR regulator. The convergence behavior of the Hopfield network is shown
in figure 4-19 which is a plot of the Lyapunov energy function defined above as a
function of time for a value of € = 10°.

This example shows the feasibility of using the gradient projection method to ob-
tain a constraint satisfying Hopfield neural network which is capable of computing
the optimal control trajectory in a small fraction of the sampling time. However,
there may be some practical disadvantages for using this technique. First, unlike
the penalty method, the connection weight matrix W generated using the gradient
projection method is in general not sparse. This is due to the fact that the projection
matrix P is not sparse. This high connectivity makes it more difficult to imple-
ment the network in hardware. The second disadvantage is that the connectivity
matrix is only positive semidefinite. This is because the projection matrix restricts
the trajectory of the network to the hypersurface of the constraints. This may present
a problem if the network initial conditions do not satisfy the dynamic constraints.
Moreover, any imprecision in the implementation of the connectivity matrix W may

result in an unstable system. Another disadvantage with this approach is that, al-

CHAPTER 4.

Optimal Trajectories and Control

LEARNING TRAJECTORY OPTIMIZATION

119

X Zt)

3
Time (sec)

Figure 4-18: Optimal control u*(t) and state trajectories z,*(t}, z,*(t) obtained using
the gradient projection Hopfield network

5000

4500

4000

3500

Figure 4-19: Convergence of the gradient projection Hopfield network
constant (1/¢) = 0.0lmsec

i

b

1

2

3

4
Time (sec)

5

6

7

8

)Tw“)
or a time

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 120

though the Hopfield network converges very fast to the optimal trajectory, the initial
computational time required to find the connectivity matrix YW may be high and
consequently cannot be implemented in real time. This is due to the time it takes to
invert the sparse block tridiagonal matrix (MTM). For example, for the two dimen-
sional example shown above, it takes approximately 35 seconds to find the weight
matrix on a moderately used SUN Sparcstationl0 computer. It is important to note
here that once the weight matrix is computed for given system parameters, it can be
updated much faster for smali clianges in those parameters using small perturbations
techniques.

2. Lagrange multipliers Hopfield network

Another approach for mapping a discrete linear quadratic optimal control problem
to a Hopfieid neural network is through the use of Lagrange multipliers.

If we define

p-| ® M (4.45)
-MT o

where the matrices H, M and c have the same definitions as before; then the necessary

conditions of optimality can be expressed in matrix form as follows :

A (0]
L = (4.46)

A CJ
where) is the Nn x 1 vector of the discretized Lagrange multipliers.
The matrix L is nonsingular if the optimal trajectory is unique. One possible

solution for the linear system of equations 4.46 is to construct the energy function

T

v
E={L - L - (4.47)
A c A c

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 121

If we then censtruct the connectivity matrix
W = -L7L (4.48)

and use the update rule :

0
alv —ew| " |+LT (4.49)
dt'_,\ A c

the dynamic system 4.49 will be stable and will converge to the optimal state, control
and costate trajectories.

One serious problem with the above approach is that, although ali the eigenvalues
of the matrix W are guaranteed to be negative and real, the condition number of the
matrix W is the square of the condition number of the matrix L. This may result
in ill-conditioning of the matrix W and consequently a very slow convergence to the
optimum. A better alternative that works well for linear system:s with quadratic costs
is to use the duality property of the Lagrange function [Bertsekas, 1982], which states
that the solution of the constrained minimization problem is equivalent to the mini-
mization over x and the maximization with respect to A of the Lagrangian function.
We can then use a gradient descent (ascent) algorithm to minimize (maximize) the
Lagrangian function with respect to x (A) . This is guaranteed to converge for linear
systems with quadratic costs, since the Lagrange function is convex with respect to

x. For example, we can choose the connectivity matrix W to be

-H M
W = (4.50)
-MT 0
In this case the condition number of W will be similar to that of the matrix L. The

cigenvalues of W will have a negative real part but they are complex in general.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 122

Although the Hopfield network implementation of the Lagrange multipliers method
has a bigger size than the network implemented using the gradient projection method,
it is much more sparse, which makes it much easier to implement in hardware. Also,
since the connectivity matrix W is directly computed from the system matrices, the
computation time required to build the Hopfield network implementing the Lagrange
method is very small.

Example :

We used the Hopfield net generated using the Lagrange method described in the
previous section to find the optimal control, state and costate trajectories for the
unstable second order linear system 4.44 described above, using the same sampling
rate and the same time horizon as in the gradient projection method. The time
constant f was set to 1076. The optimal trajectories and the convergence of the
network as measured by the norm of the derivatives of the state variables, are shown in
figures 4-20 and 4-21 respectively. Comparing with the gradient projection algcrithm,

the convergence rate here is an order of magnitude slower, but still the network

converged in less than 1 msec.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 123

10 -,) T L] T T
u (1)

n

[=)

0
Y
(=]

Optimal state, costate and control trajectories
o

20, 1 2 3 a4 5 6

Time (sec)

Figure 4-20: Optimal control u*(t) and state and costate trajectories z1*(t), z2"(t),
A1"(t) and A;"(t) obtained using the Lagrange Hopfield network

6 ¥ L T]

Dearivative norm Il dv/dt II
A N

N

\

o0 1 2 3 4 5

Time (sec) x 10
Figure 4-21: Convergence of the Lagrange multiplier Hopfield network as measured by

the norm of the time derivatives of the state, for a time constant (1/¢) = 0.001msec

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 124

Augmented Lagrange multipliers (multiplier methods)

In all the previous analysis of Hopfield implementations of open loop optimal con-
trollers, we have only focused on linear systems with quadratic costs. This represents
a serious limitation for the control of motor systems, since these latter are highly non-
linear in general. The linear techniques described above can be extended to slowly
varying nonlinear systems, where the system equations can be reasonably linearized
for the time horizon at which we compute the optimal control. Moreover, the gradient
projection and penalty methods can be modified and extended for nonlinear systems
[Scales, 1989]. In that case the resulting connectivity matrix W of the corresponding
Hopfield network is not constant, but a function of the states and controls. The La-
grange multipliers method, as mentioned above is not guaranteed to work for general
nonlinear systems, due to its possible non-convexity near the stationary points.

In this section, we will show how to use the augmented Lagrange multipliers
method [Bertsekas, 1982; Scales, 1989] to obtain an efficient Hopfield network imple-
mentation of optimal controllers that can be applied to general nonlinear dynamic
systems. The augmented Lagrange multipliers method, also known as multiplier
methods, is a combination of the penalty and the basic Lagrange method described
above. It is an exact method, unlike the penalty method and at the same time
does not suffer from the excessive ill-conditioning problem that plagues the penalty
method. Moreover, it solves the problem of possible non-convexity associated with the
basic Lagrange multipliers method. The basic idea behind the augmented multipliers

method comes from the observation that the optimization problem

min J(x) = £(x)

subject to

h(x)=0 (4.51)

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 125

is exactly equivalent to

mjn J(x) = £(x) + slhGO|?

subject to

h(x)=0 (4.52)

since the penalty term is exactly zero on the constraint surface. We can then form the
Lagrange function for the equivalent optimization problem and then use the duality
property of the Lagrangian function to compute the optimal variables and Lagrange
multipliers. If « is sufficiently large the Lagrange function will be convex near the
local minima. It must be noted here that the penalty term is mainly needed to
make the Lagrange function convex near the optimal point and not to enforce the
constraints. Therefore a large value of k may not be required and this will reduce the
ill-conditioning problem associated with the penalty method.

Using the augmented Lagrange multiplier method and gradient descent (gradient
ascent to compute the optimal Lagrange multipliers), the update equations for the

optimal control problem

N
r;l.ilflkz:%foxk 4+ ulRu, (4.53)
Xe1 = f(Xp,u) k=1,--- ,N-—1 (4.54)

are as follows

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 126

where
[1 —AW)T |
I -AW)
1 —A(Va1)
M(v) = I (4.56)
—B(vo)T
—-B(v;)T
—B(VN_l)T
and
A(v;) = Vgf(x;,uy) (4.57)
B(v;) = V,f(x;,u;) (4.58)

Figure 4-22 shows a network that performs the above optimization. Note that many
of the weights in this network are nonlinear and depend on the forward model of the
dynamics and its derivatives with respect to the controls and states at each instant
of time. This configuration is very similar to Kawato’s cascade network for finding
the minimum torque change trajectory (Kawato et al., 1990], however the proposed
network is a more general one and can be used with any optimal control problem.
We tested the above network in the simulated two-joint tracking of a circle de-
scribed above. The results of the optimization are as shown in figures 4-23 and 4-24.
Figure 4-23 shows the two joint angle trajectories superimposed on the reference tra-
jectory after the network optimization. It is clear from the figure that some residual
error remains. This is due to the fact that the optimization network implements a
gradient descent algorithm which is very slow to converge to the optimal values. Fig-
ure 4-24 shows the convergence of the network as a function of time, as measured by

the norm of the gradient.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 127

N
X
c X,
X LR
’ v N
! A " \
N ra \\ I\ \
< ~ \
A e o o : !
i\~ " '
A s 1
S ooy

Figure 4-22: Nonlinear optimal control network. z, Ax and u; are the states, costates
and controls at time step k. Dashed lines represent nonlinear weights that are com-
puted using the learned forward model and its partial derivatives with respect to zy

and u;. Solid lines represent linear weight values. z.* and u.* represent any constraint
on the values of z; or ug.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 128

o oz 03 o4 o5 05 07 of 09 % o1 02 03 04 05 05 07 08 03
Time (sec) Time (sec)
Figure 4-23: Trajectories of the joint angles §; and 8, obtained using a dynamic neural

network implementing augmented Lagrange multipliers (solid lines) superimposed on
the reference trajectories (dotted lines)

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 129

Il dv/dt |

Figure 4-24: Convergence of the network as measured by the norm of the gradient of
all the units. The time constant (1/¢) used in this simulation is 0.01 msec.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 130

4.7 Finding Control Trajectories For Difficult Con-

trol Problems

There are many control problems where the constraints on the task makes the control
problem hard. For example, limits on the degrees of freedom in the control space will
make the search for the optimal control harder. Examples of such control problems
include the control of a two link arm from an initial to a final position using only one
torque generator at one of the joints or the control of a unicycle. Another example
is the control of a pendulum on a cart using only force on the cart. To lift the
pendulum to a vertical position by controlling the movement of the cart is a hard
control problem [Slotine and Li, 1991]. Similar control problems also arise in human
motor control when the contrcl variables do not directly control the desired states,
but these latter are controlled through nonlinear couplings with other states. An
example is the gymnast on a horizontal bar performing a giant swing by using torsc
and hip muscles. Other than the active torques that the gymnast exerts using the
lower body muscles, s/he performs a sequence of weight shifts that allow him/her
to perform the swing. For example, s/he extends the body during the downswing
phase and flexes the body during the upswing phase to increase the acceleration and
decrease the deceleration respectively. All this is done within the limits of acceptable
form of course [Jensen and Schultz, 1977].

In this section, I will explore, using simulations, the possibility of applying learning
optimal control technique described above to learn to lift a two link arm as high as
possible from a vertically down position, using only one torque generator at the
shoulder. This can be thought of as a simplified model of the swinging action of
the gymnast described above. There are also constraints on the maximum value of
the torque exerted and on the range of joint displacements. The joint angle at the
shoulder is restricted from zero (fully extended) to 7 (fully flexed). The same two-

link model used to generate the minimum torque trajectory is used here, with the

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 131

exception that the torque at the shoulder is set to zero. The cost function that we

want to optimize is described by equation 4.59.
t
J=K (0; -0i(ty)) + /0 ! (kyT(2)? + ka(02(t) — L)?)dt (4.€9)

where K and k, are positive constants, k, is equal to zero if 8,(t) is within the allowed
range of 0; and a large positive number otherwise.

We used Gaussian RBF networks to represent the forward dynamics model. We
used 20 initial sinusoidal torque sequences with different amplitude and phase to
obtain an initial forward model of the system.

Using the cost function above and the true model equation, the best trajectory
that we could obtain is shown in figure 4-25. This figure shows that it was possible
to get the upper arm just above the horizontal using the cost function 4.59, without
exceeding the joint limits on #;. Shown also in figure 4-25 is the best performance
that could be obtained using the open loop learning optimal control method described
above. This performance is much worse than the best performance that could be
obtained using the real model. The discrepancy in performance is due mainly to
the difficulty in identifying the system. The problem with the identification is that
most of the state space is very difficult to reach with random inputs, and therefore
the identification is poor. We could not overcome this identification problem using

different types of torque sequences.

4.8 Relation to other methods

There has been previous research that addressed the problem of learning the optimal
actions, especially as related to the problem of solving the excess degrees of freedom
problem in the field of motor control. Jordan [Jordan, 1989] has developed a related
approach to learn and optimize motor actions in the presence of excess degrees of

freedom. His model is formed of two subnetworks, a forward model and a controller.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 132

Joint Limit

-12 'l 4 1 1 1 1 L
o] 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec)

Figure 4-25: Phase plot of the computed optimal trajectory (upper plot), and the
computed optimal torque as a function of time (lower plot). The solid lines represent
the trajectory computed using the ideal model and the dashed lines represent the
trajectory obtained using the approximated forward dynamics.

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 133

The forward model transforms the control actions (“articulatory space”) to task out-
puts at any given state. The controller generates the optimal actions as a function of
the states. This is similar in structure to our closed loop approach using the extremal
fields. The difference between both approaches is in the learning of the control law
(“motor program”). While Jordan method attempts to learn the “motor program”
directly as a function of the intrinsic and external states, by backpropagating the
errors through the forward model, we try in our approach to first generate the open
loop optimal control and then learn the closed loop control as a function of the states
and time. Kawato et al. [Kawato et al. 1990] developed a cascade neural network
model that is specifically designed to generate the minimum torque change arm tra-
jectories proposed by Uno, Kawato and Suzuki [Uno et al., 1989]. Their model also
employs a forward model of the dynamics. However, this model is reproduced at each
time step. The minimum torque change is realized by adding resistive connections
between the units representing the torques at each time step. The minimum torque
change torques are then obtained by backpropagating the error through this cascade
structure. This method of trajectory generation is very similar to our trajectory op-
timization method, and can be shown to be exactiy equivalent to first order gradient
dynamic optimization methods. More recently, the same group [Wada et al., 1992)
suggested another method to find the optimal trajectory using both a forward and
an inverse model. This method is more general than the cascade network and can be
applied to other optimal control problems. Unlike methods based on the calculus of
variations, this method does not require the backpropagation in time of the error or
the reinforcement signal, but requires the learning of both an inverse and a forward
model.

Many other researchers have also suggested the use of function approximation and
neural networks to approximate the optimal feedback law by modeling the optimal
control as a function of the states [Peterson, 1992; Goh, 1993]. In both of these papers,

the optimal control was computed using the dynamic model of the system. In Goh’s

CHAPTER 4. LEARNING TRAJECTORY OPTIMIZATION 134

work, the goal was to synthesize a stable optimal controller for nonlinear regulator
problems assuming full knowledge of the dynamics. The conditions of optimality were
used to train the neural networks. Two sets of neural networks were used, one set
to rzpresent the optimal feedback controllers, and the other to represent components
of the return function. In Peterson’s paper the optimal open loop control sequence
obtained by solving the equations resuiting from the necessary conditions of optimality
at a given initial state is used to train a neural network. This approach is similar to
one of the approaches discussed in this chapter.

Unconstrained and constrained optimization using dynamic neural networks, such
as Hopfield networks, have been proposed by many researchers (e.g. [Hopfield, 1984;
Platt and Barr, 1988]). In particular, Platt and Barr propose using Lagrange mul-
tipliers methods for constrained optimization. This approach to solve linear and
nonlinear programming problems, together with proofs of convergence, has also been
known since at least the late 1950’s [Arrow, 1959], although the solution was not given
in the context of dynamic neural networks. Also, many researchers have proposed to
solve optimal control problems using Hopfield Networks [Lan and Chand, 1990; Mears
et al, 1993]. In these papers, however, the problem was treated as an unconstrained
optimizatior: problem with the constraints incorporated as an extra quadratic penalty.
As pointed out previously, these approach does not work well in practice, due to the
very large number of constraints that have to be satisfied.

The problem of learning a desired trajectory using iterative techniques has also
been addressed by many researchers. A review of these techniques is presented in
[Atkeson, 1986]. The main disadvantage of these techniques is the requirement to
return to the same initial conditions after each iteration. As pointed out in [Atke-
son et al., 1988], iterative techniques which rely on a model will lead to faster con-

vergence and correction of the errors.

Chapter 5

Optimization in Stochastic

Environments

5.1 Introduction

In many real life motor control problems, the result of an action applied by an agent
is not completely deterministic. Unlike deterministic systems, the result of cne trial
is embedded in noise and may not yield much information. To assess the success or
failure of an action, the action is applied several times and then we compute some
statistics about its degree of success or failure to achieve the desired goal. Several
factors may contribute to this randomness. One such factor is that not all the relevant
components of states and the actions applied to a system are measured. Sometimes
they are not even observable. Another possible source for this non deterministic
response could be intrinsic variability and noise within the system. This is obviously
true in humans and living systems, where there is a large variability in actions from
trial to trial, even though the goal is the same. Such a system is modeled in figure 5-1.

Another problem where the result of actions may appear non deterministic is the
case when the result of an action is delayed and depends also on the future actions and

states of the system which could be unpredictable. For example for games like chess,

135

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 136

Moise (N1) Noise (N2)

Actions (a) Outputs (0)

N

Figure 5-1: A general system with stochastic response

the effect of an action is not immediate and depends also on the actions taken by the
opponent which are unpredictable. However in this case the action could be made
deterministic if we include all the states and actions which affect the output. From
the above examples, it is important to note that the description of an environment
as stochastic or deterministic may not necessarily be an absolute property of the
environment but could depend also on the ability of the learner to measure the relevant
states and actions. Therefore an environment that one learner may view as stochastic
may be viewed by another learner as deterministic. However, for practical reasons, it
may be cheaper to consider an environment as stochastic, if the price to be paid to
achieve determinism is higher than the gain in accuracy.

In this chapter, we would like to explcre different methods for optimizing actions
that are suitable for systems with non-deterministic response. Some of these methods
could also be used for deterministic environments as well, however there may be more
efficient methods that are more suited for deterministic systems. After reviewing
different techniques for finding optimal actions in stochastic systems, we will describe
in more detail a particular method to find the optimal values by first building a
forward model of the system and/or a model of an evaluation function that estimates

the expected cost or utility of an action, and then finding optimal actions. By a

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 137

forward model we mean a model of the parameters that describe the statistics of the
output as a function of the different actions and states. An example of such a model
could be a model of the probabilities of success of different actions or a model of the
means and variances of the outputs observed when applying different actions. The
question that we would like to address in this chapter is can we find an action that
is optimal with respect to the goal of the task given the variability in the system
response?

Different optimization objectives include finding the actions that maximize the
probability of success or maximize the expected return. It must be emphasized that,
for non-deterministic systems, it is very hard to locate the absolute optimal action
given only a small number of experiences. This is due to the fact that it requires
a large number of actions to differentiate between the ranking of two actions, if
their probabilities for success are very close. In our examples, we view success as a.
function (usually assumed to be binary) of the outcome which could be a continuous
stochastic variable. We will consider both the cases when the output is binary (for
example 1 represents the success of the trial and 0 for failure) and when the output
is a continuous random variable such as a reinforcement variable. Sometimes the
success or failure is a function of another intermediate output. For example success
could be defined by the following relation.

o) =]} ¥S°=h (5.1)

0 otherwise
Where #(0) is the success function, o is the outcome, and a and B are constants
that may be known or unknown. Mathematically we can express the problem as the

following optimization problem :

a* = max P(t(o(a, s)) = 1|a) (5.2)

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 138

where a* represents the optimal action, o is the outcome, s the state, and A is the set
of all admissible actions. In general, the functions (-) and o(-) are not known a priori.
If the outcome o is unobservable or does not exist, we may express (-) directly as a
function of a@ and s. The distinction between ¢ and o is important if we can measure
both ¢ and o and if we can model the transformation #(0) and if (o) is binary. In that
case, the knowledge of o provides more information such as the distance from success
or the direction of smaller cost. However in many applications, the only information
available to the learner is success or failure.

The problem is to find an optimal action a¢* in the most efficient way, i.e. in the
smallest number of trials. In the next section we will review different methods for ob-
taining ¢* and we will summarize the advantages and disadvantages of each method.
We will then present simulation results for finding the optimal actions for two simple
motor control problems. The first example is a basketball aiming problem, where the
task is to find the optimal shooting angle and speed that maximize the probability
of success given unceitainties in the actions. The second simulation example is the
periodic hitting of a ball with a racquet to generate a periodic trajectory of the ball
with a given maximum height. The task is to find the best periodic open loop trajec-
tory of the racquet to keep the ball in the air given different external perturbations

on the trajectory of the ball.

5.2 Methods for Finding the Optimal Actions

In general, we can divide the algorithms that could be used to find the optimal
actions into two main classes: direct and indirect optimization methods. The direct
methods do not require forming any model of the response of the system as a function
of its states and inputs. These algorithms directly attempt to change the inputs,
or a controller parameters, based on previous responses. The actions “settle” into

the optimal action with practice. These algorithms may converge to a global or a

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 139

local optimum depending on the algorithm used or even the learning parameters of
these algorithms. This will be demonstrated by an example later. Techniques such
as learning automata [Narendra and Thathachar, 1989], reinforcement learning and
direct optimization over the input variables fall under this class and will be described
below.

The indirect techniques attempt to model the statistics of the output, or sometimes
model a cost function, given the inputs and states, and then find the actions that
maximize the desired objective function, for example the probability of success as

defined in the equation for a* above.

5.2.1 Direct Optimization Techniques

General nonlinear function optimization algorithms could be used to determine the
optimal action. However, function optimization techniques which rely on the gradient
to determine the n=xt action, are not well suited for optimizing non-deterministic
functions because the gradient information is erroneous and not easily available, thus
we have to perform many function evaluations at neighboring points in the action
space to obtain more reliable information. Another problem may be that we can
not get a gradient at all, if all the information that is available is a function of the
output t(0) which could be binary or not continuous, for example success or failure.
In addition, these methods do not necessarily find the best action and may only find
a locally optimal one. However, these algorithms could still be used but in a less
greedy fashion, for example with a small learning rate and this learning rate should
diminish with more examples in order for the algorithms to converge. The other class
of function optimization techniques relies on some variation of a random search. I will
describe two different examples of such function optimization techniques and discuss

the advantages and disadvantages of each and propose methods to improve them.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 140

Learning Automata and Reinforcement Learning

The basic idea behind learning automata and reinforcement learning is that we start
with an a priori probability distribution for choosing an action, and then we increase
or decrease the probability of choosing that action in the future based on whether
this action was successful or not in the past. This is also motivated by human and
animal learning experiments where a reward or penalty increases or decreases respec-
tively the choice of an action in the future. It has its roots in psychology with the
work of Thorndike and the “Law of Effect” [Thorndike, 1927]. Learning automata
are also closely related to the work on bandit problems in operations research. There
are many algorithms for reinforcement learning which differ in the rule by which the
probability of choosing an action is modified. The basic version of these algorithms
is indifferent to how close the outcome is to success. The information that is used to
update the probabilities of choosing an action is either success or failure. However,
some versions allow a real number, between [0, 1] for example, as a reinforcement
signal. Many of the algorithms are theoretically proven to converge to the action
with the highest probability of success as the number of trials n — oco. For more
information about the different algorithms for reinforcement learning and learning
automata refer to the book by Narendra and Thathachar [Narendra and Thathachar,
1989]. Reinforcement learning techniques were originally designed for the case when
the number of actions is finite and small. For a continuous action space, we can dis-
cretize the space. However, if the number of possible actions is large, the learning rate
should be made very small to guarantee convergence in practice. In this case the con-
vergence rate will be very slow. Millington addressed this problem [Millington, 1991]
and developed a reinforcement learning algorithm which could be used for continuous
variables. Another disadvantage of this approach is that it does not take advantage
of the closeness of an experience to success. To take advantage of the continuity of
the outcome as a function of the actions taken (i.e neighboring actions have similar

outcomes) a modification to the basic algorithm could be made where the outcome of

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 141

an action not only modifies the probability of choosing that action, but also modifies
the probability of choosing neighboring actions as well.

Gullapalli [Gullapalli, 199C] described another method for optimizing real valued
functions directly using an associative reinforcement scheme [Barto and Anandan,
1985], by choosing the action from a probability distribution whose parameters are
adjusted according to the reinforcement received and its relation to the expected re-
inforcement. Gullapalli’s method could be easily applied to find the optimal action
given a certain state of the environment (associative reinforcement learning tasks).
However, it becomes more difficult to use when there is more than one action pa-
rameter to optimize since the different optimal parameters are interdependent, and
therefore we expect that this method will require a large amount of training. Another
case where this method cannot be easily used is when there are constraints on a sub-
set of the actions that should be satisfied by the optimal actions in addition to their
instantaneous utility. For example in the case of planning a trajectory with desired
end points, in addition to the instantaneous utility at each instant of the trajectory
(for example the instantaneous cost could be a smoothness cost), we have some end
point constraints that have to be satisfied. These final constraints are the integration
of a function of a subset of actions. One method to solve this problem is to translate
the end point constraints into instantaneous cost or utility, using for example the
method of temporal differencing (TD) developed by Sutton [Sutton, 88]. Another
method to propagate the constraints would be through the help of a model of the
dynamics by integrating backward in time. Gullapalli demonstrated the use of these
stochastic reinforcement networks in simple problems including the control of a robot
arm to a final position [Gullapalli, 1990].

Depending on the learning rate, and the algorithm used, it may be possible to find
the best action. For very small learning rates, many actions are wasted in exploration,
but the chance of finding the best action is higher. If the learning rate is very high,

the algorithm will increase rapidly the probability of applying an action which was

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 142

successful and will apply this action mcre often at the expense of searching for a

better action. This is one example of the identification/control conflict.

Metropolis Methods with Simulated Annealing

The basic idea behind this method is to first choose some initial action and then choose
the next action based on some probabilistic rule. If the new action is better, accept
it with probability 1, and if the outcome of the new action is worse, accept it with a
probability that depends on how much worse the outcome was. The parameter which
determines the variance of this probability distribution, also called the temperature,
is decreased as the number of trials increase. This technique, also called simulated
annealing, has been used in many optimization problems with good results. However,
it is computationally expensive and requires a large number of function evaluations.
Another disadvantage of this algorithm is that, unlike the reinforcement learning, the
actions chosen do not depend much on the probabilities of their previous successes,
therefore many trials could be wasted looking for a better action. This algorithm
requires the knowledge of the closeness of the action from success or how successful
it was, unlike reinforcement methods. This technique can not be used in this form
for associative reinforcement tasks [Barto and Anandan, 1985] where the best actions
are functions of the states of the environment as is the case in many motor control

tasks. Nevertheless this technique is very valuable for optimization of functions.

5.2.2 Indirect Methods

Indirect methods usually involve the formation of some stochastic model of the input
output data and/or the utility of the instantaneous actions. After the formation
of an approximate model, a search is performed to find the inputs which optimize
the desired performance index such as the probability of success, for example. One
difference between this class of methods and direct methods is that direct methods

explicitly solve the exploration part. The choice of actions is determined directly by

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 143

the algorithm used. This is not the case for the indirect methods. In this class of
methods, actions chosen must allow for better identification of the system in addition
to being optimal. In order to build a good approxima*‘on of the stochastic system, we
need to collect a lot of examples for each action many of them could be unsuccessful
trials. This is not very desirable, especially when mistakes are expensive. Efficient
methods should use the knowledge collected so far to compromise between exploratory
and optimal actions. In a previous chapter, we have proposed and implemented a
method to guide exploration for deterministic systems which makes use of previous
experiences. This approach can also be applied here. There is however an important
difference between exploration in deterministic and stochastic systems. There is no
gain in information for trying the same action in deterministic systems, while trying
the same action, or nearby actions, in stochastic systems improves the estimation of
the statistics of the system. To reduce the number of trials needed, we have to take
advantage of the continuity of the outcome (or success) statistics as a function of the

different actions, assuming of course that such continuity exists.

Approximating the Probability of Success or Failure

For simplicity let us assume for the time being that the environment is context free.
Then we can estimate the probabilities of success of the different actions P(s|a) given
previous experiences of success or failure of the different actions. Assuming that this
probability function is continuous as a function of the actions (i.e. neighboring actions
will have similar probabilities of success), we can use the information at nearby actions
to estimate the probabilities of success for a given action value. A more efficient way
is to use a function approximation technique such as radial basis functions, together
with a suitable criterion such as maximum likelihood to estimate the probability of
success. Such a method to compute the probabilities of success of the different actions
is equivalent to the soft classification techniques described in detail by Wahba [Wahba,

1993), where a regularization factor is added to the maximum likelihood objective

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 144

function and cross-validation is used to estimate the weighting of the regularization
factor. We will give a simple 2-D example of the use of this technique, using Hyper-
BF's to estimate the probabilities of success. However, for simplicity we will not use
a regularization factor. In addition, we believe that such regularization factors may
sometimes have a small added value at a computationally very high cost, especially in
cases where the function to be estimated depart significantly from the regularization
assumptions. The regularization factor obtained in these cases using cross validation
will be very small or zero. However, as pointed out by Wahba, without a regularization
factor, the minimization of the negative log likelihood objective function will tend to
push the estimation of P(a) to 1.0 or -1.0. In order to circumvent that problem,
the number of free parameters should be kept low compared to the number of data
points. Regularization will still be very important when the number of experiences is
still small as is the case in the first few iterations.

We will briefly describe here how to use HyperBFs to estimate the probabilities
of success of different actions by modeling different monotonic functions of the prob-
ability of success. For a more detailed description of the different statistical methods
to model binary data refer to the book by Cox and Snell [Cox and Snell, 1989] and
the paper by Wahba [Wahba, 1993).

Let us define the logit function f(a) =In (l—f},g();ﬁ where P(a) represent the proba-
bility of success given an action vector a. We can then estimate the logit function f(a)

using a HyperBF network of Gaussian units, for example, and previous experiences.

#centers

fa)= 3 Ciexp(lla—tilw) (5.3)
=1

where ||a — t;||w represent the generalized norm : (a — t)TWTW(a — t), and t;

represent the locations of the centers of the Gaussian functions. The logit function is

used instead of the direct probabilities because it transforms the probability values to

(—00, 00), which is more suitable for approximation by neural networks. In addition,

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 145

the use of the logit function, amplifies the error for small and large probabilities, which
results in better estimation of both low and high probabilities. However, the use of
the logit has the disadvantage that the function becomes much less smooth which
makes it harder to approximate. In addition regularization is needed to prevent very
high function variation.

If we define the Likelihood function of the data to be the probability of occurrence
of the data (assuming independence) given a probability model, then the likelihood

function L can be mathematically represented as follows :
L = ¥ P(a;)%(1 — P(a;))' ™ (5.4)

where s; is either 1 or 0 depending on the success or failure of action a; respectively.
Maximizing £ is equivalent to minimizing the negative of the loglikelihood function.
The objective function to be minimized could then be expressed as a function of the

logit function f(a).

#data

J =Y In(1 +exp(f(ai))) - sif(as) (5.5)

1=1
where f(a;) is the HyperBF approximation of the logit function. We can use any
nonlinear optimization method, such as gradient descent for example, to estimate
the values of the parameters C; and the W matrix. Assuming a diagonal W, the

parameters are updated as follows :

AC; = —eaa—g,i t=1, --,f#centers
Awygg = —¢ 9J dd=1,---,#dimensions
Owaq

. _ e _exp(f(ay)
G =~ = TGeplia)

8 R exp(f(ay)) N 4 VG ¢
bua ~ X Trepay) & ~veltia =t Cionllle; = tilw)

— s;) exp(||aj -- tilw)

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 146

(5.6)

The factor ﬁ(p%% in equations 5.6 is the famous logistic function and is equal to
P(a;), the estimated probability of success of the action vector a;. The interpretation
of equations 5.6 is very simple: if the current action results in a success, change the
parameters of the RBF's in a directicn so as to increase the probability of success,
with each parameter increased proportional to its sensitivity of the probability to that
parameter. On the other hand, if the action vector results in a failure, change the
parameters in the opposite direction to reduce the estimated probability of success.
It is important to note that we could have obtained similar results without the use
of the logistic function, by simply using least squares regression directly on the binary
observations. If the variances are all the same as a function of the action space, this
will result in finding the expected values of the output which is in this case equivalent

to the probabilities of success. Unfortunately, the variances are not all the same and

are related to the probabilities of success as a function of actions by the equation 5.7.
Var(o(a)) = P(a) (1 — P(a)) (5.7)

However, if the probabilities of success as a function of the action space are restricted
for example within the range 0.2 < P(a) < 0.8, the variation of the variance will be
small and consequently the loss of accuracy will be negligible [Cox and Snell, 1989).
In addition, even if the probabilities are outside this range, we can use iterative
techniques and weighted least squares. We first obtain f’(a) and then estimate the
variance using equation 5.7, and weight the squared error values by the inverse of
the estimated variance. The use of the logistic function automatically includes this
scaling by giving more weight to actions of both low and high probabilities.

The following simple example illustrates the use of HyperBFs to estimate the
probabilities of success both using logistic functions and also directly from the data

using the iterative method to estimate the variance and then using weighted least

CHAPTER 5. OPTIMIZATION IN STOCHASTIC EN VIRONMENTS 147

squares.
Example 1 :
The action vector a used here is 2-D and is in the range [—2, 2]2. The probability

of success is assumed to be represented by equation 5.8.
1 2 oo 2
P(ay,a;) = E(cos ai” + sinap?) (5.8)

This ensures that the probabilities of success at any point is in the range [0,1]. A
3-D plot of the probability of success as a function of the action space is shown in fig-
ure 5-2. Each training example is given by the triplet (ay;, az;,s;). Samples of training
examples are : (—1.124, —1.812,0), (—1.969, —0.466, 1), (—0.33,0.747,1),

We used 1000 training examples uniformly distributed in the input space. The dis-
tribution of the data is shown in figure 5-3. A success is shown by a '1’ and a failure
is represented by an o’ symbol. 50 Gaussian Basis Functions whose centers were
randomly and uniformly distributed over the space were used to estimate either the
logit function of the probability of success from which thjs probability is then derived,
or the probability of success directly in the case of the weighted least squares method.
The same second order optimization tecknique is used to find the parameters of the
HyperBF network for both methods. The estimated probability of success for both
methods is shown in figure 5-4. As shown in figure 5-4, the estimated probability
of success function approximates the ideal one, although the peaks are not perfect.
The direct iterative scheme converges after one iteration only and gives better results.
The normalized error between the estimated function and the ideal one defined by
equation 5.9 is equal to 0.161 for the method using the logistic function and 0.0959

for the iterative direct method.

(P(a) — P(a))?

F=\LTpar

(5.9)

where A is the domain of the action set.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 148

@7/
///I""
Ay 00000’
SONAABARXKS
S NN
() () \
A XA
¢ I
S A BN
NN ;»{{;;f"/:;f:;:”::.:/o OO

(OO
\V Vol \‘\\" ‘ ’
N “*‘“::”"0‘0':”"0.0.0.0.’0o
() ”. (X) 005277
syl Q’ OO0 '0’0 0,0/
AL Q"‘ (X 0"0 W7,
CSOSS L2, ‘\\\\“ " () ”0‘ " () " Yy
0P) \\\““ (X) 0’. O
/4

Nk
WU 0,7/ 4

al 2

Figure 5-2: Probability of success as a function of the action space (a;,a;) for the
model of example 1.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 149

15)g 1

I5
-2
)
°°
2

00
0.5H of} ° o o

=}
-]
—h
Q
(=]
_DO
©
Vel
©

b
00 o ° fOI | ll 00

Figure 5-3: Distribution of the training examples used to train the HyperBF network
of example 1; 1’ represents a success and 'o’ represents a failure.

CHAPTFER 5 OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 150

" "0” .."““
0 .'...“‘:- \
e, J 5550505 % 9505552552,
5 ¢ :o:.,-;;, ,”," ,'o’
C) "]/' 7 I’I" () () ¢/
03 'l ,/1{,",00,’:0

X

% 0::’?“‘\\\? s ,/’

7 SN 2% NN\

0027, SN RGP0 00 %N\ %%

AN
0% R %

RS SN Sl

V4 N
S %/ SO o7
R N
&, (0L/
052057/ 11/1//11/! s, %5 77
(/] : 2”8)

Figure 5-4: Estimated probability of success for example 1 using 1000 data points in
the training set. The top figure is the output of the HyperBF network trained using
the logistic function, and the lower figure is the output of the HyperBF network using
the iterative direct method.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 151

While the use of the logistic function guarantees that the results remain between
(0, 1), the direct method as mentioned above does not have such a guarantee. Indeed
the maximum value for the estimated probability in figure 5-4 is found to be 1.001.
This is obviously not a serious problem in this case, since we can always truncate any
value outside the range (0, i). Although this error value is high with respect to a
2-D deterministic system, it is acceptable for a stochastic system given the amount
of data. If we increase the training set to include 5000 data points, randomly and
uniformly distributed as before, the normalized error is decreased to 0.0814 for the
logistic function estimation and to .0526 for the weighted least squares case. The
estimated probability of success for 5000 training examples as a function of the 2-D
action space is shown in figure 5-5. This performance is much better than using
data in the neighborhood to estimate the probability of success of an action vector.
Figure 5-6 shows the performance using neighborhood estimation of the probability of
success, using the same 5000 training examples. The action space is divided into bins,
and the probability of success of each bin is computed separately, then a smoothing
filter is used to reduce the variability of the probability of success function. The
smoothing filter used is a simple weighted averaging filter with the desired bin having
double the weight of all the neighboring bins. The computed normalized error in
this case is 0.193, which is even higher than the error obtained using 1000 training
examples when we used Gaussian HyperBF's.

Although directly modeling the data using iterative weighted least squares gives
better results for example 1 above, when the number of data points is small compared
to the number of parameters this algorithm is not stable and results in a substantially
higher error when compared to the logistic function method. For example the nor-
malized error for using only 100 data points in the training set is 0.27 when using the
logistic function and 0.40 when using the direct weighted least squares. Since in most
of the applications that we will describe in this chapter, the initial number of training

points is usually small, we will model the logit function of the probabilities instead

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS

s,

NN
<3 72755258 COSOTTT TN
0.8 4 SEIIXIESIIINN

22 il %0, CPOCITIR

27/ I,'o"”’." Clooonl
ALK AAIIOCON
2000009099 4% NN
O
O

5 0’0:0.0’0 (KIS

’:’:’0’0 () 0‘0’0 (N %
$.0.0,9
\\‘\\\\\\\“““::0:" OXXXX) O

KK
S 000008527
Nt 00,00,
\\“‘:‘:“:’:’. (X

55K

0’:’0 0022252
KB
'::"'O

OX)
0.%%.%
X557
""l"'lll/,/’
0117/ 4
"[,///

2 2

al

152

Figure 5-5: Estimated probability of success for example 1 using 5000 data points in
the training set. The top figure using the logistic function and the lower figure using

the iterative direct method.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 153

‘ "I" ,’ ‘}

;.‘ [” ' 0' \\ ‘
l ’
i ¢’¢ i '0 “

‘Ul// "‘ ““’ ['

S \\\\ /}‘

Q\‘ o/,
:‘ AT I:é\\l\ﬂ-
200 \‘\\(\’j

02> N ‘\\’0. ‘\‘"//'l/ .
- T '?‘..‘: N ’ \"'ff/""

al a2

Figure 5-6: Estimated probability of success for example 1 using 5000 data points in
the training set and using smoothed bins.

of the direct modeling of the probabilities to ensure better stability of the algorithm.
In addition, a regularization factor is important when the amount of data is small.
The regularizaticn factor that we chose is a minimization of the sum of squares of the
coefficients of the HyperBFs.

Example 1 shows how we can represent the probabilities of success using function
approximation techniques, it remains now to find an efficient way for exploration so
that we do not waste actions in areas of the action space where the probability of suc-
cess is expected to be very low but, at the same time, allow for accurate identification

of the parameters of the model used to describe the environment. This task is done

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 154

automatically for most of the direct methods. For the indirect methods, in addition
to finding the optimizing action two other factors have to be considered. First, the
whole space of actions has to be explored, if a global optimum is desired. Secondly
from the systems identification point of view, the actions should not be constant in
order to obtain a more stable model of the effect of actions. One method to perform
this exploration for the indirect methods is to locate the optimal action so far and add
to it a Gaussian random vector whose standard deviation decreases as the number of
actions increases. In addition a completely random action is performed every n steps
of optimal actions, so that we can obtain a balanced model. We tested this idea with
the function of example 1 and using the logistic model. We started the algorithm by
performing 100 random actions uniformly distributed over the action space. Since
the purpose is to find the action which gives the highest probability of success, we are
not concerned in approximating the probabilities accurately in areas of estimated low
probability of success. Analytically, the maximum value of the function of example 1
occurs at (0, m/2) and (0, —/2) in the range of actions used. The location of the
optimal actions obtained using this algorithm, are shown in figure 5-7 superimposed
on the real contours of equal probability of success. As shown in the figure, most of
the optimal values obtained have a probability of success above 0.95. However, at the
beginning there were few points who had a probability of success of about 0.5. This
plot does not show the random actions which were executed every 5 optimal actions.
The algorithm could not find any of the local minima exactly. This is always the case
with stochastic systems since there will always be an uncertainty associated with the
optimal action chosen. The model probability of success of the chosen actions as a
function of iteration number is shown in figure 5-8. This figure also does not include
the exploration/identification action executed every fifth optimal action. As shown
in the figure, initially the optimal action chosen had a probability of success of more
than 0.8. Then there was a jump to a worse action. The reason for this is that, at the

beginning when there are only few experiences, an action which results in a relatively

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 155

'
—
(%)

T
1

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Figure 5-7: Location of the optimal actions for example 1. The optimal actions are
superimposed on the model equal probability curves.

unlikely outcome may bias the model considerably.

There are also other schemes to improve identification and optimization of the
model that we will use in the simple simulations that we will describe later in this
chapter. For example, one can assume that all unexplored actions are initially suc-
cessful. This will encourage the curiosity of the learner. We can also penalize actions
based on the density of the previous experiences in that area. This will reduce rep-
etition and avoid local optima. The repetition penalty should be reduced gradually

to allow convergence to one action.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 156

o o
~ (e -]
_ 1

e
=)
1

Probability of success
=) =)
> n
1 1

o
W
T
1

=)

N

L
1

0.1f .

0 | L -y 1 J. 1 1 L
0 50 100 150 200 250 300 350 400 450

Iteration #

Figure 5-8: Ideal probabilities of success as a function of iteration # for the problem
described in example 1.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 157

Maximizing average reinforcement

In many cases the outcome of an action that the learner can measure is in the form of
a real valued reinforcement (or cost) signal as opposed to a binary success or failure
information. For example, in aiming at a target, the information that the learner gets
is not only whether s/he was successful in hitting the target, but also how far was
s/he close to the target.

In the previous section, we have shown how HyperBFs could be used to construct
a probability of success as a function of actions that we can then optimize and obtain
the actions with highest probabilities of success. Similarly in the case when the
outcomes are stochastic real values, a simple way for determining the best action based
on previous experiences is to directly construct a mapping of the expected cost or
expected reinforcement resulting from applying the different actions, and then find the
action that optimizes this expected cost or reinforcement. It must be emphasized here
that these cost or reinforcement functions are sometimes subjective and only reflect
the different priorities of the agent or the decision maker if we have many objectives
we would like to achieve. In the case of continuous mappings of stochastic systems, in
addition to the usual problems of function approximation mentioned before, namely
generalization and learning complexity we have the problem of filtering the noise. We
have to estimate an average reinforcement or cost. This is particularly hard when the
variances of the outputs are a function of the action space, especially when we have
only few data points. One possible way to overcome this problem, is to first assume
that the variance has a constant value, and then estimate expected values using least
squares error optimization. We can then estimate the variance at each point using the
estimated expected values. Finally we update the expected values estimated using
weighted least squares, with the weights being the inverse of the estimated variances.

As mentioned before, the agent or the decision maker has active control over
the experiences and can therefore choose actions for the purpose of exploration and

better estimation of their utility or cost. The other important problem that exists

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 158

when using some global function approximators such as RBFs is that the data are not
evenly distributed and are clustered around what is considered to be more optimal
areas in the parameter space which is a problem for the system identification. One
simple way to overcome the problem of clustering and to allow for exploration of
different areas of the space, is to add a cost to the action that depends on the average
density of the previous experiences but which decays over time to allow convergence.
This will encourage early exploration of the space and avoid initial bad distribution
of the data. Another method to encourage exploration is to assume initially that
unexplored areas have favorable outcomes.

To find the optimal cost or reinforcement we can use any optimization technique
such as gradient descent for example. However, since the cost or reinforcement func-
tion is only very approximate anyway, there is no need for an accurate optimization
technique at least for the first few trials. Not only an approximate technique of
optimization will reduce the amount of computatien of the search for the optimal
parameter set; but it is even more desirable in terms of the long term optimization
since it encourages exploration of a larger area of the parameter space which tend to
have a low cost. This will minimize the risk of early convergence of the algorithm
to a fictitious minimum that resulted only from the poor approximation of the cost
function. The accuracy of the optimization algorithm used to find the minimum cost
of the approximated cost function could be increased as the number of experiences
accumulated is increased and the cost function approximation becomes more accurate.

In the remainder of this chapter, we will describe two simulations of action opti-
mization by building action/outcome models using the techniques described above,
and then we will compare these techniques with direct optimization methods such as

Gullapalli’s stochastic reinforcement algorithm.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 159

5.3 Basketball Shooting : Learning the Best Launch-
ing Velocity

There is theoretically a continuum of initial angles 6y and speeds vy by which we
can throw a basket ball from a fixed position into the hoop. One way for a basket
ball player to shoot a successful shot, is to have a perfect model of the system,
good measurements of the distances between him and the basket and good control
of his muscles to generate the exact initial velocity. Another possibility is to have an
associative controller which generates an action based on the measurements of the
distances from the basket and the other context variables. Even with a high degree
of practice, it is unlikely that the player can estimate and control these quantities
accurately especially in the presence of adversary players. Therefore, in order to be
successful, the player has to choose his action in such a way that it maximizes the
probability of success given the different sources of uncertainties and disturbances.
There are different strategies that the player uses to maximize his success, for example
he may try to run closer to the hoop and jump to reduce the uncertainties. Also he
can give the ball a little back spin and aim at the back board instead of aiming
directly at the hoop. In a rebound shot, a spin in the correct direction will help keep
the ball closer to the backboard and the effect of errors in aiming will be reduced.
Also, he can choose an angle and speed of throwing the ball that are less sensitive to
noise. The choice of the angle and speed of throwing that optimize success are related.
Intuitively a ball falling verically sees a bigger target than when the !aunching angle
become more acute. However, highly arched shots are more prone to error. First,
because it is a longer shot, therefore any initial error is magnified. Secondly, because
the ball is dropped from a higher position, it gains higher velocity when it reaches
the target, and therefore if it hits the rim it will have a bigger rebound and lower
probability of success [Broer and Zernicke, 197Y]. In this section we will simulate the

problem of shooting at a basket from a fixed position, and we will show the result

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 160

of applying some of the different optimization methods discussed above for finding
the best launching velocity that maximizes the probability of success or maximizes
expected reinforcement given random errors in the speed and angle of throwing. We
will not address here the other strategies that the player may use to improve the
probability of success. The problem as it is stated here is context free, that is, we are
only interested in finding the best action for only one fixed position. However, this
problem and the different methods of solution presented here could be very easily
extended to the context sensitive case by making the model a function of the states
as well as of the actions.

Assuming the effects of air drag and spin are negligible, we can approximate the
trajectory of the bali in flight using the dynamic equation of a projectile. The relation
between the initial speed vy, initial angle y and the horizontal and vertical position

of the ball z(t) and y(t) respectively could be described by the following equation:

2 _ gr
2cos fp*(tan 6 — £)

(5.10)

Yo

where ¢ represents the acceleration due to gravity, z and y are the dietance and the
height coordinates of the trajectory respectively. This equation is derived by elimi-
nating time from the simple dynamic equations of the ball in the z and y direction,
with gravity being the only force acting in the negative y direction. In the simulations
it is assumed that the ball is thrown from a fixed horizontal distance from the center
of the target of 5m and a vertical distance of 0.6m, the target is a horizontal line in
the zy plane of width 1.0m, and only the trajectories that reach the target in their
desceading phase are considered successful. Gaussian noise is added to the initial
speed and angle of launch of the ball. The standard deviation of the noise added to
the initial launch angle is constant, but the noise added to the initial speed of the ball
is assumed to be proportional to the launching speed. Given the above assumptions,
the contour curves of the probability of success as a function of launching speed and

angle are shown in figure 5-9. As shown in this figure, there is a single peak for the

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 161

probability of success function. This highest probability of success is achieved near
the minimum launching speed which is due to the small variance in the initial speed
near the minimum. It is also obvious from the figure that the probability of success
is more sensitive to the initial speed than to the initial angle of launch. The highest
probability of success is about 0.6 given the level of noise used in the simulation.

The first simulation assumes that the player gets only a binary feedback signal
representing success or failure of his/her action. The probability of having a success
if the actions are uniformly and randomly distributed in the action space is about
0.055. This makes it hard to model using only success or failure information and
few examples, since most of the examples are failures and we need few hundred
data points to get a reasonable initial approximation. We use HyperBF to represent
the probability of success as described in example 1 above, and then optimize this
probability to obtain the best action. The initial model of the probability of success is
generated using 100 initial experiences uniformly distributed across the action space.
The velocity range is [0,20] m/sec and the angle range is [0,] Radians.

The location of the estimated optimal actions for 100 additional iterations are
shown in figure 5-10 superimposed on the contours of equal probability of success.
Except for few points in the first few iterations, practically all the estimated opti-
mal angles and velocities have a probability of success greater than 0.5. Figure 5-11
shows the probability of success of the estimated optimal value against the true op-
timal value. This figure was smoothed using a moving average window of a width
of 10 points to remove the noise. As shown in the figure, the optimal action chosen
has a higher probability of success as the number of iterations is increased. How-
ever, the probability of success does not reach the optimal one. The contours of the
final estimated probabiiity of success model used to compute the optimal action is
shown superimposed on the contours of corresponding probability contours for the
true model in figure 5-12 where the solid lines represent the estimated probabilities

and the dotted lines represent the true probabilities. This figure shows that the es-

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 162

20 T v Y r

18

16

14}

12

10

VO (m/s)

o 0.2 04 0.6 0.8 1 1.2 1.4
ThetaO (Radians)

0.7

0.6 .

o

&
1
1

o
w
]

1

Probability of Success

©

N
T
1

0.1f .

% 0.2 0.4 0.6 0.8 1 12 1.4 1.6
ThetaO (Radians)

Figure 5-9: Contours of simulated probabilities of success as a function of the launch-

ing speeds and launching angles. The highest probabilities of success are then pro-

jected as a function of the launching angles

18

— — —
[& [=a)
T T T

Velocity (m/sec)
=)

0 'l Il 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

ThetaO (Radians)

Figure 5-10: Estimated optimal actions for the basket ball simulation. The optimal
actions are superimposed on the model equal probability contours.

timated location of the probability peak occurs at a slightly higher velocity than in
the true model.

We would like here to show how the algorithm described above may be related
to stochastic learning automata type algorithms. Although the term “Learning Au-
tomaton” is mostly used to describe a system with finite action space, we will gen-
eralize this description to include systems with continuous action and state spaces.
Stochastic learning automata algorithms find the best action by directly updating
the probability of using any action in the future based on previous responses. The

algorithm for updating these probabilities is called reinforcement. Based on the re-

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 164

Ll

09

e e o

[=,) ~ oo
T T
J 1

Probability of Success
=) =
Y n

o
|
1

0 Al he A 1 1 A A L

0 10 20 30 40 50 60 70 80 90 100
Iteration #

Figure 5-11: Estimated probabilities of success of the optimal actions for the basket-
ball simulation as a function of iteration number.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 165

18

16

—
£
T

Velocity (m/sec)
™)

10

0 0.2 . 0.6 0.8
Theta((Radians)

Figure 5-12: Estimated probability contours (solid lines) versus true model probability
contours (dotted lines) for the basket ball simulation.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 166

inforcement scheme, different types of behavior emerge. Algorithms which tend to
reward success and penalize failure symmeirically, for example linear reward-pepalty
(Lr-p) algorithms [Narendra and Thathachar, 1989], generally do not converge to
the optimal action, although their behavior is called “expedient”, that is, better than
pure chance. The probability for choosing an action for these algorithms usually con-
verges to a probability distribution related to the probability of success (or failure)
of the action. In the case of Lr_p algorithm, the probability of choosing an action
after a large number of iterations is inversely proportional to the probability of fail-
ure of that action. Although this algorithm tends to choose more successful actions
more often, it is not optimal. Knowing the probability of success or failure, we can
generate a sequence of actions with the same probabilities as the Lr_p algorithm.
Other reinforcement schemes reward successes and penalize failures in a nonsymmet-
ric fashion. If success is rewarded more than failure is penalyzed, these algorithms
tend to converge to more optimal actions. At the limit, when we do not penalize fail-
ure, for example the linear reinforcement - inaction (Lg-1) algorithm, the algorithm
converges to the optimal action for discrete action spaces. Although this algorithm is
optimal, its convergence may be slow, because it does not make use of the experiences
which resulted in a failure. Modeling the probability of success and then finding the
optimal action will converge to the optimal action as the model for the probability of
success improves. The advantage offered by direct optimization schemes is that they
combine the identification process with the process of selecting new actions in such
a way as to improve overall performance. The schedule of actions we use to obtain a
better probability of success model is different from that used by the reinforcement
algorithms. Also we make symmetric use of all the actions, whether they vesulted
in success or failure, to update the model. The disadvantage of using the indirect
method of first modeling the probability of success is the time it takes to find the
optimal action from the model which makes it not suitable for applications which

require fast action.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 167

5.4 Bouncing a Ball with a Racquet: Learning
the Optimal Periodic Trajectory

In this part we are interested in answering the following question: given the task of
bouncing a ball with a racquet, what would be the most robust periodic open loop
trajectory of motion of the racquet, given external perturbations on the trajectory of
the ball. The trajectory of the ball should also be close to periodic, having the same
period as the trajectory of the racquet. In general, if the coefficient of restitution
of the racquet is smaller than one, for each constant velocity of the racquet there is
a stable height that the ball will reach. However in this case we do not have any
control over the phase of the hit (at which time of the periodic cycle we hit the ball)
and the robot may miss to hit the ball in one cycle or hit more than once during the
same cycle. A smaller coefficient of restition results in a more stable ball trajectory.
Intuitively, to stabilize the phase relationship, we would like to hit harder at the
beginning of the phase and softer near the end to move the phase of hit to the middle
of the cycle. This intuitive idea has been implemented and tested by Atkeson and
has been shown to work [Atkeson, 1991].

A one dimensional ball bouncer is initially simulated using a constant speed tra-
jectory of the racquet. This speed corresponds to a stable height of one meter, given
a coeflicient of restitution equal to 0.9. The ball is dropped from any random height
in the range [0.m, 2.m] and at any random phase of the trajectory, then the bouncing
of the ball is simulated until failure. The phases at which consecutive hits occur are
then analyzed and the trajectory of the racquet is modified in a direction that makes
the ball bouncing more stable. Two different methods were used to learn the optimal
trajectory : a direct method where the trajectory is adapted directly after each fail-
ure, and an indirect method where a model of the cost of each action as a a function
of the phase of the racquet trajectory is estimated using a HyperBF network. This

model is then used together with dynamic optimization to generate the best trajec-

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 168

tory. The cost used is heuristic and depends on whether the hit trajectory resulted
in improving the trajectory of the ball in the next cycle. This cost function is also
stochastic since the behavior of the ball in future cycles depends on its behavior in
the past which is affected by random perturbations. In both methods tried, we added
the additional constraints that the position of the racquet at the beginnning and end
of the cycle are fixed. The velocity of the racquet is also constrained to be within a
specified range. The presence of these constraints makes the use of direct methods

less straightforward.

5.4.1 Direct method

The trajectory of the racquet is discretized into 20 bins of equal velocity. We then
simulate the ball bouncing until failure using the discretized trajectory. The velocity
of the bin when failure occured is then increased or decreased depending on whether
the hit resulted in a shorter cycle or a longer cycle respectively. Only the direction
of the error is used, but not its magnitude. In order to satisy the above mentioned
constraints and keep the range of movement constant, the velocity of the mirror
bin is adjusted in the opposite direction so that the integral of the velocity remains
constant. By doing this, we implicitly force the trajectory of movement of the racquet
to be symmetric. Figure 5-13 shows the trajectory of the racquet for one cycle after
500 trials. The velocity is approximated as a linear function of the phase which
is expected. No restriction was made in the learning algorithm to insure that the
resulting velocity is smooth. Also information on the performance of one bin affected

only the velocity of that bin and its mirror image.

5.4.2 Optimizing expected cost

In this method, the system is simulated until failure. At failure, an instantaneous cost
is computed as a function of the phase at which the hit occured and the instantaneous

velocity of the racquet at ths time. A dynamic optimization algorithm is then used

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 169

0.25

0.15

0.1

0.05

-0.05

Racquet position (m)
=)

0.1+

1

-0.15

0.2F

0 0.1 0.2 03 04 0.5 0.6 0.7 08 0.9 1

Time (sec.)

0.8f

0.6}

04

Velocity (m/s)

0.2+

-0.2

_0-4 L 1 1 A 1 1 I 1 I
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 09 1

Time (sec.)

Figure 5-13: Position and velocity of the racquet as a function of time before (dashed
line) and after (solid line) learning

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 170

to minimize the integral of the cost over the whole period while at the same time
satisfying the end point constraints on the position of the racquet and the constraints
on the maximum magnitude on the velocity of the racquet. The cost at each hit is

given by equation 5.11
cost(t(n),v(t(n)) = ({(n + 1) — 0.5)? (5.11)

Where t(n) represents the phase at which the racquet hits the ball during the n*
cycle and v(?) is the velocity of the racquet as a function of the phase. This cost en-
courages hitting the ball rear the center of the cycle. We represented the cost using
a HyperBF network with 30 centers randomly and uniformly distributed. We then
~ used dynamic optimization, described in detail in the previous chapter, to optimize
the integral of the cost over the whole period under the end point constraints. The

optimization procedure is as described by equations 5.12- 5.15. Cost function :

T
v(t)* = argmind(v(t)) = /o cost(t,v(t)) dt (5.12)
System equation :
p=v(t) p(0) =-0.2 p(T)=0.2 (5.13)
Hamiltonian :
H = cost(t,v(t)) + A(t)v(t) (5.14)
Costate equation :
: 0OH
A= o 0; (5.15)

500 hits were used in the estimation of the cost function and its optimization. The

estimated cost function as a function of the phase and velocity of the racquet is shown

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 171

—
/

o
o
L

Estimated expected cost
= =
FS o
L L

s,
Z
eSC7)

AL - .’
MMM e

N\ A
NS

Racquet velocity (v(t)) 2 0 Phase t

Figure 5-14: Expected cost estimated using a HyperBF network with 30 centers.

in fig 5-14 As shown in this figure, a higher speed at a low phase has a smaller ex-
pected cost, conversely at a phase close to one, a negative speed has a smaller cost.
It is important to note that this cost function represents the estimated expected cost,
the actual cost measured by the learner is a random variable. To show the relation
between the actual and estimated expected cost, we plotted the estimated cost at
a phase of 0.05 and the actual cost for experiences which had a phase less than 0.1
in figure 5-15. It is obvious from this figure that the variance in the measured cost

is very high. The optimal position and velocity of the racquet computed using the

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 172

l.8 T L]] L T L Ll

x X
X X
1.6K i
1.4 n
X
x
1.2+]
X
3 1r X =
S X
7]
o
Q

X X
X x %
0 b, .4 1 LV 1 X xY |\{3\<< 1 xx 1 ‘IX L ¥ §
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Racquet Velocity

Figure 5-15: Comparison between the real cost data and the esiimated expected cost
as a function of the velocity of the racquet. The expected cost is estimated at a phase
of 0.05, while the real data are the measured cost for experiences with phases that lie
between zero and 0.01.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 173

dynamic optimization procedure described above on the estimated expected cost and
the constraints on the position of the racquet is shown in figure 5-16. As shown in
the figure, the racquet starts the cycle at a high speed, than the speed is reduced
almost linearly in such a way to satisfy the constraints on the position of the racquet
at the end of the phase. It is important to realize that this trajectory profile of the
racquet i1s dependent on the nature of the disturbances. In this case the disturbance
on the height of the ball was uniformly distributed and symmetric around the ideal
height. The velocity profile in this case is almost symmetric around the ideal con-
stant speed velocity which occur almost in the middle of the phase. If we choose
another disturbance distribution, we would expect to obtain a different trajectory of

the racquet.

5.5 Conclusion

The main focus of this chapter is to test the indirect methods for optimizing actions in
stochastic environments. Expected values for nonlinear stochastic functions are hard
to model because the variance of the noise is different at each point. We describe here
an iterative technique for overcoming this problem which uses previous estimates of
the expected values to improve the estimate of the variance of the noise and then use
the latter to improve the estimation of the expected values.

We have shown the possibility of optimizing actions or a sequence of actions in
stochastic environments by first building a model that describes an average behavior of
the outcome as a function of actions and states and then optimizing this model using
known optimization algorithms. There are many advantages to such an approach.
One advantage is that the knowledge gained from all the previous experiences is not
iost and can be used when the objective changes. This is unlike direct methods of
optimization, such as reinforcement learning and gradient based methods where the

experience gained is represented relative to the desired objective.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 174

0.4 L L ¥ L4 L Ll L

0.2

Racquet Position

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Phase

Racquet Velocity

1 1 L i

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Phase

Figure 5-16: Position and velocity of the racquet as a function of time using estimated
expected cost and dynamic optimization and 500 experiences.

CHAPTER 5. OPTIMIZATION IN STOCHASTIC ENVIRONMENTS 175

One main feature of indirect methods is the separation of the identification and
control processes (also called the exploration-exploitation problem). This problem
does not arise in direct optimization methods since the selection of actions is part
of the optimization algorithm. For indirect methods we have to explicitly define a
strategy for exploration which should converge to the optimal action. This problem

has been addressed in detail in a previous chapter.

Chapter 6

Conclusion

6.1 Practice and Optimization

In this thesis we focus on the acquisition of motor skills by practicing. Practicing
is viewed here as an active optimization process in a multidimensional space with
respect to a given goal of movement [Gel’fand and Tsetlin, 1971]. There are many
different ways to perform this optimization. The approach we have investigated here
is to observe previous performances and then use past experience to build and select
hypotheses about the task and the environment. Future practice is then based on
the current hypotheses. We should balance between the need to validate and improve
these hypotheses on one hand, and the need to improve the performance of the task.
As the confidence in the current hypothesis increases, as measured by the accuracy of
its predictions, future practice should shift to optimizing the performance. We have
implemented this approach and tested it in the context of multivariable function opti-
mization. We found that this approach works well compared to gradient approaches.
However, it must be understood that the best search strategy used depends on the
nature of the task and the function to be optimized. For simple convex functions, for
example, it may be more appropriate to use a gradient search since the direction of

the search will always lead 1o the best action. On the other hand, when performance

176

CHAPTER 6. CONCLUSION 177

results are noisy, it may be better to form a model of the average performance. More-
over, it has been shown experimentally that sometimes emphasis on accuracy may
impair learning for an unpracticed subject [Newell and McDonalds, 1992].

Finding the best sequence of actions is a much harder optimization problem. This
is mainly due to two main reasons: the difficulty of attributing performance to a
particular action in time (temporal credit assignment) and the constraints imposed
on the exploration strategy, for example actions must result in a continuous trajectory.
This second reason results in the difficulty of exploring the effects of actions in some
regions of the state space that are hard to reach. The method that we used for
optimal trajectory generation estimates a model of the dynamics which is then used
to compute the gradient of the cost function with respect to the action trajectory.
The new action trajectory is then selected along the gradient in addition to a noise
term which decreases with practice. This search strategy can be termed as a local
search procedure. It is prone to being stuck in local minima. Also, it does not solve
the second problem mentioned above, namely it does not guarantee the exploration
of all the regions of the action-state space.

The most commonly used strategies to find the best actions under uncertainty are
based on reinforcement learning. In this thesis we explored the use of an alternative
strategy which, instead of modifying the probability of choosing an action based on
its performance, it represents some parameters of the statistics of previous perfor-
mance as a function of the different actions and uses these statistics to search for
the optimal action given a certain performance measure. We tested this approach on
two different problems and it was found to perform well. However a more detailed
comparison between this approach and reinforcement learning approaches is needed.
The strategy for choosing actions that we used was heuristically chosen to alternate
between random and optimizing searches. A better search strategy may improve the

results obtained using this approach.

CHAPTER 6. CONCLUSION 178

6.2 Storage and Recall of Optimal Actions

In most of this thesis we focused our attention mostly on how to search for the op-
timal actions, we did not discuss in detail how these optimal actions are then stored
to be used in the future. One possible approach is to build a static mapping from
the current state of the environment and the goal of the movement to the optimal
action found that can achieve this goal. Another approach may be that we never store
the optimal actions. The experience we gain from practice is only used to geneate
a model of the task. We then use this model to generate the optimal experience in
real time. Dynamic recurrent neural networks may be capable of performing such
an optimization in real time. The connection strengths between the units of such a
network directly depend on the model of the task generated from previous experience
in addition to the goal of the task. This approach is appealing from a biological point
of view since most of the neural networks in the central nervous system responsible
for motor functions tend to be recurrent dynamic networks. [Lukashin and Geor-
gopoulos, 1993] trained a dynamical neural network to perform neural population
coding. They showed that the dynamical behaviour of the network resembles the

experimentally cbserved dynamics of the motor cortex neurons.

6.3 Relation to Models of Motor Learning

Many psychological models of learning have been proposed to explain the numerous
observations made about animal and human motor learning. [Adams, 1990] provides
a historical review of the evolution of the psychological motor learning theory. Earlier
models of motor learning have emphasized a non-cognitive approach and the auto-
matic reinforcement of behavior based on the knowledge of results [Adams, 1990).
Such theories can not explain some modes of learning such as observational learning
and mental practice. A model-based approach to learning can explain these modes

of learning although other interpretations are also possible. Knowledge of results and

CHAPTER 6. CONCLUSION 179

observation of performance are still necessary for the learner to be able to form a
model, however the search for the optimal action can be performed on the learned
model.

Although many experiments have been done that measure the improvement in
performance, there have been relatively few research studies in motor control which
focused on the search strategies that human or animal subjects use to find the best
actions [Newell and McDonald, 1992]. One such study is reported by [Newell and
McDonal, 1992] and uses protocols similar to those developed by Krinskii and Shik
[Krinskii and Shik, 1964]. In this series of studies, a function of the subject arm joint
angles is measured and results are shown to the subject. The shape of the function
is unknown to the subject. The subject is required to move his/her arm to minimize
this function. The search trajectory performed by the subject are then recorded and
analyzed. These studies showed that subjects use different search strategies. Some
subjects vary just one coordinate at a time while others use complex pattern search
[Newell and MacDonald, 1992]. More experiments need to be done to determine how
the nature of the task affect the sea::h :trategy and whether the search strategy used

depends on the amount of previous experience.

Bibliography

[1]

[2]

(3]

[4]

[5]

[6]

[7]

J. A. Adams, 1990. “The changing face of motor learning”. Human Movement

Science, 9: 209-220

K. J. Arrow, L. Hurwicz and H. Uzawa, 1958. “Studies in Linear and Nonlinear

Programming” Stanford University Press, Stanford, California.

C. G. Atkeson, 1986. “Roles of knowledge in motor learning” Ph.D. Thesis,
Massachusetts Institute of Technology.

C. G. Atkeson, E. W. Aboaf, J. McIntyre, D. Reikensmeyer, 1988. “Model-Based
Robot Learning”. Massachusetts Institute of Technology, Artificial Intelligence
Memo 1024.

C. G. Atkeson, 1989. “Using local models to control movement” In D. S. Touret-
zky, editor, Neural Information Processing Systems. Morgan Kauffman, San Ma-

teo, Ca.

C. G. Atkeson, 1990. “Memory based techniques for task-level learning in robots
and smart machines”. Proceedings of the 1990 American Control Conference, p.

2815-2820, San Diego, Ca.

C. G. Atkeson, 1991 “Memory-based learning control”. Proceedings of the 1991
American Control Conference, p. 2131 - 2136, Boston, MA.

180

BIBLIOGRAPHY 181

[8] C. G. Atkeson, 1991. “Using locally weighted regression for robot learning”.
Proceedings of the 1991 IEEE International Conference on Robotics and Auoma-
tion v.2, p. 958 - 963, Sacramento, Ca.

[9] A. G. Barto and P. Anandan, 1985. “Pattern Recognizing Stochastic Learning
Automata”. IEEE Transactions on Systems, Man and Cybernetics 15:360-375.

(10; D. M. Bates, M. J. Lindstorm, G. Wahba, and B. S. Yandel, 1987. “Gcvpack -

routines for generalized cross validation”. Commun. Statist.-Simula., 16(1):263-

297.

[11] R. E. Bellman, 1978. “An introduction to artificial intelligence: Can computers

think?”. Boyd and Fraser, San Francisco.

(12] R. E. Bellman and S. E. Dreyfus, 1962. “Applied Dynamic Programming”.

Princeton University Press, Princeton, NJ.

(13] D. Bertsekas, 1982. “Constrained optimization and Lagrange multiplier meth-
ods”. Academic Press, New York.

14] U. Beyer and F. Smieja, 1993. “Learning from Examples using Reflective Ex-
8
ploration”. Electronic copy, available via anonymous FTP from archive.cis.ohio-

state.edu as file pub/neuroprose/beyer.explore.ps.Z

[15] S. M. Botros and C. G. Atkeson, 1991. “Generalization Properties of Ra-
dial Basis Functions”. In Advances in Neural Information Processing Systems 3,
R. P. Lippman, J. E. Moody and D. S. Touretzky, eds., Morgan Kaufmann, San
Mateo, Ca.

[16] S J. Bradtke, 1993. “Reinforcement Learning Applied to Linear Quadratic Reg-
ulation”. Advances in Neural Information Processing Systems 5, Morgan Kauf-

mann, San Mateo, CA.

BIBLIOGRAPHY 182

[17] A. E. Bryson and Y. Ho, 1975. “Applied Optimal Control : Optimization, Esti-

mation and Control”. Hemisphere Pub. Corp., New York.

(18] M. R. Broer and R. F. Zernicke, 1979. “Efficiency of human movement”.
W. B. Saunders Corapany, Philadelphia.

[19] D.S. Broomhead and D. Lowe, 1988. “Multivariable functional interpolation and
adaptive networks” Complez Systems, 2:321-355.

[20] B. Caprile and F. Girosi, 1990. “A nondeterministic minimization algorithm”.

Artificial Intelligence Memo 1254, Massachusetts Institute of Technology.

[21] F.-C. Chen and H. K. Khalil, 1992. “Adaptive Control of Nonlinear Systems
Using Neural Networks”. International Journal of Control 55, 6:1299-1317.

[22] B. W. Choi, J. H. Won, and M. J. Chung, 1992. “Optimal Redundancy Resolu-
tion of a Kinematically Redundant Manipulator for a Cyclic Task”. Journal of
Robotic Systems 9 (4) : 481 - 503

[23] D. R. Cox and E. J. Snell, 1989. “Analysis of Binary Data.” 2nd Ed. Chapman
and Hall, New York, N.¥.

[24] L. de Biase and F. Frontini, 1978. “A Stochastic Method for Global Optimiza-
tion”. Compstat, p. 355-361.

[25] L. P. Devroye, 1978. “The Uniform Convergence of Nearest Neighbor Regression
Function Estimators and Their Application in Optimization” IEEE Transactions

on Information Theory IT-24 (2):142-151.

[26] L. P. Devroye, 1987. “A course in density estimation”. Progress in Probability
and Statistics, Vol. 14. Birkhauser, Boston.

[27) P. Dyer and S. R. McReynolds, 1970. “The Computation and Theory of Optimal

Control” Academic Press, New York and London.

BIBLIOGRAPHY 183

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

A. A. Feldbaum, 1965. “Optimal Control Systems”, Academic Press, New York.

R. Fletcher, 1965. “Function minimization without evaluating derivatives”. The

computer journal, 8:33-41 (April).

R. Franke, 1982 “Scattered data interpolation: tests of some methods”. Math.
Comp., 38:181-200.

I. M. Gelfand and M. L. Tsetlin, 1971. “Mathematical modeling of mechanisms of
the central nervous system”. In Models of the structural-functional organization
of certain biological systems, Gelfand, Gurfinkel, Fomin and Tsetlin (eds.), MIT
Press, Cambridge, MA.

F. Girosi, 1992. “Some Extensions of Radial Basis Functions and their Applica-
tions in Artificial Intelligence”. Computers and iMathematics with Applications,

Vol 24, No. 12 : 61 - 80.

F. Girosi and T. Poggio, 1989. “Networks and the best approximation property”
MIT AI Memo 1164.

F. Girosi, T. Poggio and B. Caprile, 1990. “Extensions of a theory of networks for
approximation and learning : outliers and negative examples”. MIT AI Memo

1220.

C. J. Goh, 1993 “On the Nonlinear Optimal Regulator Problem” Automatica
29(3) : 751 - 756

D. E.Goldberg, 1989. “Genetic algorithms in search, optimization, and machine

learning” Addison-Wesley Pub. Co, Reading, MA.

A Guez, I. Rusnak and I. Bar-Kana, 1992. “Multiple Objective Optimization
Approach to Adaptive and Learning Control”. International Journal of Control,

56(2):469-482.

BIBLIOGRAPHY 184

[38] V. Gullapalli, 1990. “A Stochastic Reinforcement Learning Algorithm for Learn-
ing Real-Valued Functions”. Neural Networks, 3: 671 - 692.

(39] E. Hartman and J. D. Keeler, 1991. “Predicting the Future: Advantages of
Semilocal Units”. Neural Computation 3 : 566 - 578.

[40] N. Hogan and T. Flash, 1987. “ Moving gracefully: quantitative theories of
motor” coordination. T/NS 10(4): 170-174

[41] K. J. Hunt, D. Sbarbaro, R. Zbikowski and P. J. Gawthrop, 1992. “Neural Net-
works for Control Systems - A Survey”. Automatica, 28(6):1083-1112.

[42] J. M. Hutchinson, 1993. “A radial basis function approach to financial time se-
ries analysis”. Ph.D thesis, Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology.

[43] M. Hutchinson,J. Kalma and M. Johnson, 1984. “Monthly estimates of wind-
speed and wind run for Australia”. J. Climatology, 4:311-324.

[44] M. Ito, 1993. “New concepts in cerebellar function” Revue de Neurologie (Paris),
149(11):596-599.

[45] I. R. H. Jackson, 1988. “Convergence Properties of Radial Basis Functions”.
Constructive Approzimation 4:243-264.

[46] R. A. Jacobs and M. I. Jordan, 1991. “A competitive modular connectionist ar-
chitecture”. In Advances in Neural Information Processing Systems 3, R. P. Lipp-
man, J. E. Moody and D. S. Touretzky, eds., Morgan Kaufmann, San Mateo,
Ca.

[47] R. A. Jacobs, M. 1. Jordan, S. J. Nowlan, G. E. Hinton, 1991. “Adaptive r.. ... i «res
of Local Experts”. Neural Computation 3: 79-87.

BIBLIOGRAPHY 185

[48] C. R. Jensen and G. W.Schuliz, 1977. “Applied Kinesiology” McGraw Hill book

'Jompany.

[49] M. L. Jordan, 1989. “Indeterminate Motor Skill Learning Problems”. In M. Jean-
nerod (ed.) Attention and Performance XIII. Hillsdale, NJ: Lawrence Erlbaum.

[50] M.I. Jordan and D. E. Rumelhart, 1992. “Forward Models : Supervised Learning
with a Distal Teacher”. Cognitive Science 16 : 307 - 354

[51] M. Kawato, Y. Maeda, Y. Uno and R. Suzuki, 1990. ‘ ‘Trajectory Formation of
Arm Movement by Cascade Neural Network Model Based on Minimum Torque

Change Criterion.” Biological Cybernetics, 62: 275 - 288.

[52] M. Kawato and H. Gomi, 1993. “Feedback-error-learning model of cerebellar mo-
tor control”. In Role of the Cerebellum and Basal Ganglia in Voluntary Movement,

N. Mano, I. Hamada and M. R. DeLong editors. Elsevier Science Publishers.

[53] M. Kawato and H. Gomi, 1992. “A computational model of four regions of the

cereb=llum based on feedback-error learning” Biological Cybernetics 68:95-103.

[54] D. E. Kirk, 1970. “ Optimal control theory; an introduction”. Englewood Cliffs,
N.J., Prentice-Hall

[65] V.I. Krinskii and M. L. Shik, 1964. “A simple motor task”. Biophysics, 9:661-666

[56] J. G. Kuschewski, S. Hui and S. H. Zak, 1993. “Application of Feedforward Neu-
ral Networks to Dynamical System Identification and Control”. IEEE Transac-
tions on Control Systems Technology 1, No. 1:37-49.

[57) M. Lar and S. Chand, 1990. “Solving Linear Quadratic Discrete-Time Optimal
Controls Using Neural Networks”, Proceeding of the 29th Conference of Decision
and Control, Vol. 5, 2770-2772.

BIBLIOGRAPHY 186

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Ker-Chau Li, 1992. “On Principal Hessian Directions for Data Visualization and
Dimension Reduction: Another Application of Stein’s Lemma.” Journal of the

American Statistical Association 87 : 1025 - 1039

A. U. Levin and K. S. Narendra, 1993. “Control of Nonlinear Dynamical Systems
Using Neural Networks: Controllability and Stabilization”. IEEE Transactions
on Neural Networks 4, 2:192-206.

D. Luenberger, 1973. “Introduction to linear and nonlinear programming”.

Addison-Wesley, Reading, Massachusetts.

D. Luenberger, 1984. “Linear and nonlinear programming”. Addison-Wesley,

Reading, Massachusetts.

A. V. Lukashin and A. P. Georgopoulos, 1993. “A dynamical neural network
model for motor cortical activity during movement: population coding of move-

meat trajectories”. Biological Cybernetics, 69:517-524

K. Marzuki and S. Omatu, 1992. A Neural Network Contreller for a Temperature
Control System. IEEE Control Systems Magazine8:58-64

B. W. Mel and S. M. Omohundro, 1991. “How Receptive Field Parameters Af-
fect Neural Learning”. In Advances in Neural Information Processing Systems 3,
R. P. Lippman, J. E. Moody and D. S. Touretzky, eds., Morgan Kaufmann, San
Mateo, Ca.

M. J.Mears, R. Smith, P. R. Chandler and M. Pachter, 1993. “A Hopfield Neu-
ral Network for Adaptive Control”, AIAA Guidance, Navigation and Control
Conference, Monterey, CA.

C. A. Micchelli, 1986. “Interpolation of scattered data: distance matrices and

conditionally positive definite functions”. Constr. Approz., 2:11-22.

BIBLIOGRAPHY 187

[66] P..J. Millington, 1991. “Associative reinforcement learning for optimal control”.
Master thesis, Department of aeronautics and astronautics, MIT, Cambridge,

Massachusetts.

[67) J. Mockus, 1989. Bayesian Approach to Global Optimization. Theory and Ap-
plications. Mathematics and Its Applications. Soviet Series. Kluwer Academic

Publishers

(68] J. Moody and C. Darken, 1989. “Fast learning in networks of locally-tuned pro-
cessing units”. Neural Computation, 1 : 281-294.

[69] A. Moore, 1991. “Knowledge of knowledge and intelligent experimentation for
learning control”. Proceedings of the 1991 International Joint Conference on

Neural Networks.

[70] S. Mori, H. Nishihara and K. Furuta, 1976. “Control of unstable mechanical
system. Control of pendulum.” International Journal of Control, 23(5) : 673 -
692.

[71] K. S. Narendra, and M. A.L. Thathachar, 1989. “Learning automata : an intro-
duction”. Prentice Hall, Englewood Cliffs, N.J.

[72) K.S. Narendra and A. M. Annaswamy, 1989. “Stable adaptive systems”. Prentice
Hall, Englewood Cliffs, N.J.

[73] K. S. Narendra and S. Mukhopadhyay, 1992. “Intelligent Control Using Neural
Networks”. IEEE Control Systems Meagazine 4:11-18

[74] W. L Nelson, 1983. “Physical principles for economies of skilled movements”.

Biological Cybernetics 46:135-147.

[75] K. M. Newell and P. V. McDonald, 1992. “Searching for solutions to the co-
ordination function: Learning as exploratory behavior”. In Tutorials in motor

Behavior 11, G. E. Stelmach and J. Requin (editors).

BIBLIOGRAPHY 188

[76]

[77]

(78]

[79]

(80]

[81]

(82]

[83]

[84]

[85]

Numerical Algorithms Group, 1983. “Fortran Library Manual”, Mark 11, Volume
2.

Y.-H. Pao, S. M. Phillips and D. J. Sobajic, 1992. “Neural-Net Computing and
the Intelligent Control of Systems”. International Journal of Control 56, 2:263-
289.

J. Peterson, 1992. “On-line Estimation of Optimal Control Sequences: Pon-
tryagin Estimators”, International Conference on Artificial Neural Networks in

Engineering, ANNIE 92.

J. Peterson, 1993. “On-line estimation of the Optimal Value Function: HJB Es-
timators”, Advances in Neural Information Processing Systems 5, Morgan Kauf-

mann, San Mateo, CA.

D. A. Pierre, 1986. “Optimization theory with applications”. Dover Publications,
New York.

J. C. Platt and A. H. Barr, 1988. “Constrained Differential Optimization for Neu-
ral Networks”. Technical Report, TR-88-17, California Institute of Technology.

Pasadena, California.

J. Platt, 1991. “A Resource-Allocating Network for Function Interpolation”.
Neural Computation, 3:213-225.

T. Poggio and F. Girosi, 1989. “A theory of networks for approximation and
learning”. MIT Al Memo 1140.

T. Poggio , 1990a. “A theory of how the brain might work”. MIT Al Memo
1253.

T. Poggio and F. Girosi, 1990b. “Extensions of a theory of networks for approx-
imation and learning: dimensionality reduction and clustering”. MIT Al Memo

1167.

BIBLIOGRAPHY 189

[86] A. Polit and E. Bizzi, 1979. “Characteristics of the motor programs underlying

arm movements in monkeys”. Journal of Neurophysiology, 42:183-194

[87] M. J. D. Powell, 1987. “Radial basis functions for multivariable interpolation: A
review”. In J. C. Mason and M. G. Cox, editors, Algorithms for Approzimation,

pages 143-167. Clarenden Press, Oxford.

[88] M. J. D. Powell, 1988. “Radial Basis Function Approximations to Polynomials”.
In D. F. Griffiths and G. A. Watson, editors, Numerical Analysis 1987, 223 -

241, Longman Scientific and Technical.

(89] D. Psaltis, A. Sideris and A. A. Yainamura, 1988. “A Multilayered Neural Net-
work Controller” IEEE Control Systems Magazine 4:17-21

[90]) A. Saha, J. Christian, D. S. Tang and C.-L. Wu, 1991. In Advances in Neural
Information Processing Systems 3, R. P. Lippman, J. E. Moody and D. S. Touret-

zky, eds., Morgan Kaufmann, San Mateo, Ca.

[91] A. M. Samarov, 1991. “Exploring regression structure using nonparametric func-

tional estimation”. TR-69, Sloan School of Management, M.1.T.

[92) R. M. Sanner and J.-J. Slotine, 1992. “Gaussian Networks for Direct Adaptive
Control”. IEEFE Tr.nsactions on Neural Networks 3, No. 6:837-863.

(93] S. Sastry, and M. Bodson, 1989. “Adaptive control : stability, convergence, and
robustness”. Prentice Hall, Englewood Cliffs, N.J.

[94] L. E. Scales, 1985. “Introduction to non-linear optimization”. Springer-Verlag,

New York

[95] i. P. Schagen, 1980. “Stochastic Interpolating Functions: Applications in Opti-
mization”. J. of Inst. Math. Appl. 26:93-101.

BIBLIOGRAPHY 190

[96] 1. P. Schagen, 1984. “Sequential Exploration of Unknown Multi-dimensional
Functions as an Aid to Optimization”. IMA Journal of Numerical Analysis 4:337
- 347

[97] 1. P. Schagen, 1986. “Internal Modelling of Objective Functions for Global Op-
timization”. Journal of Optimization Theory and Applications 51:345-353.

(98] W. H. Schiffman and H. Willi Geffers, 1993. “Adaptive Control of Dynamic
Systems by Back Propagation Networks”. Neural Networks, 6:517-524

[99] M. Shidara, K. Kawano, H. Gomi and M. Kawato, 1993. “Inverse Dynamics
Model Eye Movement Control by Purkinje Cells in the Cerebellum”. Nature,
365, Number 6441:50-52

[100] B. W. Silverman, 1986. “Density estimation for statistics and data analysis”.

Chapman and Hall, London, New York.

(101] J.-J. Slotine and W. Li 1991. “Applied Nonlinear Control”. Prentice Hall, En-
glewood Cliffs, New Jersey.

(102] R. Sutton, 1988. “Learning to predict by the method of temporal differences”.
Machine Learning, 3:9-44.

[103] R. Sutton, ed., 1992. “Reinforcement Learning”. Kluwer Academic Publishers,

Boston, Massachusetts.

(104] E. L. Thorndike, 1927. “The law of effect”. American Journal of Psychology,
39: 212 - 222.

(105] S. B. Thrun, 1992. “The role of exploration in learning control” In: Handbook
of Intelligent Controi: Neural, fuzzy and adaptive approaches, D. A. White and
D. A. Sofge editors. Van Nostrand, Reinhold, New York.

BIBLIOGRAPHY 191

[106] Y. Uno, M. Kawato, R. Suzuki, 1989. “Formation and Control of Optimal
Trajectory in Hurnan Multijoint Arm Movement.” Biological Cybernetics, 61: 89 -

101.

[107) Y. Wada and M. Kawato, 1992. “A Neural Network Model for Trajectory For-
mation of Arm Movement by Using Forward and Inverse Dynamics Models”. In
Artificial Neural Networks, 2 1. Aleksander and J. Taylor (Eds.) Elsevier Science
Publishers B.V.

[108] G. Wzhba, C. Gu,, Y. Wang, and R. Chappell, 1993. “Soft Classification, a. k.
a. Risk Estimation, via Penalized Log Likelihood and Smoothing Spline Analysis
of Variance”, preprint. To appear in the proceedings of the Santa Fe Workshop,
D. Wolpert and A. Lapedes, eds., Addison-Wesley.

[109] A.S. Weigend, B. A. Huberman, and D. E. Rumelhart, 1990. “Predicting the
future: A connectionist approach”. International Journal of Neural Systems 1 :

193.

[110] P. J. Werbos, 1990. “Consistency of HDP Applied to a Simple Reinforcement
Learning Problem™ Neural Networks 3 : 179 - 189.

(111] Y. Xia and H. Inooka, 1992. “Application of Tree Search to the Swinging Control
of a pendulum” IEEE Transactions on Systems, Man and Cybernetics 22 (5) :
1193 - 1198.

(112] Y. Zhao, 1992. “On Projection Pursuit Learning”, Ph.D. thesis, Department of
Mathematics, M.I.T.

