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Abstract

The design and use of expert systems for medical diagnosis remains an attractive
goal. One such system, the Quick Medical Reference, Decision Theoretic (QMR-DT),
is based or a Bayesian network. This very large-scale network models the appear-
ance and manifestation of disease and has approximately 600 unobservable nodes
and 4000 observable nodes that represent, respectively, the presence and measurable
manifestation of disease in a patient. Exact inference of posterior distributions over
the disease nodes is extremely intractable using generic algorithms. Inference can
be made much more efficient by exploiting the QMR-DT’s unique structure. Indeed,
tailor-made inference algorithms for the QMR-DT efficiently generate exact disease
posterior marginals for some diagnostic problems and accurate approximate posteriors
for others.

In this thesis, T identify a risk with using the QMR-DT disease posteriors for
medical diagnosis. Specifically, I show that patients and physicians conspire to pref-
erentially report findings that suggest the presence of disease. Because the QMR-DT
does not contain an explicit model of this reporting bias, its disease posteriors may not
be useful for diagnosis. Correcting these posteriors requires augmenting the QMR-DT
with additional variables and dependencies that model the diagnoestic procedure.

I'introduce the diagnostic QMR-DT (dQMR-DT), a Bayesian network containing
both the QMR-DT and a simple model of the diagnostic procedure. Using diag-
nostic problems sampled from the dQMR-DT, I show the danger of doing diagnosis
using disease posteriors from the unaugmented QMR-DT. I introduce a new class
of approximate inference methods, based on feed-forward neural networks, for both
the QMR-DT and the dQMR-DT. T show that these methods, recognition models,
generate accurate approximate posteriors on the QMR-DT, on the dQMR-DT, and
on a version of the dQMR-DT specified only indirectly through a set of presolved
diagnostic problems.

Thesis Supervisor: Peter Dayan
Title: Professor, University College London
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5-9 Bit loss images. The ten images in this figure show the performance
of the gating network (GATE), the learned mixture (MIX) and the
individual experts (B-E, H-K). Each image contains 81 pixels, each
pixel corresponding to one of the 81 grid points in figure 5-8. The
spatial arrangement of the pixels matches that of the grid points, i.e.
the pixel in the upper left hand corner of each image shows the perfor-
mance on samples from the observation process P(e|f, ¢(0.05,0.45).
Fach pixel shows the bit loss of the expert (or gating network) on a
test set drawn from the corresponding observation process. The labels
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shown in italics. A method’s bit loss is the difference between its mean
cross-entropy on the test set and the cross-entropy of the benchmark
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53-10 Distributions of posterior mass ratios. The plots compare the bench-

A-1

A-2

B-1

mark to the gating network, the fixed mixture and the individual ex-
pert, C, among the four with the best performance. Each plot shows
the distribution of the mean posterior mass ratios across the 81 grid
points. A) Box plot of the distribution of mean PMRs. The center line
in each box is the median of the 81 means. The upper and lower lines
show the upper and lower quartiles. The whiskers show the extent of
the rest of the data up to a maximum distance away from the me-
dian. Points more than 1.5 times the interquartile distance away from
the median are displayed with the square symbol. Note that thaugh
the median is high for expert C, it has a number of mean PMRs less
than 0.5. B) Histogram of mean PMRs. Each row in this plot is com-
posed of two histograms, one pointing upward and the other pointing
downward. The upward pointing histogram shows the distribution of
posterior mass ratios for the top 20 diagnoses in each list. The down-
ward pointing histogram shows the distribution for the whole list of
100 diagnoses. Each histogram contains ten equally spaced bins.

The distribution of the values used to generate the random priors.

Evoking strengths and upper bounds. A) The distribution of upper
bounds, u;; on estimates of the evoking strengths, é;. Notice the
spike at u; = 1, these are cases where Fj only has a single parent. B)

The distribution of evoking strengths e;;, in the aQMR KB. . . . . .

Indistinguishable observations under the concise encoding. A) A sim-
ple BN20 network. B) Concise encodings of three different evidence
vectors. See section 4.4 for a description of the two types of inputs.
Note that the final two evidence vectors are indistinguishable under
the concise encoding. However, since ¢] # ¢;, disease posteriors given

each of the vectors are different. . . . . .. .. . . ... ... .. .
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B-2 Comparison of the lossless versus the concise input encoding for recog-
nition models. Figures compare learning curves from the training of the
lossless versus the concise recognition models on a dQMR-DT where
P(® = ¢') = 8(¢ — ¢(0.2,0.2)). Curves are exponential traces of
an estimate of the cross-entropy error for each model on untrained
data. A) Cross-entropy versus number of training examples. B) Cross-
entropy versus CPU time. C; D) Close-up of the tails of A and B
respectively. The x-axis is scaled differently for A; B versus C; D. . . 154
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Chapter 1

Introduction

1.1 Motivation

It is now feasible to build large-scale expert systems based on probabilistic domain
models. Graphical models provide an intuitive representational language for building
these models, allowing the easy extraction and representation of knowledge from non-
technical experts. However, real-warld systems require industrial strength inference
algorithms. This thesis is about the design and evaluation of practical, domain-
specific inference algorithms for these large-scale expert systems.

Two major issues arise when doing practical probabilistic inference. First, there
are severe requirements on practical inference algorithms. These algorithms need to
produce highly accurate answers in real time. In general, however, high accuracy only
comes at the expense of substantial computation time. Though online computation
time is scarce, ample offline computation time is available both before the expert
system is deplayed and between uses of the system. This resource is rarely exploited
by existing inference algorithms. The second issue is that the probabilistic domain
models of the expert systems are often incomplete. These models concentrate on
representing knowledge about how unobservable causes, like diseases, give rise to
observable effects, like symptoms. However, they often ignore the process that selects
which subset of the observable effects are actually observed. It is perilous to ignore

this observation process since, if a selection bias exists in the choice of observables,
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then predictions made using the incomplete domain model can be highly inaccurate.
Often, however, augmenting an existing large-scale domain model with an observation
process model makes an already computationally-demanding inference problem much

more difficult.

This thesis presents strategies for dealing with both these issues. First it suggests
using recognition models to perform inference in large-scale expert systems. Recog-
nition model methods have a number of advantages over competing methods: they
make substantial use of offline computations to enable fast, accurate inference online
and unlike methods that need to be designed to exploit specific properties of the
probability distributions in question, a recognition model may be generated for any

probability distribution which supports efficient sampling.

In this thesis, I expand the framework of recognition models to include models
of arbitrary complexity, thus allowing arbitrarily accurate inference. While these
more complex models may take much longer to train, the online computation time
is only marginally greater. I further demonstrate the importance of modelling the
observation process by showing examples where failing to mode! this process has
disastrous effects on inferential accuracy. Finally, T introduce and evaluate strategies

for incorporating an observation process model into inference.

The Quick Medical Reference, Decision Theoretic {QMR-DT) belief network pro-
vides an ideal test bed for the strategies and algorithms discussed. This network is
a widely-studied example of a large-scale expert system designed for practical use.
Furthermore, as 1 will show, there is a significant selection bias in the present in the
diagnostic procedure, and incorporating knowledge about this bias can significantly
improve the accuracy of diagnostic inference done using QMR-DT. An anonymised
version of this belief network has recently been made available, allowing other re-

searchers to compare new inference algorithms against results presented in this thesis.
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1.2 Summary

The QMR-DT plays a dual role in the literature. Primarily, it has become a bench-
mark problem for inference algorithms. One of the reasons that it has become a
benchmark is due to its real-world application. Tts intended real-world application is
as a graphical model for medical diagnosis. In this thesis, I treat these two roles as

distinct.

In its role as a benchmark, I use the QMR-DT to evaluate recognition models. This
evaluation demonstrates that recognition models are feasible approximate inference
methods for expert systems on the scale of the QMR-DT. Furthermaore, it shows that
increasing the complexity of the recognition models does indeed increase the accuracy

of recognition model inference.

In its role as a diagnostic aid, I show that the QMR-DT itself is insufficient for
medical diagnosis. In particular, the diagnostic procedure contains selection bias in
the type of information that it reveals about the patient. T identify some of the
properties of this bias and introduce a probabilistic observation process model with
some of the same properties. I use this model in two ways: to demonstrate the types
of errors that will occur when the observation process is ignored, and to evaluate

techniques for doing inference in the presence of such a model.

It is, however, infeasible to assume that a fully-specified observation process model
will be made available for the medical domain. Such a model would need to capture
variation among patients, doctors, hospitals, and diagnostic protocols. This fully-
specified observation model process would likely be harder to build than the Quick
Medical Reference knowledge base (QMR KB), which itself took 25 years to bring to
its present form. In the final part of the thesis, I introduce and evaluate techniques for
diagnostic inference when the observation process model is only partially-specified,

using information that is more likely to be available.
The thesis contains six chapters and two appendices.

Chapter 2 presents the background in probabilistic models and inference neces-

sary to understand the contributions of this thesis. Readers already familiar with this
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material can skip chapter 2, except for section 2.7 which presents some background
material that is less widely known. Section 2.1 describes generative models which are
types of probabilistic model which model observable effects of unobservable causes.
Section 2.2 introduces probabilistic inference as a method to extract information
about the unobservable causes given the observed effects. Section 2.3 introduces the
graphical model formalism, an intuitive graphical language for building probabilistic
models. Algorithms for exact inference that make use of a graphical model are de-
scribed in section 2.4. Section 2.5 describes stochastic and deterministic approximate
inference algorithms for intractable probability models. A different type of approx-
imate inference method, based on optimising a function approximator on samples
from a generative model, is described in section 2.6. This method, called a recogni-
tion model, forms the basis of all the approximate inference algorithms described in
this thesis. Section 2.7 provides necessary background on observation processes. It is
critical to understand the distinction between an ignorable observation process, for
which the selection of which observables are made available carries no information,

and an non-ignorable one, for which this choice is informative.

Chapter 3 describes the QMR-DT and various inference algorithms associated
with it. Section 3.2 describes the basic structure and parameterisation of the QMR-
DT network. This same structure and parameterisation is common to all networks in
a class called the binary two-layer noisy-OR networks (BN20 networks). Section 3.3
describes some techniques to simplify inference in BN20 networks that exploit their
particular properties. Section 3.4 describes some properties particular to the QMR-
DT, namely its concentration of probability mass on sparse configurations of variables.
Section 3.5 describes the Quickscore algorithm, a surprisingly efficient exact inference
algorithm that exploits both sparsity and BN20 network properties. Unfortunately,
however, even with Quickscore, inference is still intractable for typical samples from
the QMR-DT. Section 3.6 introduces a new algorithm, structural Quickscore, that
extends Quickscore by exploiting the sparse connectivity of the QMR-DT. Section
3.7 evaluates the extent to which the new algorithm can enable exact inference in

the QMR-DT. Unfortunately, though the new algorithm is orders of magnitude faster
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than Quickscore, it still does not make exact inference reliably tractable. Section 3.8
describes some basic techniques that have been used to approximate inference in the

QMR-DT. The chapter is summarised in section 3.9.

Chapter 4 introduces and evaluates recognition models for approximate inference
in the QMR-DT. Section 4.2 describes a general framework for recognition models
and section 4.3 introduces two new types of recognition models that fit within this
framework. One, described in section 4.3.1, is used in chapter 4, the other, described
in section 4.3.2, is used in chapter 5. Section 4.4 describes a concise encoding of the
observed manifestations that support faster optimisation of the recognition models
on the QMR-DT. Section 4.5 details the training of the recognition models. Section
4.6 evaluates the accuracy of the approximate posteriors produced by the recogni-
tion models. These approximate posteriors are compared against another benchmark

inference method. Section 4.7 summarises and discusses the results of the chapter.

Chapter 5 extends the recognition models introduced in chapter 4 to allow their
use for medical diagnosis. Section 5.2 discusses observation processes that are ap-
propriate for probabilistic models of the medical diagnostic domain. This section
demonstrates that the diagnostic procedure embodies a non-ignorable observation
process. This process, among other things, preferentially reveals positive manifes-
tations of disease. Section 5.3 introduces the diagnostic QMR-DT. This probability
model contains both the QMR-DT, which models the manifestation of disease, and
an observation process model, which models the procedure by which manifestations
are revealed. Section 5.4 presents a new set of metrics for medically-relevant evalua-
tions of approximate inference algorithms. Section 5.5 uses these metrics to evaluate
recognition models trained on samples from the dQMR-DT when the observation
process is fully specified. Additionally, this section compares posteriors implied by
the QMR-DT to the true posteriors, elucidating some of the inaccuracies resulting
from ignoring the observation process. Section 5.6 considers diagnostic inference us-
ing recognition models when the observation process is only partially specified. In
this section, the new recognition model described in section 4.3.2, is used to combine

the predictions of other recognition models.
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Chapter 6 summarises and discusses the results of this thesis.

Appendix A details how the QMR-DT used in this thesis was constructed from
the anonymised QMR knowledge base and appendix B evaluates the information
loss arising from using the concise encoding (described in section 4.4) for recognition

models trained in chapter 5 on the non-ignorable observation processes.
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Chapter 2

Foundations

2.1 Introduction

This literature survey provides both a review of previous work in the field and a brief
introduction to prababilistic inference in general. Section 2.2 introduces probabilistic
generative models and section 2.3 describes some issues relating to probabilistic infer-
ence in these models. One major issue is that in the worst case, probabilistic inference
can be intractable. Section 2.4 introduces graphical models, a language for repre-
senting and building probabilistic models. Many exact and approximate inference
algorithms make use of graphical models. In particular, section 2.5 briefly describes
a prototypical exact inference algorithm that requires a graphical model. Exact in-
ference, however, is often intractable for large multiply-connected graphical models,
thus necessitating approximate inference. Section 2.6 gives a general overview of ap-
proximate inference methods. These methods may be broadly divided into stochastic
methods, described in section 2.6.1, and deterministic methods, described in section
2.6.2. Section 2.7 describes recognition models, an alternative approximation method
and the inference method on which this thesis is based. Finally, section 2.8 describes
observation processes and presents techniques for determining when a selection bias

must be taken into account.
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2.2 Probabilistic Models

Knowledge about a domain can often usefully be represented using a probabilistic
model. Domains typically include a set of observable effects and a set of unobservable
(or hidden) causes. A probabilistic model of a domain specifies a joint probability
distribution, P(D, F), over a random vector, D, containing variables representing the
causes and a random vector, F, containing variables representing the effects, some
or all of which are observed. In the medical domain, for example, D could contain
variables specifying the presence or absence of particular diseases and F' could contain
variables representing the findings a physician may possibly make about a patient.
Often the joint distribution is most easily specified in the causal or generative
direction, i.e. from causes to effects. A generative model for D and F requires
specifying a prior distribution P(D) over the causes and a likelihood function, P (F =
f|D), over configurations of D for each possible observation F = f.1 Generative
models of this form have been widely used both in unsupervised learning [9, 18, 41]

and in neural modelling [45).

2.3 Probabilistic Inference

The process of probabilistic inference involves computing statistical information about
the hidden variables implied by a particular observation, F = f. One obvious end-
point of inference is a posterior distribution over D, P(D|F = f). Another popular
endpoint is the set of single-variable marginals of the posterior {P(D;|F = Y
(hereafter called the posterior marginals). Finally, one may seek individual (or sets
of) configurations that are optimal with respect to some loss function.

In the general case, if there are many variables in D then probabilistic inference is
computationally intractable since all endpoints involve a summation over all possible

configurations of the variables in D. For example, the posterior probability, P(d|f)?

'In this thesis, I will assume that all random variables under consideration are discrete-valued.
*To simplify notation, I will represent the event that a random variable (or vector) takes a
particular value, e.g. F = f, by the value itself, e.g. f. For example P(d|f) means P(D=d|F =
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can be written
P(d)P(f|d)
24 P, f)

the summation in the denominator is over all possible configurations of D. If D

P(d|f) = (2.1)

contains K binary random variables then the summation in equation (2.1} contains
2K terms.
Finding an optimal configuration, d*, can be even harder. Given £, the loss, L{d),

of a single configuration, d, is
L(d)=>"P(d, f)C(d, d), (2.2)
d’

where C(d', d) measures the cost of predicting d’ when the true answer is d. Cal-
culating this loss has at least the same worse-case time complexity as computing
equation {(2.1). In fact, finding d* = argminy Z.(d) may require computing equation
(2.2) several times.

Sometimes systematic patterns of marginal and conditiona] independence in P(D,F
can be explojted to make inference more efficient. If, for example, D, through Dy
are mutually independent and the likelihood function for each variable, Fy, depends

only upon Dy, then P(d, f) can be written
P(d. f) = [ ] P(fslde) P(d,).
k

This pattern of independence supports efficient inference. For example, the posterior

marginal P(d,|f) may be written

P(fulds) P(dy)

) = S B = P

(2.3)

Algorithms have been developed to save computation by exploiting patterns of in-
dependence relationships. Many of these algorithms depend ancillarily on a grephical

model of the set of conditional independence relationships that hold in P(D, F).

T T — .
F), Le. the posterior probability under P that D = ¢ given F = f.
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2.4 Graphical Models

Graphical models are a representational language for probability distributions. A
graphical model consists of a graph which describes the qualitative structure of the
probability distribution and a set of functions that specify the quantitative structure.
There is a one-to-one correspondence between the random variables of the distribution
and the nodes in this graph. The connections between the nodes are chosen so that
the graph structure represents a subset of the conditional independence relationships
that hold in the distribution. In particular, graphical separation in the graph implies
conditional independence in the distribution. Connections can be either directed
or undirected. Most expert systems involve directed graphical models with discrete

(often binary) random variables and it is on this class that this thesis concentrates.

In a directed graphical model, functions associated with each node specify the
quantitative properties of the represented distribution. These function are conditional
probability functions that specify a distribution over the node given a configuration
of the node’s parent. Often the functions take the form of tables in which each row,
indexed by a configuration of the parents, contains a distribution. However since the
number of rows in a table is exponential in the number of parents of the node, these
tables are unwieldly in graphs containing nodes with many parents. The conditional
probability function may instead be specified by a low dimensional function of the
states of the parents. For binary (0/1) parents and children, the noisy-OR or the

sigmoid function are often used.

Dual to the structure of a graphical model are computational procedures that
perform exact or approximate inference on the underlying probability distribution
[26]. Graph theoretic properties typically determine the nature and efficiency of these
procedures. Many of these procedures involve propagating information between nodes
via connections either in the original graphical model or in a graphical model derived

from the original one.
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2.5 Exact Inference

The prototypical exact inference algorithm based on the graphical model is junction
tree propagation. This involves constructing a structure called a junction tree from
the graphical model, on which probabilistic information can be locally propagated
[30, 62]. Building a junction tree requires transforming the directed graph into an
undirected graph (which usually contains additional implied dependencies) whose
cliques possess the graph theoretic property called the running intersection property.
This transformation includes two processes: triangulation and moralisation. Please
consult [25] for further information on junction tree propagation. See [48] for other
algorithms for exact inference on arbitrary graphical models.

The time complexity of junction tree prapagation is exponential in the size of the
largest clique in the moralised, triangulated graph. In sparsely connected graphs, the
size of the largest clique may be much smaller than the number of nodes in the entire
graph. Nonetheless, in many cases, the size of the largest clique is sufficient to render
inference using junction tree propagation intractable. More efficient exact inference
algorithms exist for graphs having a particular qualitative structure (e.g. [28, 561)
or having both a particular qualitative and quantitative structure (e.g. [15, 14, 52])

Often, however, tractability can only be achieved by approximating inference.

2.6 Approximate Inference

Stochastic and deterministic approximate inference algorithms have been developed
both for general and specific graphical models. Stochastic algorithms, described in
section 2.6.1, use averages over samples of configurations of the hidden nodes to ap-
proximate inference. In the large sample limit, many of these approximations become
exact. Deterministic methods, described in section 2.6.2, approximate inference by
parameterising the inferential outcome for each particular observation and optimising
the values of the parameters according to some criterion of accuracy. For instance,

one set of variational methods finds the member of a parameterised family of dis-
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tributions over the unobserved variables that maximises a measure of goodness of

probabilistic fit to the true posterior.

2.6.1 Stochastic Methods

Stochastic approximate inference use Monte Carlo methods to approximate expecta-
tions. Many inference outcomes can be written as expectations over the unobserved
variables. For example, the denominator in equation (2.1), can be rewritten as an

expectation over P(d),

P(f) = (P(f1d))p(ay - (2.4)
The Monte Carlo approximation

N

Po(£) = N 1Y P(F1A™) & (P(£d)) pg) (2.5)

n=1
where {d™} are samples from P(d), is an unbiased estimator of P(f) that becomes
exact in the limit of large N. Estimating P{f) using equation (2.5) is called likeli-
hood weighting [12, 61]. Posterior marginals can be estimated, using the same (or a

different) set of samples, by computing

N
Pu(De =5, f) = N7y~ P(£id™)s(s,d"), (2.6)

n=1
where d(s, dg”)) is the Kronecker delta, and estimating P(Dy = s|f) by

-FA,]W(DIC = 8, .f)

ﬁ)lw(Dk=3|f)= B (f)
Iw

If the likelihood is heavily peaked, By can have extremely high variance and thus
high error. In this circumstance, it may be possible to reduce the estimator variance
by sampling from a distribution, Q(d), which is more similar to the likelihood than

P(d) is. For an arbitrary distribution over disease configurations Q(d), we can write
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the denominator in equation (2.1) as an expectation over Q(d)

_ P(d)P(f|d) _ /P(d)P(f|d)
a §Q(d) Q(d) _< Q(d) >Q(d)

which we can approximate by

v fld‘”) P(d)P(f|d)
B Z:: ™) ~< Q(d) >Q(d)

where {d(”)} are samples from Q(d). This technique is called importance sampling

(see for example [54]) and Q(d) is called the proposal distribution. The proposal
distribution which gives the lowest variance estimator for P(f) is P(d|f) [5], so
choosing the best proposal distribution is as hard as the original inference praoblem.

Algorithms have been developed to select a good proposal distribution by boot-
strapping. These algorithms use samples to adapt the proposal distribution either
before or while doing approximate inference. Self-importance sampling (SIS) [61] and
AIS-BN [5] are two examples of this approach. A modified version of the former
(described in [63]) is a standard inference algorithms used on the QMR-DT, however
AIS-BN has recently been shown by Cheng and Druzdzel [2000] to be significantly
more accurate than SIS on the CPCS network, a medical belief network derived from

the same knowledge base as the QMR-DT [47, 50].

2.6.2 Deterministic Methods

Deterministic approximate inference typically requires choosing a parameter structure
(I use £ for generic purposes), which is itself determined based on the graphical
structure of the underlying probability distribution. Then, for a given observation,
F7. the best parameters, £* are determined by some computational procedure (which
often is itself tied to the graphical model). Methods vary as to the parameter structure
and how it is used in inference. Often £ specifies a member of a family of distributions,
R(d; &), however ¢ can also represent moments of the posterior distribution (e.g. see

[68]) or specify likelihood functions Q(£*|d; &) (e.g. [22]). The parameters are usually
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determined by non-linear optimisation of a goodness of fit measure (e.g. [69] but see
also loopy belief propagation [67]). Often, but not always (e.g. [22]), this goodness of
fit measure is a KL-divergence involving the implied approximate posterior Q(d; £")
and the true posterior P(d|f"), These implied posteriors, Q, usually have a simpler
form than P, and assume independencies that are not present in the true posterior.
When KL-divergence cannot be optimised efficiently a tractably computable bound
(e-g. [55]), or approximation (e.g. [11]) may be optimised instead.

Approximations made in deterministic methods often take advantage of properties
specific to the probability distributions (e.g. [23]). For instance, in many distributions
popular in probabilistic modelling, e.g. noisy-OR networks or sigmoid belief networks,

the likelihood of an observation, f*, can be written as
P(fld) =] 967 a) (2.7)

where g(z) is a log concave function. Using Jensen’s inequality and the variational
transforms, both tractable lower and upper bounds on P( f*|d) can be calculated
[21]. These bounds have a product form with respect ta the causes, allowing efficient

computation of approximate expectations.

2.7 Recognition Models

Recognition models combine stochastic and deterministic approximations. Stochastic
samples are used offline to tailor a recognition model to a particular probability
distribution. This implies that these models are useful only if complete samples from
the joint P(d, f) are easy to obtain. After this initial fitting, online inference is
performed by evaluating a deterministic function of the observation.

Hinton et al [1995a] introduced a training algorithm to fit recognition models to a
generative distribution, P(d, f), over two binary vectors f and d. Their recognition
model 1s a logistic regression network whose output layer contains a single unit z;

for each hidden variable D;. For a particular binary observation vector f*, given
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recognition weights € = {{wy}, b}, the activity, z;, of that output unit is given by
T p*
2 = o(w, f* + ),

and is interpreted as an estimate of the posterior marginal probability that D, = 1,
i.e. Q(Dy = 1;2) = 2. The activity of the output layer as a whole implies a posterior

distribution over disease configurations given by
Q(d; z) = Hz,f’“ (1 — z)-%)
k

The estimates can be improved by setting the parameters, ©, to minimise the total

cross-entropy, E(S2), on a set of samples {(d™, f™)}N_, from P(d, f), where®

E(Q) = =) log Q(d™; z(£™, Q)

Hinton et al [1995a] use stochastic gradient descent to minimise £(§2). When training
a recognition model, unlike most other supervised learning problems, overfitting need
never be a problem since new training data may be generated at will by sampling

from P(d, f).

Hinton et al [1995a] and Dayan et al [1995]’s work used a recognition model as part
of a biologically-motivated, self-supervised learning procedure that fits a stochastic
generative model to data. Subsequent work on recognition models has also been in

the context of learning generative models [42, 19, 20].

In this thesis, instead, I investigate using recognition models for inference when the
generative model is prespecified. Whereas, previous attempts to improve inferential
accuracy have concentrated on using recognition models that generate posteriors, @,
that model dependencies between variables [8, 7). Here I imprave accuracy both
generating more complicated posteriors and by fitting more complicated recognition

models, allowing more accurate prediction of the posterior marginals. The learning

31 have explicitly included the dependence on Q here for clarity
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tasks and models used in this thesis are orders of magnitude larger than those in

previous work on recognition models [10).

2.8 Observation Processes

If the states of some of the observable variables may be unavailable (i.e. missing) do-
ing inference, then one must consider the observation process’ that determined which
observable variables were available and which were not on any given observation. In
some cases, knowledge about the observation process may be used to extract addi-
tional information about the unobserved variables, above and beyond any information
contained in the states of the observed variables.

Rubin [1976] (see also [32]) specified the most general conditions under which an
observation process is ignorable for a particular observation. If R is a vector of random
indicator variables indicating the subset of the observables that are available (i.e.
R; = 1 indicates that the i-th observable is observed) then the observation process
may be represented by a probability distribution over R that is conditioned on all
the other variables. Rubin showed that for a particular observation, with indicator
variables r, the observation process is ignorable if and only if the probability assigned
to 7 does not depend on the states of any of the unobserved variables. If this condition
holds for all observations, then I will say that the observation process is, in general,
ignorable.

If the observation process is non-ignorable then, in at least some cases, the fact
that a variable is unobserved may be informative about its unobserved state (or that
of another unobserved variable). Take for example, the medical diagnostic finding
that a patient has severe abdominal pain. Common sense dictates that a conscious,
sensate patient who does not complain of severe abdominal pain almost certainly does
not have the pain. So if no information is recorded about whether or not the patient

has the pain, we may assume then that the patient never complained about the pain

1Observation processes are more commonly referred to as missing date mechanisms, however the
term observation process is more natural when, as in medical diagnosis, only a very small proportion
of the observables are ever available
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and therefore that the patient is likely not ir. pain. Note, however, that this deduction
was based solely on the fact that no information was available, i.e. we know that if
the patient did have the pain, then we would have observed that the patient had the
pain.

Since the fact that a node is unobserved can be informative, we explicitly represent
that fact. I introduce an additional set of variables, E, called the evidence variables.
Each variable F; has the same state as the corresponding effect variable F, when F;
is observed; when F; is unobserved, F; =?. The conditional probability distribution
of these evidence variables, P(E|F, D) can depend upon the states of any of the
variables in the probabilistic model. I call this distribution the observation process
model.

Understanding the distinction between ignorable and non-ignorable ohservation
processes is critical to understanding some of the contributions of this thesis. In par-
ticular, I show in section 5.2.3 that the medical diagnostic procedure is a non-ignorable
observation process model. This non-ignorability means that disease posteriors cal-
culated in the QMR-DT when observable but unobserved nodes are marginalised out
are inaccurate. They are inaccurate because this marginalisation step implicitly as-
sumes that the observation process model is ignorable. Overcoming this inaccuracy

in the QMR-DT posteriors is one of the major themes of this thesis.
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Chapter 3

The QMR-DT

3.1 Introduction

In this chapter, I describe the Quick Medical Reference, Decision Theoretic (QMR-
DT), a Bayesian network designed for use in medical diagnosis. This network is widely
used as a benchmark for comparing approximate inference algorithms and forms the

basis of all graphical models used in this thesis.

There are a number of reasons for using the QMR-DT to evaluate the techniques
introduced in this thesis. First, it is a very large graphical model, for which exact
inference is often extremely intractable, so approximate inference is required. Second,
it is a knowledge-rich graphical model designed to address a real-world problem. The
QMR-DT is based on a knowledge base (the QMR/INTERNIST-1 KB [37, 36]) that
incorporates more than 25 physician-years of effort. The builders of this knowledge
base (KB) have made careful efforts to ensure its accuracy [13]. Accurate approximate
inference algorithms for the QMR-DT would enable its use as a diagnostic support
system [35]. Third, approximate inference in the QMR-DT is widely studied, (see
for example [63, 22, 40, 43]). The main drawback is that all previous work has
used either proprietary versions that are not widely available or randomly generated

QMR-DT-like networks [11]. In this thesis, T use the anonymised QMR-DT which is
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derived' from the publicly available, anonymised QMR KB. The anonymised QMR
KB is a noisy, label-free version of the proprietary QMR KB.2 Since the KB is non-
proprietary, my experiments can easily form the basis of a public evaluation paradigm.
[n summary, the QMR-DT presents a large-scale, real-world inference task for which
practical approximate inference algorithms would be of great benefit.

This chapter describes both the QMR-DT and inference algorithms developed for
the QMR-DT. Although the QMR-DT has been used as a prototypical inference prob-
lem, its unique structure is actually very conducive to particular reductions (15, 6]
and approximations [17, 22, 11]. In particular, the QMR-DT is a member of a class
of Bayesian networks, called binary noisy-OR two layer networks (BN20 networks).
Structural properties of BN20O networks allow some types of inference to be done
very efficiently. In addition, the QMR-DT itself has some properties that can be
exploited to speed up inference. Specifically, the QMR-DT is sparsely connected and
most of the probability mass under the QMR-DT is on sparse configurations of its
variables. These structural and sparsity properties have been exploited by various
exact and approximate inference algorithms specially designed for the QMR-DT. The
most widely used of the exact inference algorithms is Quickscore [15]. This algorithm
has played an important role in evaluating approximate inference algorithms because
it can generate exact posterior marginals in reasonable time for some simple, though
medically relevant, problems. These marginals have been used as a gold standard in
the evaluations. However, many of the test problems used in this thesis lie beyond
the upper limit of Quickscore’s tractability. In an effort to preserve this gold stan-
dard, I introduce and evaluate an algorithm called structural Quickscore. Structural
Quickscore exploits the sparsity connectivity of the QMR-DT, ignored by Quickscore,
to speed up exact inference. This chapter also describes a number of approximate
inference strategies that have been developed for the QMR-DT. Specific approximate

inference algorithms used in this thesis will be described in later chapters.

!The derivation of the anonymised QMR-DT from the ancnymised QMR KB is described in
appendix A,

2The anonymised QMR KB is provided for research purposes by the University of Pittsburgh
through the efforts of Frances Connell, Randolph A. Miller, and Gregory E. Cooper.
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This chapter contains eight sections. Section 3.2 describes the structure and pa-
rameterisation of the QMR-DT. Inferential shortcuts licensed by this structure are
detailed in section 3.3. The sparsity properties specific to the QMR-DT are described
in section 3.4. Section 3.5 describes the Quickscore algorithm. Structural Quickscore
is introduced in section 3.6 and evaluated in section 3.7. Section 3.8 describes some
approximation strategies used with the QMR-DT. This chapter ends with a summary

in section 3.9.

3.2 Structure and Parameterisation

The QMR-DT is a joint probability distribution over two binary random vectors: one
representing the patient’s unobservable disease state, D, and another, F, represent-
ing the observable manifestations of disease.3 Each disease variable, D, encodes the
presence or absence of one of the 570 represented diseases. These diseases cover the
majority of the important diseases in internal medicine (36]. The 4075 manifestation
variables represent symptoms, medical history, demographic data, physical signs, or
laboratory test results [36] and can be positive or negative.* A positive manifesta-
tion typically represents an abnormal state of the represented quantity. Non-binary
manifestations are encoded using multiple binary manifestation nodes. Under this
encoding, the state of the manifestation is represented by activating only one of the
multiple units. Figure 3-1 shows examples of the encoding of continuous-valued and
non-binary discrete-valued manifestations.

The distribution, P(d, f). defined by the QMR-DT can be factored as

P(d, f) = [HP(dk)J HP(fild), (3.1)

#Though these variables are usually called findings, i.e. observations made by a physician or a
patient, I use the term manifestations to emphasize the fact that the QMR-DT is only a mode] of
the occurence and manifestation of disease. In section 5.3, T describe a model of the procedure by
which findings are made.

4Strictly speaking, medical history and demographic data are not manifestations of disease. Treat-
ing these as such is an approximation made by the original designers of the QMR-DT to simplify
inference,
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A

Encoded manifestation:  Weakness of facial muscles
Encoding: D Bilateral
D Unilateral inc forehead

D Unilateral, lower two-thirds only

Examples: 100 Biatera facial muscle weakness
001  Lower two-third left-side weakness

B

Encoded manifestation:  Birth weight

Encoding: [] <1500 gm

[] 1501-2500 gm
[] 2501-4000 gm

D >4000 gm

Examples: 0001  Bith weight: 4230 gm
0100  Birnthweight 2100 gm

Figure 3-1: Encoding of non-binary manifestations in the QMR-DT. A) Example
encoding of a non-binary valued categorical manifestation. B) Example encoding of
a continuous valued manifestation.

Diseases

Manifestations

Figure 3-2: Structure of the QMR-DT.
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and is defined by three sets of parameters: a vector of Bernoulli parameters, p, one for
each disease node, that specify the factorial disease prior, the vector 8, (with 8y > 0)
and matrix © = {6;;} (also with g, > 0) which together specify the conditional

probabilities P(f;|d). The conditional has a noisy-OR parameterisation, i.e.
P(F; = —|d) = e %~ fuedi (3.2)

Note that the conditional distribution of F; depends only upon those diseases k& for
which 8;; > 0. These diseases are the parents of F, in the directed graphical model
of the QMR-DT shown in figure 3-2. I use II; to denote the set of indices of the
parents of F; and A; to denote the set of indices of the children of Dy. When F; has
a single parent, T use 7, to denote its unique index. The @, parameters are called leak
terms. A leak evenl occurs when a manifestation is positive but none of its parents
are active.

Bayesian networks having the same structure and parameterisation as the QMR-
DT are called binary two-layer noisy-OR (BN20) networks. The next section de-

scribes inference short-cuts that can be used in BN20O networks.

3.3 BN20 Network Inference Simplifications

This section describes techniques that can be used to simplify exact inference in any
binary noisy-OR two-layer (BN20) network. These techniques, licensed by properties
of BN20 networks, allow many types of evidence to be efficiently incorporated into
the disease prior. This allows the inference problem in the original BN20 network
to be reduced into an inference problem in a similar BN20 network that nonethe-
less contains fewer manifestation nodes and less evidence. Specifically, the reduced
BN2O network contains all of the disease nodes of the original network but only the
multiparent positive manifestations. The conditional distributions over the remain-
Ing manifestations are the same as in the original distribution but the disease priors

are updated to incorporate evidence from negative and single parent positive mani-
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Diseases

Original

Manifestations

Step 1

Drop unobserved manifestations

Step 2

Incorporate negative
manifestations into the prior

- Step 3
%V Incorporate single parent
* ~ positive manifestations into the prior

Figure 3-3: Graph transformations in QMR-DT inference. I use different shades
of outlines to indicate categorical differences between the disease nodes. Disease
nodes with differently shaded outlines have priors that incorporate different pieces of
evidence.
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festations. Disease posteriors calculated using the reduced network are the same as
those in original network. However, the number of manifestation nodes can be much
smaller, simplifying inference considerably.

I present the reduction in three steps. The output of each of the three steps is
a new probability distribution whose disease posteriors are the same as the original
distribution. In the first step, the original network is replaced with one that has
the unobserved manifestation nodes removed. In the second step, the effect of the
negative manifestations is incorporated into the prior and the negative nodes are
pruned. In the final step, the effect of the single parent positive manifestations is
incorporated into the prior and those nodes are pruned from the graph. Figure 3-
3 shows these three steps graphically. The final graph contains only multiparent
positive manifestations.

I represent an inference problem by the sets Zt and Z—. These sets contain
the indices of the observed positive and negative manifestations, respectively. The

posterior probability of the disease vector s given T+ and 7~ is

= + -
P(D = s|F*, F) = D=8 F7 F7)

- Y. P(D=d, F+,F-) (3:3)

where FT and F~ denote the events F;+ = + and Fr- = — respectively. Note that
both the numerator and denominator in equation (3.3) are comprised of marginals
of the form P(d, F*, F~). In each of the steps, | show how these marginals can be
replaced with joint probabilities under the new distribution. Though these joints will
be over a subset of the evidence, the disease posteriors under the new distribution

will nonetheless be the same.

Step 1: Unobserved Manifestations

Computing P(d, F'*, F~) requires marginalising over the unobserved manifestations.
Here, I show, however, that the distribution P can be replaced with another distri-
bution P’ that contains all the disease nodes but only the observed manifestation

nodes. This new distribution P’ has the same disease posteriors as P given the
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observed evidence, i.e.
Vd, P'(d|F*, F~) = P(d|F*, F~). (3.4)
Note, first of all, that due to the conditional independence of findings,

P(d, F*t F) = > P(a) [ P(fild), (3.5)

Hfpr=+Ffz-=~

now, commuting the sum in equation (3.5) with the product gives:

P, F"F)=P(P(F",F|d) [[ PFE=+d+PF=—d. (36

iET\(T+HUT-)

Because each term in the product in equation (3.6) is one, the product as a whole is
one and the marginalisation has no effect. If we define P’ such that P'(D) = P(D)
and P'(¥;|D) = P(F|D),Vi € I+ UZ~, then for all disease vectors, d,

P(d,F*,F~)=P(d,F',F"). (3.7)

By substituting P’ for P in equation (3.3), we have shown equation (3.4) is correct.

Step 2: Negative Manifestations

In this step, a new distribution is produced that has negative manifestations from
the old distribution eliminated and incorporated into the new disease prior. Here, I
show that the distribution that results from this step has the same posteriors as the
original distribution. Note that, due to the bipartite structure of the QMR-DT and
the conditional independence of manifestations given diseases, the joint distribution

P'(d, F*, F~) decomposes as:

P'(d, F*,F~) = P'(F*|d)P'(d|F~)P'(F") (3.8)
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This decomposition is important since here I show that
P'(d|F) =[] P'(ds) (3.9)
k

for some factorial distribution P'(d) over the diseases. To satisfy ourselves that

equation (3.9) is correct, we note that because P’(d|F~) o« P'(d, F~) and
P/d,F7) = (H P’(dk)) I] e-to-Setuss
k i€T-

that equation (3.9) is satisfied by
Pl(dy) o< P'(dy)e% Zi i (3.10)

Defining P(F*|D) = P'(F*|D), and using equations (3.8) and (3.7), we can
write

P(d,F*,F~) = PN(F*|d)P'(d)P'(F). (3.11)

By substituting equation (3.11) into equation (3.3) and cancelling the P'(F~) term

from the numerator and the denominator, we have shown that
P(d|F',F~) = Pi(d F")

as required.

Step 3: Single Parent Positive Manifestations

In this step, the single parent positive manifestations from P! are incorporated into
a new prior and a new distribution containing only the multiparent positive manifes-
tations is formed. This new distribution also has the same disease posteriors as the
initial distribution.

Let S be the set of indices of the single parent manifestations, then I+ N S is

the set of indices of the single parent positive manifestations and Z+ \ & contains
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the indices of the multiparent positive manifestations. Again, due to the bipartite
structure of the QMR-DT and the conditional independence of manifestations given

diseases, the joint distribution P'(d, F'*) decomposes as:
Pl(d, F*) = PY(F|d) P (d| Fh) P (F)) (3.12)

where F} and Fif denote the events Fz+ns = + and F14\5 = + respectively.

Here I show how to compute a factorial distribution P¥ over the diseases so that
=[] PH(dw). (3.13)
k

In doing this, T follow a similar argument as the last step. Namely, because

Pi(d, F) = (pr dk) 11 P& = +ldn),

i€ZT+nS

equation {3.13) is satisfied by

PHdg) < PH(d) T (1 — e Biobimidm) (3.14)

1€IHNENA,,

Now defining P*(F} | D) = P*(F} | D), it can easily be shown that
P, ", F7) = PY(F,|d) PH(d)PT(FL) P(F ), (3.15)
By substituting equation (3.15) into equation (3.3) we can show that
P(d|F*, F~) = PHd|F;,)

as required.

The model resulting from the third step, P!, has a graph that is a subgraph of
the original model P. This subgraph contains only the manifestation nodes that

are both multiparent and positive in the original inference problem (Z7,77). The
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manifestation conditional probabilities are the same for those nodes shared by the

two models, however the priors are different.

Easy Computation of the Updated Prior

Here I show how to easily compute the prior resulting from applying the three re-
duction steps. Specifically, I show how to compute the new log prior odds, li =
log{p}/(1 — pL)}, (where p} = P¥(D, = 1)). The prior distribution can be com-
puted from the log odds using the logistic function, i.e. pi = o(li) where o(z) =

(I +exp(—x))~". These log odds have a very simple form, namely

li = lk - [Z gik] + E Cjy (316)

ieT— JET+NSNA,

where {;, = log{p./(1 — p)} and

1 — g bo~tin;

¢; = log e

Summary

In this section, I have shown how to simplify the computation of posteriors in BN20
networks by reducing the original network to a new network whose graph is a subgraph
of the original with less evidence and no unobserved manifestations. The disease priors
in the new graph are the posteriors in the original graph given the negative and single
parent positive evidence. The disease posteriors in the new graph are identical to
those in the old graph. Because this reduction exists, inference algorithms for the
QMR-DT need only compute the effect of multiparent positive findings on the disease
posteriors. In the following, unless otherwise stated, I will assume that this reduction
has already been done and that inference problems only contain multiparent positive

manifestations.
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Figure 3-4: Empirical distribution of number of active diseases. The bar graph shows
two distributions. The black bars are the empirical distribution generated using 10°
samples from P(d). No sample contained more than nine active diseases. The grey
bars show, for comparison, a Poisson distribution with the same mean.
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Figure 3-5: Empirical distributions of number of positive manifestations. A) Number
of positive manifestations. Empirical distribution was generated using 105 samples.
B) Number of positive manifestations conditioned on number of active diseases. Fach
curve is marked with the number of active diseases conditioned on. Each distribution
was generated using 10° samples.
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3.4 Sparsity in the QMR-DT

The parameter settings used in the QMR-DT produce sparsities which have rele-
vance both to the design and evaluation of inference algorithms for the QMR-DT.
Specifically, the QMR-DT puts most of its probability mass on sparse disease and
manifestation vectors and the graphical model of the QMR-DT is sparsely connected.
These sparsities have been exploited by various QMR-DT specific inference algorithms
and bear on the evaluation of inference algorithms on the QMR-DT. In this section,

I introduce each of the three sparsities to provide a reference for later discussion.

Sparsity of Disease Vectors

Most of the probability mass under the disease prior, P(d), is concentrated on a small
proportion of the possible configurations. Specifically, the entropy of P(d) is 9.8 which
is the same as that of a uniform distribution over 907 different choices instead of the
257 possible combinations. Most of the mass in this highly peaked distribution is on
sparse disease vectors, as figure 3-4 shows. Disease vectors with ane or zero active
diseases account for 72% of the prior mass. Due to this concentration of prior mass,
diagnoses with large numbers of active diseases require significant evidential support.
Note also that this concentration suggests approximate inference algorithms based on

enumerating disease vectors in order of the number of active diseases.

It should be noted here, however, that the disease priors that I generated for the
anonymised QMR-DT are not based on real medical data. The anonymised QMR
KB does not presently contain disease priors and the lack of disease labels makes it
difficult to assign priors using medical data. However, the priors that [ generated
have approximately the same expected number of diseases and a similar distribution
of Bernoulli parameters as those associated with the QMR-DT described in (22].

Please see appendix A for further details.
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Sparsity of Positive Manifestations

In samples from the QMR-DT, only a very small proportion of the manifestation
nodes are positive. The expected number of positive manifestations is 49 out of a
passible 4075. Figure 3-5 shows the distribution of numbers of positive manifestations.
This sparsity of positive findings is exploited by the Quickscore algorithm, described
in section 3-6. Also note that the lack of overlap between some of the conditional
distributions in figure 3-5B allows the number of positive manifestations to be used as
a rough indicator of the number of active diseases when all the manifestation nodes
are observed and a rough lower bound on this number when only some of the nodes

are observed.

Sparse Connectivity

The QMR-DT is sparsely connected. Specifically only 2% of the possible disease-
finding links are present. This sparse connectivity may allow the QMR-DT to be-
come easily disconnected when manifestations nodes are eliminated from its graphical
model. Section 3.6 describes an algorithm that exploits this property to speed up ex-
act inference in the QMR-DT. Section 3.7 gives experimental results showing the

susceptibility of the QMR-DT to rapid disassembly.

3.5 Quickscore

3.5.1 Introduction

Quickscore is the standard exact inference algorithm for the QMR-DT. In its most
basic form, it calculates the marginal probability of a set of positive manifestations,
l.e.

P(F*) =Y "P(F*,a), (3.17)
d

in BN20 networks. Because the posterior marginal probability of the presence of

disease k, P(Dy, = 1|F'*), can written as a ratio of two of the marginal probabilities
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Figure 3-6: Recursion tree of a call to Quickscore. Only the elimination and reduction
steps are shown. The shaded disease node borders have the same interpretation as
in figure 3-3. Note that the positive manifestations are eliminated in the same order
along each branch of the tree and that the graph becomes disconnected after the
first elimination. Section 3.6 describes an algorithm that exploits disconnectedness
to speed-up Quickscore.
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of the form of equation 3.17%, Quickscore may used to calculate posterior marginals
for all of disease nodes. The efficiency of Quickscore comes from transforming the
combinatorial sum over disease vectors in equation (3.17) into a combinatorial sum
over the positive manifestations. In the QMR-DT, due to the sparsity of positive
manifestations, the latter sum is tractable for some inference problems whereas the
former sum, over 2°° disease configurations, is never tractable. Though Quickscore
was introduced as a serial algorithm [15], here I present a recursive formulation that

will facilitate later discussion.

3.5.2 Recursive Quickscore
Introduction

The recursive Quickscore algorithm consists of a single recursive function that returns
the marginal probability of the evidence. Each call to the function may be divided
mto three stages: elimination, reduction, and recursion. In the elimination stage,
a single positive manifestation is eliminated. This elimination replaces the original
marginal probability with a difference of marginals between one where the eliminated
positive manifestation is unobserved and the other where the manifestation is nega-
tive. In the reduction step, the two new marginals are reduced to weighted marginal
probabilities calculated on BN2O networks with the eliminated node removed. In the
recursion stage, Quickscore is called recursively on each of the two new BN20 net-
works. The recursion bottoms out when only a single positive manifestation remains
and its marginal probability is easily computed. Since each recursive step eliminates
one positive manifestation and doubles the number of marginal probabilities to be
calculated, the time complexity of Quickscore is exponential in the number of positive
manifestations. Figure 3-6 shows a graphical depiction of the Quickscore algorithm,

In the following, I describe each of the three steps in further detail. Note that I am
assumning that the reduction described in section 3.3 has already been performed and,

therefore, the inference problem consists only of multiparent positive manifestations.

®Note the numerator in this ratio has the prior probability, P{Dy =1), set to one.
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I represent these manifestations with the set Z+.

Elimination The elimination step in Quickscore uses the properties of BN2Q de-
tailed in section 3.3 to rewrite the marginal probability as a weighted differ-
ence of probabilities. Specifically, since the manifestation nodes are binary, for

i € IT, we can write
P(Frogy =+) = P(Fy=+,Frog =+) + P(F, = = Frogy =+4) (3.18)
which can be rearranged ta give
P(F7) = P(Frayy = +) — P(Froy = 4, F = ). (3.19)

‘The RHS of equation (3.19) is a difference of two marginal probabilities each
calculated on the same BN20 network but with different sets of evidence. The
first set has the originally positive F; unobserved, and the second set has F;
negative. In figure 3-6, these two new sets of evidence are represented as two

similar graphical models that differ only in their node assignments.

Reduction Using the reductions described in section 3.3 both of the RHS terms in
equation (3.19) can be reduced into marginal probabilities calculated in new
graphs that don’t contain the F; node. In the first graph, F; is simply dropped
because it is unobserved. In the second graph, the negative evidence, F; = —,
is incorporated into the disease priors producing a new distribution P!. These

transformations allow equation (3.19) to be written:
P(F+) = P(FI+\{1'} =+)— CPT(FI+\{1-} = +), (3.20)
where the weight C' = P(F; = —) may be efficiently computed.

Recursion After the reduction, Quickscore is called recursively to compute each of

the two new marginal probabilities. The recursion bottoms out on marginal
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probabilities of a single positive manifestation. The calculation of these proba-

bilities is trivial since P(F; = 4) =1 — P(F, = -).

Summary

In this section, I have presented a recursive formulation of the Quickscore algorithm.
This formulation, like the serial one, has exponential time complexity in the number
of positive manifestations. This time complexity limits the practical uses of the
algorithm. For example, Jaakkola and Jordan report an average running time of 26.9
seconds [22] when using Quickscore on the 4 (of 48) CPC® cases with at most 20
positive manifestations. However, the median number of positive manifestations in
the CPC cases is 36, so most of the CPC problems remain intractable. However, by
exploiting the sparse connectivity of the QMR-DT, exact inference can be made more
efficient. In the following section, I describe an extension to the Quickscore algorithm

that may reduce its time complexity for sparsely connected BN20 networks.

3.6 Structural Quickscore

3.6.1 Introduction

This section investigates an extension of the Quickscore algorithm that exploits sparse
connectivity in BN20 networks to simplify some of the computations of the marginal
probabilities. The extension is based upon the SPT algorithm (6] as applied to the
QMR-DT. This algorithm contains a step similar to the positive manifestation elimi-
nation. In reference to this step, D’Ambrosio [6] observed that whenever eliminating
a positive manifestation causes a BN20O network to become disconnected, inference
computations can be done independently in each of the resulting connected compo-
nents. By exploiting this independence, D’Ambrosio was able to demonstrate sub-

stantial speed-ups on some CPC cases. Quickscore can be extended to exploit this

8The CPC cases are sets of pedagogical diagnostic problems encoded for use with the QMR-DT.
They are further described in section 5.2.3
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independence and achieve similar speed-ups.

This section describes an algorithm called structural Quickscore based on Quickscore.
I begin the description by showing, in section 3.6.2, that marginal probabilities of
manifestations in BN20 networks can be factored into the product of the marginals
in each of the connected components of the model. This factoring is exploited by
structural Quickscore, which is described in section 3.6.3. Section 3.7 evaluates this

algorithm.

3.6.2 Factoring in Disconnected BN20 networks

If a BN20 network is disconnected, then the marginal probability of a set of positive
manifestations in the whele network is equal to the product of a set of marginals over

each of the individual components. Tn particular, if Z* is the set of indices of the
N

positive manifestations, and {Z,7}*_. is a partition of Z* into the sets of indices of

the positive manifestations in each of the N connected components of the graph, then
P(Fre =+) = [[ P(Fp = 4). (3.21)
n

In the following, I show that equation (3.21) holds for two connected components, i.e.
N = 2. This argument can be easily extended by induction to show that equation

(3.21) holds for arbitrary N.

Let K1 and KCy be the sets of the indices of the disease nodes in the two connected
components. Then, since manifestation nodes only have parents from within the same

connected component,

P(F-|D) = P(Fy|Dy,). (3.23)

Equations (3.22) and (3.23) can be used, together with the marginal independence of
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diseases and the conditional independence of manifestations, to write

P(Fe = +) =Y | P(dx,)P(Fy|dx,) Y Pldc,)P(Frglde,) || (3:24)
di, dx,
Since no term in the inner summation in equation (3.24) depends upon dx,, equation

(3.24) may be written

2
P(Fr+=+) = [[ Y. P(dx,) P(Fyy = +|dx.). (3-25)

n=1dx,

Using the substitution P(Fp+) = )" ac, Pldx,)P(Fpldx,) in equation (3.25) gives
equation (3.21) as required.

Note, in collorary, that if a connected component n doesn’t have any manifesta-
tions associated with it, i.e. Z} = ), then the component consists of a single disease
node and P(F s = +) = 1.

Equation (3.21) may be exploited to speed up Quickscore on disconnected BN20
networks. Since each of the connected components is itself a BN20O network, Quickscore
may be distributed over the components. The marginal probability of all the positive
manifestations is the product of the output of Quickscore on each of the individual
components. This distributed version of Quickscore can have significant savings over
vanilla Quickscore since it is exponential only in the number of positive manifestations
of the largest partition of Z+. The following section describes structural Quickscore,
an algorithm that uses distributed Quickscore as a subroutine. Structural Quickscore
can be used to speed up the computation of the marginal probability in a BN20

network that, at least initially, consists of a single connected component.

3.6.3 Description of the Algorithm
Introduction

If a BN20 network is connected but not all possible disease-manifestation links are

present, then, through judicious choice of the elimination ordering, it may be possible
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to disconnect the network before all of the positive manifestations have been elim-
inated. Disconnecting the network, as section 3.6.2 showed, allows the Quickscore
computation to be distributed over the connected components leading to possibly
substantial savings in computation time.

This section describes a two-stage algorithm that exploits sparse connectivity in
BN20 networks to speed up Quickscore. In the first stage, an elimination ordering of
the positive manifestations is determined. The elimination ordering is selected using
a heuristic algorithm that aims to minimise the number of computations in the second
stage. In the second stage, Quickscare is recursively applied to the network and the
computation of marginals is distributed across disconnected components whenever

possible.

Stage 1: Choosing the elimination ordering

Selecting a good elimination ordering is crucial, since some orderings will disassemble
the graph much more quickly than others. Here, I describe three different heuristics
to find a good elimination ordering. The three heuristics are compared in section 3.7.

The first heuristic, most parents, eliminates the positive manifestations in descend-
ing order of number of parents. This ordering removes the largest number of links at
each step, possibly leading to easier disconnection of the graph. This heuristic was
first described in [6].

The second heuristic, greedy A, eliminates the manifestation that best decreases
an estimate of the remaining amount of computation. This estimate is the time
complexity of distributed Quickscore on the connected components remaining after

the node is eliminated. Specifically, this estimate, for manifestation node 1, is

Z UCnIQII'ﬂ

where {Z '} and {KC,,} are, respectively, the partitions of the indices of the remaining
manifestation nodes and disease nodes in the various connected components. Ties

are resolved by choosing the manifestation node with the largest number of parents.
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SQuickscore(G, i, p)

my; +— 1;
me ¢ 1;
{p",C} « add-neg-evidence(G, i, p);
if |G.f|>1
{CC, next} + reference-elim-order(s);
for j < 1 to [next]
my +=my X SQuickscore(CClj], next[j], p);
My  ma x §Quickscore(CClj], next[5], p!);
end for
end if
return m; — C X my;

Figure 3-7: Pseudocode for the second stage of structural Quickscore

The third heuristic, greedy B, combines aspects of both most parents and greedy
A. Under this heuristic, each manifestation node i has score 3" 2/%! where {Z}} has
the same definition as above. Ties are resolved, as in greedy A, by choosing the node
with the most parents. Because the score doesn't depend on the number of diseases
in the connected components, greedy B acts like most parents when the graph can’t be
disconnected by eliminating a single positive manifestation. When the graph can be
disconnected, greedy B will often act like greedy A because, due to the exponentiation,
both scoring metrics tend to favour eliminations that disconnect the graph.

While the elimination ordering is being generated, a data structure, A, is con-
structed that is used to guide the recursion in the second stage. This structure
associates each manifestation node with two lists. The first is a list of the connected
components remaining after the node is eliminated. The second is a list of the next

manifestation node to eliminate in each of the connected components.

Stage 2: Computing the marginal probability

In the second stage, the marginal probability is calculated by a recursive algorithm
that follows the elimination ordering selected in the first stage. In each function call,
the algorithm eliminates one positive manifestation and distributes the computation

of the two resulting marginals, m, and m,, over the connected components if possi-
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ble. Pseudocode for the recursive function used by structural Quickscore is shown in
figure 3-7. Here I describe this pseudocode in further detail.

The function, SQuickscore, has three input arguments:

1. G - a graph structure that describes the current connected component,
2. 7 — the index of the manifestation node to eliminate from G, and

3. p — the vector of the Bernoulli parameters for the factorial prior.

The structure G contains the field G.f, a vector of the indices of the manifestation
nodes in G. Note that p contains an entry for each disease node, even if the disease
node isn’t in G.

There are two subroutines called by SQuickscore. The first subroutine, add-neg-
evidence, returns two values: pt and ¢. The new prior parameter vector, p', in-
corporates the negative manifestation, F;, and the weight, C = P(F, = —), is the
marginal probability of the evidence F; = — under the BN20 network specified by
G and p. The second subroutine, reference-elim-order, references A and returns two
values: CC and next. The value, CC, is a list of graph structures corresponding to
the connected components remaining after F} is eliminated. The second value, next,
is a list of indices, one for each graph structure. Each element of the list, next[;],
is the index of the next manifestation node to eliminate from the graph structure,
CClj]. These return values are used in the recursive calls to SQuickscore distributed
across the connected components. Note if only a single manifestation node remains,
then SQuickscore recursion bottoms out and returns the marginal probability of the
single positive manifestation.

Note that SQuickscore differs from recursive Quickscore only in the recursion step.
In structural Quickscore, unlike recursive Quickscore, the recursive call is distributed

over the connected components in each of the two networks.

Summary

Here, I have described structural Quickscore, an extension of the Quickscore algorithm

which can exploit sparse connectivity in a BN20 network. This recursive algorithm
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is simple, easy to implement, and depending on the cannectivity of the BN20 net-
work, may give a significant speed-up over the vanilla version of Quickscore. The
algorithm distributes the computation of the marginal probabilities across connected
components whenever eliminating a positive manifestation disconnects the graphical
model. This distribution leads to speed-ups with respect to vanilla Quickscore. The
computation associated with determining the connected components is cached when
the elimination order is determined. The recursive function, SQuickscore, can be used
with any elimination ordering, here I have presented three heuristics to determine the
order. In the next section, I present experiments done on the structural Quickscore

algorithm to estimate its theoretical running time on samples from the QMR-DT.

3.7 Evaluating Structural Quickscore

3.7.1 Introduction

This section describes experiments done to test the ability of structural Quickscore
to exploit the sparse structure of the QMR-DT to speed up the computation of the
marginal probability of sets of positive manifestations.

Previously, D’Ambrosio [6] showed that the SPI algorithm was able to achieve
significant savings in time complexity over Quickscore on some of the CPC cases.
These results are promising because structural Quickscore exploits the sparse con-
nectivity of the QMR-DT in the same way as SPI. D’Ambrosio showed that it was
possible to reduce the effective number of positive manifestations in 9 CPC cases
with between 23 and 29 positive manifestation to below the 20 positive manifestation
threshold of tractability for Quickscore. Given these results, it is possible that struc-
tural Quickscore can be used to produce exact posterior marginals for more complex
inference problems in the QMR-DT. This tractability would arise if it is possible,
through eliminating a small number of positive manifestations, to divide the remain-
Ing positive manifestations into connected components whose size is small and doesn’t

depend upon the initial number of positive manifestations. One candidate for these
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connected components are the clumps of positive manifestations caused by the sepa-
rate active diseases in the patient. If these clumps can be easily disconnected, then
each connected component would only contain the number of positive manifestations
typically caused by a single disease.

In this section, I evaluate whether any of the three heuristics introduced in section
3.6.3 is able to find elimination orderings that effectively separate the disease-specific

clumps of positive manifestations.

3.7.2 Evaluation Techniques
Introduction

I evaluate the elimination orderings by comparing their theoretical performance to
that of Quickscore. The time complexity of Quickscore is linear in the number of
diseases in the BN20 network and exponential in the number of positive findings.
On the other hand, the complexity of structural Quickscore depends upon when and
how the network becomes disconnected. Tn the next section, I describe how I estimate
the time complexity of structural Quickscore. I measure the complexity in equiva-
lent number of positive manifestations. This metric is described below. Note that
actually running structural Quickscore and Quickscore on each test case is infeasible.
It is, however, possible to efficiently determine the time complexity of each of these

algorithms for specific problems.

Structural Quickscore Running Time

Structural Quickscore’s time complexity can be evaluated by tracking the recursion
of SQuickscore. Bach call to SQuickscore takes time proportional to the number of
diseases in G before recursing, so the total time is the sum of the numbers of diseases
at each node in the tree. Despite the exponential size of the recursion tree, this sum
can be efficiently calculated because the same elimination ordering is used in each
branch of the tree.

I do not include the time required to compute the elimination ordering in the
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estimate of the time complexity. The three heuristics compared here only take time
that is polynomial in the number of positive manifestations to compute elimination
ordering. Any exponential terms in the time complexity of structural Quickscore will

usually outweigh any polynomial complexity.

Equivalent Number of Positive Manifestations

T use the equivalent number of positive manifestations to evaluate the algorithms and
elimination orderings compared in this section. The equivalent number of positive
manifestations, e, for a call to structural Quickscore that has estimated running time
tis

e = log, ¢ — log, | K,

where (K| is the number of disease nodes in the BN20 network. The estimated
running time of structural Quickscore is [K|227]. Note that the equivalent number
of positive manifestations for Quickscore is |[Z*|. The number, e, is the number of
positive manifestations that a BN20 network (with the same number of diseases)
must have for Quickscore to have the same time complexity. Note that this metric
measures only the time complexity, i.e. the running times of Quickscare and structural

Quickscore up to a constant of proportionality.

3.7.3 Experiments
Samples

The experiments were run on four sets of samples from the QMR-DT. Each set
contained 100 inference problems. The four sets were sampled from P(f.d|>, dy =
n) for n = {0,1,2,5}. I estimated the running time of structural Quickscore on the
BN20O network containing all of the multiparent positive manifestations and their

disease parents.
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Figure 3-8: Comparison of elimination orderings. Figure shows results of elimina-
tion ordering comparisons on each of the four test sets. Results are shown with box
plots. The center line in each box shows the median. The upper and lower lines
are the upper and lower quartiles. The whiskers are the extent of the rest of the
data up to a maximum distance away from the median. Points more than 1.5 times
the interquartile distance away from the median are displayed with the square sym-
bol. Each column represents a single inference method. QS, #P, GA, GB stand for
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Figure 3-9: Savings using greedy B. A) The savings on all four datasets resulting
from using greedy B. The savings is the difference between the number of positive
manifestations and the equivalent number of positive manifestations under greedy B.
B) Boxplot of the savings on each of the test sets. The interpretation of boxplots is
described in figure 3-8.

68



Results

Figure 3-8 compares the equivalent number of positive manifestations of the three
heuristics and Quickscore. The greedy B heuristic has the lowest median equivalent
number for all four of the test sets.

Figure 3-9 investigates the savings in equivalent number of manifestations for the
greedy B method further. Figure 3-9A shows the savings on all the samples and figure
3-9B shows the savings for each of the four datasets.

Notice that the mean savings for the zero and one datasets are very similar.
This similarity occurs because in samples with one active disease, only the paositive
manifestations due to leak events can be disconnected from the main clump of positive
manifestations caused by the active disease. The savings do, however, increase for the
two and five disease cases, indicating that the algorithm can successfully disconnect
the clumps of manifestations caused by the different diseases in the samples. This
disconnection, however, comes at a great cost, for example, the equivalent number of

positive manifestations for samples with five active diseases is more than one hundred.

Conclusions

In this section, I have evaluated structural Quickscore using samples from the QMR-
DT. I have shown that the sparse connectivity of the QMR-DT does make structural
Quickscore orders of magnitude faster than vanilla Quickscore. My experiments have
shown the greedy B heuristic performs best of the three heuristics tested, though
barely outperforming the most parents heuristic. T have further shown that structural
Quickscore can indeed disconnect the clumps of positive manifestations associated
with the each of the active diseases.

Unfortunately, however, the early promise of D’Ambrosio’s results doesn’t trans-
late into tractability for problems with many more positive manifestations. Specif-
ically, none of the heuristics manages to quickly disconnect the clumps of positive
manifestations associated with the active diseases. There could be a number of rea-

sons for this failure. One reason could be that a large proportion of the positive
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manifestations are children of more than one active disease. Because each of these
manifestations would need to be eliminated before the clumps became separated, even
the best possible elimination ordering would still be intractable. Another reason could
be that there are positive manifestations from different clumps that are connected to
the same disease nodes. In this case, all of these positive manifestations would need
to be eliminated before the clumps could become disconnected. Eliminating all these
manifestations could be computationally expensive. There are, however, ways to
avoid this expensive procedure. One could instead marginalise over the disease nodes
that bridge between the clumps. Though every disease node marginalised out would
double the required number of computations, removing these bridging nodes may be
less expensive than removing all of their positive children. Of course these bridging
disease nodes would still need to be identified, which could in itself be a daunting
task. However, failing the discovery of an algorithm for finding the bridging nodes,

exact inference in the QMR-DT remains intractable.

3.8 Approximate Inference in the QMR-DT

3.8.1 Introduction

A number of different approximation strategies have been used on the QMR-DT.
One strategy uses stochastic approximate inference. Shwe and Cooper [63] used
self-importance sampling to estimate the disease posterior marginals. Using their
method, they achieved reasonably accurate results on two CPC cases after substantial
simulation time. They further showed that the accuracy of SIS was increased by using
Markov blanket scoring to calculate the update to the disease posterior marginals
implied by a single sample of the disease state. In Markov blanket scoring, the update
is done using the distribution of the disease node conditioned on the sampled states
of the other variables rather than by simply using the state of the node. With the
addition of Markov blanket scoring, SIS is a feasible, though slow inference method.

Later approximate methods, however, have achieved higher accuracy on some CPC
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cases with less computation time.

Another approach is to compute approximate posterior marginals by treating some
of the positive manifestations exactly and the rest inexactly. The most extreme ver-
sion of this approach is incremental SPI [6] in which the untreated manifestations
are ignored. Jaakkola and Jordan [22] extended this approach by introducing a varia-
tional method (JJ99) to approximate the effect of the untreated manifestations. Their
algorithm is described in depth in section 4.6.1. A significant advantage to their ap-
proach is that they give upper and lower bounds for the probability of the evidence
P(F[). They use these bounds to evaluate the quality of other approximate methads
and to choose which subset of the manifestations to treat exactly. JJ99 was shown
to be faster and more accurate than both Gibbs sampling [21] and a self-importance
sampling method [22] on inference problems for the QMR-DT.

Due to the high concentration of prior probability mass on sparse disease con-
figurations, approximation methods based on enumerating disease configurations are
feasible. Henrion [17] used properties of the noisy-OR to simplify a search for con-
figurations with high posterior probability mass. Though his method worked well on
inference problems with a small number of active diseases, he didn't apply his method
to problems with many active diseases in the gold standard diagnasis.

More recent approaches include loopy belief propagation [40] and sequential in-
clusive trees [11]. The former method failed to converge on some of the tractable
CPC cases and faired badly in comparison with the latter method. The sequential
inclusive tree method is a type of adaptive density filtering [38]. The thethod fits a
tree-structured distribution to the disease posteriors. The positive manifestations are
absorbed iteratively into the distribution. Each time a new manifestation is absorbed,
the distribution is updated. The new distribution minimises the KL-divergence to the
old distribution and the disease posterior given the positive manifestation in question.
This method depends on the order in which the positive manifestations are absorbed
and has cubic time complexity in the number of manifestations.

In summary, approximation inference algorithms for the QMR-DT fall into one of

two categories: ones that approximate the effect of a subset of the positive manifes-
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tations on the posterior and ones that enumerate (or sample) a subset of the disease

configurations. I compare recognition networks with a method from the first category.

3.9 Summary

In this chapter I described the QMR-DT probability model and some common infer-
ence algorithms associated with it. The QMR-DT is a BN20 network that models the
occurence and manifestation of disease. Tt has sparse conrnectivity and sparse disease
priors which lead to a high concentration of probability mass on configurations with
very few positive manifestations. These properties, along with structural properties
of BN20O networks, have been exploited in a number of exact and approximate in-
ference algorithms. I presented a recursive formulation of the Quickscore algorithmn,
the most prominent of the exact inference algorithms designed specifically for the
QMR-DT. A small change in recursive Quickscore extended the algorithm to exploit
the QMR-DT’s sparse connectivity. This new algorithm, structural Quickscore, was
evaluated on a set of samples from the QMR-DT to determine whether it could be
used to establish a gold standard for evaluating approximate inference algorithms.
Unfortunately, the exact inference for problems with large numbers of positive man-
ifestations was still intractable. The chapter finished with a description of the major

strategies for approximating inference in the QMR-DT.
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Chapter 4

Recognition Models for

Approximate Inference

4.1 Introduction

This chapter is devoted to detailing how to build recognition models for approximate
inference. In this role it performs a number of functions. One function is to introduce
a general framework for recognition models. Two new recognition models falling
within this general class are described. One of these models, based on a multilayer
perceptron, is further investigated here.

Another function of this chapter is to describe how to build recognition models for
approximate inference in the QMR-DT. Inference in the QMR-DT using recognition
models is especially difficult because of its large number of disease and manifestation
nodes. Since a manifestation node can have one of three states: positive, negative, ar
unknown, a naive input encoding of the observation would require at least 4075 x 2
lnput units. A weight matrix fully connecting these inputs to an output layer that
contained a unit for every disease node would contain more than four million weights!
Much of this chapter is devoted to making the optimisation of recognition models
for the QMR-DT moare efficient. One method to speed up the optimisation of the
recognition models is to reduce the number of parameters in the model. This speed-

up results from using a concise encoding of the observation that has half as many
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inputs as the naive encoding but which nonetheless contains the same amount of
information about the disease posterior.

The final function of this chapter is to demonstrate that recognition models are
accurate inference methods for the QMR-DT. Toward this goal, I compare different
recognition models to a benchmark approximate inference method.

This chapter is divided into seven sections. Tn section 4.2, I describe the general
framework of recognition models and in section 4.3 I describe two examples of models
that fit into the framework: multilayer perceptrons (MLP) and mixtures of experts
(MoE). Both of these models use the same input encoding of the set of observed
manifestations. This encoding summarises the observation into a concise input rep-
resentation for the recognition model. This concise encoding is described in section
4.4. The recognition models evaluated on the QMR-DT are either LR network or
MLP-based. Section 4.5 is devoted to describing the training of these models. In
section 4.6, I present experimental comparisons between the algorithms and a bench-
mark approximate inference method. Section 4.7 contains a discussion of the results

in the chapter.

4.2 General Framework for Recognition Models

A recognition model is a vector-valued function, parameterised by €2, whose input is
a configuration, f, of the evidence variables and whose output is a vector of parame-
ters, z, that select a member, Q(d; z), of a pre-specified family of distributions over
the unobservable variables. Typically the recognition model is composed of a fixed
mapping ¢ (f) followed by an Q-dependent deformable mapping, 2(x; Q). Where its
meaning is clear, I will simply use z to refer to the output of the recognition model
when applied to the evidence, i.e. z(z(f); Q).

The fixed mapping z(f) encodes the evidence vector, f, which may appear in
a non-numeric form, into a suitable numeric form, . For example, the state of a
non-binary categorical variable, e.g. f; € {4, —, ?}, may be encoded using a 1-of-N

encoding scheme, e.g. =(f;) € {(0,0,1),(0,1,0),(0,0,1)}.
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Ideally, given a distribution P(d, f), the parameters, 2, should be set so that for

all evidence, f,

2(z(£); ) = argmin KL P(| f) | Q(-|2)] (4.1)
where KL [ P(-) | Q(-)] is a measure of the divergence between distributions and has
the form

{d
KLIP()|Q0)] = 32 P(@)os ) (42

In practice, however, z may not be flexible enough to satisfy equation (4.1) for all
evidence (indeed for any evidence). A more appropriate objective function for less

flexible z is

ZP POIA) I QC12(2(£): )] (4.3)

This objective favours parameter settings that generate good approximate posterior
for evidence vectors f with large marginal probability P(f). However, since equation
(4.3) contains an intractable sum, [ approximate the objective function by sampling.

Specifically, given a sample set {(d", £},

o log P(d™| )
By =) log @ (@ 2 {x(5™); 0})

(4.4)

is a Monte Carlo approximation to equation (4.3). However, because the intractable

log P(d™)| ™) is independent of £, minimising

—ZlogQ(d(”);z{m(f(”));ﬂ}) . (4.5)

also minimises equation (4.4) with respect to 2. Note that equation (4.5) is simply
the negative log likelihood of the hidden configuration given the distribution selected
by the recognition model. If Q(d;z) and z are partially differentiable with respect
to both z and €, then the recognition parameters may be optimised using gradient-

based, non-linear optimisation methods.
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Figure 4-1: Architecture of the multilayer perceptron-based recognition model. The
arrows between the layers indicate a weight matrix that fully connects the layers. The
input layer contains an additional bias unit that is always on. The hidden layer non-
linearity is the tanh function. The output layer non-linearity is the logistic function.

4.3 Examples of Recognition Models

This section describes two types of recognition models for binary hidden variables
that will be used in this thesis. Both models are natural extensions of the logistic
regression (LR) network-based recognition model described in section 2.7. Compared
to the LR network, one extension, described in section 4.3.1, uses a more flexible
mapping that is based on multilayer perceptrons. This extension, however, uses the
same family of approximating distributions as the LR network. The other extension
selects from a richer class of distributions and is described in section 4.3.2. This

recognition model is based on a mixture of experts architecture.

4.3.1 Multilayer Perceptrons

A natural extension from LR networks are recognition models built using multilayer
perceptrons (MLPs). The output activities z of the MLP have the same probabilistic
interpretation as those of the LR network, however, the addition of a hidden layer

enables a much more flexible mapping to the outputs. In fact, given enough hidden
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output z

Figure 4-2: Architecture of the mixtures-of-expert-based recognition model. The
arrows between the layers indicate a weight matrix that fully connects the layers.
The input layer contains an additional bias unit that is always on. The 7 layer
units are connected together, indicating that their values are tied via the multinomial
logistic regression.

units, parameter settings exist so that MLPs can fit any continuous mapping [29], in
principle, allowing equation (4.1) to be satisfied exactly.

I use an MLP with a single hidden layer, short-cut weights, and a bias unit. The
general architecture of the MLP is shown in figure 4-1. I used the tanh function for the
hidden unit non-linearity, as suggested by [46], to keep the outputs from the hidden
units centered (i.e. zero meaned over the training set). Under this architecture, the

activation of output unit z, is given by
ZE (:L‘,‘ QMLP) = a(u;y + ’U);cr.’L'),

where

yj = tanh(v]z).

4.3.2 Mixtures of Experts

Another way to extend the basic LR network recognition model is to use recognition
models whose outputs parameterise a richer class of approximate posterior distribu-
tions. Here I use a mixture of factorial madels as the class of distributions. Given a

vector of mixing parameters 7 and a set of vectors of Bernoulli parameters {z™}, 1
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construct a distribution, () over the unobserved nodes d as follows:
QU {2}, ) = ) wn [ [ ()% (1~ 20, (4.6)
m k

I use a mixture of experts architecture [24] to generate the evidence-dependent
parameters 7 and {z™}. The architecture consists of two parts, a library of individ-
ual experts, {z™(x; Omoe)} and a gating network 7(x; Qamor) that outputs mixture
weights for the experts. This architecture is shown in figure 4-2. T use LR networks
for the individual experts, however, the ML.Ps can also be used.

The mixing proportions 7 are generated by a gating network. This network is
either input-dependent or outputs fixed mixing proportions. The input-dependent

network uses multinomial logistic regression, i.e.

ey _EBlET()
) = S e (1)

(4.7)

to select the parameters. I use the vector ¢t to parameterise the fixed mixing propor-

tions, i.e.
exp(tm)

" > exp(t)’

The choice between input-dependent and fixed mixture proportions should depend

(4.8)

upon the amount of training data available. Though input-dependent gating networks
can be more accurate, they have more parameters and thus require more training
data to ensure good generalisation performance. Mixture-of-expert based recognition

models are used in section 5.6.

4.4 Concise Input Encoding

This section describes a concise encoding scheme of the observation vector to the in-
put unit activities for recognition models for the QMR-DT. Under the concise scheme,
the number of input units in the recognition model is less than the number of mani-

festation nodes. However, the concise encoding contains as much information about
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Type of input | Lossless Concise

bias 1 1
sparse 4075 2928
NON-SPATSE 4075 a70
Total | 8151 3499

Table 4.1: Table comparing the lossless and concise encodings. The number of pa-
rameters in the LR networks is proportional to the total number of inputs. Inputs
representing positive manifestations are guaranteed to be sparse. Inputs representing
negative manifestation or log odds are not. Notice that the concise encoding has less
than half as many parameters as the lossless encoding and about an eighth as many
non-sparse inputs.

the disease posterior as the original observation.

The encoding uses two banks of input units, the sparse and the non-sparse banks,
Each unit in the sparse bank is binary and corresponds to one of the 2928 multiparent
manifestations. These units are only active when their corresponding manifestation
15 found to be positive. The units in the non-sparse bank are continuous-valued and
collectively represent the effects of the negative multiparent manifestations and the
single parent manifestations on the disease posterior. Specifically, the activity of a
non-sparse input zy, is

P(Dk:HFiFs-;)_]O Pk
P(D:=0[FH,F)) S l—p

zr = log (4.9)

Le. the log posterior odds that disease k is active given the negative and single parent
positive manifestations minus the log prior odds that Dy, is active. Section 3.3 shows

how to calculate the log posterior odds.

This encoding is based on the BN20 network reduction described in section 3.3.
It contains the same information as the reduced network, indeed the network can
be constructed from the QMR-DT using the concise encoding. Because the disease
posteriors in the reduced BN20O network are the same as those in the original network,
no information about the disease posterior is lost by rerepresenting the observation

using the concise encoding.
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In addition to having a small number of input units, an advantage of the concise
encoding is that the majority of the input units are only sparsely activated. Sparsity in
the inputs speeds up both the prediction and the parameter fitting in the recognition
model because the time complexity of many of the computations involved in both
prediction and optimisation is proportional to the number of active input units.

Table 4.1 compares the number and type of inputs in the concise encoding to a
different encoding of the observation. This encoding, the lossless encoding, represents
the state of an evidence node using two units: a positive and a negative unit. The
positive [negative] unit is only activated when the corresponding manifestation is pos-
itive [negative]. An unobserved manifestation is represented by a lack of activation in
either of the two units. In this lossless encoding, the identity of every manifestation is
explicitly represented, whereas under the concise encading, the precise manifestation
identity cannot always be uniquely determined. Because of this, the concise encoding
could obscure information if the observation process is non-ignorable. This issue is

discussed in depth in appendix B.

4.5 Training

4.5.1 Introduction

In this section, I describe the training of the recognition madels. T optimise both LR
networks and the MLP recognition models using a stochastic optimisation algorithm
called stochastic meta-descent (SMD) [58]. This optimisation takes a long time to
converge due to the scale of the problem, (e.g. the LR network has almost two
million weights). This scale demands that the SMD algorithm be carefully tuned
for convergence speed. However, even a carefully tuned SMD algorithm can take
months to optimise an LR network. Another difficulty with training the models is
the two different types of inputs. The optimisation of the weights from the sparse
inputs needs to be carefully balanced with the optimisation of the weights from the

non-sparse inputs. This balancing requires careful choice of the gain parameters of
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the SMD algorithm.

In section 4.5.2, T describe the basic SMD algorithm. Section 4.5.3 describes how
the algorithm is used to fit recognition models based on LR networks. The training
procedure for the MLPs is similar to the LR network procedure. The changes in the

training protocol for the MLPs are described in section 4.5.4.

4.5.2 Stochastic Meta-Descent

Stochastic meta-descent (SMD) [58] is a local gain adaptation algorithm for non-
linear minimisation using stochastic gradients. In SMD, the vector of parameters, §2

(hereafter called weights), are updated iteratively using gradient descent, i.e.
Q1= -p,0g, (4.10)

where © denotes element-wise multiplication, g, is the gradient of the objective func-
tion E(Q) at €, and p, is the vector of local gains (one for each weight). The gains

are themselves updated multiplicatively via
Py =D Omax(0.5,1+ p v, O g,), (4.11)

where the vector p is a set of fixed meta-gain step sizes.! The vector v; is also

iteratively updated, i.e.
vy = /\’0371 +p, © (gt — )\Ct'ut) (412)

where C; is a curvature matrix (often the Hessian) defined at point €. The scalar A,
0 < A <1 implements a form of model trust region for the quadratic approximation
implied by the curvature matrix. Setting A = 1 and using the Hessian, H,, at { for C,,
these update rules can be derived by doing dual gradient descent? of F(§2) with respect

In the SMD algorithm introduced by Schraudolph, 4 is a scalar. However, T found it important
to have weight-specific meta-gain step sizes.
2assuming that gradient descent is performed using equation (4.10)
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to both €2 and log p and using the approximation e* = max (0.5, 1 + u). Schraudolph
shows that SMD converges more quickly than similar local gain adaptation methods
on a benchmark problem using either A =1 and C; = H, [58] or A < 1 and C, = Gy,
the Gauss-Newton approximation to the Hessian [60].

Note that the product of curvature matrix and the vector can be calculated in
time linear in the number of weights using R-propagation (see [49] for the Hessian
and [60] for the Gauss-Newton).

The stability and convergence speed of the SMD algorithm depends critically
on the selection of the meta-gain step sizes 2 and the initial values of the gains
p™*. Sections 4.5.3 and 4.5.4 describe how these values were selected for the LR
networks and the MLP-based recognition models respectively. Note that due to the
multiplicative gain updates, the SMD algorithm is still occasionally unstable even
when the step sizes and initial gains are carefully selected.

In training the LR networks, T use A = 1 and the Hessian for the curvature
matrix. For increased stability, in the MLPs, I use A = 0.99 and the Gauss-Newton

approximation to the Hessian.

4.5.3 Logistic Regression Networks
Introduction

Here I describe the training of the LR networks. T divide the description of the
training procedure into three parts: first I describe the initialisation of the weights,
then T describe the changes to and parameter setting for the SMD algorithm, finally
I describe how the mini-batch size was chosen.

The parameters of the LR network are:

e W7, the weights connecting the non-sparse input units to the output units,
o W?, the weights connecting the sparse inputs to the outputs, and

® wg, the weights from the bias unit to the outputs.

The architecture of the LR network is shown in figure 4-3.
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Figure 4-3: Structure of the LR network recognition models for the QMR-DT. Arrows
connecting boxes indicate fully connectivity between the units in the boxes. The input
vector & contains the sparse, non-sparse and bias input units. The bias weight vector
wo is optimised using the same parameter settings as the non-sparse weights.

‘Weight initialisation

The optimisation of the LR network parameters can be sped up considerably by
choosing good initial weights. There is a natural choice for the initial value of some
of the weights. Specifically, I use the identity matrix for the initial values of the
weights leading from the non-sparse inputs, i.e. W™ = I, and [ use the log prior
odds as the initial values for the bias unit weights, i.e. wg, = logp; /(1 — pi). These
are natural initial settings because if the observation doesn’t include any multiparent
positive manifestations, the LR network initialised in this way predicts the disease

posterior marginals exactly. The prediction is exact because

P(Dy =1|F}, F7) = o(zy +log —25 ),
P 1 —py

where 2, is determined by equation (4.9). All other weights, i.e. W, in the network

are initialised to be zero.
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Tailoring SMD

The behaviour of the SMD algorithm is governed by a number of parameter settings.
Here I motivate my choices for the SMD parameters. I also describe an additional
small change I made to the basic algorithm to further control its instability.

There are two sets of parameters that need be selected to implement the SMD
algorithm: the value of the meta-gain step sizes p and the initial gains Pi™t. Each
weight receives one of two step size and initial gain parameters, depending upon the
input unit that it connects to. Specifically, the pair (ug, Pi3) associated with a

particular weight W, takes the value

(4s, PMt/N) if 3, is a sparse input unit,
(i, PS) = ’ (4'13)
(1ta, PPt/N)  if 2, is a non-sparse input unit,

where N is the number of cases in the mini-batch. I found SMD to be most stable
and converge most quickly when the parameters corresponding to the sparse input
units were orders of magnitude larger than those for the non-sparse units.

Because of the multiplicative gain updates, SMD can be unstable, (see e.g. [60]).
As an additional control to combat this instability, I sometimes bound the gains in
the range [107°,10]. This bounding increases stability but also slightly increases the

processing time of a single mini-batch.

Choosing the mini-batch size

The stochastic gradient used by SMD is calculated on mini-batches of samples.? The
size of the mini-batch plays a large role in the convergence speed of the optimisation.
If the mini-batch size is small, weight updates happen frequently but the stochastic
gradient may be quite noisy. If the noise level of the gradient is large, many updates
may be required before the generalisation performance of the network improves. In

this case, convergence to the minimum may be faster if the mini-batch size were

3Mini-batches are small sets of training examples
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Figure 4-4: Architecture of the MLP trained on the QMR-DT. Arrows connecting
boxes indicate fully connectivity between the units in the boxes. The input vector
x contains the sparse, non-sparse and bias input units. The lightly shaded weight
matrices W* and W™ are fixed during training. Optimisation of the bias weight
vector wq copied from the LR network restarts using initial SMD parameter settings
(1, P)"Y). Another bias unit (not shown) provides an additional input to the hidden
layer. These bias weights use the same SMD parameter settings as the V' weight
matrix.

increased, thus reducing the noise in the gradient and eliminating the unnecessary
computation involved in the unhelpful weight updates. On the other hand, if the noise
is small then the gradient calculated on a subset of the examples in the mini-batch
may be very close to that calculated using the whole batch. In this case, decreasing
the size of the mini-batches would allow more constructive weight updates to be made

for slightly more processing time.

Cache size is an additional consideration in choosing the mini-batch size. A mini-

batch is processed much faster if all the data structures fit within the cache.

In the QMR-DT, the noise in the gradient is often quite high, as such, I typically

use as large a mini-batch as the machine cache size will allow.
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4.5.4 Multilayer Perceptrons
Introduction

The training protocol for the MLP-based recognition models is similar to that of the
LR networks. Here, T discuss the differences in the protocols. There are three parts
to this discussion: the setting of the short cut weights, the weight initialisation, and
the tailoring of the SMD algorithm.

The architecture of the MLP is shown in figure 4-4.

Short cut weights

Schraudolph [59] showed that short-cut weights, if used properly, can speed the con-
vergence of a MLP training algorithm and reduce the final error of the MLP. However,
these weights only speed convergence when the slope is centered, i.e. the linear com-
ponent of the error signal is removed before it is backpropagated to the hidden units
(see [57] for details). Removing this component requires subtracting off the average
value, across the training examples, of the error signal backpropagated to each hidden
unit. However, if the slope is not properly centered, then the short cut weights slow
down convergence by competing with the hidden units to model the linear part of
the input to pre-sigmoid output mapping. Unfortunately, it isn’t possible to center
the slope exactly in a stochastic gradient descent algorithm, instead the average error
signal needs to be estimated. Incorrect estimation adds additional noise to an already
noisy gradient.

I avoid the need to center the slope by using a two-stage training protocol that
ensures no competition occurs between the short-cut weights and the hidden units.
In the first stage, only the short cut weights are optimised. In the second stage, the
short cut weights are fixed and weights associated with the hidden units are optimised.
Specifically, in the first stage, I train an LR network on the QMR-DT. and use its final
weight matrix as the short-cut weights of the MLP. In the second stage, I update only

the weights to and from the hidden units and the weights connected to the bias unit.4

4Naote that the bias weights wq were originally trained with the short-cut weights but unlike the
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Because the short cut weights are fixed and because they already model the linear
part of the input to pre-output mapping, the error backpropagated to the hidden

units needn’t be centered.

Weight initialisation

The initial value of each weight u;; and Vjk 1N the weight matrices U and V is sampled

uniformly in the range [-5.0 x 107*,5.0 x 10-4].

Tailoring the SMD algorithm

Like the LR networks, each weight in the MLP has its own meta-gain step size and
initial gains. These parameter pairs can take on one of two values. The weights

in V have pairs (g, F;™"), the weights in U and the bias on the output have pairs

(:ufu ) Pqinit)'

4.6 Experiments

4.6.1 Benchmark Inference Algorithm

In this section, T use both a stochastic and a deterministic approximate inference
algorithm to benchmark the performance of the recognition models. The stochastic
algorithm is an importance sampling method called AIS-BN [5]. The deterministic

algorithm is a variational method that I call V that was adapted from [21].

AIS-BN

The AIS-BN algorithm is a general two-stage adaptive importance sampling technique
that may be using for any Bayesian network. I use 25000 samples in the initial phase
to adapt the proposal distribution and 75000 in the subsequent stage to estimate the

posterior marginals. I use the same training methods and parameter settings as ,

short-cut weights, I continue training the bias weights in the second stage.
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except that I do not use the heuristic that sets the initial proposal distribution to be
uniform in some cases.’

Though AIS-BN has never been directly evaluated on the QMR-DT, it was shown
to be both faster and to generate more accurate posterior marginals than self-importance
sampling [61] and likelihood weighting [61] on the CPCS network [50]. The CPCS
network is a Bayesian network which like QMR-DT was derived from the QMR knowl-
edge base and contains very similar parameters to the QMR-DT. T hough likelihood
weighting has previously been used on the QMR-DT (34], T chose AIS-BN as a bench-
mark algorithm because of the clear superiority of AIS-BN over likelihood weighting

on the CPCS network.

A\

The algorithm V generates posterior marginals by approximating the effect of each
multiparent positive manifestation F; with a variational parameter &. These param-
eters are set by minimising an upper bound, P(f;£*), on the probability of evidence
P(f) that is implied by a upper bound, P(f|d;£*), on the likelihood function P(f|d).
Here £” is set using a standard non-linear optimisation routine. Given &, the approx-

imate posterior marginal g, of disease k is

gr = U(Z &8y + log 3 ﬁkpk). (4.14)
1

Note that V is a simplication of the algorithm described and tested on the QMR-
DT in [21]. The version described here has previously been implemented in '11] and
[39]. Results presented here should not be taken as indicative of the performance that
the full version of the algorithm would have.

The full algorithm uses V together with a partial evaluation technique to generate
posterior marginals. In this algorithm, a subset of the positive manifestations are
treated exactly and V is used to approximate the effect of the remaining manifesta-

tions. This composite algorithm was shown to be faster and more accurate than both

STnitial tests showed using this heuristic leads to significantly worse performance.
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Gibbs sampling [21] and self-importance sampling [22] on a set of medically realistic

inference problems for the QMR-DT.

4.6.2 Evaluation Techniques

I compare algorithms using the average cross-entropy of their approximate posteriors
on full and partially observed sets of samples from the QMR-DT. An algorithm’s
average cross entropy is equal to the average negative log likelihood of the sampled
disease configuration under the algorithm’s posterior Q(d; e™) given the evidence
vector ™, i.e.

CE = =N "logQ(d™; e™) (4.15)

n

where €™ is an evidence vector representing the observation, el(-") =7 if the i-th
manifestation is unobserved and is otherwise equal to the observed state of the i-th

manifestation.

Notice the similarity between equation (4.15) and equation (4.5). The average
cross-entropy is a Monte Carlo approximation to the expected KL divergence be-
tween the true and approximate posteriors plus an algorithm-independent constant.
Algorithms with lower cross-entropy have lower expected KI, divergence to the true

posterior.

Note, however, that the average cross entropy metric is biased in favour of recog-
nition models because it is exactly the objective function {calculated on the training

set but not the test set) used to optimise the recognition mode! parameters.

The medical relevance of the average cross entropy is suspect. However in this
chapter, I am only interested in how well recognition models approximate the posterior
of the QMR-DT. A more medically relevant performance metric is described in section

5.4.
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Network | g1, p, PP PP 4 of mini-batches total time (CPU days)

LR-10 | 0.01 0.5 10~* 0.1 600800 15.0
LR-25 [ 0.01 0.1 10°* 0.1 395000 13.8
LR-50 | 0.01 0.1 1074 0.1 333000 12.9
LR-100 | 0.01 0.1 10™* 0.1 655200 14.0

Table 4.2: Information on the training of the LR networks. This table gives the SMD
parameter settings, the training times, and number of mini-batches used to train each
of the LR networks. All network but LR-10 used mini-batches with 500 samples and
had unbounded gains. The LR-10 network used smaller mini-batches (300 samples)
and bounded gains. CPU times are measured on a 2.4 GHz Pentitum-4 pracessor
with 512K cache.

Network | P"™ Pi™ 4 of mini-batches total time (CPU days)

MLP10 | 10 ~ 100 100000 3.5
MLP100 | 1 1/4/10 150000 8.0
MLP1000 | 1 10 91000 13.5

Table 4.3: Information on the training of the MLPs. This table gives the SMD
parameter settings, the training times, and the number of mini-batches used to train
each of the muitilayer perceptrons. All meta-gain step size parameters, [, were set
to 0.3. All MLPs used mini-batches with 500 samples and had bounded gains. CPU
times are measured on a 1.4GHz Pentitum-III processor with 512K cache.
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Figure 4-5: Performance comparison of LR and MLP-based recognition models
against the variational method (V) adapted from [21] and an adaptive importance
sampling method (AIS-BN) [5] on two test sets. The MLP and LR50 models were
trained on partially visible samples, the LR100 model was trained on fully visible
evidence vectors. All recognition models treat negative findings as being unobserved.
In (A) the state of each manifestation in the test set was hidden with probability 0.5.
In (B) posterior marginals for AIS-BN were unavailable. Bars in (A) and (B) show
the mean bits of cross entropy (averaged over 1000 samples) between the reference
diagnoses and the approximate posteriors generated by each method. The error bars
show the upper bound of the symmetric 95% confidence interval of the mean. All
differences in the graphs, except these between LR50 and MLP, are significant.
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Figure 4-6: Performance comparison of LR network and MLP-based recognition mod-
els against V on two test sets. The LR-X models were trained on samples with
¢ = X/100. The MLPX models were trained on samples with ¢ = 0.5 and had X
hidden units. Each subfigure represents a different test set of 3000 samples, the value
of ¢ used to generate the test sets is given in the title bar. Bars in each subfigure
show the mean bits of cross entropy averaged over the 3000 samples, between each
sample’s disease node configuration and the approximate posteriors generated given
the sample’s observed manifestations. The error bars show the upper bound of the
symmetric 95% confidence interval of the mean.
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Figure 4-7: Performance comparison of LR network and MLP-based recognition mod-
els against V on two test sets. See caption of figure 4-6 for the interpretation of the
figure.
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Figure 4-8: Performance comparison of LR network and MLP-based recognition mod-
els on ¢ = 0.3 test set. Figure shows cross entropy of each method averaged across
10° samples from the QMR-DT with ¢ = 0.5 The error bars show the 95% confidence
interval of the mean. Note that the 1000 hidden unit network is still far from conver-
gence. The cross-entropy of this network should decrease below that of the 100 unit
network given more training time.
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4.6.3 Results

I report results on two different versions of the QMR-DT. My preliminary results
were generated using recognition models trained on the version of the QMR-DT used
in [39]. These preliminary results show a clear superiority of V over ATS-BN. Because
of this superiority, I compare recognition models to V and not to AIS-BN on the
anonymised QMR-DT.

On both versions of the QMR-DT, 1 train recognition models on samples with
both fully and partially observed manifestation vectors. Partially observed vectors
are generated by randomly selecting a subset of the manifestations whose states are
revealed. The state of each node is made available to the recognition model with
probability ¢.° Note when ¢ = 1, the manifestation configuration is fully observed.
The LR networks described in this section are labelled according to the value of o
that they were trained on. The notation LR~X indicates that the LR network was
trained using the value ¢ = X/100.

Preliminary Results

Here T report results generated using recognition models described in [39]. Note
that the training protocol and input encoding of these networks is different than
all other recognition models described in this thesis. I trained three recognition
models: LR-50, MLP, and LR-100. The MLP had a hidden layer with 1000 units. All
of these models ignored negative manifestations (i.e. a negative manifestation was
interpreted as being an unobserved manifestation). Figure 4-5 shows results on fully
and partial observed test sets. The disease vectors in the test set were sampled from
P(d| >, dx = 5). Note that my implementation of the AIS-BN algorithm took two
orders of magnitude more CPU time per sample than any of the other methods and
was much less accurate. Based on these preliminary results, 1 chose to use only the

variational algorithm, V, as the benchmark in the remainder of my experiments.

5This observation process i ignorable because the probability of revealing a manifestation doesn’t
depend on the state of the manifestation.
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Anonymised QMR-DT Results

Here I train recognition models on samples generated using four different values of ¢:

¢ €{0.1,0.25,0.5,1}.7

T also train three ML.Ps on samples with ¢ = 0.5. These networks have 10, 100,
and 1000 hidden units respectively. The weights from the LR-50 network were used
as the short-cut weights in each MLP.

[ test the trained recognition models and the V algorithm on test sets sampled
from the QMR-DT using ¢ € {0.1,0.25,0.5,1}. The results of these tests are shown
in figures 4-6 and 4-7. There are a number of points to draw from these figures. First
note that the recognition models specialise to the value of ¢ that they were trained
on. The LR network with the same value of ¢ as the test set never has significantly
greater cross entropy than any other LR network. Also note that the recognition
models generalise well to some untrained values of ¢, but not all. However, V is more
robust to changes in ¢, every recognition model has significantly less average Cross
entropy than V for some ¢ values and significantly more average cross entropy for
other values of ¢. The V algorithm performs much better, compared to LR-100, on
the ¢ = 1 case in figure 4-7 than it does figure 4-5B. This improvement may come
from the different, test sets used in each figure. The disease vectors used in figure 4-5B
contained exactly five active diseases whereas those in figure 4-7 are sampled from

the QMR-DT prior.

Figure 4-8 studies the relationship between the LR networks and the MLP more
carefully. This figures shows that adding additional hidden units significantly de-

creases the average cross entropy of the recognition model.

"To speed the training of the LR-100 network, T ignored the negative manifestation when caleu-
lating the non-sparse inputs. Because in the ¢ = 1 condition, the manifestations were always fully
observed, the effect of the ignored negative manifestations become incorporated into the bias weights
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4.7 Discussion

In the experimental section, I have shown that recognition models are effective ap-
proximate inference algorithms when used to do inference on problems similar to those
that they were trained on. However, recogunition models do badly if the samples they
are tested have many more or many fewer manifestations revealed than the aining set
for the model. is effect occurs because of the objective function used to optimise the
models, equation (4.4), preferentially rewards accuracy on inference problems that
have high probability under the generative model used for training. Changing the
observation process (i.e. the value of @), changes the generative model, thus the ab-
served set of manifestations is no longer a typical input for the recognition model and
inferential accuracy degrades accordingly. I have also shown that the accuracy of a
recognition model can be increased by adding a layer of hidden units. Increasing the
number of hidden units further increases the accuracy of inference.

These findings suggest that recognition models with large numbers of hidden units
can provide accurate inference when the observation process is well-characterised.
Note, however, that training hidden units in addition to the short-cut weights is
extremely time-consuming. In the remainder of the thesis, I use LR networks, which
perform almost as well as the ML.P recognition model but require less time and effort

to optimise.
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Chapter 5

Recognition Models for Medical

Diagnosis

5.1 Introduction

This chapter describes recognition models that are designed to be used, together
with the QMR-DT, as diagnostic support systems. Though QMR-DT was originally
intended to be used for diagnostic support, it is, however, an incomplete model of the
medical domain. Specifically, the QMR-DT doesn’t contain an explicit model of the
diagnostic procedure. The implicit model used by the QMR-DT assumes that the
selection of the findings carries no information about the unabserved manifestation
nodes, i.e. that the process that generated the observation was ignorable. This
ignorability assumption is quite strong, yet has been made by all previous work on
the QMR-DT. Here I show that this assumption is incorrect, that accurate medical
diagnosis does indeed require a model of the medical diagnostic procedure. I do this in
two ways: by reference to the diagnostic procedure and by examining a set of realistic
medical problems encoded for the QMR-DT. Both of these inquiries show that the
observation process is non-ignorable. To model some aspects of this non-ignorable
observation process, I introduce the diagnostic QMR-DT (dQMR-DT), a model that
contains both the QMR-DT and an observation process model. T use the dQMR-DT

in the experiments described in the remainder of the chapter.
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There are additional considerations when doing inference in the dQMR-DT rather
than the QMR-DT. One important consideration is the evaluation of the inference
algorithms for medical diagnosis. Evaluation of inference algorithm on the dQMR-DT
is difficult because the addition of an observation process model makes inference much
more difficult by destroying some of the structural properties of the QMR-DT that
simplified inference. Another consideration is that inference algorithms for diagnosis
should be evaluated on medically relevant endpoints. To address both these concerns,
[introduce a metric that evaluates lists of diagnoses. These lists are natural endpoints
of inference because, for example, they are used by physicians to represent uncertainty
about the correct diagnosis. The diagnoses lists can be easily and efficiently generated
from the posteriors typically produced by approximate inference algorithms. My
metric, called the posterior mass ratio, compares the posterior mass covered by an

algorithm’s diagnoses list to that covered by a reference pool of diagnoses.

One of the changes in inference in the dQMR-DT versus the QMR-DT is that un-
observed manifestations may no longer be removed from the graph without affecting
the disease posterior. This change occurs because in the dQMR-DT, the fact that
a manifestation is unobserved provides information about the unknown state of that
manifestation. This change has bearing on the choice of input encoding for the recog-
nition models. The concise encoding, described in section 4.4, no longer contains the
same information as the observed configuration of manifestations. Despite this loss
of information, there are still significant advantages to using the concise encoding,
namely, the reduction in the number of parameters in the recognition model. Ap-
pendix B discusses this issue further and shows that the loss of information is not so

severe as to overcome the advantages of the encoding.

I evaluate approximate inference algorithms for medical diagnosis under two dif-
ferent conditions. In one condition, I assume that the observation process is known
and a probabilistic madel of the process is available. In this condition, the procedure
for training a recognition model for the dQMR-DT is similar to that for the QMR-
DT. T describe and evaluate techniques for using the recognition model along with

the dQMR-DT to generate good diagnoses lists. T also identify some of the types of
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errors that appear when the observation process is ignored. In the other condition,
I assume that the observation process is only partially known. Specifically, I assume
that the observation process is implicitly defined by a large number of presolved med-
ical cases and some basic observation process models that are only accurate under
limited conditions. To address this condition, T use a composite strategy: I train a
library of individual recognition models on each of the provided observation processes
and then combine their predictions using a gating network.

This chapter contains seven sections. Section 5.2 considers the observation pro-
cess implied by the diagnostic procedure and observed in medical cases encoded for
the QMR-DT. Section 5.3 introduces the diagnostic QMR-DT, a probabilistic model
designed to represent the complete medical domain, that the recognition models are
trained and tested on. Section 5.4 introduces the evaluation techniques used to eval-
uate approximate inference algorithms for medical diagnosis. Section 5.5 evaluates
recognition models on a version of the dQMR-DT where the observation process is
fully available. Section 5.6 evaluates recognition models on a dQMR-DT, when the
observation process is only weakly-specified. Section 5.7 contains a summary and

discussion of the chapter.

5.2 Observation Processes for Medical Diagnosis

5.2.1 Introduction

In this section, I describe the observation process implicit in the medical diagnos-
tic procedure and show that the process is non-ignorable. Section 5.2.2 describes
the medical diagnostic procedure and argues that elements of this procedure imply
a non-ignorable observation process. Section 5.2.3 provides further evidence of a
non-ignorable observation process by referring to properties of realistic medical cases
encoded for use with the QMR-DT.

I assume that diagnostic problems encoded for inference are drawn from patient

charts. The chart records all of the patient-specific information that may be relevant
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to the diagnosis. In this condition, the information available to the diagnostic support
system is the same as that available to a physician who looked at the chart but has

not had contact with the patient.

5.2.2 Diagnostic Procedure

Here, I give a brief description of some elements of the diagnostic procedure that
are relevant to building an observation process model. The diagnostic procedure is
a goal-oriented process that is contributed to by both patient and physician.! This
procedure is multistage and often the selection of further investigations depends upon
previous findings. Some of the manifestations of disease are only observable by the
physician.

An important aspect of the diagnostic procedure is the different contributions of
the patient and the physician. Here I clarify what those contributions are. Specifi-
cally, I divide the findings (i.e. observed manifestations) into two groups depending
on who made the finding. I say that a finding was made by a patient if the patient
spontaneously offers the information without being prompted for it by the physician.
Otherwise, the physician is said to have made the finding. It is important to make this
distinction because the patient and physician both use different decision processes to
make their respective findings and also contribute different types of findings. Patients
primarly contribute findings by reporting their symptoms, i.e. subjective manifesta-
tions of disease. Patients may also spontaneously offer elements of their medical
history that they believe to be relevant. Physicians contribute to the procedure by
making investigations. Investigations can be made by measuring signs (outwardly
observable manifestations of disease), doing diagnostic tests, or by interviewing the
patient and eliciting descriptions of symptoms.

A physician’s main goal in choosing investigations is to determine how best to
treat the patient. Choosing the best treatment often requires determining the pa-

tient’s disease state with some certainty. If the disease state is uncertain, the chosen

1To simplify the presentation, I am assurning that only one physician is involved in the diagnostic
procedure.
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treatment may be harmful to the patient or may fail to address a potentially fatal
condition. A physician should, therefore, consider investigations that best reduce un-
certainty about the patient’s disease state. Of course, some types of uncertainty (e.g.
regarding disease states that should be treated differently, particularly those that are
potentially fatal) are more important to reduce than others (e.g. regarding disease
states with similar treatments).

Note, however, that because the state of the manifestation is not available until the
investigation is actually performed, a physician must base their choice on the ezpected
reduction in uncertainty that arises from making specific investigations. Calculating
this expected reduction requires knowing the distribution over the state of manifesta-
tion being considered. This distribution depends upon the current uncertainty about
the patient’s disease state. Often the investigations that are most informative also
have the property that their result is not easily predicted, i.e. the distribution over
the manifestation has high entropy. Because manifestations are rarely positive, inves-
tigations predicted to be informative will usually lead to positive findings more often
than randomly selected manifestations.

There are, of course, additional criteria for choosing investigations. For example,
one should also consider the morbidity associated with making the investigation.
Some investigations (e.g. a liver biopsy) are more harmful than others (e.g. measuring
blood pressure).

A physician’s behaviour can be modelled using Bayesian decision process with a
cost function that weighs all of the criteria used to choose an investigation. There-
fore, assuming that a physician is acting optimally, her actions at each stage can
be completely predicted given the previously observed findings. However, because
physicians may differ in how they value the different criteria and because physicians
don’t always act optimally, a probability distribution over the choice of investigation
may be more appropriate. Nonetheless, one may assume that physicians only use the
states of findings recorded on the patient’s chart to select further investigations.

The patient also makes an important contribution to the diagnostic procedure.

A major component of that contribution is their initial presentation of symptoms to

103



the physician. This initial presentation provides the starting point for the physician’s
series of choices of investigations. The patient may continue to play a role throughout

the procedure by spontaneously reporting additional findings to the physician.

However, the patient’s contribution to the diagnostic procedure is very different
than that of the physician. Specifically, patients can use internal information that isn’t
available to the physician when deciding which symptoms to report. Patients know,
for example, what hurts and what doesn’t hurt. Because a patient will generally report
abnormalities (e.g. positive manifestations) more often than normalities, the patient’s
selection of findings will depend upon the states of manifestations not recorded in the
patient’s chart. Note also that there is a lot of variation between patients in how
they select which symptoms to report. A stoic patient, for example, may not report
a pain that a more sensitive patient would. Patients, however, are restricted in the
findings that they can make because they don’t have access to the same facilities as
the physician (e.g. an MRI scanner).

In this section, I have described a number of important features of the medical
diagnostic procedure. One feature is the temporal structure of the problem, findings
are made sequentially and often the choice of investigations depends upon previous
findings. This is especially true of the findings made by the physicians. Another
feature is the different information used by patient and physician in their decision
processes. Usually all the patient-specific information that physicians use to choose
investigations is recorded on the patient’s chart. Patients, on the other hand, have
internal access to the states of unrecorded manifestations. Physicians and patients
differ in the types of findings that they contribute. Patients are restricted in the
types of manifestations that they can report. Physicians, however, by questioning
the patient, can make any finding that a patient can make. A last important feature
is a bias in the diagnostic procedure towards revealing positive manifestations. Pa-
tients are more likely to report abnormalities and physician are more likely to select

mvestigations that are informative and therefore positive.

All of these features point to a non-ignorable observation process with a bias

towards revealing positive manifestations. This conjecture is supported in section
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Type ] % positive # positive # negative Saurces

SAM 49 L6 20 + 4 18 £ 2 MSHOT
CPC 67+ 4 3843 19+3  MPMS2, SC91, Jo7
QMR-DT | 1.2 49 4026

Table 5.1: Table comparing realistic diagnostic problems to fully observed samples
from the anonymised QMR-DT. The entries in the table are empirical means. The
displayed margins of error are 95% confidence intervals of the mean. Note that I have
analytically calculated the expected number of positive findings in a sample from the
QMR-DT. SAM and CPC diagnoses contained exactly one disease and between ane
and six diseases respectively. The expected number of diseases under the QMR-DT
prior is 1.04. MSH91, MPM82, SC91, and J97 stand for [34, 37, 63, 21] respectively.

5.2.3 with evidence from the QMR-DT literature.

5.2.3 Evidence for Non-ignorability

Here [ present evidence showing that the observation process which produces realistic
medical cases for the QMR-DT is non-ignorable. This evidence comes from sets of
realistic medical problems encoded for the QMR-DT.

There are two sets of realistic diagnostic problems associated with the QMR KB:
the CPC and SAM cases. The CPC cases represent difficult diagnostic problems,
with between one and six diseases in the reference diagnosis and a large number of
positive findings [22]. The SAM cases are pedagogical diagnostic problems designed
by experts which usually contain a single disease in the reference diagnosis [34]. These
problems have been used to evaluate inference algorithms on the QMR-DT. Unfor-
tunately, at present, no such diagnostic problems are available for the anonymised
QMR knowledge base. However, I can use properties of these cases described in the
literature to argue for non-ignorability.

The presence of a non-ignorable observation process in the diagnostic procedure
is shown by two phenomena. First, there is an overabundance of positive findings in
realistic medical cases, as shown in table 5.1, suggesting that the diagnostic procedure
preferentially reveals positive findings. Supporting this interpretation is the second

phenomenon: a systematic bias in true QMR-DT posteriors toward disease config-
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urations that contain many false positives. For two CPC cases with gold standard
diagnoses containing three and five diseases respectively, Shwe and Cooper 11991] re-
port the true QMR-DT posterior gave highest mass to configurations containing 10
diseases. In the four CPC cases used in [22] where exact posterior marginals can be
computed, the expected number of diseases under the QMR-DT posterior are 6.9, 4.0,
4.5, 4.6, whereas the gold standard diagnoses for these cases had 1, 1, 2, 2 diseases
respectively. Since diseases are the primary cause of positive findings, overrepresen-
tation of positive findings in the observed sample, would explain the overprediction
bias in the QMR-DT posterior.

There are two properties of the diagnostic procedure, described in section 5.2.2
which could explain this bias. One possible cause is a patient preference for report-
ing abnormalities (i.e. positive manifestations) rather than normalities (i.e. negative
manifestations). Another explanation could be a physician’s bias to choosing infor-
mative investigations. Investigations thought by the physician to be informative will
be more likely on average to lead to positive findings.

Whatever the source of the bias, its presence indicates that using information
about the medical diagnostic procedure together with the QMR-DT could signifi-
cantly improve the quality of the diagnostic inference; in particular, by removing
systematic overprediction in the QMR-DT posterior. The difficulty lies in accurately
modelling this observation process. In the following section, I propose a modelling

framework for this process.

9.3 The Diagnostic QMR-DT

5.3.1 Introduction

This section introduces the diagnostic QMR-DT (dQMR-DT), a graphical model that
combines the QMR-DT with an observation process madel. This model will be used
mn the experiments described in sections 5.5 and 5.6. In the following, I first describe

the general model framework and then a particular instantiation of the model.
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Figure 5-1: Diagnostic QMR-DT specification. A) Graphical models of the diag-
nostic QMR-DT (dQMR-DT). Squares indicate discrete-valued variables, circles are
continuous valued variables. All variables shown in (A) are multivariate. The dis-
tributions P(D) and P(F|D) are pre-specified by the QMR-DT. The observation
process is conditioned on @ which has density P(®). B) A close-up of the obser-
vation process. The variables {Ey, E», ..., Er} and {F1, F»,..., Fy} are the elements
of the random vectors E and F respectively. The dependence of {F,F,...,F/} on
D is not shown. C) The conditional probability table (CPT) of each finding. The
dependence of P(F;|E;, ®) on & is through the parameters (¢, ¢7) of the CPT.

1

5.3.2 General Framework

The diagnostic QMR-DT consists of two parts: the QMR-DT and the observation
process (OP) model. The QMR-DT is connected to the OP model only through
the manifestation nodes. The OP model contains a set of ternary evidence nodes,
E (E; € {+,—,7}), and a continuous-valued random vector ®. The structure of
the model is shown in figures 5-1A and 5-1B. The configuration of the evidence
nodes represents the information available to the diagnosing physician (i.e. is on the
patient’s chart). Specifically, the state of an evidence node E; is either the state
of the corresponding manifestation node F, or is *?’ indicating that the state of the
corresponding manifestation doesn’t appear on the patient’s chart. The vector ¢
parameterises the conditional probability tables of the evidence nodes. Specifically,

the vector

¢:[¢T7¢;"")¢?’¢;7¢Q_7"”¢;]

contains two entries (¢;, ¢; ) corresponding to each evidence node E;,. These two

values specify the conditional probability table P(E;|F;, @) as shown in figure 5-
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1C. The values ¢, and ¢; are the probability that a manifestation variable will be
observed given that it is positive or negative respectively.

There are a number of important aspects of this model. One feature is that with
an appropriate selection of ¢, samples taken from the dQMR-DT will contain the
positive finding bias described in section 5.2.3. For example, a realistic setting of the
¢; values would have Y, ¢, /4075 & 0.01 since only a very small proportion of the
negative findings are ever observed (see table 5.1). Another feature of this model is

that P(d, e|¢) can be computed efficiently since

P(d,elg) = P(d) [ [ D P(eil i, #) P(fid). (5.1)
i fi

Section 5.4 discusses the advantages of being able to tractably compute P(d, e|o).
However, this tractability comes at the expense of approximation. This obser-
vation process model ignores the temporal component of the diagnostic procedure.
Specifically, it does not allow a dependence of the choice of further investigations upon
the results of previous investigations and unreported findings. However, P(d, e|p)
would be unlikely to be tractably computable in a more complicated observation
process model. Furthermore, building a full model of the diagnostic procedure would
require labels for the manifestation nodes and the disease nodes and exhaustive knowl-
edge of diagnostic procedure, neither of which are currently available. Building this
model would require a lot of resources to model all of the possible variation due
to different physicians, patients, and hospitals. In the spirit of the QMR-DT, this

observation process model is computationally attractive but oversimplified.

5.3.3 Parameterisation of P(®)

In this subsection, T describe the specific form of P(®) that I use throughout the
thesis. In particular, each value ¢ with non-zero density under P(¢) is a deterministic
function ¢(g,r) of the states of two univariate random variables, ) and R that are
distributed in the range (0.0,0.5). Note that the form of the distribution P(Q,R)

dictates the distribution P(®). For convenience, T refer to these variables respectively

108



as the physician’s and the patient’s contributions to the observation process. T also
assign each of the manifestations into one of two categories: presentable and testable.
A random half of the manifestations is assigned to each category. This assignment of
manifestation to a category is fixed, i.e. it doesn’t vary from sample to sample. The
pairs (¢ (g,7), é; (g,7)) that make up @(g,r) take on one of two values, depending

on the category of the manifestation Fj:

N ~ (g+7, K™2) if manifestation i is presentable,
(¢i (Q‘JT)’ ¢1' (Q: T)) = (52)

(g, K%) otherwise.

Here K is a constant used to ensure approximately equal numbers of positive and

negative findings,
— (21 fi>p(f)
4075 — <Z'1, fi>p(f) ’

where f; = 1if F; = + and f; = 0 otherwise.

The parameterisation of P(®) described here is simple but has similar aspects to
the diagnostic procedure. One aspect of this model is the two different categories of
manifestations. In the diagnostic procedure there are at least two different categories
of findings: those that only a physician can make, i.e. diagnostic tests, and those that
either a patient or a physician could make, i.e. symptoms or aspects of the patient’s
medical history. In P(®) this difference appears in the testable versus presentable
categories of manifestations. However, since labels are unavailable, manifestation
nodes are assigned randomly to each category.? Note, however, in the model, the
choice of assignment of manifestation to the testable versus presentable categories
bears no relationship to a medically relevant assignment to these categories. An-
other aspect captured by this model is the positive finding bias described in section
5.2.3. Also, depending on P(Q, R), the observation process in the dQMR-DT could
model different types of patients and stages in the diagnostic procedure. This (@, R)

manifold contains points, with low g and r values, where very few of the positive

21 include a list of these category assignments with the distribution of the MATLAB code for
generating the QMR-DT from the anonymised QMR KB.
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manifestations are likely to be observed and points, with high ¢ and r values, where
almost all of the positive manifestations are visible.

The observation processes described here are not accurate models of the diagnostic
procedure but they provide an interesting model system. This system can be used
both to evaluate the recognition model approach and to underline the importance of
correctly modelling the observation process. This underlining is done, for example,

by identifying systematic inaccuracies that result from mismodelling.

5.4 Evaluation Techniques

5.4.1 Introduction

This section describes the new evaluation metric called the posterior mass ratio. This
ratio measures the quality of diagnoses lists. Diagnoses lists are an endpoint of in-
ference that are both medically relevant and suggest a convenient way to incorporate
additional information from the domain model. This additional information is added
to a diagnoses list by a scoring process. Since the endpoint of most inference algo-
rithms is a probability distribution over the unobservable variables, I also describe

how to generate a diagnoses list from an approximate posterior.

5.4.2 Diagnoses Lists

I define a diagnosis to be a configuration, d, of the disease variables D. A diagnosis
can be represented by the set of all the diseases k for which di = 1. Examples of
diagnoses would be that a patient has no diseases, or that a patient has both the flu
and a heart murmur.

An inference algorithm’s diagnoses list is an ordered list of diagnoses that the

algorithm predicts will have high probability under the posterior.® These lists are

3Note that these diagnoses lists are different from the differential diagnosis list often generated
by physicians as part of the diagnostic procedure. A differential diagnosis list is a list of single
diseases, each of which explain same of the findings. My diagnoses list is a list of diagnoses and each
diagnoses is a, possibly empty, set of disenses and is intended to explain all of the findings.
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both a convenient representation for incorporating additional information from the

observation process and are a natural endpoint of medical diagnostic inference.

5.4.3 Scoring Diagnoses Lists

Onmne advantage of using diagnoses lists is that in some cases additional information
can be added to the list by scoring diagnoses. Where e* is the evidence vector, T use
P(d, e*) as the score of a diagnosis d. Calculating this score requires an observation

process model, P(e|f,d). Given this model,
=Y " P(e’|f, d)P(f.d). (5.3)
f

However, this value, P(d,e*), is only useful if P(e|f,d) has a form that makes
computing equation (5.3} tractable. For example, under the observation process

model described in section 5.3

Plelf.d) = [ aP@) ]S Plei s, @) (5.4)

& ;
] f.,;

If P(®) is appropriately chosen, in equation (5.3), e.g. P(®) is delta function cen-

tered at some value ¢, then equation (5.3) can be efficiently calculated. If the true

observation process model is not of the appropriate form, then that model may be

replaced in equation (5.3) with an approximation, P(e|f, d), that supports efficient

calculation of an approximate score,

=Y P(|f. d)P(f,d). (5.5)

f
Since P(d, e*) is proportional to P(d|e*), the ratio of the [approximate| scores of
two diagnoses is equal to the ratio of their [approximate] posterior masses.* This score

may, for instance, be used to rerank the diagnoses list in order of decreasing order

“Note that this condition is true of any function S(d,e*) such that S{d,e*) = Z(e*)P(d|e*).
P(d, e*) is a special case of these generalised scoring functions where Z{e*) = P(e*).
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of true posterior probability. Posthoc reranking can correct incorrect assumptions
about the observation pracess made by the inference algorithms that generated the

diagnoses list. A scored diagnoses list also implies a distribution, P, over diagnoses,

2 Zné(da d(n))P(d’ *)
P(d) = En P(d("),e*)e

(5.6)

where §(d, d™) = 1 if all elements of the two vectors are equal, otherwise d(d, d™) =

0.

Note that P(d, e*) is only one possibility for the scoring function though it does
have some convenient properties described in section 5.4.5. Other possible scoring
functions include those that make use of a gold standard diagnosis d*, if one is
available, and measure the cost of misdiagnosing the patient. One may also consider
using the QMR-DT to score diagnoses, i.e. using P(d, F*, F~) where T+ and 7~ are

the indices of the positive and negative manifestations in e*.

5.4.4 Generating Diagnoses Lists

Many approximate inference algorithms output probability distributions over the un-
observed variables. A diagnosis list may be generated from a probability distribution
either by sampling or by enumerating the N most likely disease variable configura-
tions. Nilsson [1998] gives an efficient algorithm to do the latter. Here, T always use
the enumeration technique to generate the diagnoses list though T don’t use Nilsson’s

algorithm. Instead I use an algorithm designed specifically for factorial distributions.

I generate two types of lists in my experiments. The first is the basic N diagnoses
list. This list contains the N diagnoses with the highest posterior probability under
the approximate posterior generated by an inference algorithm. When diagnoses
may be scored, T also generate a best N of M diagnoses list. This list contains the N
diagnoses with the highest score among the basic M diagnoses list for the approximate

inference algorithm.
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5.4.5 Posterior Mass Ratio

The posterior mass ratio measures the quality of a diagnoses list. This value is the
ratio of the posterior mass of a diagnoses list to the posterior mass of a reference
list of disease configurations. This reference list is used as the gold standard for the
particular diagnostic problem. The posterior mass ratio B for an observation e* is

the ratio of the total scores of a diagnoses list, {d™} to that of the reference list, L,

i.e.
r= ZaPl@%e) (5.7)
P(e*)
where
P(e") =Y "P(d,e"). (5.8)
del.

Note that since P(e*) < P(e*) = > g Pld,e),
R>Y"P(d™Me).
n

The tightness of this upper bound depends on how much of the posterior mass is
covered by the disease configurations in L.

Note that computing the posterior mass ratio requires a probabilistic model of the
observation process and furthermore that the scoring function P(d, e) be computable.
If the observation process model does not support tractable scoring, then the posterior

mass ratio may be calculated using an approximate score (see equation (5.5)).

5.4.6 Test Sets

I will be evaluating algorithms using diagnostic problem sampled from the diagnostic
QMR-DT. A diagnostic problem consists of an observation e* and its reference diag-
nosis d*. The observation e* is sampled from P(e|d") where P(e|d") is implied by
the QMR-DT and the true observation process model. Note that in sampled diagnos-
tic problems, unlike real diagnostic problems, the reference diagnosis is not the gold

standard, since d* may not be the disease configuration that maximises P(d|e*).
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On these sampled diagnostic problems, a reference list is constructed automatically
using the diagnoses pool for the problem. This reference list is comprised of the N'
highest scoring diagnoses among the union of the diagnoses pool and the reference
diagnosis. The diagnoses pool for €* contains the union of all diagnoses lists generated
for e* by the various algorithms being compared. Additional disease configurations
may be added to the pool, if necessary, however, this is not done in the experiments
reported here. Because the quality of the pool depends on the collective quality of
the inference algorithms, the pool may only cover a small amount of the posterior

mass if all the inference algorithms do badly.

5.4.7 Discussion

Previous work on the QMR-DT has used the set of disease posterior marginals as
the output from the inference algorithm and has evaluated this set against gold stan-
dard disease posterior marginals either calculated exactly by Quickscore (e.g. [40])
or estimated by long sampling runs [22]. However, there are some advantages to us-
ing a reference list of diagnoses rather than posterior marginals for evaluation. One
advantage is tractability of evaluation. There is currently no algorithm for efficiently
computing exact posterior marginals for the dQMR-DT because, unlike unobserved
manifestations in the QMR-DT, unobserved evidence nodes cannot be prured from
the dQMR-DT. Generating a reference list generally takes less time than a long sam-
pling run. Another advantage to using reference lists is that the posterior mass ratio,
unlike posterior marginal-based metrics, rewards inference algorithms that correctly

capture posterior dependencies between diseases.

5.5 Known observation processes

5.5.1 Introduction

This section describes and evaluates techniques when a fully-specified probabilistic

model of the observation process is available.
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Networks |y,  p, PRt pinit
B-E,H-J [ 0.01 0.3 107¢ 0.1
K |00l 01 107 01

Table 5.2: Parameter settings for LR network SMD training algorithm. All networks
were trained on 1.1 x 10% training examples using mini-batches containing 500 ex-
amples. These parameters were chosen to be similar to those used to train the LR
networks in section 4.5.3.

The first technique uses a two-pass process. In a first pass, an inference method
generates a basic M diagnoses list. The inference method used in the first pass may
make incorrect assumptions about the observation process, for example assuming
that the process is ignorable. In the second pass, the basic M list is scored using
the complete domain model (i.e. one incorporating the QMR-DT with the correct
observation process model) and a best N of M diagnoses list is constructed. This
second pass may repair the damage done by incorrect assumptions made in the first
pass. This two-pass approach is appropriate when inference assuming an ignorable (or
inaccurate) observation process is much easier than inference in the complete model;
which is particularly true in the dQMR-D'T. Note that this two-pass technique is only
usable when the observation process model supports efficient scoring of diagnoses. In
this thesis, I do not investigate the feasibility of using approximately scored diagnoses
in the second pass.

However, many observation process model that do not support efficient scoring,
do support efficient sampling. My second technique uses samples from the complete
domain model to train a recognition model. The two techniques may be combined
by using a recognition model trained on the correct chservation process to build the

diagnoses list used in the first pass of the two-pass technique.

5.5.2 Preliminaries

In this section, T use the dAQMR-DT with a fixed, known value ® = ¢, to represent the
complete domain model. The inference algorithms have access to both the dQMR-

DT and the given values of ¢p. Because ¢ is fixed, equation (5.4) can be tractably

115



0.3 -‘ C J

Patient Contribution (r)

0.2 - | D
0.1 H E
0 I I T — T 1 I l |
0 0.1 0.2 0.3 0.4 0.5

Physician Contribution (q)
Figure 5-2: Locations of eight simple observation processes. Each point in the (g, r)-

space maps into a value of ¢(g, 7). The letters (B-E, H-K) label the eight observation
processes used to train the LR networks and evaluate the inference algorithms.
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computed and thus diagnoses can be efficiently scored. This efficient scoring enables
the use of the posterior mass ratio (PMR) to compare algorithms. However, though
the observation process contained in the AQMR-DT does support efficient scoring, not
all observation pracesses (OP) do. Here, I use the dQMR-DT observation process to
represent both types of OP models.

All results reported in this section were generated using test sets containing 100
diagnostic problems. Each diagnostic problem contained a reference diagnosis, d*,
sampled from P(d | )", dx = 5), i.e. the QMR-DT disease prior conditioned on there
being exactly five diseases in the reference diagnosis. The corresponding evidence
vector e* was sampled from P(e|d", @), the conditional distribution implied by the
dQMR-DT for the provided value of ¢.

Figure 5-2 describes the eight different observation processes {B-E, H-K} used in
the experiments. I trained an LR network on each of the eight processes, {LR-[B-E],
LR-[H-K]}. Table 5.2 shows the SMD gain parameters used in the networks. I used
similar training sets® and the same SMD parameters to train all of the LR networks
except those trained for observation processes I and K. The SMD minimisation di-
verged for both of these networks. Changing the training set was sufficient to achieve
stable convergence for observation process I. However, the SMD minimisation for the
LR network for K was only stabilised when the meta-gain parameter y, was lowered.
This lowering reduced the large variation in the gain parameters that was the cause
of the instability for network K. This large variation in the gain parameters could be
due to the fact that K reveals a much larger proportion of the manifestations than
any of the other processes. The total training time for the networks ranged from a

minimum of 17.6 CPU days® for LR-B to a maximum of 20.0 CPU days for LR-K.

To evaluate inference algorithms, I use the posterior mass ratio of both the basic
20 diagnoses list, and the best 20 of 1000 list. The basic 20 list is the best an algorithm

can do if diagnoses cannot be efficiently scored. The size 20 was selected for the list

5All disease and manifestation vectors were the same, but the evidence vectors were different
because of the differences in the observation processes.
50n a 1 GHz Pentitum-III processor with a 256K cache
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to limit the list size to manageable length for a physician. The upper limit of M was
selected because of timing considerations. Generating and scoring a 1000 diagnoses

list took between 4 and 6 seconds’ for each set of posterior marginals.

5.5.3 Results

I compare the inference algorithms under two different conditions. In the first condi-
tion, I assume that diagnoses cannot be tractably scored under the provided obser-
vation process model. In this condition, I compare two approaches: using a basic M
list and scoring diagnoses assuming an ignorable observation process, i.e. using the
QMR-DT. In the second condition, I assume that diagnoses can be scored and that
it is possible to build a best M of N list.

Figures 5-3 and 5-4 show a comparison of three different ways of selecting 20
diagnoses out of a basic 1000 diagnoses list. Basic 20 selects the 20 most probable
diagnoses under the approximate posterior (i.e. the basic 20 diagnoses list), QMR 20
selects the 20 most probable under the QMR-DT, and Best 20 selects the 20 most
probable under the dQMR-DT with the correct observation process (i.e. the best 20 of
1000 diagnoses list). These methods were compared using the PMR, calculated on 100
samples from P(d, e| Y, dy = 5, ¢{g,)) where the pair (g,7) defines the observation
process. The diagnoses pool for each sample consisted of the reference diagnosis and
the basic 1000 diagnoses lists for the LR networks for all the observation processes
{LR-[B-E], LR-[H-K]} plus the LR networks {LR-10, LR-25, LR-30, LR-100} and the
V algorithm from chapter 4. Results are displayed using box plots, the interpretation
of box plots is described in figure 3-8. On each observation process, I show a box plot
for the LR network trained for that process along with the box plot of the approximate
inference method from chapter 4 with the highest median Best 20 PMR.

There are a couple of points to draw from figures 5-3 and 5-4. The first point is
that being able to score diagnoses under the correct observation process model is a

huge advantage. The 25th percentile PMR of Best 20 is never lower than 0.8 even

"On a 2.4 GHz Pentitum-4 processor with 512K cache
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Figure 5-3: Performance of various inference methods on observation processes
B,C,D.E. For each approximate inference method and each observation process, 1
compare three different ways of selecting 20 diagnoses out of the algorithm’s basic
1000 diagnoses list. Further description is provided in the text. The title of each
of the eight subfigures is the approximate inference algorithm used to generate the
diagnoses lists analysed in the figure. Each row of subfigure matrix is labelled with
the observation process analysed in the row.
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Figure 5-5: Comparison of the expected number of diseases under the dQMR-DT,
QMR-DT, and LR network posteriors. The title of each subfigure identifies the obser-
vation process analysed. Each subfigure shows the expected number of active diseases
under the three approximate posteriors over the 100 sample test sets described in sec-
tion 5.5.2 for the given observation process. Note that the average probability that
a positive manifestation will be observed increases from the lower left corner of the
figure (H) to the upper right hand corner (K). For each sample, the dQMR and the
QMR posteriors were derived from the scored diagnoses pool (where diagnoses were
scored using the dQMR-DT and the QMR-DT respectively) using equation (5.6).
Note that because of the sparse disease prior, observation processes which produce
fewer findings (e.g. H) have an expected number of diseases that is less than five,
despite the five active diseases in the reference diagnoses.
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Figure 5-6: Comparison of the ranking of disease posterior marginals under the
dQMR-DT and QMR-DT. The title of each subfigure identifies observation process
analysed. Each subfigures compares the average rank among the QMR-DT posterior
marginals of the 10 diseases with the highest posterior marginals under the dQMR-DT
on the 100 sample test sets described in section 5.5.2. Specifically, the false positive
value corresponding to true positive value N is N' — N where N’ is the average size of
the list of the highest ranking diseases under the QMR-DT that contains all of the N
highest ranking diseases under the dQMR-DT. The QMR-DT and dQMR-DT disease
posterior marginals were calculated using the posteriors implied by the appropriate
scored diagnoses pools. These posterior marginals are approximations to the true
posterior marginals.
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on observation process H where the median of Basic 20 is less than 0.5. The second
point is that the QMR-DT must be used carefully with non-ignorable observation
processes. For some processes, e.g. H and I, the QMR 20 is clearly better than the
Basic 20 and for some processes, e.g. J and K, the QMR 20 is much worse. The
change in efficacy of the QMR 20 is most striking in figure 5-4, where the proportion
of visible positive manifestations increases significantly between observation processes
H and K and the QMR 20 goes from being much better than the Basic 20 to being
much worse. There is a much smaller effect in figure 5-3 where the proportion of
visible positive manifestations stays approximately constant. These results suggest
a dependence of the performance of QMR 20 on the average proportion of positive
manifestations that are visible.

This dependence can be explained by examining the differences between the score,
P(d,e*|@), assigned to a diagnosis by the dQMR-DT and the score, P(d, Ft, F~)8,
assigned by the QMR-DT. Note that because the score of the dQMR-DT can be
written

P(d,e'|¢) = P(@) [] Pleild. ),

the only diagnosis-dependent difference between the QMR-DT and the dQMR-DT
scores is the conditional probability assigned to the event that a manifestation is
unobserved, i.e. E; =7, given diagnosis d. Under the QMR-DT, the probability of this
event is independent of the diagnosis being scored. However, under the dQMR-DT,
the conditional probability of this event does depend on the diagnosis. Specifically,
the dQMR-DT assigns this event conditional probability

P(E; =7d,¢) = (1 - ¢/)P(F, = +|d) + (1 - ¢])P(F; = —|d). (5.9)

which can be rewritten as

1-g¢f
1= o7

P =ra.0) = - o) { ( ) PUE = 1) - P(F = -la)

8where It [Z~] contains the indices of the positive [negative] manifestations in e*
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When (1 — ¢/)/(1 — ¢;) = 1 then equation (5.9) is independent of the diagnosis,

as it is in QMR-DT score. However, under realistic values of ¢, 1 — ¢, is almost

s
always very close to one. The accuracy of the QMR-DT score therefore degrades as
the average probability that a positive manifestations will be observed increases, i.e.
1 — ¢} decreases from one to zero.

Figures 5-5 and 5-6 investigate the effects that this degradation has upon the
QMR-DT's scoring of the diagnoses pool. One effect is that the QMR-DT’s inaccurate
scoring leads to an increase the predicted number of active diseases. As shown in
figure 5-5, as the average probability that positive manifestations will be observed
increases, the expected number of diseases under the posterior implied by the QMR-
DT’s scoring increases rapidly. Compare this increase with the slower increase of
the expected number under the dQMR-DT’s posterior. This overprediction of the
number of active diseases is also observed in when the QMR-DT is used for diagnosis
in realistic cases (see section 5.2.3 for details). The inaccurate scoring also leads to
misranking of the disease marginal probabilities. Figure 5-6 shows this effect. Note
that for observation processes where fewer positive manifestations are revealed, the
misranking isn’t as severe, e.g. for cbservation process H, finding the 10 top ranked
diseases under the dQMR-DT posterior marginals requires examining, on average,
the 30 top ranked diseases under the QMR-DT. However, for observation processes
where most of the manifestations are revealed, e.g. K, finding the top 10 diseases

requires examining a list of at least the 100 top ranked diseases under the QMR-DT.

5.5.4 Discussion

This section investigated two ways to use an observation process model to improve
domain-specific probabilistic inference. One use of the observation process model is to
score the disease configurations on an algorithm’s basic diagnoses list. This technique
significantly improves the posterior mass ratios of all inference algorithms. Scoring
may even, in some cases, make up for incorrect assumptions about the observation
process, as is seen with inference algorithms designed for ignorable observation pro-

cesses. Another use of the model is to generate samples that can be used to train
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a recognition model on the complete domain model (i.e. the QMR-DT augmented
with the known observation process). This recognition model not only does well when
diagnoses may be scored but also puts diagnoses with high posterior probability near
the top of its basic diagnoses list, making it appropriate to use these recognition

models when séoring is intractable.

This section has also investigated the effect of ignoring a known observation pro-
cess model. This effect was evaluated under eight different observation process models,
each with a similiar bias towards revealing positive manifestations as that observed in
the real diagnostic procedure. Under each of the eight models, ignoring the OP model
led to inaccuracies in the disease posterior. The severity of the inaccuracy depended
upon the probability of observing a given positive manifestation under the model.
When the probability was low, i.e. few of the possible positive findings were made,
scoring an LR network’s diagnoses list using the QMR-DT improved the quality of
diagnostic inference. Specifically, the 20 diagnoses with the highest score under the
QMR-DT had had higher posterior mass than the 20 diagnoses assigned the highest
probability under the recognition model. However, as the probability of observing
a positive manifestation increased, the quality of the diagnosis list scored using the

QMR-DT decreased.

The major effect of ignoring the observation processes was an overprediction of the
number of active diseases present, in the patient. This overprediction became more
pronounced as a higher proportion of the possible positive findings were made. There
was also a reordering of the disease posterior marginals under the posterior implied
by the diagnosis list scored using QMR-DT versus that of the list scored using the

QMR-DT augmented with the correct observation process model.

In summary, recognition models can be used for effective approximate inference
when the observation process is known. If the observation process also supports
tractable scoring, the quality of inference using either a recognition model, or an
inference method designed for use with the QMR-DT, is improved. Ignoring a known
observation process affects the quality of the approximate inference for some, but not

all, observation processes.



5.6 Weakly-specified observation processes

5.6.1 Introduction

The problem addressed in this section is motivated by a practical problem that arises
in medical diagnostic inference. In section 5.5, I assumed that a model of the OP
acting in the diagnostic procedure was available. However, it may not be feasible to
build an observation process model that accurately captures variations in the diag-
nostic procedure due to differences in patients, doctors, and hospitals.? Even if such
a model were available, it would likely not support tractable scoring of diagnoses. In
this section, I present and evaluate strategies for doing medical diagnostic inference
using a weakly-specified observation process. In particular, 1 assume that a small
number of different observation process models are available, each accurate under a
limited set of conditions, e.g. for a particular patient population at a given hospital.
I also assume that a large number of real diagnostic problems, and corresponding
gold standard diagnoses, are available both from the medical literature and patient
records. These presolved problems may be used to glean further information about
the diagnostic procedure. I will assume, however, that the number of presolved prob-
lems available is nowhere near enough to train de novo a recognition network of the
style of section 5.5.

One strategy for deing inference using these two sources of observation process
information is to use the given information to fit a probabilistic model of the obser-
vation process. Algorithms for fitting the parameters of a probabilistic mode] to data
are widely studied (see e.g. [26]). However, even if a model of the observation process
were learned, one would still need to do inference in the likely intractable QMR-DT
augmented with the estimated observation process model.

My approach to this problem is avoid building an observation process model at all

and to optimise an inference method directly. Specifically, I train a recognition maodel

Variations in observation processes should be contrasted with the lack of variation in the QMR-
DT. T am assuming that medical knowledge stays relatively fixed and that only the observation
process changes
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on the presolved inference problems to give a composite prediction that combines the
predictions of a fixed library of basic inference algorithms. This recognition model
is called a gating network. Each of the basic algorithms is itself a recognition model
optimised to do inference for one of the prespecified observation processes.

Section 5.6.2 defines the problem addressed in this section in greater detail. Sec-
tion 5.6.3 describes how the parameters of the gating network were optimised. Section
5.6.4 motivates the gating network approach with some intuition about forms of P(®)
amenable to approximation and section 5.6.5 describes the experiments done to test

the approach. Section 5.6.6 summarises and discusses the results of the section.

5.6.2 Problem Definition

Here, I provide further details of the problem solved by the gating network approach.
Specifically, I precisely describe the observation process information available to the
inference algorithms.

I use the dQMR-DT framework to represent the unknown observation process. [
assume that P(®) is unknown but that all of the other distributions in the dQMR-DT
are provided. The only information that the inference algorithm has about P(®) is
a a set of assignments of &, {¢™}, such that P(¢™) > 0, and a large set of samples,
{(d™, e™}, from

P(d,e) = /¢ aP(¢) S P(d)P(f|d)P(elf, &),
!

Exact inference of the disease posteriors given the evidence vector would require

integrating over @, i.e.

P(de) = /¢ dP(@le)P(dle. ),

so an inference algorithm need extract some information about P{®) from the given
dataset. Learning P(®) could be quite difficult due to the high dimensionality of &®.

Section 5.6.4 gives some intuition as to when and how the gating network approach
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may be a successful strategy.
Remember that the gating network has no direct access to the distribution P(®)

so inferring & is impossible without fitting a statistical model to P(®).

5.6.3 Training

I use a gating network to combine the predictions of the fixed set of basic inference
algorithms. Members of this library of algorithms will be called experts. I use LR
networks as the individual experts, however the methods described herein will work
for any deterministic inference algorithm that is insensitive to small changes in the
assumed value of ¢.

I use a mixture-of-experts architecture to combine each expert’s predictions. Recog-
nition models based on this architecture are described in section 4.3.2. For conve-
nience, I reproduce some of that presentation here. The distributions parameterised

by the mixtures-of-experts recognition model are mixtures of factorial distributions:
Qi {2} 7) = 3w [[ ()™ (1 — A1), (5.10)
m k

where the parameters {z™} and =« are the outputs of a set of LR networks and a
gating network respectively.

Though the standard mixture-of-experts learning algorithm optimises the indi-
vidual experts as well as the gating network, because of the difficulty of training the
individual LR networks and the relative paucity of presclved problems, the LR net-
work parameters are fixed at their pre-trained values. I use both the input-dependent
mixture-of-experts model and a set of fixed mixing weights.

I set the data-determined parameters of the gating network by maximising the

likelihood function,
E4(S) =) logQ(d™; {2™(e™)}, w(e™))
n

on a training set of presolved inference problems, where d™ is the solution given for
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evidence vector ™. Here e™ is the patient profile and d™ is the corresponding
gold standard diagnosis. For input-dependent gating networks, ¥ = {¢,,}, for fixed
networks, 3 = ¢. Note that for the fixed networks, the parameters ¢, optimised during
training, specify fixed mixing weights for the experts. Note that for both types of
networks, the likelihood function is non-linear and unimodal.

I use the Polak-Ribiere version of conjugate gradient descent (see [51] or [3] for
details) to do both maximisations. The line minimisations were done using iterated
quadratic and cubic polynomial interpolation.*®

Since the dataset of presolved problems is limited, one need be careful to avoid
overfitting the parameters of the gating network. I avoid overfitting by using a val-
idation set held out from the training data to choose among parameter settings of
differing complexity. One may also consider using Bayesian approaches to avoid over-

fitting (see e.g. [66]).

5.6.4 Intuition

The gating network approach is motivated by the assumption that despite @’s high
dimensionality, most of the density of P(®) lies in a small region of space close to
at least one of the provided values of ¢™. For example, most of the density of P(®)
could lie near a low-dimensional manifold or in a small number of tightly clustered
clouds. If this assumption holds, then gated predictions from a small, well-chosen, set
of experts may be a feasible solution to the problem. For example, a small library of
LR networks could be used to span a low-dimensional manifold in ®-space. Assuming
that the the LR networks are fairly insensitive to small changes in the assumed value
of ¢, each network could well approximate P(dle, ¢) for values of ¢ in the region
around the assumed value. The gating network, optimised on the presolved inference
problems, could then perform inference by weighting the experts in proportion to the

posterior probability of that e was generated by a value ¢ in the region in which the

19Note this optimisation algorithm was implemented by Carl Rasmussen and the MATLAB code
is available from his website: http://www.gatsby.ucl.ac.uk/~edward/code/
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expert specialises. Specifically, if we write

P(dle) = /¢ dP(¢le)P(dle, b), (5.11)

we can compare directly with equation (5.10), the approximate posterior gener-
ated by the gating network and the library of LR networks. Comparing equation
(5.11) and equation (5.10), we see if the assumption about P(®) is correct, then
Q(d|{z™(e)}, ¢(e)) would be a good approximation to P(d|e) if the gating network
outputs, 7™ (e) well approximated the posterior P(® = ¢™|e).

5.6.5 Experiments

As the unknown observation process model, I use the model contained within the
dQMR-DT. To define the distribution P(®), I use a uniform distribution P(Q =
g, R = r) = const over the ranges of @ and R. This distribution induces a uniform
distribution on a linear manifold in ¢-space.

To test the gating network approach, I use a small number of values of ® on the
linear manifold described in section 5.3.3 as well as a sizable number of samples from
P(d, e). The set of limited observation processes provided to the inference algorithms
are specified by a set of values, {¢™} from the manifold in ®-space. These values
correspond to the (g,7) values shown in figure 5-8. Each value ¢™, together with
the dAQMR-DT, implies an observation process P(e|f, ¢™). The presolved diagnostic
problems provided to the inference algorithms are sampled from the dQMR-DT with
the density of P(®) implied by the uniform density P(Q, R)

T use four values {¢™} and 2 x 10° samples {(d*, €")}. One LR network is trained
to approximate P(d|e, ™) for each of the four provided values. The provided values
are those implied by the (g,r) points {C, E, H, J}, described in figure 5-2. I use the
LR networks {LR-C, LR-E, LR-H, LR-J}, described in section 5.5.2, that were trained
on these processes. The predictions of the four networks are combined together using
the gating network. I also used four additional LR networks, {LR-B, LR-D, LR-I,

LR-K}, to act as benchmarks. For each value of e?, the diagnostic pool contained the
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Figure 5-7: Learning curves for gating networks. FEach plot shows the curves for
the training and validation sets. Since the two sets are disjoint, the average error,
measured in cross-entropy bits per example, is different in the two sets. A) The
learning curves for the input-dependent gating network. B) The learning curves for
the fixed mixture. In both (A) and (B), an arrow marks the final network chosen.

100 diagnoses lists from each of the eight LR networks and the reference diagnosis,
d".

I use the same training set containing 10° examples to set the parameters of both
the fixed, learned gating network and the input-dependent network. A validation set
containing 10° examples was used to control parameter complexity. I use an early
stopping on the validation set to avoid overfitting the gating networks. I start all
parameters at zero, which is equivalent to using equal mixing proportions. After each
line search in the conjugate gradient optimisation, I compute the likelihood of the
current parameters on a validation set. My final parameters are those that maximise
the likelihood on this validation set. Figure 5-7 shows learning curves for the fixed
and input-dependent networks.

To evaluate the networks, I used two test sets. The basic test set contains 81000
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Figure 5-8: Grid points used in test set. Each point in the (g, 7)-space maps into
a set of dQMR-DT parameters ¢(g,7). The basic test set contains 1,000 samples
from P(d,e|¢(q,r)) for each of the 81 grid points, 81,000 (d, e) pairs in all. The
challenging test set contains 100 samples from P(d, e|¢(g,7),> . drx = 5) for each
of the 81 grid points. The letters (B-E, H-K) label the locations of the parameter
settings for each of the eight LR networks. The points {C, E, H, J} shown in italics
correspond to the provided values of ¢™ and the LR networks whose outputs are
combined by the gating network.
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Figure 5-9: Bit loss images. The ten images in this figure show the performance of
the gating network (GATE), the learned mixture (MIX) and the individual experts
(B-E, H-K). Each image contains &1 pixels, each pixel corresponding to one of the
81 grid points in figure 5-8. The spatial arrangement of the pixels matches that of
the grid points, i.e. the pixel in the upper left hand corner of each image shows
the performance on samples from the observation process P(e|f, ¢(0.05,0.45). Each
pixel shows the bit loss of the expert (or gating network) on a test set drawn from
the corresponding observation process. The labels of the four experts combined by
the gating network, {C, E, H, J}, are shown in italics. A method’s bit loss is the
difference between its mean cross-entropy on the test set and the cross-entropy of the
benchmark method for that test set. The benchmark method for a grid point is the
expert with the lowest mean cross-entropy on that grid point’s test set.
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Figure 5-10: Distributions of posterior mass ratios. The plots compare the benchmark
to the gating network, the fixed mixture and the individual expert, C, among the four
with the best performance. Each plot shows the distribution of the mean posterior
mass ratios across the 81 grid points. A) Box plot of the distribution of mean PMRs.
The center line in each box is the median of the 81 means. The upper and lower lines
show the upper and lower quartiles. The whiskers show the extent of the rest of the
data up to a maximum distance away from the median. Points more than 1.5 times
the interquartile distance away from the median are displayed with the square symbol.
Note that though the median is high for expert C, it has a number of mean PMRs
less than 0.5. B) Histogram of mean PMRs. Each row in this plot is composed of
two histograms, one pointing upward and the other pointing downward. The upward
pointing histogram shows the distribution of posterior mass ratios for the top 20
diagnoses in each list. The downward pointing histogram shows the distribution for
the whole list of 100 diagnoses. Each histogram contains ten equally spaced bins.
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samples of (d, e) comprised of 1000 samples at each of 81 uniformly spaced grid points
in (g,7)-space. I also use a challenging test set containing more difficult inference
problems. Figure 5-8 shows the grid used and describes the test sets in further detail.

Figure 5-9 shows that there is sufficient information available in the evidence
vector to weigh the experts accurately. The bit loss of the gating network is always
less than 1/4 of a bit, whereas the fixed mixture’s cross-entropy increases at the lower-
left (few observed manifestations) and upper-right (many observed manifestations)
extremes of the manifold. This shows that the gating network is indeed able to
identify samples arising from observation processes in specific regions and reallocate
the mixing proportions appropriately. Note also that each of the individual experts
have areas where they are making bad predictions, i.e. bit losses of more than one.
Mixing the expert’s predictions ensures robust diagnosis.

Figure 5-10 shows posterior mass ratio results on the challenging test set. While
the aggregate performance of all four are similar in figure 5-10A, the individual expert
has very low mean PMR for a number of the grid points, making it unsuitable to use in
general. The performance of the gating network is similar to the benchmark, both in
terms of the median and the spread of the PMRs. The similarity of the gating network

and the benchmark can also be seen by comparing the histograms in figure 5-10B.

5.6.6 Discussion

This section has extended the results of section 5.5 to show how recognition netwarks
could be used for medical diagnosis under less stringent assumptions about the avail-
ability of observation process information. Here, T merely assume the availability
of a reasonably sized database of solved diagnostic problems and a few simple, lim-
ited observation process models. The solved diagnostic problems may be extracted
from hospital records though the simple observation process models will have to be
manufactured. I have shown how to use these data to fit a gating network which
can extract observation process information from the manifestation vector and use
that information to mix the predictions from a library of experts. Each expert in

the library specialises in one of the prespecified limited observation processes. These
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experts can be optimised in parallel, reducing the amount of time it takes to optimise
the whole system. The parameters of the gating network are optimised using the
database of diagnostic problems. I have shown that this gating network works very
well on both a simple and a more challenging test set.

The gating network approach has more general applicability than that presented
in this chapter. As we saw in section 5.5, inference methods designed for ignorable
observation processes perform well in some cases. Little is lost by including these
methods among the individual experts. Furthermore, additional LR network-based
experts can be trained to perform well for certain patient populations (i.e. those with
higher susceptibility to certain diseases or those with compromised immune systems).
Finally, the gating network approach could be a way to combine small amounts of
real patient data (used to train the gating networks) with probabilistic patient models
(used by inference algorithms to make predictions). In this way, by appropriate input-
dependent mixing of the predictions of the inference algorithm, the patient data could
be used to clean up inaccuracies resulting from inaccurate patient models.

The gating network approach is also very flexible to changes in the observation
process. These changes could perhaps arise from changing diagnostic protocols. The
changes can be readily accomodated by training a new gating network on a new set of
presolved problems that reflect the new observation process. Training the new gating
network is much less time consuming than retraining the library of LR networks.

In conclusion, recognition model-based gating networks are excellent methods of
using small datasets of high quality data to overcome inaccuracies in recognition

models trained on vast quantities of low quality data.

5.7 Discussion

This chapter has addressed the problem of using recognition models, along with the
QMR-DT, to do provide diagnostic support for a physician. I have shown that this
problem is much more difficult than it prima facie appears to be. The additional

difficulty is due to the presence of a non-ignorable observation process that I have
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shown exists in the medical diagnostic procedure. I introduced the diagnostic QMR-
DT (dQMR-DT) which contains a modelling framework for this observation process.
Note that inference in the dQMR-DT is much more difficult than in the QMR-DT
since unobserved manifestations can no longer be removed from the graph without
affecting the posterior. One assumes that this is also true in the real observation

process implied by the diagnostic procedure.

I have demonstrated that LR-based recognition models can be trained to do in-
ference on the dQMR-DT containing a simple observation process model. In this
simple model, the CPDs over the evidence nodes do not change from test case to test
case. These simple recognition models can be combined into a composite recognition
that is robust to changes in the evidence node CPDs. The combination mechanism
is a gating network, itself a type of recognition model, trained on presolved diagnos-
tic problems. I have argued that the limited observation process information (i.e.
a collection of simple observation processes and a few presolved problems) used to
build this composite may realistically be available whereas a full model of the medical

observation process may naot.

I'have also used the dQMR-DT to underline the importance of doing inference with
the correct observation process model. Assuming an ignorable observation process
model, i.e. by scoring diagnoses using the QMR-DT, leads in some cases to overpre-
dicting the number of active diseases in the patient and in all cases to a reordering
of the diseases predicted to have highest posterior probability of being present in the
patient.

I have shown a major advantage to having an observation process model that sup-
ports the tractable scoring of diagnoses. Namely, an inference algorithm’s diagnoses
list can be scored under the correct model. This procedure: generating a list using
the recognition model posterior and then scoring the list using the dQMR-DT, is
similar to a deterministic importance sampling procedure. Specifically, one can view
the recognition model as outputing an input-dependent proposal distribution which
is then used to generate disease configurations (in this case deterministically) which

are scored using the correct probability model. This view suggests using a determin-
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istic importance sampling algorithm to further improve the quality of the diagnoses
lists. In this algorithm, new posterior marginals could be calculated using the scored

diagnoses list and used to generate a new diagnoses list.
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Chapter 6

Discussion

The unifying theme throughout this thesis has been the construction of a system that
uses the QMR-DT to perform medical diagnostic inference. The construction and
validaticn of such a diagnostic support system was done in two steps.

The first step, described in chapter 4, was to determine how to train recognition
models to perform inference in the basic QMR-DT. As part of this step, in section
4.4, T developed a concise input encoding that reduces the number of parameters
in the recognition model, making optimisation of these models much more feasible.
In section 4.6.3 I used the basic QMR-DT to show that recognition models can in-
deed be trained to produce accurate posteriors for a large-scale inference problem.
The accuracy of the posteriors was checked by comparing the average cross-entropy
of recognition models to a benchmark approximate inference algorithm described in
section 4.6.1. T also showed that the accuracy of the LR network-based recognition
models was increased by adding a hidden layer. Adding more units to the hidden
layer further increased the accuracy (see figure 4-8). An unfortunate property of the
recognition models was the lack of generalisation to some untrained observation pro-
cesses as shown in figures 4-6, 4-7, and 3-9. This deficiency arises out of the objective
function, equation (4.3), used to set the model parameters. This function focuses the
modelling power of the recognition model on typical training examples. Untrained
observation processes produce atypical test cases, and the recognition model’s accu-

racy suffers accordingly. However, section 5.6 describes how to build a composite
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recognition model that is robust to changes in the assumed observation process (see
e.g. figure 5-9). This composite model uses a gating network to combine predictions
from multiple recognition models trained on different observation processes.

The second step in the construction involved training recognition models for non-
ignorable observation processes. Section 5.2 provided ample evidence that the obser-
vation process acting in the medical diagnostic procedure was both non-ignorable and
complex. I introduced the diagnostic QMR-DT, in section 5.3, to provide a frame-
wark for modelling different types of observation processes. I trained and evaluated
recognition models on both simple, fully-specified observation processes (in section
5.5) and complicated, weakly-specified observation processes (in section 5.6). The
models were evaluated using diagnoses lists (described in section 5.4.2): sets of dis-
ease configurations generated using the posteriors output by the recognition models.
These diagnoses lists are natural endpoints of medical inference, being similar to the
differential diagnoses lists used by physicians. I showed in both sections 5.5 and 5.6
that the quality of diagnoses lists, measured in the posterior mass ratio (see section
5.4.5), is improved by scoring them (a technique described in section 5.4.3) using
the dQMR-DT. Recognition models performed well under both these conditions both
with scored diagnoses lists and without.

The recipe then for building a diagnostic support system using the QMR-DT

would be to

1. provide the observation process information used in section 5.6, i.e. a small
set of realistic but limited observation processes and a sizable set of presolved

diagnostic inference problems,

2. train in parallel a set of LR network-based recognition models using the training
protocol described in section 4.5.3, one on each of the provided observation

processes,

3. train in parallel a set of MLP-based recognition models, one on each of the pro-

vided observation processes, using the LR network weights as short-cut weights
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(as described in section 4.5.4) and using as many hidden units as your comput-

ing resources permit,

4. combine the predictions of the MLP models using a gating network trained, as

described in section 5.6.3, on the presolved inference problems.

The output of this diagnostic support system should be a diagnoses list (described in
section 5.4.2) generated from the mixture of factorial distributions.

Further contributions of this thesis include: describing (in section 3.6) and evalu-
ating (in section 3.7) the structural Quickscore algorithm for faster exact inference in
the QMR-DT than Quickscore, and characterising (in section 5.5) the danger of ignor-
ing a non-ignorable observation process with similar properties as the real diagnostic
procedure.

Note, however, that the contributions of this thesis, like the concise input encoding
or the medically relevant observation processes, are not specific to the QMR-DT.
There are other large-scale medical expert systems for diagnosis in internal medicine
that either incorporate BN20 networks [27] or use a knowledge base which can be
easily converted into a BN20O network [2]. The contributions of this thesis can easily
be extended to these other networks. These other networks also likely suffer from the
same problems with non-ignorable observation processes.

There are a number of directions that the work in this thesis can be extended.
Here I describe extensions to both the work on recognition model-based inference
methods and on observation processes for medical diagnoses.

In section 4.5.4, T argued that the short-cut weights of the MLP should be ini-
tialised using a previously optimised LR network. The natural extension of this
approach would be to initialise some of the hidden unit weights in larger MLPs with
weights from the units in smaller MLLPs. For example, the MLP1000 could be con-
structed by adding 900 new hidden units to the MLP100. This extension suggests
one promising direction of further work: methods for improving the recognition mod-
els once the diagnostic support system has been deployed. One may consider ways

of adding parameters, and thus modelling power, to the recognition model besides
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increasing the number of hidden units. For example, one may consider building a
composite recognition model, using the mixture-of-experts architecture, described in
section 4.3.2. In this composite model, one of the experts would be the existing
recognition model and the others could be completely new models. An important
issue here is to ensure that the accuracy of the pre-existing recognition model is not

compromised by adding additional parameters.

Another direction of further work is to use recognition models for inference in other
domains. Besides expert systems, very large Bayesian networks have also been asso-
ciated with error-correcting codes. Decoding of certain types of these codes requires
probabilistic inference (e.g. [33]). The codes and the Bayesian networks used for

decoding are fixed, making it feasible to train a large recognition model for inference.

One should also consider different types of recognition models. For example, radial
basis function networks [4] could replace the MLPs as the deformable mapping. In
the same way that the concise input encoding suggested natural initial values for the
LR network weights, different input encodings may be more appropriate for different
types of deformable mappings. One may also be able predict in advance the type
of recognition model best suited to a particular Bayesian network. This prediction
should be based on properties like the connectivity structure of the Bayesian network
or the functional form of its conditional probability distributions.

One open question regarding observation processes for medical diagnosis is the
effect of approximating the process with an overly simple model. A full model of
the diagnostic procedure would require additional dependencies, not present in the
dQMR-DT, between manifestations and evidence nodes and perhaps multiple layers of
evidence nodes representing distinct stages in the diagnostic procedure. It is possible,
however, that a simple model is a sufficiently accurate approximation to the true
model. Indeed figure 5-9 shows that generalisation of the LR networks is almost
complete along one direction of the observation process manifold. This issue should
be investigated further.

This thesis has introduced a multi-part strategy for designing an inference method

for medical diagnosis using the QMR-DT. The first part of the strategy is to build an
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probabilistic model that represents the observation process embodied by the diagnos-
tic procedure. I have shown that this model is critical for ensuring accurate diagnosis
because of the strong bias in the diagnostic procedure toward revealing positive man-
ifestations of disease. Open questions remain as to how precise this model need be.
The second part of the strategy is to train a recognition model on the QMR-DT aug-
mented with the observation process model. T have shown that recognition models
based on LR networks and MLPs produce accurate posteriors on diagnostic problems
sampled from the dQMR-DT. Here open questions remain regarding the optimal de-
sign of the recognition model. In summary, the results presented in this thesis should
be viewed as a significant step along a long, open road toward a reliable, accurate

inference method for medical diagnosis.
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Appendix A

Creating the aQMR-DT

A.1 Introduction

This appendix describes how the QMR-DT used in this thesis was derived from the
the anonymised QMR knowledge base (aQMR KB) which we were provided with
by the University of Pittsburgh through the efforts of Gregory F. Cooper, Randolph
A. Miller, and Frances Connell. Shwe et al (1991) [64] give a recipe for building a
QMR-DT from a similar knowledge base (the Internist-1), however, the aQMR KB
doesn’t contain the same ingredients as the Internist-1 knowledge base, necessitating
a change in the preparation of the QMR-DT.

Section A.2 describes the contents of the aQMR KB. Section A.3 describes how
the © parameters were set. This procedure is straightforward. However, because the
aQ@MR KB contains neither disease labels nor the manifestation-specific information
used by Shwe et al, the setting of the disease priors p and the leak terms, @, is less
straightforward. T describe how the disease priors were chosen in section A.4. In

gection A.5, I describe now the leak terms were set.

A.2 The Anonymised QMR Knowledge Base

The aQMR-DT KB contains 570 disease profiles. Each profile lists information for

every manifestation with which that disease is associated. In total, there is infor-
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mation on 45,470 finding/disease pairs. Each listed pair is given a frequency value
and an evoking strength. The frequency, fir, of manifestation F; given disease D,
is an estimate of how often F; is positive when the patient has disease D,. The
evoking strength, e;, of F; for Dy is a measure of how strongly a physician should
consider a diagnosis containing disease k given the finding that manifestation F; is
positive. Manifestation/disease pairings not listed in the KB are assumed to have

zero frequency and zero evoking strength.

A.3 Calculating ©

We follow [64] in assuming that the frequency value fj; is equal to
g = P(F; = +|only D, = 1).

where 6;, = —log(1 — ¢;z). This allows us to map the frequency values f;, directly
into the 6, parameters. I set g = fig, i.e. O = —log(1 — fiz). If no frequency value
is given for a disease-manifestation pair, the corresponding 6 value is set to zero, i.e.

the pair isn’t connected in the graph.

A.4 Generating p;

In Shwe et al [64], the disease priors were derived from hospital discharge statistics
and were in the range [2.0 x 107°,0.02]. Under priors used in subsequent versions of
the QMR-DT, the expected number of active diseases was approximately one.

I generate random, though sensible, disease priors in the hope that realistic priors
may eventually be distributed with the aQMR KB. Each prior p; is selected from
a pool of different prior values. The distribution of these values, shown in figure
A-1, has a similar form as the distribution of priors used in previous versions of the
QMR-DT. This distribution follows a Zipf law with exponentially more disease nodes

with a low probability of activation than a high probability of activation. The values
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in the pool were randomly matched with disease nodes and the expected number of
active diseases under this prior is approximately one.
I decided to use random priors rather than deriving them from the evoking

strengths since the evoking strengths would imply unrealistically large priors.

A.5 Calculating 8,

Calculating the leak terms is tricky. Unlike the KB used by [64], there is no manifestation-
specific information that may be used to derive the leak terms directly. Instead, I need
to derive these terms indirectly using the evoking strengths. Note in the following, I

calculate 8y by first calculating
gio = P(F; = +|no active diseases)

then setting 6;p = — log(1 — ¢;o)-

Based on suggestions by Dr. Miller, communicated through Greg Cooper, I in-
terpret the evoking strength e;, as an estimate of the posterior marginal probability,
P(dy =1 | F; =+). Given the disease priors and the © parameters, the posterior
marginal probability of any disease given F; = + is determined by the value of g.
Ideally one should set g,y so that the posterior marginals under the QMR-DT equal
the corresponding evoking strengths. However, this is difficult in practice because
some of the evoking strengths cannot be achieved by any choice of the value of g,
as I will show in the following.

For each proposed value of ¢;, we can generate the implied posterior marginal,

é‘ika
P(F=+| Dy=1)
PF=1)

where g;o appears in the expressions for both P(F; =+) and P(F; =+ | Dy =1).
However, since g0 € [0,1], &; values are bounded above and below by p; and u;
respectively, i.e.

Pr < € < ug. (A.2)
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The lower bound is due to the fact that in the noisy-OR. function, the presence of a

disease cannot decrease the probability that a finding will be positive, i.e.

P(Fi=+ | Dy=1)/P(F;=+) > 1

with equality holding when g, =1 since in this case, the finding 7 is always positive.
The upper bound u;;, comes when ¢, =0. This value u;; has the interpretation as the
posterior marginal probability that disease £ is present given that the positive finding
fi wasp’t caused by the leak term.

However, as figures A-2A and A-2B show, most of the upper bounds are quite small
compared to the evoking strengths. In fact, in almost 90% of the cases e;, > uy.!
To ensure that this discrepancy wasn’t the fault of our random priors, we computed
bounds for four other sets of priors. Each of these sets had the same distribution of
P values as our original priors. Among the four, there were two sets priors that were
generated the same way and those in section A.4, a set of priors where disease nodes
with more children had at least as large p, values, and a set where disease nodes with
larger average evoking strengths had at least as large p; values. In each of the four
cases, the proportion of evoking strengths above the upper bound was still almost
90%. The overly large evoking strengths could instead be due to the additive noise
in the Anonymised QMR KB values or the fact that the evoking strengths are hard
to estimate using the medical literature [13].

Whatever the source, additive noise in the smaller values of the evoking strength is
more severe than that in the higher values. As such, we use all and only the achievable
evoking strengths to estimate ¢;o, i.e. we ignore any evoking strengths that lie outside
of the bounds.

For each achievable evoking strength, e,;, we can generate an estimate of gy by
finding the value g; for which e, = é;;. If F; has more than one parent, we may have
multiple estimates of g;o for the i-th manifestation node.

In the 25% of cases that there are multiple estimates, T set g5 to be the geometric

1And 1% of the time e;; < pg
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mean of those estimates. However, for 15% of manifestations there are no achiev-
able evoking strengths, so the corresponding ¢,q values cannot be assigned by this
technique. Instead, in those cases, I randemly choose one of three values for each

unassigned ¢;;. These three values are
1. median of the smallest third of the g;; values (i.e. the 17% percentile),
2. median of the ¢ values (i.e. the 50" percentile), and
3. median of the largest third of the g;o values (i.e. the 83™ percentile).

The unassigned g;o’s are distributed equally among the three possibilities. This pro-
cedure gives us g;o values in the range [2.0 x 1077,0.17] (compare this to the range

[5.8 x 1078,0.153] cited in [64]).

A.6 Conclusions

MATLAB code that transforms the aQQMR KB into the QMR-DT described above is

available through my website.
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Appendix B

Information Loss in the Concise

Encoding

B.1 Introduction

I use the concise input encoding described in section 4.4 for the recognition models
in chapter 5. An unfortunate drawback to this encoding is that when the observation
process is non-ignorable, this encoding may obscure some information about the evi-
dence vector. In this appendix, I discuss the extent of this information loss. In section
B.2, I describe some sets of evidence vectors which have the same concise encoding.
Though these vectors are indistinguishable under the concise encoding, they could
imply different posteriors. There are, however, additional ways that evidence could
be obscured by the concise encoding. In section B.3, I quantify the information loss
for a particular observation process by comparing recognition models trained on the

concise encoding and a lossless encoding of the input.

B.2 Indistinguishable Evidence Vectors

One form of information loss under the concise encoding is that in some cases, different
evidence vectors will have exactly the same encoding. Figure B-1 shows a simple

exarople of two indistinguishable evidence vectors. An easy way to identify a subset of
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Figure B-1: Indistinguishable observations under the concise encoding. A) A simple
BN20 network. B) Concise encodings of three different evidence vectors. See section
4.4 for a description of the two types of inputs. Note that the final two evidence
vectors are indistinguishable under the concise encoding. However, since ¢, # ¢5,
disease posteriors given each of the vectors are different.
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the evidence vectors that will have the same concise encoding is to find manifestations
with the same conditional probability distribution (CPD). Specifically, if two evidence
nodes, F; and E;, are non-positive and their corresponding manifestation nodes F;
and F; have the same CPD, then their values can be exchanged in an evidence vector
without changing the concise encoding of that vector. Note also that if F; and F; are
single parent manifestations then F; and £, can be exchanged no matter what their
state is. Fortunately, there are few exchangeable nodes: only 182 single parent, and
17 two parent manifestations that have the same CPD as another manifestation. No
manifestations with more than two parents have the same CPDs.

Manifestations that share the same CPD are problematic because these manifes-
tations, e.g. F; and Fj, won’t necessarily have corresponding evidence nodes, F; and
E,;, with the same CPD. When the evidence node CPDs differ then there will be
evidence vectors with the same concise encoding that nonetheless imply a different

posterior distribution over the disease nodes.

B.3 Evaluating Information Loss

In this section, I compare a recognition model trained with the concise encoding of
the evidence vector to one trained with the lossless encoding. The lossless encoding is
described in section 4.4. I used an observation process that contains very few visible
manifestations to test the information loss from using the concise encoding. Specif-
ically, T used the observation process P{e|f,(0.2,0.2)) defined by the diagnostic
QMR-DT (see section 5.3). Under this observation process, there are very few visible
manifestations compared, i.e. on average only 30% of the positive manifestations and
0.4% of the negative manifestations are visible.

I used the same training protocol, detailed in section 4.5.3, to train both the
concise and lossless recognition models. Like the concise model, the lossless model
has a bank of sparse and non-sparse input units. The sparse inputs for the lossless
model consist of both the positive and negative units. The non-sparse input is the

single bias unit. The meta gain parameters and initial gain parameters for both
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models were (g, ps) = (0.01,0.3) and (PPt Pit) = (107%,0.1) respectively, and I
used a mini-batch size of 500. I initialise all of the weights from the sparse inputs in
the lossless model to 0. The weight from the bias unit to output unit z; is initialised

to the log prior odds of Dy, i.e. log{pg/(1 — px)} where py = P(Dy = 1).

The training sets for the lossless and the concise model were similar. Every mini-
batch used to train the lossless model was also used in training the concise model.
However, the concise model was trained on a larger number of mini-batches. Specifi-
cally, the concise model was trained on 833800 mini-batches (for a total of 4.2 x 10°
training examples) and the lossless model used 641000 mini-batches (3.2 x 10° training

examples in all).

Despite the larger number of mini-batches for the concise model, both models
were trained for approximately the same amount of CPU time. The CPU times
per mini-batch for the lossless and concise models were 9.1 seconds and 7.2 seconds
respectively’. The interpolated total training times for the lossless and concise LR

networks compared are 67.7 CPU days and 69.7 CPU days respectively.

Figure B-2 compares the cross-entropy error of the two models. This figure shows
that the concise encoding has an initial advantage because of the different initial-
isations. However toward the end of training, the lossless model has smaller error
than the concise model for the same number of training examples (see figure B-2C).
Nonetheless, because each mini-batch takes longer to process for the lossless model,

the concise encoding has smaller error for the same amount of training time (see figure

B-2D).

In summary, the lossless encoding does appear to take better advantage of each
mini-batch in the training set, however, this advantage comes at the cost of increased
amounts of CPU time. Note that because the models have yet to converge to their
respective minimum errors, it is unclear if we should expect these minima to be much

different.

'CPU times are reported on a XXX Pentitum with a 1 GB L2 cache (murdock)
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B.4 Discussion

The concise encoding has a number of advantages over the lossless encoding with-
out extensive loss of information. The concise encoding uses many fewer parameters
than the lossless encoding and each mini-batch takes much less time to process. The
mini-batch processing time of the concise encoding is much less sensitive to the obser-
vation process model. Specifically, if the proportion of visible negative manifestations
increased from 0.4% to 50%, the mini-batch processing time of the concise encoding
would hardly be affected whereas the processing time of the lossless encoding would

increase significantly.
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