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Abstract
The effects of observed object motion on object perception are examined in two sets of
studies. The first section of the thesis provides a thorough examination of various
untested aspects of the basic "temporal association" hypothesis, which suggests that
object motion provides a principled basis for linking distinct images together if they
appear within small time intervals. Using familiar and unfamiliar objects undergoing
various forms of non-rigid motion, I ask how well this simple hypothesis predicts
behavior in change detection and categorization tasks. The results favor a modified
version of the hypothesis which operates over a population of units, such that increases
in generalization also produce increases in image sensitivity. The observed effects of
long-term knowledge concerning object appearance and expected patterns of motion
also force additional modifications of the initial hypothesis to incorporate interactions
between learned predictions and recent experience. Specifically, the tendency to alter
patterns of generalization following dynamic exposure appears to be contingent on the
stability of the direction of movement through appearance space. Consistent with this
expanded model, performance in our categorization task appears to depend heavily on
whether or not a coherent direction of movement through appearance space can be
determined across both categories to be learned.

In the second section of the thesis, I report the results of two parametric analyses of
image encoding following dynamic exposure. In each case, I ask how the movement of
an object up to the presentation of particular image affects an observers' ability to
accurately recall that image. Novel, rigidly rotating objects are used in both cases to
characterize the influence of appearance dynamics on short and long-term image
encoding. In both cases, I find that local appearance change over time exerts a powerful
influence on encoding, suggesting that both immediate percepts and visual memory are
modulated by the recent past. The result is a complex picture of dynamic object
perception that goes far beyond the basic principle of object motion as a tool for
learning invariant recognition.

Thesis Supervisor: Pawan Sinha
Title: Assistant Professor of Vision and Computational Neuroscience
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Introduction
Object recognition takes place in a dynamic world. Discrete objects move around us,
constantly changing in pose, illumination conditions, scale, and position while we
observe their appearance. The visual world is also "kind" in that object appearance
almost always varies smoothly and slowly. This has consequences for both low-level
encoding of image structure and high-level representations of object appearance. In
terms of image statistics, the substantial redundancy in the spatiotemporal volume
corresponding to an arbitrary object's appearance observed over some time interval
means that low-level encoding of spatiotemporal image features can be accomplished
via "sparse" neural codes. (Dong & Atick, 1995; Olshausen, 2003; van Hateran &
Ruderman, 1998). This is important for learning general neural coding strategies of
natural scenes. For the purposes of object recognition, the record of what an object
looks like over ai densely sampled period of time should also provide an extremely rich
source of data for constructing a robust appearance model useful for a wide range of
recognition tasks. To the extent that high-dimensional image data really corresponds to
a low-dimensional manifold (Edelman, 1999; Murase & Nayar, 1995), "walking" slowly
through appearance space on a smooth path should make recovery of the true degrees
of freedom for object appearance more tractable (Tenenbaum, de Silva, & Langford,
2000).

The idea that the dynamics of the visual world play a pivotal role in perception is not
new. Still, despite a great deal of evidence that temporal factors can and do influence
high-level visual tasks, we have yet to see a substantive model of object recognition that
incorporates object motion. Classical models of object recognition, like recognition-by
components or view-based models (Biederman, 1987; Tarr & Bulthoff, 1995), have not
yet been modified to accommodate the potential role of dynamic data in learning object
representations or carrying out recognition.

Is it necessary to modify these models? Perhaps not, since we're more than capable of
recognizing objects in static photographs just as well as if they were in front of us. Also,
recent computational models of object concept learning are able to do fairly well at
learning and recognizing objects in clutter solely from a large set of labeled static
images(Agarwal & Roth, 2002; Fei-Fei, Fergus, & Perona, 2004; Fergus, Perona, &
Zisserman, 2003; Weber, Welling, & Perona, 2000). A continually changing visual world
provides us with an abundance of static data that we can use to extract useful
regularities, but recent work has shown that useful gestalt-like cues for grouping can be
learned from video sequences without using the temporal contingencies in that data
(Prodohl, Wurtz, & von der Malsburg, 2003). Similarly, structure-from-motion algorithms
can be used to extract 3-D form from multiple static views (Ullman, 1979), providing a
useful static representation of form. In this case, the temporal structure of the data is
important insofar as it aids in obtaining multiple views and establishing correspondence
between image features. However, object motion is really only useful here in the
service of form recovery. The particular motion observed during learning is of no
consequence, so long as it allows for a solution of the underlying 3-D shape.

How relevant is object motion for object learning and recognition? Certainly motion
could be useful to get large amounts of static data, or to segment an object from clutter



(Brady & Kersten, 2003), but is there any reason to think that object motion is at all
instrumental in the construction of object representations for recognition? In this thesis, I
will argue that the answer is yes. I suggest that the observation of coherent object
motion facilitates the construction of a coarse population code for object appearance.

My goal in the experiments reported here has been two-fold. First of all, I have set out to
investigate the consequences of observed object motion on the discrimination and
recognition of static form. To do so, I have designed and carried out a series of
experiments inspired by what is known as the "temporal association" hypothesis. This is
a relatively recent theory suggesting that temporal proximity is used as an implicit cue
by the human visual system to bind dissimilar images of an object together into a
common representation. This hypothesis provides an important link between dynamic
experience and static recognition. By examining observers' recognition abilities
following exposure to dynamic objects, I have determined a set of empirical constraints
that rule out strong versions of the temporal association hypothesis and point towards a
model of object learning that is more consistent with behavioral and physiological data.
My second goal has been to determine what information is extracted from sequences
depicting object motion, with a particular emphasis on how privileged views, or what I
will call "keyframes," are determined online. That is, after seeing a moving object, what
do you actually remember seeing? Here I look for evidence of prototype effects in
memory for dynamic objects, and also thoroughly investigate how appearance
dynamics modulate the fidelity of image encoding as a function of distance in image-
based and model-based representation spaces. The end result is the beginning of a
theory concerning how dynamic information is used to define a robust appearance code
for recognition tasks at multiple levels.

In the remainder of this introduction, I will outline relevant work concerning object
motion and object recognition, and discuss what consequences these results have for
models of how dynamic input could be used during the acquisition and application of
object representations. Following that, I will explain what contributions I make in the
current series of experiments and how my approach differs from previous research.

Object motion and object recognition: A review
There exists a rich body of work describing various interesting effects in which the
motion of an object somehow modulates the perception or recognition abilities of an
adult observer. What has been generally lacking, however, is an attempt to build a
coherent theory of what dynamic information is used for.

A primary difficulty is that much of the data describing effects of object motion on object
recognition does not really require appearance dynamics to be incorporated into static
models. Instead, there are three broad categories of work: 1) Results that indicate
object motion can be used as an independent feature, 2) "Representational momentum"
studies that indicate appearance is automatically predicted online, and 3) Results
indicating that joint encoding of form and dynamics may be relevant for the recognition
of dynamic objects. While intriguing in their own right, none of these three main bodies
of research clearly set forth a theory of how object motion contributes to the learning of
object form. Below, I discuss each of these main bodies of work in turn and describe the
strengths and limitations of the results.



Object motion can be a feature for recognition
The most compelling evidence that a good theory of object recognition should
incorporate object motion in some manner is that the motion of an object can be a
feature for recognition in its own right. Indeed, human observers are capable of
recovering substantial information from stimuli that are almost purely defined by motion.
The most striking example of this is the perception of "point-light" walkers, which are
images of the human body composed of small, sparse dots usually placed at the joints
of the body (Johansson, 1973). While the static position of the dots generally does not
provide sufficient information for recognition at any level, once the stimulus is set in
motion the percept of a human body is immediate and irresistible. The gender, mood,
and even identity of the walker are also readily obtainable from the dynamic stimulus
(Cutting, 1987; Kozlowski & Cutting, 1977). When spatial factors diagnostic of category
(such as the ratio of shoulder width to hip width as a diagnostic feature for gender) are
put in conflict with dynamic features (such as a feminine or masculine gait), the dynamic
features typically govern the resulting percept (Thornton, Vuong, & Bulthoff, 2003).
Furthermore, recognition judgments with point-light walkers are robust to sophisticated
randomization of the spatial position of the constituent dots, a procedure that ensures
that neither local motion signals nor spatial form can be used for object recovery
(Beintema & Lappe, 2002). Instead, longer-term integration of form over time seems
necessary to explain perception under these circumstances. In other cases where
spatial form is impoverished, the use of motion information for recognition is apparent.
Superimposition of an idiosyncratic motion field on an average face supports
identification of the individual who generated the motion, for example (Knappmeyer,
Thornton, & Bulthoff, 2003).

These results (and many more) demonstrate that dynamic information is available for
recognition and put to use by human observers. Clearly object recognition must be built
on some representations of object motion, indicating that a "bag of images" model of
either learning or recognition is lacking data that is behaviorally relevant. As an
argument for the necessity of a place for motion in object representations, results such
as these are unimpeachable.

That said, how do results like these place constraints on the acquisition of object
concepts? If object motion is just an independent feature that can be appealed to when
static cues are unavailable or non-diagnostic, we are left with no way to understand how
learning either set of cues might impact the other. Also, how would motion-based
features ever apply to purely static recognition? Naively, they would not. In the absence
of dynamic test stimuli, learned dynamic features are simply inapplicable. The flow fields
associated with object motion may serve as a useful additional feature for recognition,
but aren't particularly useful for determining form. However, the fact that dynamic
features could provide observers with the correct label for an object when static form is
impoverished suggests a means for associating degraded images with the correct
object concept. An "equivalence class" between noisy, blurry, or occluded images of
objects and their clearly-viewed counterparts could potentially be built and applied to
purely static input using motion cues as a teaching signal. The extent to which this
might occur in human object learning has not been directly tested, however.



Ultimately, given the question "What is learned from observation of a dynamic object?"
the results of these studies would lead us to answer with something like "Labeled sets
of 2-D appearances and flow fields." How either set of features is acquired or encoded
is left essentially unconstrained.

Object motion and form may be encoded jointly
There is reason to believe that the human visual system does something more than
acquire and maintain separate dynamic and static features for recognition. Specifically,
there is some evidence that object motion and form may be encoded jointly.

An interesting result that provided some initial support for this claim was the finding that
the dynamics of object production could influence static recognition (Freyd, 1987). In a
test of recognition for handwritten characters, observers who learned how various
written characters were drawn demonstrated heightened tolerance during a test phase
for distortions that were consistent with variability in the underlying motor plan for
drawing. Errors that could not have easily resulted from simple deviations in the motor
plan they had observed previously were accepted less readily. This result is intriguing,
suggesting that some form of dynamic information can influence the recognition (and
possibly encoding) of static stimuli, but it does rely on a generative process that is
known to the observer. In ordinary object perception, it is rarely the case that generative
processes like this exist in a meaningful way, or are known to the observer.

More recent work however, has provided further evidence that object form and object
motion are not coded independently. Instead, "spatiotemporal signatures" of object
appearance may be formed by combining observed static appearance with observed
appearance dynamics. The basis for this hypothesis is the finding that the recognition of
rigidly rotating objects is impaired when the direction of rotation at test is different from
the direction observed during learning. These results are most evident for objects
whose appearance is obscured by fog or sparsely represented by dots (Stone, 1998;
Stone, 1999; Vuong & Tarr, 2004), but object-centered and observer-centered motion of
an object can affect recognition even for distinct, clearly visible stimuli (Newell,
Wallraven, & Huber, 2004).

Finally, there are also several interesting results demonstrating that object form can
have profound effects on perceived motion. Sinha and Poggio (Sinha & Poggio, 1996)
showed, for example, that learning to associate a particular 3-D form with an ambiguous
2-D image could bias the perceived motion of novel objects. Specifically, after training
observers with rigidly rotating "paperclip" objects, it was found that novel objects with a
mean-angle projection matching a learned form were perceived as non-rigidly deforming
once set in motion. The conclusion was that exposure to a particular image/form
relationship during training set up a situation where expectation was violated during
viewing of the novel object, leading to the anomalous percept. In a study of apparent
motion using the human body, Shiffrar demonstrated that knowledge of biomechanical
constraints on human movement substantially biased perceived motion paths. At slow
alternation rates between two frames depicting arm movement, longer motion paths



were perceived in cases where the shortest path violated solidity constraints or
constraints on joint flexion (Shiffrar & Freyd, 1990). At faster rates, this bias was
eliminated in favor of the shortest "impossible" paths. In both sets of experiments, it is
clear that the perception of form can have strong influence over perceived motion.
Broadly speaking, these results also suggest some sort of joint encoding for dynamic
objects.

But what exactly, does this kind of work say about the encoding of dynamic objects? For
example, what would be a good model of a "spatiotemporal signature?" Arguably, a
spatiotemporal signature is akin to the visual system remembering an entire
spatiotemporal volume of appearance and putting an object label on it. While not
necessarily the most interesting model of dynamic object encoding, it does at least
require that form and motion be integrated. Static appearance and flow fields are both
obtainable from this volume, of course, making it easy to reconcile this model with the
results suggesting that motion can be used for recognition when form is absent or
irrelevant. It may also account for some of the data regarding the influence of form on
motion, insofar as matching form may imply a matching flowfield. Perhaps when this
assumption proves false there is some dissonance that leads to the percepts described
above. However, there are reasons to think this is a poor model of object recognition. In
particular, it posiits that all visual experience with an object is recorded in its entirety.
This would require prohibitive amounts of storage, and also leads to indexing problems
if individual static images need to be recognized.

I continue by considering one final aspect of dynamic object percept that offers still
another set of results demonstrating that static appearance and appearance dynamics
interact in interesting ways.

Human observers predict future appearance
Finally, perhaps the most intensively studied aspect of dynamic object perception is the
fact that observers appear to formulate predictions concerning the future appearance of
objects and scenes. An effect of this kind was first reported by Freyd and Finke in 1983,
when they noted systematic impairments for detecting "forward" differences between
pairs of images depicting a complex event relative to detecting the same image
differences in reversed order (Freyd, 1983). The rated quality of apparent motion in
reverse order was also poorer than that of images placed in natural temporal order. The
explanation offered for both of these results was that human observers automatically
make predictions from images depicting "frozen motion," and that those predictions can
systematically interfere with discrimination and motion perception. Beyond the many
behavioral studies that followed this initial report, there is also recent neural support for
this claim. Kourtzi and Kanwisher reported that passive viewing of "frozen" motion
elicited activity from area MT, a cortical area responsible for motion processing (Kourtzi
& Kanwisher, 2000).

A related phenomenon that has been investigated by many different groups is the
finding that there appears to be "representational momentum" for dynamic objects
(Freyd & Finke, 1984). That is, after observing a moving object, observers have an
automatic tendency to continue updating object appearance after presentation has
ended, as though object perception has inertia and cannot "stop" immediately. The term



"representational momentum" was coined to liken the basic perceptual effects to
physical momentum, and has been widely adopted. It is relatively easy to see
connections between reports of RM and phenomena like the "flash-lag" effect
(Nijhawan, 1994), though it seems these parallels have only been explored by a few
researchers thus far (Musseler, Stork, & Kerzel, 2002).

What do the observed effects of appearance prediction and RM on object recognition
contribute to a model of dynamic object encoding? Like "spatiotemporal signatures"
these effects require form and motion to be jointly encoded. Observed object motion is
used to update object appearance, requiring a direct interaction between the two rather
than purely independent features. In fact, appearance prediction potentially implies an
even tighter connection between object appearance and motion than the spatiotemporal
signature model would suggest. This is most evident when we ask what happens under
each proposed model when a static image is encountered. If each dynamic object is
encoded as a full spatiotemporal volume (or "signature") recognizing a static image of
an object is merely an indexing problem. The observer simply has to find a slice of
some object volume that matches well and report the label that goes with it. It is not
clear in this scenario if the temporal direction of the volume is even relevant. However,
under a predictive model, an observer who is given a static image would immediately
and automatically generate the next appearance of the object. This suggests that the
motion information associated with an image must be and is used to generate a new
form. This is a much stronger claim than merely proposing that the temporal information
is present in a volumetric representation of appearance over space and time. Prediction
implies that motion always comes along for the ride.

However, though the influence of prediction over the short and long-term in object
perception is intriguing, there are a few caveats that need to be brought up. First of all, it
is not even clear that RM exists in they way it was initially described. Obtaining RM
appears to be highly contingent on a number of factors that are seemingly unrelated to
object perception in an interesting way, for example (Kerzel, 2002). If RM is an artifact
of task-related confounds rather than automatic object perception mechanisms, it would
be a bad idea to build it too deeply into our model of how dynamic objects are stored
and recognized. Second, it is hard to tell in many cases whether the effects of prediction
on object and scene perception are cognitive or perceptual. For example, when
observers are predicting appearance in a scene based on their understanding of
"gravity" or "support," is that something that needs to be built into a model of perception
(Nagai, Kazai, & Yagi, 2002; Vinson & Reed, 2002)? This is not to say that cognitive
processes cannot influence perception, but it is not my goal in this thesis to examine or
model those complex relationships. Though interesting, these interactions do not strike
me as core principles of visual learning. Finally, it is far from clear what the relationship
is between short-term RM and long-term prediction. Do prediction effects in static
images arise from "chronic" RM, for example? How does learned prediction affect
momentum in the opposite direction? These are not impossible questions to answer, but
they will need to be addressed before prediction can be built into a model of dynamic
object encoding successfully.



The need for a coherent theory
I submit that the three previous sets of results do not provide a firm basis for developing
a theory of dynamic object encoding that encompasses the recognition of static images.
At present, these results constitute a loose confederation of data that successfully
demonstrates that observed object motion can affect or supplant the recognition of
static and dynamic object form. Unfortunately, a satisfying account of how object motion
might contribute to object representation has not been offered. Instead, researchers
have generally shown only that there are some reciprocal interactions between motion
and form, rather than offering a mechanistic account of how those effects arise. Worse,
it is difficult to extend the ideas behind many of these results, as they generally do not
offer a framework in which parametric investigation is possible or relevant.

I argue that a heretofore less examined aspect of dynamic object perception, temporal
association between images, provides an extremely valuable framework for examining
the nature of dynamic object encoding. The basic temporal association makes several
easily testable predictions, only some of which have been tested thoroughly. More
importantly, the hypothesis also lends itself nicely to parametric investigation and
computational modeling. Finally, there are many intriguing questions that follow from a
basic temporal association hypothesis that, while not vital to the basic proposal, lead us
in very interesting directions that are still highly relevant to dynamic object encoding. I
will continue by laying out the basis temporal association hypothesis and discussing
what advantages it offers as a framework for studying dynamic objects.

Temporal association and dynamic object perception
The basic principle underlying a temporal association model of object learning is that
images that appear close together in time likely have the same physical cause.
Assuming this to be the case, one can learn patterns of generalization over distinct
static images that are likely to be valid for later recognition. Simply put, images that are
close in time should be close in the underlying representation. This is really not much
different from other smoothness arguments (Poggio, Torre, & Koch, 1985), except that it
singles out time as a privileged dimension. The assumption of temporal smoothness
has been found to be very useful for learning low-level tasks like the recovery of stereo
information and translation invariance for simple line segments (Foldiak, 1991; Stone &
Harper, 1999).

Applied to object recognition, the idea is that one learns to treat different images of the
same physical object similarly by observing them close together in time. This proposal
provides a unique response to the question "How are dynamic objects encoded?" I
suggest that the answer offered by a temporal association model is something like,
"Object motion induces a pattern of generalization over static images that primarily
encompasses only a set of images observed close together in time during visual
experience." This is a bit more long-winded than the answers provided by some of the
previous models, but that's mostly because this statement has more interesting content
than the others.

Both behaviorally and computationally, there is already compelling evidence that
temporal proximity is used by the primate visual system to learn associations between



distinct images. Computationally, implementations of simple "trace rules" that augment
artificial neural networks with a decaying memory term for recently viewed items have
demonstrated that useful invariant features can be recovered for complex objects with
straightforward update rules (Lecun, Bottou, Bengio, & Haffner, 1998; Serre, 2006;
Wallis, 1996; Wallis, 1998). Psychophysically, we already know that human adults and
infants recover temporal statistics from arbitrary sequences (Fiser & Aslin, 2002;
Kirkham, Slemmer, & Johnson, 2002). Beyond learning temporal contingencies for
abstract sequences of shapes, it has also been demonstrated that recognition
performance for complex objects like faces and "greebles" (Gauthier & Tarr, 1997), can
be systematically impaired by manipulating the temporal relationships between distinct
images (Cox, Meier, Oertelt, & DiCarlo, 2005; Wallis & Bulthoff, 2001). Finally, there is
also some evidence that high levels of the primate visual system may encode temporal
contingencies between arbitrary images. Following passive training with random fractal
patterns Miyashita et al. found that some cells in inferotemporal cortex displayed
responses consistent with a learned association between temporally neighboring
images (Miyashita, 1988; Miyashita, 1993; Miyashita & Chang, 1988). Responses in
other areas of primate cortex, like the superior temporal sulcus, can be modulated
substantially by the immediate history of stimulation (Jellema & Perrett, 2003)
suggesting that "actions" might be encoded in these regions.

A representation of object appearance that is based on dynamic experience in this way
is nice for several reasons. First, it is based on an assumption that has obvious
ecological validity. Second, it is primarily a model of static object recognition that uses
time (and thus motion) to learn how to generalize properly. This makes it a nice bridge
between classic models of static object recognition and recent data concerning the
effects of dynamics on perception. Third, the proposal highlights the importance of
visual experience, leading to many testable predictions and open questions that may
allow the basic model to refined and extended. Given these advantages, I have chosen
to use the basic temporal association hypothesis as a jumping-off point for investigating
the perception and recognition of dynamic objects.

Organization of the thesis
This thesis is divided into two main sections.

The first describes a series of studies designed to elucidate the influence of
spatiotemporal continuity on object perception. In all of these studies, I build on the
basic temporal association hypothesis to arrive at a model for how appearance codes
are altered via experience with a dynamic object. Throughout, I emphasize the use of
image-level discrimination tasks over procedures which require subjects to retrieve
high-level information such as object class or identity. The influence of dynamic input on
generalization over distinct images, sensitivity to small appearance changes,
appearance prediction, and category learning and recognition are discussed. The main
conclusion of this first section is that dynamic object encoding in the human visual
system is best explained by a population code for appearance that is modulated in
distinct ways by information that can be used for predicting future appearance and
information that does not contribute to the formation of new predictions.



In Section 2, I describe two experiments which address the issue of whether or not
privileged or "canonical" views of an object (Cutzu & Edelman, 1994; Palmer, Rosch, &
Chase, 1981) are recovered during viewing of a dynamic object. I refer to such views as
"keyframes" throughout this section, in reference to the animation technique of first
drawing only a sparse set of images to represent a full motion sequence, filling it in later
with the full set of images needed to achieve smooth animation. I first ask whether or
not there is psychophysical evidence that human observers do recover "keyframes"
from short exposure to a dynamic object. Then, I examine how spatial and temporal
factors affect the fidelity of encoding for particular views of a dynamic object. In terms of
the larger model of dynamic object encoding, this section provides insight as to how a
population code is initially constructed for a given object. That is, how would the
preferred views for units within a population code for a particular object initially be
determined? Even assuming that the appearance space viewed needs to be well-
covered by units within the population, it is far from clear how the preferred views of
those units would be determined.

Each section contains several distinct chapters, which introduce the particular
theoretical and experimental issues under consideration therein. While there are also
brief summaries between chapters to motivate the progression of ideas throughout, the
past literature relevant to each experiment is only discussed in depth in the introduction
to each chapter.
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Section 1 - Effects of dynamic input on static form
generalization, discrimination, prediction, and recognition
In the first section of the thesis, I describe a series of results that place important
constraints on the way in which dynamic experience affects the representation of static
form. Crucially, in
contrast to previous studies, I generally avoid asking observers for judgments
concerning object identity or category since these decisions likely involve complex
cognitive mechanisms. Instead, I rely heavily on tasks that require observers to make
only image-level judgments of object form.

The advantage of this is two-fold: First, these tasks are very simple for participants to
understand, and are thus free of some of the pragmatic difficulties that make previous
results in this domain difficult to interpret. Second, since these tasks require only low-
level analysis of form (which could in principle be solved using trivial measures such as
L2 distance in pixel space) we can be more confident that the effects we obtain have a
perceptual basis rather than a cognitive one. The resulting data provides a clear picture
of how both category and coordinate judgments within an appearance space are
affected by coherent object motion.

Chapter 1 describes a set of experiments in which I examine the basic temporal
association
hypothesis using a set of novel, non-rigid stimuli. In contrast to previous work, I examine
the
effects of temporal association on both generalization over distinct images and
sensitivity to the differences between those same images. By considering how both
processes are influenced by the temporal proximity between distinct images, we are
able to expand the scope of the basic temporal association hypothesis beyond the
singular goal of learning invariance. The results indicate that both generalization and
discrimination ability increase following exposure to a coherent dynamic object. I argue
that this places an important constraint on how appearance must be encoded,
specifically that a coarse population code for appearance is implied given the observed
results.

In Chapter 2, I use the perception of human locomotion as a test case for how recent
dynamic
experience with an object interacts with prior knowledge concerning the appearance
dynamics of a familiar object. First, I characterize how static discriminability between
images is affected by the temporal order of stimuli in the absence of dynamic exposure.
I find that "forward" discrimination of static images of a walking human is more difficult
than discrimination carried out with the same images in reverse temporal order. This
basic finding is consistent with previous reports concerning prediction and its effects on
image discrimination and apparent motion. In a second experiment, following exposure
to a locomoting human figure that is walking either forward or backward, I re-assess
sensitivity to "forward" and "backward" image differences. I find that the initial
asymmetry favoring backward discrimination is removed by both dynamic stimuli, but
that observation of forward locomotion also provides an initial benefit for both
discriminations. I suggest that my initial model of a coarse appearance code following



dynamic training must be modified to include a predictive component, the stability of
which determines the extent to which fine-grained sensitivity is enhanced following
exposure to a dynamic object.

Finally, in Chapter 3, I examine how categorization of static images is affected by the
observation of dynamic objects during training. Specifically, I ask whether or not the
diagnosticity of object motion (as defined by the path taken through an appearance
space) affects static classification when a fixed set of static images are used for defining
category membership. Using the same stimulus set employed in Chapter 1, I determine
that diagnostic motion during training can actually impair static classification. This result
forces us to rule out any account of dynamic object representation positing an ideal
observer who retains the full set of observed appearances. Furthermore, in another
manipulation I find that the direction of a path through appearance space is not
sufficient to induce the impaired classification abilities I find in my first experiment. This
supports time-symmetric generalization over appearance, with prediction playing
relatively little role in classification.



Introduction to Chapter 1
In this set of studies, I examine the effect of observed object motion on generalization
and sensitivity over the set of images contained in the dynamic stimulus. Throughout,
behavior is described using image-level judgments, reducing the influence of high-level
cognitive mechanisms on response selection. In all of the experiments reported in
Chapter 1, observers are exposed to novel, non-rigid, three-dimensional stimuli. This
provides the advantage of further limiting the influence of top-down mechanisms since
observers are unfamiliar with both the forms and motions they observe during the
experiment.



Learning about dynamic objects: increases in generalization
and sensitivity

Abstract
Learning to recognize a new object requires binding together dissimilar images of that
object into a common representation. Temporal proximity is a useful computational cue
for learning invariant representations. We report experiments that demonstrate two
distinct psychophysical effects of temporal association on object perception. First, we
use an implicit priming criterion to demonstrate observation of a dynamic object induces
generalization over close temporal neighbors. Second, in contrast to predictions from
previous work, we find that shape discrimination between images actually improves
following the same training procedure. We discuss the possibility that this seemingly
conflicting set of results, one blurring and the other sharpening the perceived distinction
between temporally proximate frames, can arise from a model of object representation
in which temporal association leads to coarse coding across a population of object
units.

Introduction
Object recognition is a computationally difficult task for one primary reason: Any
complex 3-D object can give rise to a highly varied set of 2-D images. If a vision system
(computational or biological) is to accurately recognize an object in a variety of settings,
it must be capable of generalizing over image-changing transformations that preserve
object identity while remaining sensitive to image differences that indicate a different
shape is being viewed (Moghaddam, Jebara, & Pentland, 2000; Moses, Adini, &
UlIman, 1994). There have been multiple attempts to achieve invariant recognition in
computer vision systems by detecting local features and pooling across object parts in a
hierarchical mariner (Fukushima, 1980; Lecun, Bottou, Bengio, & Haffner, 1998;
Riesenhuber & Poggio, 1999; Ullman, Vidal-Naquet, & Sali, 2002; Weber, Welling, &
Perona, 2000), but most of these systems require some form of implicit label, and
generalization across large transformations is not very robust. Ultimately, if an observer
were forced to learn about novel objects solely from a set of unlabelled 2-D views, it is
unclear how the correct pattern of generalization and sensitivity could develop.

Luckily, the world does not force us to learn about objects in this manner. Instead, we
are able to observe persisting objects in a dynamic world. Furthermore, the world is
"kind" in that object appearance tends to change smoothly and slowly over time. This
scenario offers a great advantage to the observer attempting to learn to recognize
complex objects. In a dynamic world, the ways in which an object's 2-D appearance can
change within some interval will become apparent, with temporal proximity providing a
link between images that may be substantially different from one another. Recent years
have seen the development of computational vision systems that use temporal proximity
within image sequences as a means for learning specific object invariants (Foldiak,
1991; Stone & Harper, 1999; Ullman & Bart, 2004; Wallis, 1996; Wallis, 1998),
demonstrating that this is indeed a useful strategy for building robust object
representations. Given the simplicity and computational power of using temporal
association as a cue for object learning, understanding the role of dynamic information



in visual recognition is a fundamental challenge. In the current study, we attempt to gain
insight into how dynamic input influences the subsequent representation and
recognition of static images. Understanding how dynamic input affects static recognition
is a vital step towards linking classical work on static object recognition to ongoing
efforts to characterize recognition in real-world dynamic settings.

How can one tell whether or not biological recognition systems make use of temporal
proximity to bind together distinct object views? If such linkages are indeed created
following exposure to a dynamic stimulus, temporal neighbors that are bound together
should give rise to the same neural or behavioral response. One can think of this as a
temporal "smearing" of appearance, whereby images that appear close in time become
less distinguishable as object labels are propagated forward.

Indeed, a variety of methodologies have provided evidence that this sort of behavior
emerges after training with image sequences. For example, neurons in the primate
infero-temporal cortex begin to respond similarly to highly distinct fractal patterns if
those patterns are consistently presented as temporal neighbors during prolonged
viewing of a training sequence (Miyashita, 1988; Miyashita, 1993; Miyashita & Chang,
1988). Human observers also demonstrate intriguing behavioral effects of temporal
association across a range of tasks. Increased confusability between individual faces
can result from temporal association of those faces in smooth motion sequences (Wallis
& Bulthoff, 2001), and the learned sequence of 2D views can impair recovery of 3-D
form via the kinetic depth effect (Sinha & Poggio, 1996). Even simple translation
invariance can be "broken" by presenting two different objects within a small temporal
window (Cox, Meier, Oertelt, & DiCarlo, 2005).

Clearly temporal association can play a pivotal role in object and face recognition
(O'toole, Roark, & Abdi, 2002). We note however, that most accounts of the effects of
temporal association on recognition have stressed its role in linking images together for
invariant recognition. This is usually demonstrated by pairing images that would usually
not appear close together in time in a natural setting, and demonstrating that
subsequent within-pair discrimination is impaired in some way. We suggest that such
studies consider only one aspect of a learning process that has two important parts.

The ability to generalize object identity across appearance changes is undeniably
important, but so too is the ability to detect these changes. The goal of an object
recognition system should be to decouple changes in appearance from object identity,
rather than to achieve the singular goal of invariance (Ullman, 1996). An observer who
is perfectly invariant to object transformations by virtue of an inability to discern
appearance changes is likely to be at a profound disadvantage. A head-on view of a car
requires a very different response than a side-view, even though both are to be
classified as depicting the same object. Learning about an object through temporal
association of neighboring images should not impair the ability to discriminate them at
the image level. If anything, we argue that such observation should improve one's ability
to perform image level discrimination. Having the opportunity to observe a change in
appearance over time should alert one to specific regions of the image that are likely to
change, or as we will suggest later, provide for a neural representation of global
appearance that supports both generalization and sensitivity.



In the current study, we ask whether or not there is behavioral evidence that temporal
association can lead to both increased generalization over neighboring images and
increased sensitivity to the differences between those same images. Using relatively
brief amounts of exposure to training sequences (approximately 10 minutes) we find
that adult observers do in fact display exactly this pattern of behavior. Neighboring
images begin to be treated as the same stimulus (as determined by an implicit priming
criterion), yet in another task these same images become more discriminable after
training. Contrary to the basic idea of temporal "smearing" of appearance, we find that
observers become more sensitive to appearance changes they have observed in a
dynamic sequence. We suggest that the development of a coarse population code for
object appearance can explain both of these results. The proposed model makes a
clear prediction regarding how neural tuning for objects may change at high levels of the
primate visual system as a function of temporal association between images.

Methods
To ensure that observers could not apply previous knowledge concerning how object
appearance changes after depth rotation or under varying illumination, we used novel
objects that underwent non-rigid deformation during the training sequences presented
to our participants. The use of non-rigid motion has the additional benefit of ruling out
representational strategies that rely on the construction of a static 3-D object model.
Since there is no "ground truth" 3-D form, it is more likely that any effects we observe
are the result of temporal linkages between images rather than the augmentation of a 3-
D model via structure-from-motion cues.

These objects (which we will refer to as "blobs") are constructed from two spherical
harmonics that can be independently rotated through various phase angles
(Nederhouser, Mangini, & Biederman, 2002). By separately rotating each harmonic
through the complete range of distinct angles in equal increments, one can construct a
toroidal space of images in which "horizontal" and "vertical" paths through the space
give rise to complex and distinct non-rigid motions (see Figure 1 and Supplementary
movie files). In both our experiments, training sequences present each observer with
objects that change appearance via motion along only one of these directions through
appearance space. Following this training period, subjects in our first experiment
perform an "instant priming" task (Sekuler & Palmer, 1992) that allows us to determine if
image matching can be primed by cue images that are temporal neighbors to the
targets. This paradigm has been successfully used by Kourtzi and Shiffrar to probe the
representational content of rigid and non-rigid objects undergoing apparent motion
(Kourtzi & Nakayama, 2002; Kourtzi & Shiffrar, 1997; Kourtzi & Shiffrar, 1999; Kourtzi &
Shiffrar, 2001). To ensure that temporal association (rather than pure spatial similarity
combined with repeated exposure) induces generalization, we compare the effects of
smooth training sequences to scrambled training sequences across subject groups. In
our second experiment, we measure discriminability along both the "horizontal" and
"vertical" directions in appearance space both before and after exposure to the training
sequences depicting appearance change along only one axis. A simple change
detection task is used to determine subjects' sensitivity to image differences in both
trained and untrained directions through image space. In both tasks, we determine the



effect of dynamic training on static recognition tasks that do not require the recovery of
object labels so as to minimize non-visual cognitive interference.
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Fig. I - An 8x8 space of "blob" stimuli. The horizontal and vertical axes of this space are defined by the
phase angle of the 2nd and 3 d harmonic. Movement along each axis induces non-rigid motion that is
distinct from that generated by movement along the other axis (see Supplementary movie files). This
image represents a schematic view of the full 16x16 blob space used in our experiments. This smaller
version has been included for ease of viewing.

Experiment 1 - Priming task

Subjects
24 volunteers from the MIT community participated in this experiment, all between the
ages of 18-35. All participants reported normal or corrected-to-normal acuity, and were
compensated for their participation. Observed object motion was a between-subjects
variable, such that, half of the observers were randomly assigned to the "smooth
motion" group, and the remaining half were assigned to the "scrambled motion" group.

Stimuli
We do not include details of the rendering process used to generate the "blob" stimuli
given the amplitudes and phase angles of the constituent harmonics, but instead refer
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the reader to Nederhouser et al.'s initial report of the stimulus construction process for
more details (Nederhouser et al., 2002). An important aspect of the stimulus space for
our purposes however, is that the appearance space is scaled relative to a Gabor-jet
based image similarity metric such that city-block distance is a meaningful measure of
low-level similariity along both axes. The particular similarity metric used has been found
to correlate very well with human similarity judgments as well, giving us reason to
believe the appearance space is well-scaled for perceptual similarity. For the purposes
of the priming experiment, one 16-image "strip" of blob images was used to generate
dynamic objects and static test images for use in the "instant priming" task. These 16
images depicted rotation of the 2nd harmonic through an angle of 180 degrees with
position of the 3

'rd harmonic fixed.

Our "smooth" motion sequence was generated by continuously displaying these static
frames first in forward, then reverse order at a rate of 12 frames per second.
"Scrambled" sequences were created by randomly shuffling frame order for each
presentation of a dynamic stimulus to each subject. Additionally, though the exposure
time for each frame was matched across smooth and scrambled movies, a 100ms
empty frame was also drawn between each image frame in the scrambled movie. The
result is that the scrambled movie consists of a flashed presentation of unordered blob
frames.

Procedure
Each participant completed three rounds of the priming task, with each round consisting
of a training period and a test period. During each round, subjects passively viewed the
dynamic stimulus described above for a 3-minute period. No response was required
during exposure to the motion sequence.

Following each training session, subjects performed a "go, no-go" image matching task
using static images taken from the training sequence. Each trial began with the
presentation of one of three cue images for 500ms. Cue images were drawn from the
training sequence. After cue presentation, subjects viewed a blank screen for an
additional 500ms, and then two target images were simultaneously presented for
3000ms. Subjects were instructed to press any key on the keyboard as fast possible if
the two target images were identical, and to withhold their response if they were
different. Target images were either identical to the cue image, separated from the cue
image by 1, 2, or 3 units in blob appearance space, or images that were never
presented during training. In the latter case, a "Control" blob was selected in which the
3rd harmonic was differently oriented from the blobs in the training sequence. Response
times to correct "SAME" judgments were recorded. As no response was required for
trials on which targets differed from one another, we do not present any data relating to
these trials.
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Fig. 2 - Each round in the "Instant Priming" paradigm used in Experiment I consists of a training period
and a test period. in each training period a dynamic object defined by concatenating images along one
"strip" in appearance space is presented to the subject for 3 minutes. (a) Images can be concatenated in
their natural order ("smooth motion" group) or in a random order ("scrambled motion" group) Following
each round of dynamic exposure, the test period consists of "go, no-go" trials in which a cue image is
followed by two images that can either be identical to one another or not. (b) The RT cost for making
"SAME"judgments with targets that do not match the cue is calculated for several cue/target distances in
blob space (c). An unrelated image is also included as a control for task-specific learning unrelated to
image association during training. Again, the depicted 8x8 space is a smaller version of the full blob
space used in our tasks.

All stimuli were presented on a 19" Dell Ultrasharp monitor. Training and test stimuli all
subtended approximately 2 degrees of visual angle. Dynamic stimuli and cue images
were all presented at the center of the monitor, while target images in the test phase
were presented at 3 degrees to the left and right of the monitor's center. Subject head
and eye movements were not restricted or monitored. All stimulus display parameters
and response collection routines were controlled by the Matlab Psychophysics toolbox
(Brainard, 1997; Pelli, 1997).

Experiment 2 - Change detection
Subjects
An additional 10 volunteers from the MIT community participated in this experiment,
again all between 18 and 35 years of age. All participants reported normal or corrected-
to-normal acuity, and were compensated for their participation. Subject pools for
Experiment 1 and 2 were mutually exclusive.
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Stimuli
For this experiment, training and test stimuli were drawn from the space of blob objects
described previously. In the appearance space defined by these two transformations,
rotation of the 2 nd harmonic corresponds to "x-axis" or "horizontal" movement through
appearance space, while rotation of the 3 rd harmonic corresponds to "y-axis" or "vertical"
movement. Multiple image sequences were generated in this space in the manner
described for Experiment 1, with one harmonic assuming a particular fixed position and
the other free to rotate. Parallel "bands" of images spaced one image apart in our
appearance space were always used to create dynamic stimuli (Figure 3).

Procedure
Each subject completed two rounds of the change detection task, one preceding
exposure to dynamic stimuli and one following this training period.

During each test period, subjects performed a change detection task using pairs of
images drawn from the blob appearance space. On each trial, one blob stimulus was
presented for 250 ms, followed by a 200 ms blank period, a 200ms presentation of a 1/f
fractal noise mask, and the presentation of a second blob stimulus for an additional 250
ms. The position of each of the two blobs was randomly jittered within a +/- 1 degree
interval around the center of the monitor. On each trial, the two blob stimuli presented
could be identical, differ in the position of the 2nd harmonic (a "horizontal" difference in
our appearance spacee), or differ in the position of the 3 rd harmonic (a "vertical"
difference). All pairs of "different" stimuli were separated by 2 frames in the appearance
space defined previously. Of these, 64 contained images different along a "horizontal"
appearance axis, and 64 contained images different along a "vertical" axis (see Figure
3).

Each pair was presented twice, once for each ordering of the stimuli within the pair. An
additional 256 "same" trials were included for a grand total of 512 trials per test session.
The order of pairs presented during the experiment was randomized for each subject.
During the pre-training session, auditory feedback was given to subjects to indicate
incorrect responses. During the post-training session, no feedback was given.

During the training period, participants passively viewed 8 unique image sequences.
Half of our observers were shown 8 movies depicting "horizontal" movement through
appearance space, while the other half saw 8 movies depicting "vertical" movement.
Each individual sequence lasted approximately 30 seconds, and was displayed at a rate
of 12 frames per second. Sequences were presented three times each, and the order of
sequence presentation was randomized for each subject. The full training period lasted
approximately 12 minutes.
In both test sessions, the ability to detect changes in the position of the two harmonics
was characterized by calculating d' along each axis in appearance space. The change
in sensitivity to image changes observed during the training period was compared to the
change in sensitivity for image changes not observed in the dynamic stimulus.
Response time was not recorded in this experiment.

Stimulus display, parameters in this experiment are identical to those discussed for
Experiment 1.



Passive training period

Fig. 3 - In our change detection paradigm, subjects first are tested for sensitivity to static image
differences between "horizontal" and "vertical" image pairs in a sequential same/different task. Following
this, subjects are exposed to training sequences depicting only one direction of movement through
appearance space. Sensitivity to image changes along the trained and untrained axes is reassessed, and
changes in sensitivity along each axis are recorded.

Results

Experiment 1 - Temporal association leads to increased generalization
Initially, we expect that cue images that are identical to the targets will be better primes
for the same/different judgment than temporal neighbors. As exposure to the smooth
motion sequence continues, however, we expect that the temporally associated images
will increase in their efficacy to prime "SAME" responses. This same result should not
obtain for observers who view the scrambled motion sequence, as there is no
consistent temporal relationship between frames.

We compute for each subject the mean response time for "SAME" judgments carried
out with each kind of cue/target pair. We then subtract the response time for "SAME"
judgments cued by identical images (the de facto optimal cue) to yield the RT cost for
each condition in which cues do not match targets. If temporal association does indeed
induce generalization over neighboring images, we expect that an early positive cost for
non-matching cues will give way to a reduced, possibly nil cost after training. This
decrease in cost over multiple rounds should not occur following exposure to the
scrambled stimulus. We display the results of this analysis for observers in the "smooth"
and "scrambled" groups in Figure 4.

We do not analyze observers' accuracy data here as almost all of our participants were
at ceiling throughout the task. We note, however, that data from one observer from the
"smooth motion" group and one from the "scrambled motion" group were discarded due
to extremely low accuracy, perhaps due to a misunderstanding of task requirements.

Post-test taskPre-test task
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Fig. 4 -After three rounds of training, an initial RT cost for targets that do not match the cue disappears
for observers in the "smooth motion" group. Conversely, observers in the "scrambled motion" group show
no effects of multiple rounds of dynamic exposure. This difference in conditions is most evident for the
smallest cue/target distance. Beyond this point, behavior is less consistent in both groups.

First, we consider the results from observers in the "smooth" motion group. We carried
out a two-factor, repeated measures ANOVA over RT differences between identical
target/cue pairs and each type of non-identical target/cue pair. Dissimilarity in blob
space (1, 2, or 3 units) and training session (first or last) were our two factors. Our
analysis reveals a significant effect of training session (F(1,10) = 5.98, p < 0.05) and a
marginally significant effect of cue/target dissimilarity (F(2,9) = 3.29, p = 0.058). There
was no significant interaction between the two factors (F < 1).
Second, we conduct the same analysis on the data obtained from observers in the
"scrambled" motion group. In this case, we find no effects of training session
(F(1,10)=.009, p = 0.928) or cue/target dissimilarity (F(2,9)=2.06, p = 0.179). The
interaction between the two factors was also not significant. Note that dissimilarity in this
case is not related to temporal factors in any way since the order of images in the
motion sequence was completely randomized.
We also carry out two pre-planned comparisons on the data points obtained in both
conditions from non-identical targets most similar to the cue images (those that are
80ms away in the smooth movie). If mere exposure to the images causes generalization
over similar forms, we would expect significant changes in the RT cost over multiple
rounds of training in both conditions. However, paired t-tests carried out in each
condition yield a significant effect only when smooth motion was viewed during training
(p<0.05) and not when scrambled motion was viewed (p = .725).

Finally, what about images that were never temporally associated with the test images
at all? The difference in RT between optimal and unassociated cues does not change
as a function of training in either the smooth motion condition (paired t-test, p = 0.62) or
the scrambled condition (p = 0.58), indicating that repeated performance of the
matching task is not enough to induce a change in RT differences.

Passive observation of a coherent motion sequence clearly induced a reduction in the
priming advantage for the "optimal" prime relative to temporal neighbors of the targets.
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The lack of any significant result from the scrambled condition further demonstrates that
mere exposure to the static stimuli is not enough for generalization to occur; images
must be temporal neighbors.

Experiment 2 - Temporal association causes increased sensitivity
In our second experiment, we determine how the ability to discriminate between subtly
different blob images changes as a function of temporal association. Our participants
were asked to perform a change detection task with sequentially presented blob images
that could be close neighbors along the "horizontal" or "vertical" axes, or could be
identical images. In this way, sensitivity along each axis in image space was measured
by calculating d' separately for the two possible directions of image change. Following
this initial task, observers passively viewed a series of stimuli depicting a blob changing
its appearance via either "horizontal" or "vertical" oscillatory motion through appearance
space. Afterwards, the change detection task was re-run and sensitivity along each axis
in image space was calculated. A difference in d' for each direction of image change
(trained or untrained) was then computed for each subject. We ask two questions:

1) Is there any effect of temporal association?
2) If there is an effect of temporal association, is it positive or negative?

We display the results of our analysis in Figure 5.
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Fig. 5 - After observing object motion brought on by movement along one axis in appearance space,
observers are better able to detect static image differences along that axis. Though there is improvement
in both directions, there is significantly more improvement in the direction of observed motion.

In both the trained and untrained directions, observers became more sensitive on
average to even very subtle image changes. However, the amount of improvement in
the trained direction significantly exceeds that of the untrained direction (paired t-test,
two-tailed, p < 0.05).
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Passively viewing blob sequences appears to link distinct images together as evidenced
by our "instant priming" task, but here we see that close temporal association improves
the ability to detect differences between those same pairs of images in a change
detection task. Taken together, results from experiments 1 and 2 suggest that observers
display both heightened sensitivity between and increased generalization across frames
of a smoothly varying dynamic sequence.

Discussion
We have found that the observation of changing object appearance in dynamic
sequences increases both the generalization over temporally close images, and the
sensitivity to differences between neighboring images. These results support the notion
that object learning is a dual process of constructing invariants and learning to detect
subtle variations in object appearance. The visual system learns about objects in such a
way that the ultimate goal of a balance between good recognition and good
discrimination is met. Our results also suggest that temporal association plays an
important role in both aspects of this learning.

The use of an implicit priming task demonstrates that generalization to temporal
neighbors is not just evident at the level of object label generation, but also for
judgments at the image level. Moreover, by presenting cue-target pairs that were
separated by varying temporal distance during training, we gain the ability to assess the
strength of image binding over time. Looking at Figure 4, we see for example that the
closest temporal neighbors (which are also the most similar) are more effective cues
after training than more distant neighbors. Indeed, the slight (but non-significant)
negative value of this data point is intriguing in that it suggests that ultimately, temporal
neighbors of a stimulus may prove more effective primes than an identical image. This
is consistent with well-established classical conditioning results. In general, associative
learning is strongest when there is a temporal delay between the stimuli to be
associated, as opposed to simultaneous presentation. Also, previous work with the
flash-lag effect (Nijhawan, 1994) has raised the possibility that an 80-100 ms time
window may be a critical interval over which the visual system should learn to make
good predictions due to neural transmission limitations. Our work extends this idea to
the domain of object recognition by suggesting that part of learning to recognize a new
object is learning how appearance will change within a short interval. Finally, our
comparison of smooth to scrambled presentation of object appearance makes a strong
case for temporal continuity as a stronger cue for object learning than mere exposure to
static images. Though observers can use spatial continuity to bolster view-invariant
performance (Perry, Rolls, & Stringer, 2006), our results indicate that temporal
continuity is of primary importance for generalization.

It appears difficult at first to account for both our priming results and our change
detection results with one mechanism. If the sole function of temporal association is to
bind images together into a common representation, we might expect that increased
generalization would lead to impaired sensitivity. Learning to treat two images as though
they were the same should subsequently make them hard to discriminate, but this is not
what we observe in our change detection task. If observers are becoming better at
generalizing over observed appearance changes, how are they also becoming more
sensitive to the same changes?



Several simple explanations can be ruled out based on our design. For example, it is
unlikely that observers are using the training sequence to identify local image regions
where change is expected. Comparing specific image regions across test stimuli is
made difficult both by the smoothness of the blobs and the fact that we randomly jitter
the position of both test images on each trial. Also, only attending to regions where
change occurs during training would be detrimental to performance on untrained pairs.
Given that we observe improvements in both trained and untrained pairs, is not likely
that observers adopt this strategy. Similarly, the role of explicit prediction in performing
our change detection task is made complicated by the fact that each of the images in
our dynamic stimuli predicts two images equally well (due to the forward and backward
oscillation along appearance axes during training). Since there is no unambiguous
prediction to be made from any individual image, it is unlikely to play a major role here.
Finally, mere exposure effects can be ruled out. Observers are only tested on images
that do not appear in the training sequences.

We suggest that a useful framework for explaining these results, which show
simultaneous increases in generalization and sensitivity, involves "coarse coding" of
object appearance following dynamic experience. Within certain limits, populations of
units with overlapping tuning functions in feature space can provide for superior
generalization and better resolution than non-overlapping, highly localized units (Hinton,
McClelland, & Rumelhart, 1986). Simulations of coarse or distributed coding have
demonstrated that extremely good resolution for "coordinate" judgments can be
achieved using redundant representations such as this (Jacobs, 1996; Jacobs &
Kosslyn, 1994; Milner, 1974). It is easy to apply this same reasoning to object
appearance encoding, and thus explain both of our results with one mechanism. First,
we assume some initial population of object-selective cells that differ in their preferred
stimulus and initially have tuning curves that do not overlap substantially. Second, we
assume that exposure to a dynamic stimulus causes each cell to widen its tuning
function so that it responds to a wider range of object appearances. Crucially, widening
must not occur symmetrically in feature space. Instead, tuning curves must widen more
in the direction commensurate with stimulation. As the curves begin to overlap, a highly
redundant code for object appearance emerges. So long as the feature space is not too
dense and the tuning functions do not become too large (Hinton, 1986), better
generalization ability and better resolution in this space will result from this appearance
code.

Our theoretical proposal of a population code with units tuned for particular
appearances or views is consistent with several physiological results. View-tuned
neurons have been found in primate inferotemporal cortex for familiar (Perrett,
Hietanen, Oram, & Benson, 1992) and novel objects (Logothetis, Pauls, & Poggio,
1995). There are reports of highly view-invariant responses for familiar objects as well,
but even in these studies the majority of cells show selectivity for particular
appearances (Booth & Rolls, 1998). Psychophysical data from both humans and
monkeys provides further evidence to support population coding for complex objects
(Fang & He, 2005; Logothetis, Pauls, Bulthoff, & Poggio, 1994). To our knowledge the
effects of dynamic exposure on the tuning of view-selective cells has not been directly
examined. Though there is evidence that preceding action can affect the response of



cells specific for body posture in the macaque temporal lobe (Jellama & Perrett, 2003),
the immediate effects of dynamic stimulation on appearance tuning for arbitrary objects
have not been examined.

This proposal points towards some intriguing avenues for future research. For example,
coarse coding in a feature space ceases to provide gains in resolution once the tuning
curves grow too large. This suggests that there should be a point where further
generalization can occur, but sensitivity does not increase. Providing observers with
extensive exposure to dynamic objects, or exposure to dynamic objects that change
appearance very rapidly may reveal this limiting behavior. It would also be interesting to
examine how a predictive relationship between image pairs interacts with the effects of
dynamic exposure we have reported here. This could be studied in the context of
objects like the human body, that are familiar to the observer in form and characteristic
motion. Alternatively, one could continue to use novel objects, building predictive
relationships into the dynamic stimulus.

We close by pointing out that we have not attempted to incorporate object motion per se
into our discussion of how temporal association may induce the effects we observe
here. In natural settings, temporally neighboring images generally give rise to motion,
meaning that some reciprocal encoding of object form and object dynamics may be an
important factor in leaming object representations. At present, however, we remain
agnostic as to the nature of that interaction. Pure temporal association without motion
has been demonstrated to give rise to generalization in IT (Miyashita et al., 1993),
leading us to believe that it is useful to talk about such linkages between static images
in the absence of real motion. Also, given that we only employed static images at test
for both tasks, it seems appropriate to not incorporate object motion directly into our
proposed model.

Conclusions
We have demonstrated in two psychophysical tasks that temporal association between
images results in both increased generalization over distinct images, and increased
sensitivity to the differences between those stimuli. Based on these data, we have
suggested a "coarse coding" model of object learning in which the observation of an
object over time induces a distributed representation of object appearance. The model
can account for both of our findings with only one proposed change in neural tuning as
a function of temporal association. Taken together, these results provide hints about
how dynamic input can affect the representation of static form. This bridge between
dynamic and static object appearance is an important first step towards understanding
how the visual system rapidly and simultaneously learns representations to support
multiple visual tasks in the fully dynamic world.
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Introduction to Chapter 2
Having observed interesting and novel effects of observed object motion on image
discrimination in Chapter 1, I continue by examining the effects of observed motion on
sensitivity to appearance changes in a familiar object: the human body. Here, rather
than avoid the possibility that top-down knowledge may effect perception in this setting,
I explicitly examine the interaction between prior expectations of object movement and
recent exposure to a particular dynamic stimulus. The human body is ideal for this
purpose, since observers are familiar with the form and have temporally asymmetric
experience with moving bodies insofar as backwards walking is rarely observed in a
natural setting. Using the same change detection paradigm used in Chapter 1, the
perceptual consequences of this long-term ecological knowledge are characterized both
with and without exposure to a dynamic stimulus in a controlled laboratory setting.



Interactions between prior knowledge and recent experience
in the perception of dynamic objects.

Abstract
Temporal association between dissimilar views of an object has been proposed as a
tool for learning invariant representations for recognition. We examine heretofore
untested aspects of the temporal association hypothesis using a familiar dynamic
object, the human body. Specifically, we investigate how recent dynamic experience
with an object interacts with long-term memory for expected patterns of movement. In
our task, observers performed a change detection task using upright and inverted
images of a walking body either with or without previous exposure to a motion stimulus
depicting an upright walker. Observers who were exposed to the dynamic stimulus were
further divided into two groups dependent on whether the observed motion depicted
forward or backward walking. We find that the effect of the motion stimulus on sensitivity
is highly dependent on whether the observed motion is consistent with past experience.

Introduction
The way an object moves can be an important aspect of its appearance in many
settings. First of all, motion provides information that can be used for recognition
independent of static form. For example, any individual image of a point-light walker
does not evoke a very vivid percept of a human form, but once it begins to move the
percept is irresistible (Johansson, 1973). Despite the sparsity of the point-light stimulus,
observers are capable of recovering the gender and identity of walking figures with good
accuracy. (Cutting, 1987; Dittrich, 1993; Kozlowski & Cutting, 1977) In other cases
where static form is impoverished, motion features can support object or person
identification (Knappmeyer, Thornton, & Bulthoff, 2003; Rosenblum et al., 2002). Object
motion can thus be considered a useful set of additional measurements available for
object recognition alongside static features.

Beyond this basic concept of object motion as a parallel source of information for
recognition, there is also evidence that appearance dynamics may be directly
incorporated into representations of object form. The recognition of novel written
characters can be substantially influenced by observers' understanding of the dynamical
process that created them, making form distortions consistent with learned strokes more
tolerable than other distortions (Freyd, 1987). The perception of apparent motion in
Kanji characters is similarly modulated by observers' previous knowledge of how the
character is normally drawn, resulting in different percepts for Asian and Western
observers (Tse & Tarr, ????). There is also evidence that dynamic information can
interfere with form recognition for complex three-dimensional objects. Observers who
learn a set of novel objects undergoing rigid rotation are significantly impaired at
recognizing these objects if the direction of rotation is reversed at test (Stone, 1998).
The lack of object motion that is consistent with training appears to overshadow the
preservation of static form in this case, leading some to posit that dynamic objects are
encoded via "Spatiotemporal signatures" of object appearance. This proposal suggests
that static figural cues are combined with motion information such that recognition is
dependent on consistency of form and movement. Further evidence for such



"signatures" has been obtained in several recent object learning and recognition tasks
(Stone, 1999; Vuong & Tarr, 2004).

Finally, we consider one additional proposal regarding the interaction of object motion
with object recognition. The temporal association hypothesis suggests that temporal
proximity between images allows the human visual system to learn useful invariants for
recognition by binding disparate images together into a common representation. Many
changes in viewing conditions preserve identity while drastically altering image-level
features (Moses, Adini, & Ullman, 1994). This presents a very difficult recognition
problem, but temporal proximity provides a principled means of linking very different
images to the same physical object. Behaviorally, evidence for such linkages has been
demonstrated for both faces and novel objects using paradigms in which temporal
association between images leads to increased confusability between objects presented
close in time (Cox, Meier, Oertelt, & DiCarlo, 2005; Wallis, 1996; Wallis & Bulthoff,
2001). Several computational models of this process have been implemented as well,
lending credence to the idea that learning to recognize a novel object under different
viewing conditions may be facilitated by observing that object in motion (Foldiak, 1991;
Stone, 1999; Stone & Harper, 1999; Ullman & Bart, 2004; Wallis, 1998). The basic
temporal association hypothesis is important in that the theory provides a useful bridge
between recognition in a fully dynamic setting and classical work describing static
recognition. It suggests that motion contributes to the representation of static form,
rather than providing an independent set of dynamic features or serving as half of an
integrated representation of particular sequences. Given that many models of static
object recognition already exist, we suggest that this proposal provides a nice starting
point for examining how models of static object recognition should be altered to
incorporate the richness of spatiotemporal data.

In the current study, we aim to extend our current understanding of how temporal
association between images affects static recognition by examining the perception of
the locomoting human body. Our goal is to determine how sensitivity to image
differences changes as a function of object familiarity, motion familiarity, and short-term
exposure to a moving object.

The visual perception of the human body is an extremely valuable test case for any
theory positing that experience with a dynamic object should influence subsequent
performance with static images. First, the human body moves non-rigidly. This severely
limits the utility of a static representation of 3-D form, such as a "geon" based encoding
scheme (Biederman, 1987; Marr & Nishihara, 1978). Second, observers have a great
deal of visual experience with moving bodies. The result is that knowledge of
biomechanical constraints and the expected form of the human body can profoundly
affect "low-level" processing. For example, Shiffrar and Freyd (Shiffrar & Freyd, 1990)
demonstrated that perceived apparent motion of the human body is determined both by
the speed of the display and observers' knowledge of possible and impossible motions.
Similarly, knowledge of allowable body movements affects the priming of interpolated
frames from apparent motion sequences (Kourtzi & Shiffrar, 1999). Top-down
influences on the perception of body-like figures were also reported by Sinha and
Poggio (Sinha & Poggio, 1996) who demonstrated that a rigidly rotating wire "walker"
was generally perceived as non-rigidly deforming, presumably because observers'



expected the human-like form to move in this manner. Similarly, using stereoscopically
presented images, Bulthoff et al. (Bulthoff, Bulthoff, & Sinha, 1998) found that
expectations of allowable human forms could bias the perceived depth of dots in point-
light stimuli. All of these cases demonstrate that human body perception is a good
domain for exploring interactions between prior knowledge and perception. Since top-
down processes are capable of influencing perceived motion and stereo, it is likely that
they can also affect static form perception.

The nature of observers' visual experience with the human body is also particularly
useful in that it is asymmetric. Specifically, backward walking is not impossible, but it is
far less common than forward walking. This provides us with the opportunity to ask
some interesting questions regarding whether or not the visual system learns about
object movement in a temporally asymmetric manner, both in the short and long-term.
Human observers do use their knowledge of motion asymmetries in the natural world to
predict future events, leading to measurable differences in change detection (Freyd,
1983; Freyd & Finke, 1984). Static images of "frozen" motion can even give rise to
activation in cortical areas devoted to motion perception (Kourtzi & Kanwisher, 2000),
suggesting that predicting future scenes is both psychologically and neurally real. What
remains unknown is how predictions based on long-term experience interact with
predictions based on very recent exposure.

In the experiments we describe here, we use a simple change detection paradigm to
ask several questions regarding the basic temporal association hypothesis and how
recent temporal association between images interacts with prior expectations about
appearance dynamics. First, we characterize observers' sensitivity to detecting the
differences between static images of a normal walking human body that are arranged in
natural or reversed temporal order. We find evidence that automatic prediction impairs
sensitivity to "forward" changes relative to "backward" changes, and that this impairment
is invariant to rotation in depth. Second, we use the same task to evaluate sensitivity to
image differences between images of a human performing a strange, but physically
possible, gait. Here we find no difference in sensitivity for forward and backward
changes, suggesting that it is actual dynamic experience that leads to this performance
asymmetry rather than general biomechanical knowledge. Third, we determine how
brief exposure to a dynamic stimulus (a walking human) affects subsequent
performance at this task. Using distinct groups of participants, we exposed observers to
either forward or backward walking to determine how an asymmetry in short-term
exposure to a dynamic object interacts with a learned asymmetry in expected image
change based on prior knowledge. Our results indicate that recent dynamic experience
destroys the forward-backward asymmetry at test, but that the motion observed during
training has a profound effect on overall performance levels. Finally, in all of these
experiments observers' sensitivity to inverted bodies was measured simultaneously to
determine the extent to which previously learned or recently induced temporal factors
affected performance with an unfamiliar object. We conclude by discussing the
consequences of these results for the basic formulation of the temporal association
hypothesis, and suggesting further avenues of investigation.



Experiment 1
In our first task, we ask whether or not prior knowledge concerning expected movement
of the human body during walking has consequences for form discrimination. We
measure the relative sensitivity to "forward" and "backward" image changes across
three different views of the same walking figure in upright and inverted conditions. This
allows us to ask first of all whether or not there are consistent effects of appearance
prediction on sensitivity, and also whether any such effects are dependent on either the
amount of image change or the familiarity of the stimulus.

Method
Subjects
A total of 12 volunteers participated in this task. All participants were between the ages
of 18 and 35 and reported normal or corrected-to-normal visual acuity. Also, all
participants were naive to the purpose of the experiments.

Stimuli
All images were created using Poser 6, a 3-D graphics tool for rendering and
manipulating models of human bodies (Curious Labs). A male figure was created using
the software's default settings and rendered from three viewpoints (side, three-quarters,
and frontal views) while walking in place at a normal speed. Figure 1 contains example
images of the model at each of the three rendered views. 60 images were rendered at
each view depicting the model carrying out a complete walking cycle of two steps,
allowing us to continuously loop these images to display ongoing walking. Each image
was 278x484 pixels in size (approximately 5 degrees x 10 degrees visual angle) and
contained 256 gray levels.

f*nt teequarter side

Fig. 1 - Example views of the male walker created for the experiments. The images depict the model in
the same pose for each of our three views.



Procedure
All participants performed a change detection task using images from the various
walking sequences described above. Volunteers in this experiment carried out this task
using all three views of the model. Images were presented in blocks according to
rendered view. Block order was counterbalanced across subjects.

On each trial, observers would first see one image of the walker for 500ms, followed by
a 500ms delay period, then presentation of a second image for an additional 500ms.
(Figure 2) The second image was always translated by +/- 10 pixels horizontally and
vertically. Observers were instructed to press "1" if they believed the two images were
identical, and "0" if they believed they were different. Errors were indicated with an
auditory stimulus.

'Snme tur di~fI~mn

Fig. 2 - A trial from our discrimination task using walker images. On each trial, two images were
presented sequentially for 500ms each. The images could be identical, different and in forward temporal
order, or different and in reverse temporal order. Furthermore, half of the pairs depicted upright walkers
and the other half depicted inverted walkers. Auditory feedback was given when errors were made.

Image pairs contained either two upright or two inverted images and these images could
either be identical or different. Pairs of images that were different were further broken
down into "forward" pairs and "backward" pairs. "Forward" pairs contained images that
were in the correct temporal order for forward walking while "backward" pairs contained
images in the opposite order. Each forward pair had a corresponding backward pair in
our design containing the same two images presented in opposite order. All "different"
image pairs were 2 frames apart in the original rendered sequence (i.e. Frame #5 and
Frame #7). At test, the order of pair presentation within each block was randomized
separately for each subject. There were 42 image pairs in each of our 6 conditions,
yielding a total of 252 trials.

All stimuli were presented on a 19" Sony monitor. Participants were seated
approximately 50cm from the monitor, such that all images of the walker subtended

500ms



approximately 110x5 degrees of visual angle. Stimulus timing and response collection
was monitored by software written using the Matlab Psychophysics Toolbox (Brainard,
1997; Pelli, 1997).

Results
This experiment allows us to characterize the effect of prior knowledge on the
discrimination of images placed in typical or atypical temporal order. Our initial
hypothesis is three-fold: First, we expect that subjects will find it easier to detect image
differences when images are presented in backward order (consistent with involuntary
prediction). Second, we expect that this advantage will be greatest when image-level
differences are small. Third, this advantage should disappear for inverted images, given
their unfamiliarity. We test all these predictions by calculating d' for both forward and
backward image pairs at all views, and both upright and inverted stimulus orientations.
A graph of these results is displayed in Figure 3.
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Fig. 3 - Discriminability for upright and inverted stimuli presented at three views in either forward or
backward temporal order. We observe main effects of temporal order (favoring backward presentation)
and view (favoring larger image differences) with no significant interactions or other main effects. Error
bars represent 1 +/- s.e.m. across the group data for each condition.

A 3x2x2 repeated-measures ANOVA with view, orientation, and temporal order as
factors yields a main effect of view (F(2,10)=10.87, p =0.003) and a main effect of order
(F(1,11 )=9.25, p=0.01l ). No other main effects or interactions were significant.

Discussion
These results are in accord with our hypothesis that backward differences should be
easier to detect than forward differences. However, there is no interaction between view
and temporal order. The consistency of the advantage for detecting backward
differences across view suggests that the amount of image difference within a pair does
not modulate the effect of temporal order. Instead, change in an object-centered frame
of reference seems more relevant. This is somewhat at odds with characterizations of
biological motion perception as strictly view-dependent (Verfaille, 1993), insofar as
prediction appears to take place in a view-independent way. However, it is not clear that
view-dependence in recognition performance should imply view-dependence in
predictive perception.
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Finally, it is interesting to see that the results from the inverted stimuli are basically
identical to those from upright images. Our initial prediction was that order effects
should disappear for inverted images since observers have no experience with such
images and should therefore be unable to accurately predict future appearance from
one frame. Instead, the only difference we see between performance with upright and
inverted stimuli is a criterion shift (subjects seeing inverted images are more likely
overall to respond "different" across all views), not a change in relative discriminability.
This may mean that the same underlying mechanisms are used to process both upright
and inverted bodies.

Experiment 21
The results of Experiment 1 suggest that prior knowledge concerning object motion
leads to systematic impairment for detecting "forward" image change. However, one
possibility we cannot rule out yet is that prediction could be governed by generic
knowledge of biomechanical constraints on movement. To address this point, we
continue by examining the extent to which these effects generalize to a novel, but
physically plausible gait. If observers display temporal ordering effects on sensitivity in
this condition, we can conclude that extensive dynamic experience is not necessary for
prediction to impair sensitivity. If however, the effects of temporal order disappear, we
have more reason to believe that observers' perceptual experience is more relevant in
this task than abstract rules concerning limb movement and balance.

Method
Subjects
8 additional volunteers participated in this task. All participants were between the ages
of 18 and 35 and reported normal or corrected-to-normal visual acuity. Also, all
participants were naive to the purpose of the experiments.

Stimuli
Additional images were created using the same male figure generated for Experiment 1.
In this case, however, the model's gait was edited via built-in tools to be highly unusual,
but physically possible. Figure 4 contains example images of the model. As before, 60
images were rendered at each view depicting the model carrying out a complete
walking cycle of two steps, allowing for continuous looping. Each image was 278x484
pixels in size (approximately 5 degrees x 10 degrees visual angle) and contained 256
gray levels.

Fig. 4 - Images of the walker model performing the unusual gait used in Experiment 2. This gait is
biomechanically possible, but not frequently observed in the environment.



For this task (and for the remaining experiments), we do not measure sensitivity across
all three views of the walker employed in Experiment 1. Instead, we only measure
sensitivity for the % view of the walker. Such views are generally considered "canonical"
object views and provide the most information about object movement and form due to
the balance struck between a lack of foreshortening and self-occlusion. While
examining all of these various effects across all views could be interesting, we limit
ourselves to the % case from here on to provide a more focused analysis and
discussion.

Procedure
The change detection task described in Experiment 1 was implemented without
alteration in this task. The only change is the stimuli used. Otherwise all display
parameters and timing is identical to Experiment 1.

Results
As in Experiment 1, we calculate d' for forward and backward directions of image
change in upright and inverted images. In Figure 5 we display the average d' value
across subjects in all conditions.
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Fig. 5 - Mean dprime scores as a function of image order and orientation. Error bars represent +/- 1
s.e.m.

We carried out a 2x2 within-subjects ANOVA to determine if there were any significant
differences in sensitivity as a function of either one of our manipulations. We find only a
significant main effect of orientation (F(1,9)=14.9, MSe=3.08, p = 0.004), indicating that
inverted images were harder to discriminate between than upright images. There was
no significant main effect of order and the interaction between order and orientation was
also not significant.

Discussion
This task allows us to determine the extent to which observers' implicit knowledge of
biomechanical constraints on movement drives the asymmetry between forward and
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backward sensitivity observed in Experiment 1. The lack of any order effect in this task
suggests that this knowledge is not the primary determinant of the asymmetry, since
biomechanical constraints alone could allow observers to formulate predictions for this
setting as well as the previous task. Given that this does not seem to occur, we suggest
that the observed effect in Experiment 1 is primarily the result of actual visual
experience with the moving human form. This is not to say that biomechanical
knowledge plays no role in this task, only that we do not think it is the dominant factor.

One aspect of the data that is very interesting in light of the results of Experiment 1 is
the striking inversion effect. Perhaps the constant exposure to upright motion leads to
an ability to generalize over picture-plane rotation, but this is counter to traditional
interpretations of "Expert" processing. Generally, it is suggested that overexposure to a
certain stimulus class leads to an excessive commitment to the representation of the
normal stimulus to the detriment of generalization. This is the suggested cause of the
famous face inversion effect, for example, and others have used the presence of
inversion (not its absence) as evidence of expertise. For the moment, we shall not
pursue this issue further since it is tangential to the main thrust of our work. Instead, we
offer it as an intriguing touchstone for further inquiry. We continue by returning to our
original walking figure to examine the effect of recent dynamic exposure on sensitivity.

Experiment 3
In our last task, we ask how recent exposure to a dynamic object interacts with prior
expectations regarding object motion. Following a training period during which
observers watch either forward or backward walking, we characterize sensitivity to
image change using the change detection task described in Experiments 1 and 2. We
ask first of all whether or not there is any effect of the passive training period on the
previously observed temporal asymmetry in discrimination. Second, we ask if these
effects generalize to the inverted images.

Method
Subjects
A total of 24 volunteers participated in this task. All participants were between the ages
of 18 and 35 and reported normal or corrected-to-normal visual acuity. Also, all
participants were na've to the purpose of the experiments.

Stimuli
The images of our walker performing the normal gait as described in Experiment 1 were
also used here. As in Experiment 2, we limit ourselves to the % view for simplicity.

Procedure
Volunteers who were placed in either "motion" group began by viewing our model
walking either forward (Group 1) or backward (Group 2) for ten minutes. Viewing was
broken up into ten 1-minute long blocks, during which the 60 images of the walker
(three-quarter view) were continuously looped at a frame rate of 30 frames per second
(with a 60hz refresh rate). To ensure that observers attended to the animation during
each block, a "cue-dot" detection task was administered during presentation. A small
red dot (-0.5 degrees of visual angle in diameter) was drawn at a random location on



the image at randomly selected times for a duration of 32ms. Observers were instructed
to press the space bar every time this dot appeared.

Following this exposure period, all observers carried out the change detection task
described in Experiment 1 using the images of the three-quarter walker only. There
were no other differences in design parameters or procedure.

Results
Having determined in Experiment 1 that prior knowledge regarding human movement
affects discrimination for images taken from a coherent walking sequence, we ask how
recent exposure to a dynamic stimulus modulates behavior. As we have done in all of
our other tasks,, we calculate d' for forward and backward discrimination of upright and
inverted stimuli. The results are summarized in Figure 6.
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Fig. 6 - Discriminability for upright and inverted stimuli in forward or backward temporal order following
exposure to a dynamic stimulus. Observing forward motion results in significantly better performance.
Error bars represent 1 +/- s.e.m. across the group data for each condition.

A 2x2x2 mixed-design ANOVA was run, with temporal order and orientation as within-
subject factors and forward v. backward training motion as a between-subjects factor.
The only significant main effect we observe is an effect of training motion on
discriminability (F(1,22)=7.54, p=0.012). Exposure to forward motion prior to performing
the discrimination task yields significantly better performance than exposure to
backward motion composed of the same frames played in reverse order. The previously
observed effect of temporal order disappears in both cases, and as in Experiment 1, the
data from inverted trials is essentially identical to the data from upright trials.

Discussion
Exposure to the walking figure used in our change detection task erases the temporal
asymmetry observed in Experiment 1. This occurs regardless of whether or not the
figure walks forward or backward during exposure, and the effects of this exposure
generalize to the inverted images presented at test. This suggests that dynamic
experience with an object has an immediate and broad impact on perception.
Furthermore, we find that observing forward motion significantly increases sensitivity
relative to observers who viewed backward motion. This also generalizes over upright
and inverted images, and indicates that there is a complex interaction between prior
expectations of movement and recently observed motion. Finally, as in Experiment 1 we
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see no evidence of an inversion effect in our data. Discrimination between images of a
normally walking figure appears to be robust to picture-plane rotation, despite what one
might expect from previous examinations of image inversion.

We close by attempting to synthesize these various results into a coherent account of
how object motion contributes to form processing in both the short and long-term.

General Discussion
In our first experiment, we see evidence that observers automatically predict the future
appearance of a human body "frozen" in a walking motion. The result is that
discriminating image changes consistent with forward motion is significantly more
difficult than discriminating between the same pairs of image presented in reverse
temporal order. This is in agreement with a wide range of studies of "representational
momentum," with the added feature that by examining performance across different
views we can also see that our effect is not contingent on the amount of image change
between pairs. Our results are more consistent with a view-invariant prediction
mechanism. Finally, the asymmetry in discriminability for forward v. backward
sequences extends to inverted images of the model. This last finding was quite
unexpected, and indicates a surprising amount of generality in the visual representation
of the human body. To summarize, human observers appear to automatically predict
future appearance of a body frozen in motion via mechanisms that are invariant to
rotations in depth and inversion in the picture plane. To describe this in a basic signal
detection framework, forward prediction places images arranged in forward temporal
order closer together in the relevant measurement space. The same predictive behavior
leads to more separation in the same space between images in backward temporal
order. Assuming that intrinsic noise stays constant, the relative difference in separation
between the signals in these two cases makes backward sensitivity higher than forward
sensitivity. Experiment 2 also lets us rule out the possibility that this process is
supported purely by knowledge of biomechanical constraints. Since the order effect
vanishes for images of a walker with an unusual gait, we can infer that it is direct
exposure to the dynamic stimulus that is the deciding factor. General principles of
human movement do not make a substantial contribution.

Our third task provides us with the opportunity to elaborate this basic model by
examining the effects of brief exposure to a dynamic stimulus prior to performing
discrimination. If dynamic experience serves primarily to facilitate prediction, we should
expect that exposure to the forward-moving walker would either have no effect on
sensitivity (since the stimulus is consistent with prior knowledge) or exacerbate the
existing effect by making forward prediction more robust and forward sensitivity
consequently weaker. Under this same assumption, exposure to the backward walker
should either nullify the observed asymmetry in sensitivity or reverse its sign.

We also consider the predictions made under a basic "temporal association" model. To
review, in this model temporal neighbors are increasingly generalized over after
sufficient exposure. To the extent that this occurs, we should expect to see impaired
sensitivity following exposure to any moving walker. Since the basic association
hypothesis makes no strong claims about the order of image presentation, we submit
that in the context of this model, learned generalization should be symmetric with



respect to time. This would lead us to expect a downward baseline shift of equal
magnitude in both the "forward" and "backward" conditions. Strictly speaking, this
baseline shift in performance should not apply to the inverted images since they were
not observed in temporal proximity to one another at any point during training.

What we observe in our third experiment requires us to reject both of these proposals
as the sole explanation. Considering the effects of exposure to a backwards walker first,
we see evidence that observers effectively "unlearn" the tendency to predict forward
appearance. The relative deficit in forward sensitivity has disappeared, with no
accompanying decrease in sensitivity to the backward walker. This result is compatible
with a simple prediction model, but not the temporal association model. The data from
the observers exposed to a "forward" walker proves troublesome for the predictive
account, however. Instead of further impairments in forward sensitivity (consistent with a
prediction model) or impairments in both conditions (consistent with time-symmetric
generalization) we observe instead that the observed asymmetry in sensitivity has
disappeared and observers show improvements in both temporal directions.

Neither model alone explains these results satisfactorily, but we will need both to
continue. We suggest a two-stage model of how dynamic appearance affects
subsequent sensitivity to static images. First, exposure to a dynamic object induces a
tendency to predict future appearance. Second, if predictions are solidified, continued
dynamic input causes immediate increases in generalization over a population of view-
sensitive units. This latter interpretation of the basic temporal association hypothesis (in
which increased generalization is linked to increased confusability) is distinct in that it
posits the formation of a "coarse code" for object appearance. Distributed
representations such as this provide for both increased generalization and increased
sensitivity provided that the appearance space is sufficiently sparse (Hinton,
McClelland, & Rumelhart, 1986). We have previously demonstrated that exposure to
novel dynamic objects situated in a parametrized space gives rise to increased
sensitivity for static image differences consistent with observed motion (Balas & Sinha,
2006), suggesting that this proposal is a plausible model for understanding the
relationship between dynamic input and static image processing.

Observers who never saw our dynamic stimuli nonetheless entered the laboratory with
enough visual experience with walking bodies to predict future appearance, leading to
the asymmetric sensitivity profile exhibited in Experiment 1. Exposure to the dynamic
walker was then responsible for doing one of two things, dependent on the direction of
observed motion. For forward movement, observers' expectations were not violated and
thus dynamic input was of no further use in formulating predictions. We suggest that at
this point the population of units encoding walker appearance began to generalize more
broadly, leading to a highly overlapping and accurate representation of form. Prediction
may still be carried out under these conditions, but we propose that the effects of
coarsening the appearance representation are larger. Now let us consider the case
where backward movement is observed during training. Here, observers' expectations
were violated and thus the dynamic input is used to re-formulate predictions for the
current stimulus set. The conflict between expectation and observation suppresses the
tendency to broaden appearance tuning over the population in any way. Given sufficient
exposure to backward movement, our hypothesis predicts that observers should



eventually undergo the same improvement in performance we observe in the forward
case. To put it simply, motion is used to increase sensitivity only after we know which
way the "arrow of time" points.

To summarize, we propose that dynamic input serves both as data for generating
predictions and as the impetus for coarsening the appearance code symmetrically with
respect to time. The predictive aspect of dynamic input appears to be the most relevant
aspect of dynamic exposure over long time scales. It is clear from our first experiment
that learned appearance prediction has long-lasting and robust effects. Moreover, it is
impressive that ten minutes of constant dynamic stimulation interacts with prior belief
rather than completely overwhelming the results. This is good evidence that learned
dynamics are very stable and partially resilient to immediate influences. It is also
important to note that both short-term and long-term effects of exposure appear to be
capable of operating over a wide range of viewing conditions, as evidenced by the data
from inverted normal walkers. The fact that data from these inverted trials is
indistinguishable from that taken from upright trials is surprising, and strongly implies
that the visual system makes immediate and broad use of dynamic input.

The effects we observe also lead to several interesting questions for further
investigation. For example, while it seems reasonable to assume that learned prediction
for familiar object appearance is relatively long-lasting, it is unclear what the relevant
time-scale is for the decay of the short-term effects we have observed. If subjects in
either condition were re-tested a day or a week later, we cannot say as yet what would
result. Furthermore, it would be interesting to observe the interplay between asymmetric
prediction and symmetric generalization in a novel object. Allowing both factors to come
into play during observers' initial experience with a novel object might give us a better
sense of the relative priority given to these mechanisms by the visual system by
eliminating long-term perceptual history as a confounding factor. Ultimately,
understanding the relationship between dynamic and static experience provides an
important window into the learning processes that support object recognition in complex
and changing environments.
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Introduction to Chapter 3
In the final chapter of Section 1, I stray somewhat from the use of purely image-level
judgments to ask how object motion affects the construction of category representations
for novel dynamic objects. In particular, I ask how the diagnosticity of motion during
training influences the ability to form a robust representation of object form across
stimulus categories. This chapter adds a further layer of complexity to this analysis of
object motion and form by asking how static form cues are employed in the service of
category representations when dynamic features may or may not provide class
information.



Diagnostic Object Motion Weakens Representations of Static
Form

Abstract
Past studies have shown that information about how objects move can play an
important role in their recognition. Flow-fields associated with an object's intrinsic
motion, and also the sequence of views it presents over time can be used to identify the
object and also link its disparate appearances. In the current study, we demonstrate that
diagnostic object motion is such a perceptually significant cue that it can actually impair
classification by de-emphasizing static figural information. Our stimuli comprise
exemplars from a synthetic object category. The exemplars can be distinguished from
each other on the basis of both static and dynamic cues. When object dynamics
perfectly correlate with category membership during training, observers tested at static
image classification display significantly longer RTs than observers trained with non-
diagnostic object motion. This demonstrates that object motion is a particularly salient
aspect of object appearance, capable of suppressing equally useful qualities such as
static form, color, or texture.

Introduction
To what extent does object motion play a role in object recognition? This apparently
simple question has a complicated answer. In particular, while there is a great deal of
evidence suggesting human observers can and do use intrinsic object motion as a cue
for identity, it remains unclear how motion and form interact during the acquisition of
object concepts. In the current study, we attempt to address this issue by investigating
the effects of diagnostic and non-diagnostic motion on the categorization of static
object.

Observers do use object motion to categorize stimuli. Though this can be seen in the
results of studies using clearly viewed objects (Newell, Wallraven, & Huber, 2004), it is
particularly evident when static form is degraded. An extreme version of this is the
perception of "point-light walkers" (Johansson, 1973). In the absence of static cues for
identity and gender, observers make good use of dynamic input to categorize walkers
(Kozlowski & Cutting, 1977). A similar result obtains for face recognition. An "average"
face that is made to undergo the idiosyncratic motions of a particular individual can be
identified as that individual by nai've observers (Hill & Johnston, 2001; Knappmeyer,
Thornton, & Bulthoff, 2003). Finally, there are many studies suggesting that observation
of a familiar moving face or body facilitates recognition under degraded viewing
conditions (Burton, 1999; Knight & Johnson, 1997; Lander & Bruce, 2000). There
remain several open issues, especially the existence of a motion benefit for unfamiliar
faces and the possible differences between rigid and non-rigid motion (Christie & Bruce,
1988; Pike, Kemp, Towell, & Phillips, 1997; Schiff, 1986). The overall picture appears to
be quite complex, but it seems fair to say that in some circumstances object motion is
relied upon for categorization when static form is impoverished.

A second issue regarding the use of motion and form for recognition relates to what
happens when motion cues and form cues conflict somehow. By setting motion and



form against one another, we can determine the relative weight allotted to each under
clear viewing conditions. Currently, there is some evidence that the motion of an object
may take precedence over static form cues. For example, a "chimeric" point-light walker
with static cues indicative of one gender (as defined by shoulder-hip ratio) and dynamic
cues indicative of the other is categorized according to its movement rather than its form
(Thornton, Vuong, & Bulthoff, 2003). Similarly, in face perception there is evidence that
infants use dynamic information more than static form as a cue for identity (Spencer,
O'Brien, Johnston, & Hill, 2006). Infants will not dishabituate to an old motion pattern
superimposed on a new face, indicating that the novelty of the form does not
compensate for the familiarity of the motion. Finally, there are several results
demonstrating that the direction of rotation for an unfamiliar object becomes an
important cue for recognition after relatively little training (Stone, 1998; Vuong & Tarr,
2004). Specifically, reversing the direction of rotation has a strong impact on recognition
ability, despite the fact that the same static information is available during training and
test periods. Object motion overshadows form in this task, in that the violation of
expected object motion has strong consequences even though form is preserved.

These lines of work indicate that observers use object motion for recognition, and even
suggest that it is given more importance than static form. In the current study, we
extend this idea by examining whether or not observed object motion during training can
affect test performance with static images. If object motion provides independent
features for recognition, the absence of dynamic features at test should eliminate the
effects of dynamic training. However, if dynamic training can affect later static
performance, that provides good evidence for an interaction between object motion and
the encoding of static form.

Presently, it is unclear whether or not observed object motion can affect static
recognition. During rigid rotation, it has been suggested that "structure-from-motion"
might allow observers to obtain 3-D information from coherent motion sequences,
leading to better recognition. However, recent results indicate that observing object
rotation is not a pre-requisite for view-invariant recognition (Wang, Obama, Yamashita,
Sugihara, & Tanaka, 2005). Also, though a recognition advantage for temporally
coherent vs. incoherent views of a rigidly rotating object has been reported before
(Lawson, Humphreys, & Watson, 1994), the exact opposite result has also been
reported (Harman & Humphreys, 1999).

If we consider non-rigid motion instead, there is more consistent evidence supporting
the possibility that object motion might affect static object perception. For example,
dynamic prime images of faces facilitate performance in static image matching
(Thornton & Kourtzi, 2002). Also, apparent motion sequences depicting non-rigid
objects deforming while rotating effectively prime static matching more than the same
sequences displayed without apparent motion (Kourtzi & Shiffrar, 2001). Unfortunately,
these studies reveal more about the nature of dynamic encoding than they do about the
nature of static encoding following dynamic experience.

Finally, it has also been shown that temporal proximity between images of an object
facilitates the binding of those images into a common representation (Cox, Meier,
Oertelt, & DiCarlo, 2005; Wallis & Bulthoff, 2001). However, it also seems that



structural similarity can play a similar role even when temporal contingencies are
eliminated (Perry, Rolls, & Stringer, 2006).
Given the lack of a clear picture regarding the influence of dynamic training on static
recognition performance, we have attempted in the current study to determine whether
the observed motion of objects during training can affect the efficiency of static image
categorization. This is similar to previous attempts to determine whether motion
coherence (usually defined as smooth vs. "random" image ordering) affects
performance with static images, but there are several important differences between our
work and previous efforts.
First, instead of manipulating motion coherence, we manipulate the diagnosticity of
object motion. That is, object motion can either be perfectly indicative of object category
(or "diagnostic") or object motion can be highly similar across categories (or "non-
diagnostic"). We carry out this manipulation through the use of a class of novel objects
called "blobs," created and introduced previously by Nederhouser, Mangini, and
Biederman (Nederhouser, Mangini, & Biederman, 2002). The structure of the stimulus
appearance space (Figure 1) allows us to define two categories that are always
distinguishable by form alone. Within the set of images defining a category, the validity
of object motion as a cue for category membership can be determined by how we
concatenate still images into dynamic sequences for training. The advantage of using
diagnosticity instead of motion coherence is simply that the use of randomized or
"strobed" presentation of an otherwise coherent sequence may encourage observers to
use very different processing strategies in different conditions. Minimizing this possibility
by presenting coherent motion to all participants makes it more likely that we are
comparing performance across commensurable tasks.
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Second, our objects only move non-rigidly. The adult visual system may be so over-
exposed to rigid object motion that training effects could be difficult to obtain without
introducing novel object deformations. The use of non-rigid motion also confers the
additional advantage of making it impossible to explain observers' performance in
terms of static volumetric models of object form. Since there is no "ground truth" form,
there is no way for observers to build a static object model.
Finally, we suggest that our experiments usefully complement previous work by
examining how the validity of a cue, rather than its availability, affect the use of another
cue. In some ways this is more natural than placing cues in conflict, or selectively
impairing one cue and not another. Under natural viewing conditions, it is probably very
common for observers to assess the utility of various cues and weight them accordingly.
The question we ask here is if a change in the validity of one cue (object motion) affects
the efficacy of a cue with stable validity across groups (object form).

In our first experiment, we manipulate motion diagnosticity by concatenating images into
dynamic objects along differently oriented "paths" through blob appearance space.
Objects within a category are always built by concatenating images together along
paths of the same orientation, but across categories we either allow path orientation to
match or not match depending on the experimental condition. We find here that learning
to categorize objects with diagnostic motion leads to no difference in accuracy of static
image classification, but significantly slower RTs. In our second experiment, we match
path orientation across categories and ask whether direction of motion along the path is
sufficient to induce the RT difference we observe in Experiment 1. Under these
conditions, there is no difference in accuracy or RT, leading us to suggest that it is a
symmetric estimate of appearance variability that underlies performance in this task
rather than a feature like the motion flow field.

Experiment 1
In this experiment, we define the diagnosticity of object motion in terms of qualitatively
different motion patterns obtained by concatenating images along "horizontal" or
"vertical" paths through blob appearance space.

Methods
Subjects
Participants were 16 members of the MIT community (8 men and 8 women, with an age
range of 18-40 years old), all of whom were naive to the hypothesis under
consideration. All observers reported normal or corrected-to-normal vision.

Stimuli
The "Blob" stimuli created by Nederhouser et al. were used in all the experiments
reported here, and we refer the interested reader to their initial report for a more
detailed account of blob construction than we present here (Nederhouser et al., 2002).
Blobs are defined as a sum of spherical harmonics with varying amplitude and phase
and an outer surface interpolated over the resulting object. The space of blobs used in
the present study is defined by rotating the phase angles of the 2 nd and 3rd harmonic
independently, yielding a 16x16 space of images. We display this appearance space in



Figure 1. By starting at one image in the space and rotating the phase angle of only the
2 nd harmonic, we end up with what we will call "horizontal" motion through blob space.
Rotating only the 3 rd harmonic results in what we will call "vertical" motion. It is important
to keep in mind that the terms "horizontal" and "vertical" only refer to the arrangement of
blobs into the flat space presented in Figure 1. The actual blob motions obtained by
concatenating images either "horizontally" or "vertically" are highly complex, global
deformations.

Images were assigned to different classes according to their position in blob space.
Specifically, "Class I" objects were defined as images depicting a blob with both 2nd and
3 rd harmonics oriented between 0 and 90 degrees, while "Class II" objects depicted only
blobs with both harmonics oriented between 90 and 180 degrees. The resulting classes
are wholly distinguishable by static form alone.

Within the 8x8 appearance space of images defining each class, we constructed
dynamic objects by concatenating images together along either the "horizontal" or
"vertical" paths, yielding qualitatively distinct non-rigid motions. (Figure 2) All objects in
the same class underwent the same object motion, but objects in different classes could
either undergo matching motions (non-diagnostic group) or distinct motions (diagnostic
group).



Diagnostic Training

Class I Objects Class 2 Objects

Nondiagnostic Training

Class I Objects Class 2 Objects

Fig 2. - Object motion diagnosticity as defined in Experiment 1. The top row depicts the construction of
dynamic objects for observers in the "Diagnostic" group while the bottom row depicts the same for
observers in the "Non-diagnostic" group. The same images are always used to define Class I and Class
//, but they are assembled into movies in distinct ways. Note that in the full design, path orientation was
balanced across observers such that horizontal and vertical motion occurred in each class the same
number of times across both groups.

Procedure
Each image sequence was constructed by oscillating back and forth along one axis in
appearance space while maintaining a fixed position on the orthogonal axis. Each
movie displayed three complete oscillations (48 frames) and was played at a rate of 12
frames per second. Each object class contained 8 distinct movies, each of which was
viewed 12 times during training for a total of 96 dynamic stimuli. Observers classified
dynamic stimuli using the "1" and "2" keys on the keyboard and were provided with
audio feedback during training. Participants in both groups were told that they were
going to have to learn to classify the moving objects into two groups during this training
period, and that they would then have to classify still images of the same objects
afterwards.



Following training, observers were asked to classify static images as either "Class I" or
"Class II1" objects according to whatever criterion they had established during training.
During this test phase, the 128 frames used to generate the training sequences were
each displayed individually 4 times for a total of 512 stimuli. Each stimulus was
presented for approximately 750ms. Responses could be collected at any time after
initial presentation, and subjects were urged to respond as quickly and accurately as
possible. Both accuracy and response time were recorded. All stimulus display
parameters and response collection routines were controlled using the MATLAB
psychophysics toolbox (Brainard, 1997). Stimuli were displayed on a calibrated 19" Dell
Ultrasharp monitor, with a refresh rate of 60Hz. The objects subtended a visual angle of
approximately 3 degrees during both training and test and were displayed on a uniform
gray background. No feedback was given during this task.

Results and Discussion
All participants rapidly learned to correctly distinguish between dynamic exemplars of
Class I and Class II objects. In the 2nd half of the training period, all of our observers
attained over 96% correct performance, indicating that in both conditions learning to
correctly label dynamic Class I and Class II objects was quite easy. Recognition
performance in the test phase of our task was assessed by both accuracy and response
time for correct categorization. Both subject groups performed very accurately at the
static recognition task (-85% correct and 89% correct for the diagnostic and non-
diagnostic groups respectively) with no significant difference between groups. In terms
of reaction time however, we observe a strong effect of training condition. Subjects who
learned to distinguish Class I objects from Class II objects under non-diagnostic
conditions were able to correctly categorize static exemplars from both classes faster
than subjects who observed diagnostic motion during training. The Mean RT from the
diagnostic group was approximately 1050ms, which proved significantly longer than the
700ms mean RT observed in the non-diagnostic group (t(14)=2.16, p < 0.05). Figure 3
shows accuracy and RT data from both subject groups.

This result demonstrates that diagnostic object motion can actually repress the
formation of a robust representation of static form during learning. Despite explicit
instructions that training with dynamic objects would be followed by a test of static
recognition abilities, subjects who observed diagnostic motion during training took
longer on average to correctly identify still frames from the previously observed image
sequences.

Could it be the case that observers in the "Diagnostic" group were simply ignoring object
form and attending only to object motion? First of all, we emphasize again that
observers were fully aware that their static recognition would be tested following the
dynamic training period. Second, given that both subject groups perform accurately at
test and do not differ in accuracy, it is difficult to imagine that observers in one group
were simply not attending to object form during training. Clearly, both groups were
capable of using form to categorize the objects, it is just that members of the "Non-
diagnostic" group were able to do this more efficiently.
This result gives us a first piece of evidence that the validity of object motion for
categorization can significantly affect the efficiency with which form can be used by
na'lve observers. Crucially, object form was fully available and fully diagnostic for both



groups, making it all the more surprising that object motion was able to impact static
classification in this manner. Furthermore, it is interesting to see that diagnostic motion
weakens the efficiency of static form. This result is consistent with a model of
categorization in which a limited amount of weight is allocated to features that might be
useful for identifying objects. The validity of diagnostic motion may simply draw
resources away from representations of the category based on static form, leading to a
less useful set of tools for the static test case.

Experiment 1 Results
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Fig. 3 - Accuracy ('left) and response time for correct judgments (right) for observers in Experiment 1.
There is no significant difference in accuracy between the two groups, but mean RTs are significantly
longer in the Diagnostic group. Error bars represents +/- 1 s.e.m.

We continue by asking a more fine-grained question regarding the nature of
diagnosticity for object motion. Specifically, we ask whether or not the direction of blob
motion along a "path" of fixed orientation is sufficient to induce the effects we observe
here. This experiment provides us with more insight into the nature of the dynamic
features that impact static form representations. In particular, it helps us determine the
extent to which the sign of motion vectors in a flow field (as determined by an optic flow
algorithm, for example) is sufficient to evoke the differences in RT we see following
"Diagnostic" and "Nondiagnostic" training.

Experiment 2

Methods
Subjects
16 additional members of the MIT community participated in Experiment 2, all of whom
were naTve to the hypothesis under consideration. All observers reported normal or
corrected-to-normal vision.

Stimuli
The same space of blob images was used to define object classes and create dynamic
stimuli. The partitioning of images into Class I and Class II objects was also preserved
so that the form information defining the two categories is matched across conditions
and experiments. What differs in this task is that the diagnostic motion no longer results
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from differently oriented paths through appearance space, but instead from a difference
in the direction of motion through appearance space.

Dynamic objects were created by concatenating images in a consistent direction ("left"
or "right" along "horizontal" paths only.) In this case, motion diagnosticity is determined
by whether images were concatenated in matching directions along horizontal paths
(Non-diagnostic group) or not (Diagnostic group). Figure 4 provides a schematic view of
these conditions.

Diagnostic Training

Class I Objects Class I1 Objects

Nondiagnostic Training

Class I Objects Class II Objects

Fig. 4 - Object motion diagnosticity as defined in Experiment 2.

Procedure
The procedure for this task is identical to that described for Experiment 1.

Results
Mean accuracy and response time for accurate classifications in both groups is
presented in Figure 5. Contrary to what we found in Experiment 1, there is no difference
in performance between groups for RT (t(14)=0.18, p=0.42, two-tailed test).



Experiment 2 Results
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Fig. 5 - Accuracy (left) and response time for correct judgments (right) for observers in Experiment 2.
There are no significant differences for accuracy or RT. Error bars represents +/- 1 s.e.m.

General Discussion
Experiment 1 demonstrated that diagnostic object motion could impair static
classification performance even when the static images presented during training were
identical to those presented to a group who observed non-diagnostic motion. In this
case, object motion diagnosticity was defined in terms of qualitatively distinct motions
arising from distinctly oriented paths through an appearance space of complex stimuli.
In Experiment 2, we find that diagnosticity as defined by the direction of motion along
paths of the same orientation in appearance space is not sufficient to induce the RT
differences we had observed previously. In this case, object motion across category
was qualitatively very similar, only differing in the sign of the flow field arising from
object deformation.

Taken together, these two results tell us several useful things about the relationship
between observed object motion and representations of object form. First of all, we
must reject the notion that observers who see a dynamic object encode all the images
in the sequence and maintain a full spatiotemporal volume of object appearance. If this
were the case, we should never see differences between groups in either one of our
experiments, since the static contents of training were identical across conditions in
each task. Second, the particular direction of image change along a path in appearance
space has little impact on form encoding. That is to say, the difference between forward
motion and its reverse is essentially nil in this context. Qualitatively distinct motions
between categories are required to cause a difference in static image processing.

This last observation puts an important constraint on the features of object motion that
influence task performance in Experiment 1. As we have already mentioned, a feature
like the optic flow field defined by two successive images is not likely to be relevant to
this task as it is classically defined. The sign of the flow vectors across the flow field
must not be relevant to this task, or else Experiment 2 would have yielded results
similar to Experiment 1. Perhaps it is only the pattern of flow vector magnitudes that is
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relevant, or some more general measure of variance in image space that is symmetric
with respect to time, and thus essentially "non-diagnostic" under the conditions of
Experiment 2.

We close by suggesting that a useful way to discuss the effect observed in Experiment
1 may in terms of a model for extracting "common" and "relative" object components for
recognition. The decomposition of visual stimuli into components that are shared and
the resulting residual components has been a fruitful model for both the perception of
motion and surface reflectance (Bergstrom, 1977; Johannson, 1950). To our
knowledge, such an analysis has not been carried out in the domain of object
perception and recognition. Interpreting our results in this framework, "non-diagnostic"
object motion may provide a strong "common" component from which a good
representation of form might be extracted as a relative component. "Diagnostic" motion
may not allow such a useful decomposition to proceed, leading to a weaker
representation of form that does not support efficient classification during our test
period. Applying vector analysis to real images may yield many interesting insights
regarding dynamic object perception.

Conclusions
We have observed that the observation of diagnostic object motion during training can
affect static classification performance at test. Our results suggest that the relevant
processes relating object motion to object form are time-symmetric, and that observers
do not perfectly encode static form following dynamic training. While further work is
needed to elucidate the interaction between motion and form in this context, a vector
analysis decomposition of dynamic objects may be an useful model for future study.
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Section 2 - Encoding the appearance of a moving object
In this second section of the thesis I investigate how the motion of an object affects an
observer's memory for the appearances observed during exposure. That is, how does
the motion of an object affect what we remember of its appearance? This is a distinct
question from the studies of discrimination and generalization I have described in
Section 1, insofar as I presently address the issue of how strongly individual
appearances are encoded rather than how well a given code can be applied to some
task. In further contrast to the experiments already described, I work solely with rigid
rotation in these studies. The advantage this offers is the ability to completely
characterize the state of each stimulus in terms of its true form, position, and orientation
in all phases of exposure and testing. This allows us to conduct thorough parametric
analyses that were not realizable given the less constrained nature of the stimuli used in
Section 1.

In Chapter 4, we carry out just such an analysis via a thorough investigation of the
relationship between object motion and the fidelity of immediate recall for object
appearance. Using a forced-choice recall task, we characterize the influences of object
orientation, sequence smoothness, object speed, and sequence predictability on the
encoding of individual appearances. The result is a quantitative model of dynamic object
perception that can be applied to arbitrary objects.

Finally, in Chapter 5 I ask whether or not so-called "canonical views" are formed
immediately after brief exposure to a moving object. In this study, I use simple
"paperclip" objects for which full ground-truth structural data can be obtained readily,
allowing for the construction of a plausible a priori model of view canonicity dependent
on the relationship between 3-D form and projected 2-D appearance. I characterize
view canonicity around a densely sampled viewing circle using three distinct behavioral
paradigms, and ask in each case how well both static and dynamic implementations of
the pre-determined canonicity model can be used to fit the data. I find that privileged
views emerge in a systematic fashion in each behavioral setting, but that these
measures are highly task-dependent. However, the canonicity model I develop proves
quite capable of modeling observers' judgments, and benefits substantially from the
inclusion of dynamic information. This latter point suggests that canonicity depends
directly on object motion, rather than solely on form. Following this chapter, I present a
concluding chapter summarizing the contributions of the thesis.



Introduction to Chapter 4
Chapter 4 describes a comprehensive set of studies designed to characterize the
effects of recent perceptual history on the strength of encoding a single static image. As
in Chapters 1 and 2, an image-level discrimination task is used to examine how
dynamic stimulus characteristics affect static form processing in the absence of high-
level cognitive mechanisms. However, in Chapter 4 I1 am no longer concerned with the
ability of an observer to notice the difference between two stimuli. Instead, these tasks
are designed to examine the observers' ability to faithfully encode just one stimulus
subject to various manipulations of stimulus dynamics.



Object motion and the immediate recall of object appearance

Abstract
We investigate how object motion affects the fidelity of immediate recall for object
appearance. Observers viewed complex three-dimensional objects undergoing rigid
rotation and were asked to report the last image presented in a sequence. Our results
support three main conclusions: First, recall errors in this task reflect uncertainty in the
estimate of object appearance rather than uncertainty in an estimate of object position
in space. Second, coherent object motion causes observers to maintain a "running
average" of object appearance, inducing a bias in recall errors towards images
appearing before the target. Finally, absolute error (which disregards the distinction
between past and future images) is almost entirely determined by target/distractor
similarity and the presentation time of the target. These results are discussed in the
context of previous work regarding "representational momentum" and a preliminary
model is advanced for predicting recall errors for images in dynamic sequences.

Introduction
The natural visual world is in a constant state of flux. This requires the successful
observer to carry out important computations online, interpreting new data and acting on
it as soon as it arrives. Dynamic visual input contains multiple cues for a wide range of
ecologically relevant tasks and estimating the future state of the world given the recent
past is unquestionably valuable. This latter task is especially relevant for object
perception insofar as successful interaction with a dynamic object depends critically on
both the ability to determine what will happen next and the ability to determine what is
happening now.

During natural viewing, we almost always view objects in some sort of dynamic context,
yet we know very little about how that context affects our perception. How does the local
neighborhood of images in time affect our memory for an individual image in a
sequence depicting object motion, for example? Does the predictability of appearance
within a sequence make it easier or harder to correctly recall what was seen at a
particular point in time? If the immediate past affects perception of the present, how far
back in time does that influence reach? These apparently simple questions have yet to
be answered completely. While various aspects of object motion and object perception
have been investigated, we argue that at present we lack a thorough understanding of
how aspects of object dynamics affect the encoding of object appearance. We continue
by briefly reviewing some key results relevant to this broad topic, and discuss how our
current experiments contribute to our understanding of dynamic object perception.

Representational Momentum
The majority of work relevant to the relationship between object motion and memory for
object appearance is dedicated to investigating the nature of so-called "representational
momentum." Representational momentum (RM), by analogy to physical momentum,
suggests that moving visual stimuli have inertia in appearance space (Anstis &
Ramachandran, 1987; Freyd, 1983; Freyd & Finke, 1984). That is, if an observer is
watching a moving stimulus (say a dot that is translating to the right) that is suddenly



stopped mid-sequence, the observers' memory for the dot's position will be biased
further along in the direction it was moving. This bias can be revealed in a variety of
ways. One can ask the observer to report where the dot was last seen, for example.
Rather than asking the observer to estimate the position him or herself, one can also
present the observer with candidate positions that are to be accepted or rejected. A
greater acceptance rate for "advanced" items as opposed to "delayed" items could
indicate the presence of RM, as could a faster response time for the rejection of
"delayed" items. These measures, as well as others, have been used by many
researchers to investigate the characteristics of representational momentum.

Since the initial reports of RM for simple moving objects, there have been a wide variety
of studies examining different aspects of the phenomenon (Thornton & Hubbard, 2002).
An exhaustive list detailing all the possible factors that can affect RM is beyond the
scope of this paper. Instead, we list below a subset of results that are particularly
relevant for the current study:

1) RM is characterized by errors of immediate recall biased towards projected visual
outcomes. (Freyd & Finke, 1984)

2) The gap between the ending of a sequence and the test phase critically affects
RM. A short gap leads to "forward displacement" errors while a longer gap leads
to the exact opposite. (Freyd & Johnson, 1987)

3) Greater object speed leads to more pronounced RM, in keeping with the physical
analogy. (Freyd & Finke, 1985)

4) RM can be reduced or eliminated by varying the final stimulus in experimental
sequences in an unpredictable way. (Kerzel, 2002)

The existence of RM suggests that object motion can directly affect immediate recall for
object appearance in a simple way. Object motion is automatically used to generate
predictions, such that immediate recall is biased towards an extrapolated future percept.
Over several seconds, the influence of the prediction is gradually overwhelmed by the
influence of past stimuli. The first part of this proposal is very similar to typical
descriptions of the "flash-lag" effect, in which a flashed stimulus "lags" a persisting
dynamic stimulus potentially due to continuous predictive updating of the dynamic
object's appearance (Nijhawan, 1994). The generality of the proposed mechanism
underlying both phenomena is appealing. Both RM and the flash-lag effect have been
observed in diverse scenarios , making it tempting to suppose that the main relationship
between object motion and object perception is predictive. This basic proposal is
satisfying, but still leaves open several issues that we need to address.

First, we point out that both RM and flash-lag experiments tend to confound object
position with object appearance, making it difficult to determine exactly what is being
predicted during exposure to a dynamic stimulus. For example, the first RM experiments
used a rotating rectangle as the dynamic input. Similarly, the first report of the flash-lag
effect used a rotating line. This common thread has led to fruitful work suggesting
unified models of both phenomena (Musseler, Stork, & Kerzel, 2002), yet in both cases,
we cannot say whether observers are updating positions or appearances since those
two measures are perfectly correlated. With only a few exceptions, localization is the
focus of most RM and flash-lag research, leaving open a very important question for



understanding the perception of dynamic 3-D objects: If object motion impacts
perception, is it true world motion that is most relevant or motion through appearance
space? For complex objects that self-occlude as they rotate, position change and
appearance change are not interchangeable, making this an important issue.

Second, it is also unclear what the relevant time scale for prediction is in either RM or
the flash-lag effect. That is, how far back in time does the influence of perceptual history
over current perception reach? The flash-lag effect has previously been thought of as a
by-product of neural transmission delays, which would suggest that prediction should be
governed by a fixed time interval. However, in both phenomena the instantaneous rate
of position and/or appearance change that an object experience may also be relevant.
This possibility has not been explored in a quantitative manner as of yet.

Overall, while both RM and the flash-lag effect suggest that object motion can affect
immediate recall for object appearance, scaling up the proposed mechanisms to
incorporate the perception of complex objects will require more work. In particular,
teasing apart the contributions of position change and appearance change to the
ultimate encoding of a particular image is necessary for understanding natural object
perception.

Representation and recognition of complex moving objects
Independent of the RM and flash-lag paradigms, there are multiple experiments
designed to probe the representational content of dynamic stimuli. That is, what do we
actually extract from experience with a moving object? These studies typically use
priming tasks to determine whether or not an apparent motion sequence can prime
images that did not actually appear in the stimulus (Kourtzi & Shiffrar, 1997; Kourtzi &
Shiffrar, 1999a; Kourtzi & Shiffrar, 1999b; Kourtzi & Shiffrar, 2001). For example, does a
two-frame stimulus depicting an object at a 90-degree and 180-degree pose prime an
image at the 135-degree position? If so, we can be confident that interpolation is a key
feature of dynamic object perception. Given that same stimulus, is a 45-degree stimulus
also primed? What about a 225-degree stimulus? The answers to these two questions
help determine whether or not extrapolation occurs in these more complex settings.
Overall, the key findings from work with novel and familiar objects undergoing both rigid
and non-rigid motion support interpolation far more than extrapolation (Kourtzi &
Nakayama, 2002). In these settings, object motion appears to mostly serve as a means
for filling in the gaps between stimuli that are actually displayed. This seems counter-
intuitive given our discussion of RM, but perhaps the distinction between apparent and
"real" motion is responsible for the differing results. Reconciling these findings is an
important task for advancing our understanding of dynamic object perception.

Finally, we briefly discuss what is currently known about object motion and its influence
on the recognition of static stimuli. While there is a great deal of work concerning
various ways object motion may serve as a feature for recognition (Spencer, O'Brien,
Johnston, & Hill, 2006; Stone, 1998; Stone, 1999; Vuong & Tarr, 2004; Wallraven &
Bulthoff, 2001), we focus here on the issue of whether or not the observation of
coherent motion leads to significantly better recognition than exposure to the same set
of images in an unordered sequence. The answer to this question is unfortunately very
complex at present. An advantage for dynamic stimuli has been reported in several



different tasks (Lander & Bruce, 2000; Lander, Christie, & Bruce, 1999; Lawson,
Humphreys, & Watson, 1994; Thornton & Kourtzi, 2002) , but an advantage for the
randomized stimuli has also been found (Harman & Humphreys, 1999). Furthermore,
while temporal proximity appears to induce automatic image binding over time (Wallis,
1996; Wallis, 1998; Wallis & Bulthoff, 2001), pure structural similarity also appears
sufficient to induce the same binding to a lesser degree (Perry, Rolls, & Stringer, 2006).

A parametric study of temporal factors on complex object encoding
In the present study, our goal is to develop a clear understanding of how object
dynamics affects immediate recall for appearance. To do this, we will attempt to steer
clear of established paradigms like RM and the flash-lag effect. The reason for this is
that we want to provide a comprehensive set of results concerning object motion and
appearance encoding that is independent of the conflicting methodologies we have
mentioned above.

In particular, we are interested in the following questions:

1) Do errors of recall reflect uncertainty in position or appearance?
2) Do local changes in motion affect recall when global motion is preserved?
3) How does complete sequence randomization affect recall?

To answer these questions, we adopt a simple protocol in which observers view a
dynamic sequence and then report the last image they saw in a forced-choice task.
Throughout, we shall manipulate the sequences our observers see in order to gain
insight into the questions we raise above. This strategy allows us to hold test conditions
constant during all phases of our experiments, while varying the parameters of our
motion sequences as much as we wish. This facilitates comparison across different
experiments, making it far easier to discuss a unified mechanism governing behavior in
this setting.

Experiment 1
Our goal in Experiment 1 is to determine whether recall errors for complex dynamic
objects reflect observers' uncertainty in positional estimates or appearance estimates.
To examine this, we ask observers to view sequences of novel, complex objects
undergoing rigid rotation. Our objects are non-uniform, meaning that constant change in
angular position does not lead to constant change in appearance. Instead, object
appearance varies substantially over the course of the rotation sequence while angular
velocity is fixed.

Methods
Subjects - 22 participants (M male, F female, average age -23 years) were recruited for
Experiment 1. All observers were naive to the purposes of the experiment, and reported
normal or corrected-to-normal vision.



Stimuli - Two novel objects were used to generate image sequences. The objects used
to construct these short movies were taken from the publicly available "Greeble"
stimulus set (Gauthier & Tarr, 1997) and are shown from a frontal view in Figure 1.
These objects were selected because their structure is simple, yet provides non-uniform
foreshortening and occlusion of object parts during uniform rotation.

Greeble #1 Greeble #2
Fig. 1 - The two "Greebles" used to create simple image sequences of rigid rotation. These items were
randomly selected from a larger set of objects.

Each object was rendered while rotating about two axes simultaneously. Rotation about
two axes means that at each time step, the object is first rotated about one axis by 12
degrees and then rotated about the second axis by the same amount. Object 1 was
rotated a full 360 degrees about its X and Z-axes, starting from an upright, frontally
viewed position. Object 2 underwent a full 360 degree rotation about the Y and Z-axes.
In both cases, the full animation was rendered using 30 frames. XZ and YZ rotations
were used because they produce different degrees of foreshortening and self-occlusion
during rotation. Specifically, in one case an extreme "end-on" view of the object is
obtained during rotation while in the other sequence one obtains an extreme "side-on"
view. "Keyframe" depictions of both rotation sequences are displayed in Figure 2.

Fig. 2 - "Keyframes" depicting Object (top) and Object 2 (bottom) undergoing XZ and YZ rotation,
respectively.

Grayscale Greeble images were rendered against a black background under a single
point-light source using PovRay v3.5 for Windows. Each image was 123x123 pixels in
size.

--_ -_ _ _ .. ... ...



Procedure
In Experiment 1, observers were asked on each trial to view a short sequence
containing multiple images of either Object 1 or Object 2 and remember the last image
in the sequence. Each sequence began with the same initial frame and was played at a
rate of 12 frames/sec.

Each sequence ended with a 250ms blank period followed by the presentation of a 1/f
grayscale noise mask for 100ms. After an additional 2000ms delay period, observers
were presented with 9 images of the object arranged in a 3x3 grid. (Figure 3) One of
these items was the final image in the preceding sequence, while the other 8 images
were distracters. Distracters were always the 8 images closest to the target image in
terms of 3-D oriientation of the object. The position of the target and distracter images
within the grid was randomized on each trial. Observers indicated the position of the
target using the numeric keypad and had unlimited time to generate a response.
Response time and accuracy were recorded.

Fig. 3 - An example of the test displays presented to the participants following the observation of an
image sequence. One of these images depicts the last image presented in preceding sequence, while the
other 8 are its closest neighbors in terms of 3-D orientation.

Our primary manipulation is to vary what frame within the sequence serves as the target
frame from trial to trial. Out of the 30 possible images of each object, the 20 images in
the middle of the sequence were selected as targets. Each sequence thus began on
frame #1, but could end on any frame between #6 and #25, inclusive. Each of these
targets was assigned a unique and fixed set of 8 distracters, which were those images
"closest" to the target image in terms of 3-D orientation of the object. Though the
relative positions of targets and distracters are identical across different targets,
target/distracter similarity in appearance space varies substantially.

Each observer carried out 12 trials for each of the 20 target images, for a total of 240
trials per session. Participants viewed the stimuli in a brightly lit room on a 19" Dell



monitor. Observers were seated comfortably approximately 50cm from the display, with
no constraints on head or eye movement. All stimulus display and response collection
routines were executed with the MATLAB Psychophysics Toolbox for Windows
(Brainard, 1997; Pelli, 1997). Observers typically completed the task in about half an
hour and were compensated for their time.

Results
For each observer, we calculate the mean absolute error for each target frame. We
define error in terms of the increments in angular position that were used to generate
the full sequence. This means that on each trial, observers can either pick the correct
target (error = zero) or pick one of the distracters in the set (error less than or equal to 4
increments). For the moment, we do not differentiate between the selection of a
distracter that appeared prior to the target during the dynamic stimulus and the selection
of a distracter that was "in the future."

We define error in this way to make it immediately clear whether recall errors are a
function of positional uncertainty or appearance uncertainty. If observers make errors in
target selection due to noise in their estimate of 3-D orientation, we should expect a flat
error function across all target frames. This is because the positional similarity between
targets and distracters does not vary across target frames. If however, this task is
carried out via estimates in 2-D appearance, we should expect error to fluctuate
significantly across different target frames. In Figure 4, we display plots of mean
absolute error across target frames for both Object #1 and Object #2.
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We used a 2x20 mixed-design ANOVA (with object as a between-subjects factor and
target frame as a within-subjects factor) to determine if the differences in error for
various target frames were significant. We find a significant effect of target frame
(F(19,20)=1.78, MSe=0.176, p=0.024), but no significant effect of object (F(1,20)=1.37,
MSe=5.46, p = 0.26). The interaction between object and target frame was also not
significant (F(19,20)=0.721, p = 0.80).

Discussion
Experiment 1 demonstrates that observers do not make errors in immediate recall
based on a noisy estimate of position, but instead make smaller or larger errors
depending on the similarity target and distracter appearance. This intuitive result is an
important first step in developing a coherent theory of dynamic object perception. We
have found good evidence that the relevant space for processing dynamic object input
is an appearance space rather than a positional space. While this may not be
surprising, selecting the right representational space for dynamic objects is the
cornerstone of a comprehensive theory.

Now that we have reason to think errors in this task are tied to appearance rather than
position, we continue by asking if variations in sequence dynamics can modulate the
error function. We shall investigate this possibility by carrying out a simple manipulation
on our original object sequences that drastically alters motion on a small time scale,
while leaving the large scale movement of the object more or less intact. Errors at each
target frame in this manipulated sequence will be directly compared to errors at the
same targets when they are part of the original smooth sequence.

Experiment 2
This second experiment serves two important purposes. First of all, it is an important
control for the results in Experiment 1. At present, we cannot say whether the motion
observed on each trial contributes to the error function at all, or if the conditions at test
are responsible for the fluctuations we observe in recall error. Similarly, since each
target frame appeared at its own unique timepoint in the original sequence, the length of
the sequence up to each target frame is a confounding factor. By manipulating the
sequence but preserving the target/distracter sets, we can determine the extent to
which object motion modulates error when these conditions are matched. Second, an
effect of the manipulated sequence on recall accuracy would suggest that object motion
over relatively short time scales is more relevant for immediate encoding than motion
over longer intervals.

Methods
Subjects - An additional 16 participants (M male, F female, average age -25 years)
were recruited for Experiment 2. All observers were naive to the purposes of the
experiment, and reported normal or corrected-to-normal vision.

Stimuli - The objects described above in Experiment 1 were also employed for this
experiment.



Procedure
As in our first experiment, observers were asked on each trial to view a short sequence
containing multiple images of either Object 1 or Object 2 and remember the last image
in the sequence. The same 9AFC task described above was implemented again in this
experiment, this time with only 10 target images (and associated distracters) for each
sequence. The target images selected were the even numbered frames between #6
and #24, inclusive.

In this experiment, observers performed the recall task after viewing both the original
smooth tumbling sequences and what we call a "locally scrambled" sequence. In the
latter case, the initial ordered sequence of frames is scrambled by flipping the order of
each pair of images. For example, if the smooth sequence [ABCDEF] is scrambled in
this manner, it becomes [BADCFE]. The resulting sequence depicts an oscillatory "saw-
tooth" movement in which the object smoothly rocks backward before jumping forward
abruptly. At a long time-scale, object motion is roughly identical across the smooth and
locally scrambled sequences. In both cases, the object begins in one position and
tumbles around two axes until it returns to that initial pose. At small time-scales,
however, the sequences are very different in that the scrambled sequence depicts the
object constantly changing direction and angular speed.

Each observer carried out 12 trials for each of the 10 target images in both conditions,
for a total of 240 trials per session. Viewing conditions, stimulus display and response
collection procedures were all carried over from Experiment 1.

Results
As before, we calculate mean absolute error across target frames in terms of angular
increments. Though we have seen in Experiment 1 that position is not the relevant
variable in this setting, we will continue to use this error measure for ease of
comparison across experiments.

In this task, we are most interested in whether our locally scrambled sequences induce
a significant change in recall error when target frame is fixed. We do not have an a priori
hypothesis as to whether we expect scrambling to make performance better or worse,
nor do we characterize errors in terms of the temporal relationship between the true
target and the selected distracter. In Figure 5, we display plots of mean error as a
function of target frame for both objects in the smooth and locally scrambled conditions.
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Figure 5 - Recall error as a function of final frame for both objects in the coherent and locally scrambled
conditions. We see a main effect of the scrambling manipulation, indicating that appearance change over
short time scales does affect recall.

Inspecting Figure 5, it appears that the locally scrambled sequences led to slightly
greater amounts of error than the original smooth sequences. To determine if this was
indeed the case, we carried out a 2x2x10 mixed-design ANOVA with object as a
between-subjects factor, and target frame and sequence condition as within-subjects
factors. We find a significant effect of sequence condition (F(1,14)=6.38, MSe=0.326,
p=0.025), but no main effect of either target frame (F(9,14)=1.25, MSe=1.50, p=0.273)
or object (F(1,14)=1.65, MSe=0.59, p=0.22). No interactions between these factors
were significant.

Discussion
Experiment 1 demonstrated that positional estimates were an unlikely basis for recall
errors in this task, but did not make a clear case for a contribution of object motion on
the immediate memory for object appearance. The results of Experiment 2 however,
provide good evidence for a relationship between the dynamics of a sequence and the
encoding of its constituent frames. Specifically, we see that locally scrambling frames
within a sequence leads to significantly larger errors in our recall task. This occurs
despite the fact that the absolute time at which each target frame appears is matched
across conditions, as is the set of distracters accompanying each target. The large-
scale dynamics of the object are preserved as well, indicating that image change over
short time intervals can have a significant effect on the fidelity of object appearance
encoding. This result highlights the influence of object motion on the perception of
appearance. Clearly the perceptual experience immediately preceding exposure to a
stimulus can modulate the accuracy with which that stimulus is remembered.

We conclude by carrying out a final experiment designed to investigate two issues that
neither Experiment 1 nor Experiment 2 address. The first of these is the question of how
object speed affects recall error. We have seen in Experiment 2 that varying the amount
of local image change between frames in our sequence appears to affect error in our
task. An important question to ask then is whether sequences with different dynamic
properties but identical local image differences gives rise to significantly different error
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functions. Parametrically varying object speed achieves this goal, in that local image
differences are preserved while the sequence itself is sped up or slowed down relative
to some baseline. The second question we ask is the extent to which predictability plays
an important role in determining the error at each target frame of a dynamic sequence.
In both of our previous experiments the sequences observers viewed were highly
predictable, even after local scrambling. This was especially so due to our selection of a
common starting point for all sequences an observer viewed during a session. What
happens to our error function then, if all predictability is removed? In our final
experiment, we compare performance with the original smooth sequences to that
obtained with a completely randomized sequence to answer this question. This last
manipulation allows us to examine behavior in the absence of true object motion, but
with all target/distractor relationships and other display properties preserved.

Experiment 3

Methods
Subjects - An additional 16 participants (M male, F female, average age -25 years)
were recruited for Experiment 3. All observers were na''ve to the purposes of the
experiment, and reported normal or corrected-to-normal vision.

Stimuli- The objects described in the two previous experiments were used in this
experiment also..

Procedure
Our original 9AFC task was implemented once again in this experiment, again with only
10 target images (and associated distracters) for each sequence. The target images
selected were the even numbered frames between #6 and #24, inclusive, as in
Experiment 2.

To assess the role of speed and predictability on recall error in this final task, we altered
our original object sequences in the following ways:

Speed - All sequences were played at three different speeds. In our slow, moderate,
and fast conditions, each frame within a sequence was presented for approximately
120ms, 85ms, and 50ms respectively. Varying the speed of coherent sequences allows
us to investigate the possible effects of greater image "momentum" on recall, while the
same manipulation applied to randomized sequences helps us independently
characterize the possibly deleterious effects of limited presentation time.

Spatial Coherence - Images within a sequence were either presented in their natural
order (depicting smooth rotation) or in a randomized order independently determined
online. This allows us to determine whether or not the observation of smooth,
predictable motion has any effect on encoding. The randomized trials also provide us
with what we consider a "pure" measure of the effects of target/distracter similarity on
recall. Comparing accuracy over target frames across coherent and randomized
sequences gives us the ability to see if the amount of encoding error is at all contingent
on sequence predictability.



Finally, in this last experiment we no longer use a common starting point for all
sequences. We also do not conflate target frame with sequence position as we have
done in both of our previous experiments. The reason for this is that we wish to remove
all cues to sequence length from both the smooth and randomized sequences. This is
vital if we want to claim that the primary difference between the smooth and randomized
sequences is the lack of temporal contingencies in the sequence. If we opted to re-use
the same design we used in Experiments 1 and 2, observers would be able to use trial
length to estimate target appearance for smooth sequence trials, but not for randomized
sequence trials. Previously, this strategy was available to observers in all conditions, so
we were not concerned about its use. Here, however, we need to take measures to
ensure that any differences we see between smooth and randomized sequence display
result from differences in predictability rather than the application of different encoding
strategies.

On each trial, the number of frames contained in the image sequence was drawn from
an exponential distribution with a mean of 20 frames. The exponential distribution was
chosen because it has a constant hazard function, making it impossible for observers to
guess the remaining length of an individual sequence given its current duration. This
makes it unlikely that observers will "ramp up" attention at a certain point since they
know a target must be imminent, and nullifies the validity of trial length as a cue for
target appearance in both conditions.

Each observer carried out 9 trials each of 10 target frames, 3 speeds, and 2 coherence
conditions for a total of 540 trials in a full session. The task was typically completed in
an hour and observers were compensated for their participation.

Results
In Figure 6 we display mean recall error across subjects as a function of target frame for
both smooth and randomized sequences of both objects at all three speeds. In answer
to the questions we posed in this experiment, it looks as though both sequence speed
and randomization have surprisingly little effect on performance.

To confirm this intuition, we carried out a 2x2x3x10 mixed-design ANOVA on the data.
Speed, sequence type, and target frame were all within-subject factors, while object
was a between-subjects factor. In the interests of clarity, we shall only describe the
significant effects in the data rather than provide full details of each comparison. We
observe main effects of speed (F(2,14)=10.48, MSe=0.149, p<0.001) and target frame
(F(9,14)=3.00 ,MSe=0.491, p = 0.003). There were also marginally significant
interactions between target frame and object (F(9,18)=1.813, p=0.072), as well as
between sequence type and object (F(1,18)=4.20, p=0.06).
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The effect of speed is significant, small in magnitude. This refutes our hypothesis that
local image change is the sole determinant of recall error magnitude, suggesting instead
that there are deleterious effects of increased speed in both smooth and randomized
sequences. A simple model in which encoding noise is modulated directly by
presentation time can account for this result. Furthermore, both the main effect of target
frame and its interaction with object are compatible with our previous assertions that
error is determined by target/distractor appearance similarity rather than position
uncertainty.
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It is very surprising, however, that there is little effect of randomization on error
magnitude. Considering the results from Experiment 2, one might expect that the
dramatic change in sequence dynamics brought on by full randomization should greatly
disrupt performance. To the contrary, we find no main effect of sequence type at all and
only a marginally significant interaction between sequence type and object. This latter
result suggests that randomization does affect the error function, but in an object-
dependent way. Though this does indicate a potential role of predictability in
determining the magnitude of the error function, it also implies that the mechanism
governing perception under these conditions is complex.

We conclude our analysis by examining the direction of error in this task, an aspect of
our data that we have heretofore ignored. We have only considered absolute error up to
this point since we are interested in the uncertainty of observers' appearance estimates
rather than their sign, and also to distinguish our work from investigations of RM.
However, since we are investigating the role of predictability in this last experiment, a
brief examination of the direction of recall errors across conditions seems warranted.
Prediction is obviously a directional phenomenon, and so additional differences
between our smooth and randomized sequences might be evident if we include this
information.

To that end, we define a bias term for each observer in each of the three speed
conditions and both sequence types. This bias term reflects the number of errors that
could be considered "predictive" based on their sign, normalized by the total number of
errors each observer makes. The magnitude of each error does not contribute to the
value of this bias term; it is only a proportion of predictive errors to total errors. A value
of 0 would indicate that all errors were post-dictive, while a value of 1 would indicated
that all errors were predictive. Given that the sign of errors is essentially meaningless in
the randomized sequences, we expect that the bias term in all randomized conditions
will be close to 0.5, while we may see a different value for the smooth conditions.

The bias term was calculated for all observers, and a 2x2x3 mixed-design ANOVA was
run on these values. Speed and sequence type were within-subjects factors and object
was a between-subjects factor. We find only a main effect of sequence type
(F(1,14)=1 5.84, MSe=0.0067, p=0.001) with no other significant main effects or
interactions. Figure 7 displays the average value of the bias terms across subjects, from
which we see that observers' error bias is actually significantly less in the smooth case
than the randomized case. This indicates that post-dictive errors are more prevalent in
the smooth sequence than in the randomized case, implying that temporal contingency
in the sequence induces a sort of retrograde mode of perception.
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Fig. 7 - Average bias index across observers for all speeds and sequence types for both objects. Smooth
sequences give rise to significantly lower bias values than randomized sequences.

Discussion
Speed and sequence randomization both appeared to have small effects on error in this
task, but both factors either significantly or nearly significantly changed the error
function for appearance recall. Increased speed leads to increased error, consistent
with a model where increased presentation time narrows appearance uncertainty.
Randomization appears to affect absolute error in a potentially complex way, but by
expanding our analysis to incorporate the sign of errors made by observers, we found a
clearer relationship between predictability and performance. A stong difference between
performance in the smooth and randomized conditions was found in the proportion of
post-dictive errors made by each observer. Predictability in the sequence seems to
induce a bias for "backwards-averaging" similar to the U-shaped function reported in
RM studies.

General Discussion
Overall, these results point to a relatively simple model of dynamic object perception
that we can describe in some detail. We conclude by briefly outlining the major features
of this model, as informed by the results of our three experiments.

Experiment 1 indicates that observers do not make errors based on a fixed level of
uncertainty in object position, but likely do so based on a fixed level of uncertainty in
appearance. The result is that varying target/distractor similarity at test causes varying
amounts of absolute error across target frames. Our model must therefore operate in an
appearance space rather than taking object positions as input. So far, this need not be a
model of dynamic object perception since there is no need to account for anything
besides the conditions during the static test.

Experiment 2 and Experiment 3 provide additional data that force us to incorporate
aspects of object motion into our model, however. The effect of speed we observe in



Experiment 3 indicates that limited presentation time increases uncertainty for both
sequence types. Thus, our model must be initialized with a baseline level of appearance
uncertainty that can be modulated by presentation time. Though the inclusion of a
speed (or more accurately, presentation time) term is a first step towards a model of
dynamic perception, this is still essentially a static model since the temporal
contingencies between frames do not contribute to the error calculation. This changes
when we consider the observed effects of both local scrambling and randomization from
our second and third experiments, however. In both cases, we have strong evidence
that the order of images in the sequence affects recall error, forcing us to incorporate
inter-frame relationships into the model.

We begin by noting that the role of temporal predictability can actually be stated fairly
simply. As determined by our comparison between smooth and fully randomized
sequences in Experiment 3, predictability leads to a slight retrograde bias in error.
When there is no predictability there is no bias. This distinction between predictable
sequences and unpredictable sequences can be modeled as a term that shifts the
mean percept slightly towards the past by some amount if the input sequence is
predictable. Can this shift explain the results obtained in Experiment 2? We suggest that
it can. If we allow the magnitude of the shift brought on by sequence predictability to
depend on the difference between the target frame and its immediate antecedent, this
can explain the significant increase in error related to local scrambling. Specifically, let
the perceived last frame in a predictable sequence be an interpolation between the true
target and its predecessor. This directly introduces the retrograde bias observed in
Experiment 3 and also predicts that large image differences between neighboring
frames should lead to larger error rates independent of target/distractor similarity. This
is exactly what we observe in Experiment 2, since local scrambling as we have defined
it leads to our target frames being more different from their immediate antecedents than
they were in the smooth sequence. An interesting prediction that follows from this model
is that the effect of local scrambling should be nullified if we simply reversed the
sequences, since this restores the image change accompanying target presentation to
the same level as in the smooth sequence.

We close by describing our model formally, so that it can be tested against data
obtained from arbitrary image sequences.

Given a predictable sequence of images represented in appearance space by [xl, x2...
Xn] that are played to observers at speed s. The probability of selecting image x as the
target when image Xn is the true target is given by:

x- (x-x-_) 2

1 2e 2(s)
p(x) = e 2(s)

22u(s)7r

in which T is either 0 or 1 for unpredictable and predictable sequences respectively, and
the value of sigma is given by:



a(s) = a * s + o

Determining an appropriate representation of the sequence images to produce the
vectors in x is, of course, a non-trivial problem. However, once this is done, the only free
parameters in this model are the baseline uncertainty in appearance (Go) and the
coefficient that governs the influence of speed on net uncertainty (a). Both of these
parameters can be set from the data obtained from fully randomized trials so that the
model can be tested on predictable sequences. The result is an empirically-based
quantitative model of dynamic object perception.

Conclusions
Object motion has direct consequences for the fidelity of object appearance encoding.
Speed (or presentation time), predictability, and target/distracter appearance similarity
all contribute to observers' ability to accurately report the images seen at the end of a
dynamic sequence. Object position appears to be an inappropriate variable in modeling
behavior in this setting, due to the non-linear relationship between object orientation and
object appearance for complex 3-D forms. The model we propose for approximating
behavior in this task assumes a level of uncertainty in appearance space that is
modulate by presentation time, and has a bias towards past stimuli as determined by an
interpolation between the true target and the penultimate image in the sequence. This
bias is also modulated by the level of predictability in the sequence. The proposed
model is an important first step towards a quantitative theory of dynamic object
perception.
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Introduction to Chapter 5
In Chapter 5, the relationship between object motion and the strength of encoding for
individual images is again the subject of study. Here, however, the focus is shifted away
from immediate recall for appearance in favor of longer-term memory for the constituent
images in a dynamic sequence. Furthermore, I adopt a modeling approach in this last
chapter to analyze the contributions of both object form and object motion towards
predicting observers' ability to remember the images on display during exposure to a
novel moving object.



Recovering canonical views of an object from dynamic input

Abstract
We examine how preferred views of a novel object's appearance might be selected
online during exposure to a dynamic stimulus. For our problem domain, we select
closed "paperclip" objects. Though they are highly unnatural stimuli, these objects allow
us to define a reasonable definition of global canonicity that can serve as a standard for
evaluating observer behavior in several tasks. We compare observers' explicit ratings of
view canonicity to implicit measures of the same. We conclude that explicit ratings are
well predicted by a form-based canonicity model that does not account for dynamic
information, but implicit ratings are not. An alternative model based on the observed
sequence of images is developed and compared to the form-based proposal using the
implicit data.

Introduction
It is by now a well-established fact that observers do not recognize familiar objects in a
completely view-invariant manner (Logothetis, Pauls, Bulthoff, & Poggio, 1994; Tarr &
Bulthoff, 1995). Instead, it is usually the case that certain views of an object are
recognized faster and more accurately than others (Palmer, Rosch, & Chase, 1981).
These views are called "canonical views" to reflect that they are the "best" views of an
object for recognition.

Previous studies have attempted to determine what makes a particular view of an object
canonical, both through psychophysical and computational methods. Empirically,
canonical views tend to limit foreshortening of the object along major symmetry axes
(Humphrey & Joliceur, 1993; Lawson & Humphrey, 1996) (although some researchers
have reported exceptions to this rule of thumb (Perret, Harries, & Looker, 1992)). A ¾
view, often from a slightly elevated position, tends to be selected very frequently by
observers who are asked to produce the "best" image of an object (Blanz, Tarr, &
Bulthoff, 1999). It has been suggested that this vantage point provides the most
information about 3-D form for a wide range of natural objects viewed in typical settings.
Another explanation is that such views tend to minimize image redundancies (such as
symmetry), making them rich in information as defined within an information theory
framework. Computationally, pose robustness has been suggested as a principle
governing the selection of canonical views for arbitrary objects (Peters, Zitova, & von
der Malsburg, 2002). Under this model the attributes of any individual image are
irrelevant. Instead, it is the extent to which small perturbations of the objects position
lead to substantial changes in 2D appearance that determines canonicity. A canonical
view as defined by pose robustness is a view of the object that will change little when
the object moves slightly, making it likely that this view might be selected via
unsupervised clustering algorithms, for example.

There are several issues regarding the selection of canonical views left open by all of
these studies. First of all, surprisingly little behavioral work has been carried out on
observers' judgments of canonicity for views of unfamiliar objects. As a result, there is



not a great deal known about the acquisition of canonical views during object learning.
Second, many proposals regarding the selection of privileged object views critically
depend on knowledge of the full appearance space of an object, from which a canonical
view is selected (Cutzu & Tarr, 1999; Murase & Nayar, 1995). This is especially true of
the pose robustness proposal, but still an applicable criticism of most current
hypotheses. In general, any model that proposes canonical views are selected by
maximizing some image attribute over the space of possible object appearance must
contend with the fact that observers only gain experience with novel objects through
directed viewing sequences. That is, individual paths through appearance space are
observed, but the full set of object appearances is generally unavailable to the observer.
Maximizing a proposed image attribute is still a perfectly fine strategy, but it must be
conceded that real observers will likely only find local maxima and be forced to make do
with them. Third, specific proposals regarding view canonicity that can be expressed
computationally are often difficult to test psychophysically. In many cases, this can be
attributed to our lack of a good model for translating between perceptual sensitivity to
image change and the raw image difference in pixels between two images. The result is
that proposals regarding canonical view selection can only be tested in a qualitative
way. Finally, the various means of behaviorally assessing view canonicity have not
been rigorously compared to the best of our knowledge. In some cases, explicit
judgments are requested from the observers. In others, implicit measures like response
time and accuracy are used. It is an open question how much these choices affect the
process of empirically determining canonical views of any object, familiar or unfamiliar.
Moreover, do particular task demands change the results dramatically, or do the same
privileged views inevitably surface?

In the current study, we attempt to address all of these issues with a set of experiments
examining canonical view selection for novel objects. Rather than use complex, familiar
objects, we have opted to use simple "paperclip stimuli" in all of our tasks (Bulthoff &
Edelman, 1992; Edelman & Bulthoff, 1992). While these are highly unnatural stimuli,
they offer several important advantages. First, there has been a great deal of previous
work with these stimuli suggesting that observers recognize them in a view-dependent
way, making them a good stimulus set for a study that critically requires some views to
be more equal than others (Bricolo, Poggio, & Logothetis, 1997; Edelman, 1999;
Logothetis, Pauls, & Poggio, 1995; Logothetis et al., 1994). They are also unfamiliar,
providing us with the opportunity to study canonical view selection in its early stages.
Additionally, they are simple enough in terms of their 3-D form that we can formalize a
straightforward model of view canonicity that is both plausible and easily testable.
Furthermore, individual images of these objects are depth-ambiguous under
orthographic projects, making it more likely that canonicity will depend on viewing a
directed sequence of appearance change. We suggest that this scenario, in which view
selection must be carried out online during exposure to a moving object, more closely
approximates the natural environment.

In three experiments, we measure view canonicity following exposure to rigidly rotating
paperclip. We compare the results obtained from observers' explicit judgments to those
obtained by using RT as a measure of canonicity in both 2AFC and 1 FC tasks.
Throughout, we compare our behavioral data to the predictions made by a form-based



model of canonical view selection, defined specifically for the stimuli under
consideration. At each stage, we ask three questions:

1) Are consistent canonical views evident in the behavioral data?
2) If so, can we approximate the behavioral data with a purely form-based model?
3) Does the inclusion of dynamic information improve our model's goodness-of-fit?

We begin by examining observers' explicit selections of "optimal" views following brief
exposure to novel paperclip objects.

Experiment 1
In our first experiment, observers were asked to make subjective judgments about
image canonicity for novel paperclip objects after viewing short sequences depicting
rigid rotation of the objects. These judgments were then compared to a baseline model
of view canonicity we describe in more detail below.

Methods
Subjects
24 members of the MIT community volunteered to participate in this experiment. All
observers reported normal or corrected-to-normal vision and were na'fve to the
purposes of the experiment. None of the observers had previous experience with
paperclip objects resembling those used in the study.

Stimuli
We created four distinct paperclip objects in MATLAB by randomly selecting 8 points in
spherical coordinate space that fell within a sphere of unit radius. These points were
then joined together sequentially in random order to form a closed loop (so that line
terminators were not a conspicuously salient feature). Each object was then rotated
completely about its vertical axis in steps of 12 degrees, yielding a total of 30 images of
each object. The objects were arbitrarily labeled A,B,C, and D, and are displayed in
Figure 1. Each image was 344x344 pixels in size.

Fig. I - From left to right, Objects A,B, C, and D used in each of our three experiments.

Procedure
Each observer provided canonicity ratings for two objects, one after the other, with
presentation order balanced across subjects. For each object, the experimental session
began with a brief exposure period during which the object under consideration rotated
rigidly about its vertical axis. During the exposure period, each object completed 8 full
revolutions in which each of the 30 images comprising the full sequence of object views
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was displayed. The frame rate of the monitor was 60Hz, and each sequence was
played at a rate of 7.5 frames per second.

Following this exposure period, observers were asked to provide canonicity ratings for
all 30 images that appeared in the training sequence. Participants were asked to use a
1-7 Likert scale, where "1" corresponded to a very poor view of the object and "7"
corresponded to a very good view. Observers were instructed that they should rate the
images according to their assessment of how "good" an image each object view was.
To be more concrete, we suggested that they consider how likely they would be to show
each image to a friend if they had to provide examples of what the training object looked
like. During the rating task, each image from the training sequence was shown twice in
randomized order. Each image remained on screen until observers provided a rating via
the keyboard.

During both the exposure period and the rating task observers were seated
approximately 50cm from the monitor in a brightly lit room with no restraints on head
position or gaze. Each image subtended approximately 3 degrees of visual angle on
screen. All stimulus display and response collection routines were executed with the
MATLAB Psychophysics Toolbox for Windows (Brainard, 1997; Pelli, 1997). Observers
typically completed the task in about 15 minutes and were compensated for their time.

Results
For each subject, the two ratings provided for each image were averaged, yielding 30
canonicity ratings for each object viewed. In Figure 2, we display the mean canonicity
ratings for objects A, B, C, and D.
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Fig. 2 - Mean canonicity ratings for all views of objects A-D. Each data point represents the average
rating across 12 unique observers. Error bars are +/- 1 s.e.m.

It is evident in Figure 2 that observers are quite consistent in their ratings for these
objects, leading to strong modes in the data for each stimulus. Specifically, each object
appears to have two preferred views that are diametrically opposed on the viewing
circle. These images will be mirror images of each other due to our use of orthographic
projection in rendering the paperclip objects. It is also important to note that the location
of these modes is not the same across objects, as we might expect if canonicity was
being driven purely by primacy and recency effects. Instead, it is clear that each set of
object ratings has a specific structure.

A baseline model of canonicity
We continue by attempting to model this data using a very simple form-based model of
view canonicity for our paperclip stimuli. To motivate this model, consider the limiting
case of a paperclip object with only one segment. This segment has a true length, and
we propose that a "canonical" view of this minimal object is one in which the projected
length is not much different than the actual length. An end-on view of the segment
would be the worst view possible, while any view of the segment oriented in the fronto-
parallel plane would be best. We can formalize this measure of canonicity for a single
segment by dividing the projected length by the actual length to yield a value on the
interval [0,1] describing the amount of foreshortening in the view.

To extend this intuitive measure to our 8-segment objects, we calculate this value for
each segment in the object and take the mean over all values as our final estimate of
canonicity for each view.



Therefore, if we have n pairs of 3-D points, (each point in the pair denoted as {x,y,z} and
{x',y',z'}) the canonicity of a particular view can be calculated thusly:

n . (x,'-_x,) 2 + (yi '-i )2
canonicity (x i '-x i + (y '-yi)2 + (i -ZiZ 2

This value also ranges between 0 and 1, inclusive. In Figure 3, we display the
canonicity values calculated under this model for all views of our four test objects
alongside the average observer ratings.
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and model predictions (right).

To assess the model's goodness-of-fit, we calculate the correlation coefficient between
the actual data (using the mean across observers for each view) and the model's
predictions. The results of this analysis are displayed in Table 1.

Table I -- Correlation between baseline model and actual observer ratings.
Prop. Variance Significance

Object A 0.56 p < 0.001
Object B 0.04 n.s.
Object C 0.59 p < 0.001
Object D 0.56 p < 0.001

For three of our four objects, the baseline model provides a good fit to the data. Given
the unconstrained and subjective nature of the task as well as the simplicity of the
model, this is surprising. We note however, that for one of our objects (Object B) this
model fails to capture any significant portion of the variance in the observed data.
Examining Figure 3, we can see that this object's form-based canonicity function is very
shallow compared to the others, suggesting that there is perhaps not enough variability
across views to successfully capture the structure in the rating data. We continue by
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introducing a slight modification of our original baseline model in which we incorporate
the dynamics of our foreshortening measure. This allows us to determine whether or not
the motion of our objects plays any significant role in the perceived canonicity of
individual views.

To add a dynamic element to our original baseline model, we take the first and second
derivatives of our original canonicity function and include these two functions as
additional regressors in a multivariate linear regression model. If the inclusion of these
dynamical terms improves the fit of our model to the data, we can tentatively conclude
that aspects of object motion influence perceived canonicity. In Table 2, we report the
results of our regression analysis.

Table 2 - Correlation between full dynamical model and actual observer ratings.
Prop. Variance Significance

Object A 0.57 p < 0.001
Object B 0.34 p = 0.012
Object C 0.76 p < 0.001
Object D 0.72 p < 0.001

In all four cases, we note that the proportion of variance captured by the model
increases, to the extent that Object B is now reasonably well-fit by the model. In Figure
4, we display for each object the original ratings and the best-fit line of the baseline
model and the full dynamical model in separate panels.
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to Object D with

Discussion
Using novel objects and an explicit rating task, we find that observers are very
consistent in their selection of canonical views. Moreover, we find that our participants
tend to select a single mode and its mirror reflection. The overall structure of the
canonicity function also seems to be well-fit by a model of average foreshortening
across distinct segments and is improved substantially when dynamic information is
included in the model. Dynamic exposure may thus contribute to canonicity in this task
in two ways. First, motion may provide cues to each segment's true length via the
kinetic depth effect, allowing our observers to estimate the canonicity function we have
defined. If this were the only use for motion, stereoscopic exposure to the training
objects in a static setting should result in similar canonicity ratings. The added benefits
of adding dynamic terms to our model as independent regressors suggests that the
change in that function over time also contributes to the canonicity of individual views.
Thus, motion affects canonicity beyond providing information for extracting 3-D form.

We continue by examining view canonicity for these objects as determined by an
implicit measure rather than by explicit ratings. First, we ask whether or not implicit
canonicity judgments resemble explicit ratings. Second, we ask if either of the two
models we have developed appear to fit the data reasonably well.

Experiment 2
In this task, we use response time in a 2AFC visual memory task as a measure view
canonicity following dynamic exposure to the objects similar to the training period used
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in Experiment 1. We also compare observers' ability to correctly recall coherent vs.
random paperclip sequences to determine the extent to which memory for coherently
moving stimuli is comparable to memory for arbitrary sequences. The baseline model
developed in Experiment 1 is applied to the RT data for coherent objects as well, to
determine how successful our form-based model is at predicting implicit judgments of
canonicity.

Methods
Subjects
The same 24 observers who participated in Experiment 1 also participated in this task.
Observers were not asked to perform this task using any objects viewed in Experiment
1.

Stimuli
We use the same paperclip objects described in Experiment 1, along with a set of
distracter images created for this task. Each distracter image was created from a
specific paperclip image by adding noise to the XY projection of the vertices. Each
vertex was moved by +\- 10 pixels in both X and Y, resulting in a new paperclip that is
distinct from the original. We refer to the original paperclip stimuli as "object" images
and these altered stimuli as "distracter" images.

Procedure
The experiment was divided up into four "coherent" blocks and four "random" blocks,
which were interleaved during the full session. Each block began with observers viewing
a sequence of paperclip images as described in Experiment 1. In "coherent" blocks, this
sequence depicted a paperclip rigidly rotating about its vertical axis. During "random"
blocks, the sequence depicted the ordered sequence of distracter images created from
a paperclip. The object depicted in a coherent sequence was not the object from which
distracters were created for use in the random sequence. Both sequences were played
at a rate of 7.5 frames/second for 8 repetitions of the full image set.

Following this exposure period, each block continued with a test phase. On each trial of
this task, observers were presented with two images flanking the center of the display,
one of which had just been displayed during the exposure period of that block. In
coherent blocks (where "object" images are the targets), the other image was the
distracter image associated with the target. In random blocks (where "distracter images"
are the targets), the other image was the object image associated with the target.
Observers' task was to identify the image that had been seen in the previous exposure
period as rapidly and accurately as possible. While observers had unlimited time to
respond on each trial, it was emphasized that RT was being recorded and so they
should try to be as fast as possible without compromising their accuracy. Within a block,
each of the 30 target images was presented twice for a total of 60 trials per block and
240 trials per condition in the full session. Target image location for each trial and
presentation order were randomized for each subject.

All stimulus display and response collection routines were carried out as described in
Experiment 1. Each observer carried out this task for one paperclip object in the
coherent condition, and a distinct paperclip object in the random condition.



Results
Accuracy
In Figure 5 we display the mean accuracy
conditions.
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A 2x4 between-subjects ANOVA with training sequence type ("coherent" or "random"
and block number as factors reveals only a main effect of sequence type
(F(1,176)=1 75.5, Mse=0.033, p < 0.001). No other main effects or interactions were
significant. Clearly observers in this task were far more capable at accurately
remembering images from the coherent object sequence, performing at chance levels
when distracter sequences were presented in random blocks.

Unfortunately, the relatively high rate of performance during coherent blocks means that
there are not nearly enough errors on any individual frames for the application of our
models to be meaningful. Accuracy simply does not fluctuate enough across frames for
us to attempt any parametric explanation of the data. As a result, we do not apply either
of our models here. Instead, we continue by considering the reaction time data.

Response Time
For each correct response to a target frame in the coherent condition, we recorded the
observers' reaction times, yielding an implicit estimate of canonicity as a function of
object view. The intuition is that "better" object views will be recognized faster than poor
ones, leading to an RT function over target frames with significant peaks and troughs.
To minimize the deleterious effects of inter-subject RT variability, we subtract the mean
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RT from all trials (including correct and incorrect responses from both coherent and
random blocks) from each observer's mean RT values across all coherent target
frames. This allows us to characterize the average RT function across subjects in terms
of fluctuations above and below each observer's baseline performance. In Figure 6 we
display the mean RT functions recovered for each object.
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Fig. 6 - Mean RT fluctuations around baseline as a function of target frame for each "coherent" object.

To determine if the variations in RT across target frames and objects were significant,
we carried out a 4x30 between-subjects ANOVA with object and target frame as factors.
We find a significant effect of target frame (F(29,600)=1.93, MSe=0.89, p = 0.0026) as
well as a significant interaction between target frame and object (F(87,600)=1.42,
Mse=0.89, p = 0.011). The main effect of rows was nil, by virtue of the normalization
procedure which subtracts the mean RT from each row of the data.

The observed effect of target frame indicates that there are indeed systematic
differences in RT across target frames during the memory task, but does not rule out
general-purpose memory phenomena such as primacy and recency effects. However,
the significant interaction of target frame with object supports object-specific (and thus
view-specific) contributions to the data. We thus have a dataset concerning view
canonicity as defined by an implicit measure that we may proceed to analyze in the
context of our proposed models.

Application of the Baseline Model
As in Experiment 1, we compare our observers' data regarding view canonicity to the
predictions made by our baseline model. Despite its simplicity, this model proved
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capable of capturing a substantial amount of the structure present in observers' explicit
ratings of each target view. We therefore apply it to the mean RT fluctuation functions
plotted in Figure 5 to determine if the implicit data can be modeled as successfully as
the explicit data. We point out that since we are using RT rather than an explicit rating,
positive RT fluctuations above baseline indicate poor canonicity for a view and negative
fluctuations indicate good canonicity. This means that we will be looking for significant
negative correlations in this analysis rather than positive values of the correlation
coefficient. Table 3 contains the results of our application of the baseline model to the
implicit data obtained in this task.

Table 3 - Correlation between baseline model and actual observer RTs.
Prop. Variance Significance

Object A 0.029 n.s
Object B 0.0061 n.s.
Object C 0.0001 n.s.
Object D 0.32 p < 0.001

For only one object does the baseline model provide a good fit to the RT data. For the
remaining objects, average foreshortening explains virtually none of the structure in the
data. We are thus forced to conclude that the baseline model is not applicable to this
measure of view canonicity. Next, we examine the performance of the full dynamical
model

Table 4 - Correlation between full dynamical model and actual observer RTs.
Prop. Variance Significance

Object A 0.046 n.s
Object B 0.35 p = 0.0093
Object C 0.24 p = 0.068
Object D 0.34 p < 0.001

We note improvement over the baseline model in each case, but still find that the model
is not performing very well. The model's fit is only significant in two cases, marginal in
another, and not significant in the fourth. We conclude that neither model is capable of
fitting the data obtained from this task, but that the dynamical model is slightly more
capable than the baseline model.

Discussion
We are unable to model the significant RT fluctuations we observe over target frame in
this task. This leaves us with a few possible explanations for our failure at this stage.
First, it may be that the structure we observe in the RT data is simply noise. However,
one reason to think this is not the case is that the explicit ratings obtained in Experiment
1 generally correlate well with the implicit data in this task, as we see in Table 5.
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Table 5 - Correlation between explicit and implicit canonicity judgments
Corr. Coeff Prop. Variance Significance

Object A -0.32 0.10 p = 0.089
Object B -0.39 0.15 p = 0.034
Object C -0.11 0.0121 n.s.
Object D -0.41 0.17 p = 0.02

While these correlations are not perfect, they at least suggest that there may be some
structure in the RT data relevant to the task at hand.

A second reason we may have failed in our modeling efforts may be that our models are
not sophisticated enough. We have admittedly used simple tools and perhaps more
complex models could more accurately approximate the implicit data. However, a final
explanation that we believe may be very important to consider is the possibility that the
presence of distracters encouraged observers to use a flexible strategy for identifying
target images. So long as a target and a distracter are present, the observer can use
either the "goodness" of the target or the lack of "goodness" in the distracter to form a
judgment. Worse, the decision made on each trial need not depend on a fixed weighting
of these measurements. If observers are indeed adopting a trial-by-trial strategy
alternately relying on the properties of the target and the distracter, or a varying
procedure for combining those properties, we are faced with a very difficult modeling
challenge.

For now, we suggest that the structure we observe in the RT data in Experiment 2 is
real, but may reflect a complex and adaptive strategy for target selection involving both
target and distracter images. To proceed, we shall modify our memory test slightly to
alleviate the problem of distracter images colluding with target images to influence the
structure of the implicit canonicity function.

Experiment 3
In this last task, we use response time in a 1FC visual memory task as a measure of
view canonicity following dynamic exposure to the objects used in both Experiments 1
and 2. By presenting targets and distracters in isolation from one another, we hope to
minimize observers' ability to rely on cues besides target image properties to perform
target selection.

Methods
Subjects
24 new volunteers from the MIT community participated in this task. All observers
reported normal or corrected-to-normal vision.

Stimuli
Only the images of the original four paperclip objects were used in this task.

Procedure
The experiment was divided up into two sessions, each with four identical blocks. With a
session, only one target object was used. As in Experiment 2, each block began with
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observers viewing a paperclip rigidly rotating about its vertical axis. Sequences were
played at a rate of 7.5 frames/second for 8 repetitions of the full image set.

Following this exposure period, each block continued with a 1 FC test phase. On each
trial of this task, observers were presented with one image in the center of the display,
which either depicted an image from the exposure period or an image of an entirely
different object. Observers' task was to decide as rapidly and accurately as possible
whether or not the image had been in the preceding sequence, using a "go,no-go"
paradigm. If observers believed the image had been present during exposure, they
were to press the space bar as fast as possible. Otherwise they were to do nothing, and
the image would disappear after 3 seconds. It was emphasized that RT was being
recorded and so they should try to be as fast as possible without compromising their
accuracy. Within a block, each of the 30 target and distracter images was presented
twice for a total of 120 trials per block and 480 trials in the full session. Presentation
order was randomized for each subject.

All stimulus display and response collection routines were carried out as described in
Experiments 1 and 2. Each observer carried out this task for two different objects, with
distracter objects in each block counterbalanced across subjects.

Results
Accuracy
In Figure 7 we display the mean hit rate across frames for each object. The average
false alarm rate for all observers across all objects was approximately 4%, which is low
enough that we have not corrected the hit rate for guessing.
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To determine if the fluctuations in hit rate across frame were significant, we carried out a
4x30 mixed-design 2-way ANOVA with object as a between-subjects factor and frame
as a within-subjects factor. Our analysis reveals a main effect of object (F(3)=26.2,
MSe=0.092, p < 0.001) and an interaction between object and target frame (F(87)=1.64,
MSe=0.092, p < 0.001). The main effect of target frame was not significant.

We continue by, assessing the goodness-of-fit for both the baseline model and the full
dynamical model described in Experiment 1. As before, we are particularly interested in
whether or not the inclusion of dynamic regressors improves model performance
substantially. Table 6 lists R2 statistics and p-values for both models, while Figure 8
displays the model fits along with residual plots.

Table 6 - Goodness-of-fit for baseline and full dynamical models of 1FC hit rates

Baseline model Full dynamical model
Object R =0.09, p=0.12 R =0.12, p=0.36
A
Object R2=0.54, p<0.001 R2=0.63, p<0.001
B
Object R2=0.10, p=0.081 R2=0.45, p<0.001
C
Object R2=0.33, p<0.001 R2=0.46, p<0.001
D
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We find that as in the case of the explicit ratings obtained in Experiment 1, the baseline
model provides a good fit to the data while the inclusion of the dynamic terms improves
the model fit substantially. This suggests both that observers actual memory for the
target frames correlates well their subjective evaluation of canonicity, and that both
judgments incorporate dynamic information concerning object appearance.
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Fig. 8a - Best-fit lines for baseline model (left) and full dynamical model (right) as applied to Object A with
the accompanying residual analysis below each plot. In each case, the dynamical model provides a better
fit to the data.
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Object B - dynamic form model
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Fig. 8b - Best-fit lines for baseline model (left) and full dynamical model (right) as
the accompanying residual analysis below each plot.
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Object C - dynamic form model
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Fig. 8c - Best-fit lines for baseline model (left) and full dynamical model (right) as applied to Object C with
the accompanying residual analysis below each plot.
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Object D - dynamic form model
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Fig. 8d - Best-fit lines for baseline model (left) and full dynamical model (right) as applied to Object D with
the accompanying residual analysis below each plot.

Response time
We conclude by examining the response times to correctly recalled target frames. For
each subject, the latency of response to each hit was collected and binned by target
frame. The data was then normalized by mean response time to all stimuli so that each
data point represents the deviation of RT above or below baseline for each target frame.
The average RT across all target frames of all objects is displayed in Figure 9.
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Fig. 9 - Average normalized RT in seconds across target frames for all objects. Error bars
I s.e.m.

As with our hit rate data, we carry out a 2-way 4x30 mixed-design ANOVA to determine
if the fluctuations in RT across target frames are significant. We find a main effect of
target frame (F(29)=1.7, MSe=0.08, p = 0.012) and an interaction between target frame
and object (F(87)=1.47, MSe=0.08, p = 0.0043). The main effect of object was null by
virtue of our normalization procedure. We conclude from this that the structure we
observe in RT across target frames is statistically real.

We next assess the goodness-of-fit of both the baseline and full dynamical models to
the RT data in Figure 8. The results of this analysis are displayed in Table 7.

Table 7 - Goodness-of-fit for baseline and full dynamical models of 1FC RTs

Baseline model Full dynamical model
Object R2=0.18, p=0.0175 R =0.23, p=0.0 74

A
Object R2=0.015, p=0.52 R2=0.14, p=0.26
B
Object R2=0.02, p=0.41 R2=0.20, p=0.11
C
Object R2=0.45, p<0.001 R2=0.52, p<0.001
D
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Unfortunately, the lack of significant fits to the data makes it difficult to determine
whether or not the inclusion of dynamic regressors actually affects model performance
at all. While it is tempting to observe the increase in variance captured as we include
the dynamic terms, we cannot make a firm conclusion at present.

General Discussion
Across three tasks with the same four novel "paperclip" objects, we have measured
canonicity in a variety of ways. Along the way, we have attempted to fit the observed
data with a simple model of view canonicity that can either include or exclude terms
relevant to the dynamic nature of the input. As a result, we have been able to answer
most of the questions that we started with, while leaving a fair amount of interesting
work for the future. We conclude by addressing the questions that motivated this study,
and discussing possible topics for further investigation.

Are consistent canonical views evident in the behavioral data?
In general, we have observed evidence for "privileged" views in all three of our tasks.
Explicit ratings, response times in both the 2FC and 1FC memory tasks, and hit rates in
the 1 FC task all showed significant fluctuations across target frames that were object-
specific. This suggests that canonicity (as defined in each task) was not determined by
factors like primacy and recency, but rather a function of object appearance across
target frames. As a result, we conclude that "privileged views" can be determined via
many different methods.

However, one drawback is that these methods of defining canonicity do not necessarily
agree well with one another. Looking at the data across all of our tasks we note many
task-dependent differences in the data. In particular, in Experiment 2 we note that the
presence of distractors may have added a great deal of noise to our data. Comparing
the very sharp transitions in RT fluctuations across target frames in Experiment 2 to the
much smoother data in Experiment 3 makes it plain that the canonicity of a view must
be considered in the context of the task presented to the observer. However, we did find
a fairly high level of agreement between the explicit ratings in Experiment 1 and the hit
rates in Experiment 3, which suggests to us that there is actually a fair degree of merit
in simply asking subjects for ratings of canonicity rather than adopting implicit criteria.

Can we approximate the behavioral data with a purely form-based model?
Though our baseline model of canonicity was something of a stick-figure caricature of
object form, it worked surprisingly well across all of our tasks. There are certainly more
factors to consider (such as image-based features and the primacy and recency effects
we have so far discounted) but as a starting point, the baseline model holds up fairly
well. The primary exceptions to this rule are two-fold: First, we note in Experiment 1 that
when the baseline model's canonicity function is very shallow the human data is not
similarly circumscribed. Second, response time data seems to be extremely difficult to
model successfully. Even if we attempt to model log-transformed RTs or median-filtered
data in an effort to avoid outliers (steps taken during exploratory analysis that are not
reported here), we have been unable to do much better than we have described
already. It may simply be the case that response latency is a poor measure of view
canonicity. While this is a rather pessimistic conclusion, at the moment it seems
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inescapable, and should at least be remembered as a good rule of thumb for future
experiments.

Overall, however, our bare-bones definition of canonicity has worked well for the
simplified objects we presented to our observers. Can we scale this model up to work
with more complex natural objects? At the moment, we can only speculate, but there is
some reason for hope. Tracking image patches from frame to frame would be simple
enough, with the initial patches determined by some sort of interest operator. Even
without ground truth data concerning the length of the virtual segment joining two
patches the change in projected length can still be computed. This simplified model,
using only changes in projection rather than ratios of projected length to true length,
could be implemented without too much difficulty, but there are several issues that may
plague its application. First of all, it is unclear how we should cope with self-occlusion
since features can be "lost" during rotation (although see (Wallraven & Bulthoff, 2001)
for an interesting computational approach and (Tarr & Kreigman, 2001) for relevant
human data). Second, uncertainty in the position of a particular feature due to changes
in appearance during rotation or smoothness of object form will add noise to our
estimates of foreshortening. The result may be a very messy model that is quite difficult
to handle. Integrating the most robust and easily translatable aspects of our baseline
model with an appearance-based model of canonicity may be the best way to proceed.

Does dynamic input influence canonicity?
Finally, having examined the evidence for a role of dynamic information in canonicity
judgments across three tasks, we must conclude that form dynamics do play a role in
defining "privileged views" of a novel object. In every case, the inclusion of dynamic
regressors improves the proportion of variance captured by our models, often
succeeding where the baseline model has failed. While the role of dynamic input
appears to be complex and object-specific, our results suggest that this information is
indeed a relevant factor in determining view canonicity.

To make the role of object motion more clear, it may be worthwhile to manipulate
sequence dynamics in various ways and examine canonicity judgments under distinct
conditions of speed, sequence smoothness and duration. At present, our evidence for
the role of dynamic input is somewhat abstract (being based only our modeling) and
further psychophysical investigation would help solidify our understanding of how
motion contributes to form encoding.

Conclusions
Adult observers do appear to extract prototypical views, or "keyframes", from sequences
of novel moving objects after very little exposure. While view canonicity can be
determined in many different ways, the results of different tasks are not always in
agreement. In particular, response time appears to be an unstable basis for assessing
view canonicity. The inclusion of distracters in tasks designed to estimate view
canonicity also appears to be problematic, with observers adopting a flexible strategy of
using positive or negative evidence to guide behavior. Finally, in our experiments here,
a simple form-based model of foreshortening provides a surprisingly good fit to the data.
This model is substantially enhanced by the inclusion of dynamic information however,
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suggesting that object motion provides information for canonicity judgments beyond a
robust estimate of form.
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Conclusion
At the beginning of this thesis, I suggested that presently we lack enough data
concerning human perception of dynamic objects to begin formulating a comprehensive
theory. My goal has been to add to our current state of knowledge in a systematic and
theory-driven way so that some basic principles of a coherent model can be elucidated.
Here, I review the results of the experiments reported here in an attempt to develop a
foundation for future efforts. While there is still clearly a great deal of important work left
to be done, the data I have presented provides a set of important constraints on
dynamic object perception and reveals several key features of human perception and
recognition for moving objects. What follows is my attempt to put together the various
pieces of this thesis into a coherent whole.

What does object motion do? - Temporal association and its role in
appearance coding, prediction, and categorization
At the outset of these experiments, I suggested that the basic temporal association
hypothesis represented the most useful framework for further investigation of dynamic
object perception. To a substantial degree, the experiments in Section 1 of the thesis
were motivated by the desire to further elaborate this proposal by testing the
consequences of dynamic object training in a variety of settings. While certain aspects
of the original proposal hold up well in light of these tasks, several of my results force us
to modify the basic hypothesis substantially.

Appearance coding: generalization and sensitivity following temporal association
In Chapter 1, I reported that observation of a dynamic sequence induces increased
generalization and sensitivity for images present during training. This has fairly large
consequences for our understanding of how temporal association influences object
appearance coding. While later results indicate that there is a lot more than this going
on during dynamic object perception, I suggest that this fundamental observation is
perhaps the most important contribution of the thesis.

Prediction: An additional role for temporal association
The experiments in Chapter 2 used a familiar object, the walking human body, to
demonstrate that what observers know about object motion from long-term experience
interacts with recent dynamic input in a complex way. Specifically, it seemed like our
conception of a "coarsening" process that increased sensitivity to image change had to
be modified to incorporate a prediction mechanism that was allowed to pre-empt
changes in appearance coding until accurate predictions had been learned. This
proposal was compatible with the results reported in Chapter 1, and leads to several
testable predictions for future experiments.

Categorization: Using motion to identify common and relative components of
appearance
Finally, Chapter 3 marked a foray into the realm of category learning by demonstrating
that the diagnosticity of object motion during learning directly impacted categorization
efficiency for static images. Learning object categories under conditions of motion
diagnosticity actually impairs performance, so long as diagnostic motion is qualitatively
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different across categories. This effect was discussed in terms of the extraction of
"common" and "relative" components of form in appearance space, analogous to the
famous demonstrations of vector analysis by Gunnar Johannson.

What does object motion do? - Appearance dynamics and recall
While Section 1 provided several important results regarding discrimination and
categorization of dynamic objects, Section 2 presented several results relevant to
understanding the encoding of individual images during dynamic viewing. Specifically,
instead of describing the properties of the established appearance code for a population
of images, in Section 2 I examined the variables governing whether or not individual
images end up being encoded at all. The dynamics of object appearance to play an
important role here, suggesting that at a very deep level our experience of the visual
world is determined by movement.

Appearance dynamics and immediate recall
Using thorough parametric studies, I demonstrated in Chapter 4 that our ability to
accurately remember what we have just seen is determined in large part by recent
perceptual history. In appearance space, our encoding of any individual image is
affected by presentation time, temporal contingency, and image differences that are
local in time. This last point is particularly important insofar as it highlights what I believe
is a core principle of dynamic object perception: spatial factors can be global, but
temporal factors are predominantly local. In the closing remarks of this chapter, I
proposed a simple probabilistic model for dynamic perception built on the robust finding
that regression backwards in time appears to be the dominant feature of immediate
recall for moving objects.

Appearance dynamics and keyframes
In chapter 5, I approached the issue of image encoding during dynamic viewing from a
different direction. Rather than asking how temporal factors affect immediate recall, the
focus of this chapter was on how well observers' preference and memory for individual
images could be approximated using static and dynamic models of view canonicity. This
analysis has the benefit of providing some data on how "canonical views" are selected
during more natural viewing conditions, and also examining if motion contributes to view
selection beyond its support of form extraction. I find that the dynamics of form change
do make a significant contribution to view encoding, suggesting that local changes in
appearance over time do exert an influence on object memory.

What now?
A sketch of dynamic object perception
So what does object motion do? In most models that use temporal continuity as a
teaching signal of some kind, motion is reduced to a tool for propagating object labels
over time. The emphasis in these models is almost solely on learning how to be
invariant to multiple sources of appearance change for complex objects. The data
presented in this thesis suggests that the human visual system uses object motion to do
more, however. Specifically, I have shown that observers' learn to be sensitive to
observed appearance changes while they simultaneously learn to generalize over those
same distinct images and that global appearance changes that are local in time appear
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to have a profound influence on multiple aspects of form perception and encoding.
Given these results, I argue that our understanding of how object concepts are learned
from dynamic input must be restructured substantially.

How should we re-conceive the role of object motion in learning representations of
object form? This is of course highly speculative, but I think that what we are seeing
across all of these sets of studies is the footprint of a learning mechanism that uses
object motion to accomplish one primary goal: to identify a primary axis of variation in
appearance space.

What this proposal is essentially saying is that object motion helps the visual system do
dimensionality reduction. High-dimensional image data usually needs to be described
compactly to avoid the "curse of dimensionality" and I suggest that object motion is used
to obtain an estimate of something like the first principal component of the incoming
image data, yielding a very crude first-order approximation of "intra-stimulus"
appearance variability. To put it plainly, if you need to describe an object's appearance
with just one number, use its projection on the axis of motion through appearance
space.

The results reported in Section 1 look fairly reasonable when viewed through this lens.
Chapter 1 tells us that this axis needs to be represented in a way that provides both
generalization and sensitivity, possibly via a population of encoding units that stretch
and overlap along its length. Chapter 2 tells us that the dominant direction of motion
along the axis is probably remembered, and that changes in tuning functions only take
place when incoming data doesn't alter the established directionality (or lack thereof).
Finally, the categorization results from Chapter 3 suggest that during category learning,
the motion of individual objects is used to establish one axis that is applied to all the
objects under consideration in both categories. The directionality effects we observe in
Chapter 2 are wholly extendable to this new case, and are entirely consistent with the
reported data.

This is only a tentative conjecture at this point, but it both serves as a fair summary of
the first section and provides the foundation for a concrete model of how object
representations are built following dynamic exposure. In particular, it suggests that
learning the principal component of a distribution is dominated by spatiotemporally
smooth paths through that distribution (as revealed by our categorization data). Also, it
suggests that dynamic perception is a fundamentally coarse process. Describing a
complex, deforming shape with one number is about as quick and dirty as it gets, yet
this sketch of a model seems capable of explaining a lot of the behaviors I have
described. The simplicity of this proposal also makes it potentially easy to implement,
test, and use to generate new and interesting hypotheses regarding human vision.

Can we relate the results in Section 2 to the stick figure sketch I used to summarize
Section 1? To be honest, there just isn't enough data to do that in an iron-clad way yet.
To be conservative, the real contributions of this thesis are probably best-expressed in a
two-fold manner: 1) The effects of dynamic object perception on discrimination and
categorization in various settings force a refinement of the basic temporal association
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hypothesis to include observed increases in sensitivity, effects of object familiarity and
prior expectations of object movement, and effects of motion diagnosticity on
categorization, 2) Local appearance changes in time directly effect the strength of
encoding for images of a dynamic object. Taken together, these two observations point
the way to refinements of existing models and also suggest numerous additional
experiments, many of which have been discussed in the preceding chapters.

To look a little beyond this conservative assessment of what we have gained from these
experiments, however, there are three aspects of the work I have presented here that I
hope can serve as the basis for future work.

First of all, though I can't rigorously defend the full extent of this proposal with the
results presented here, I suspect that ultimately most of dynamic object perception will
be explainable using a highly redundant model of global appearance like the "principal
component" proposal I outlined above. One of the most remarkable and unintuitive
aspects of dynamic perception is just how little we actually see and remember of a
moving object, which suggests to me that our tools for processing such input must be
remarkably blunt. For lack of a better word, I have been led to the belief that dynamic
object perception is "smooshy," insofar as forms tend to bleed into one another very
readily, and the vividness of change over time generally overshadows the ability to
appreciate rich spatial structures. This makes it all the more remarkable that sensitivity
to small changes can be maintained in the code for a dynamic objects' appearance, a
feat which I maintain is best accomplished with a "coarse code" for appearance. This
latter idea has already been discussed at length in Section 1, but I want to emphasize
here at the conclusion of this manuscript that this idea represents a powerful extension
of some old ideas about neural processing that somehow have yet to find their way into
high-level vision. To be more specific, what I have been subtly proposing throughout
this thesis is a direct analogy between localization in visual space and localization in
appearance space. My proposals for "coarse coding" of object appearance are really no
different in spirit or in form than earlier explanations of hyperacuity, save for the problem
domain. Though this seems like an obvious connection to make, it is remarkable how
little attention seems to have been paid to developing this idea further and exploring its
consequences. Hopefully, some of the results reported in this thesis may help convince
others that the application of population codes to object appearance provides a nice
framework for future investigation, potentially leading to a deeper understanding of high-
level aftereffects and the timecourse of visual learning.

The second aspect of the work presented here that I hope makes an impact on the
study of dynamic object perception is essentially methodological. Throughout these
tasks, I have emphasized the use of image-level comparisons rather than category or
object-level comparisons. My goal in doing so was to avoid cognitive interference, or to
put it plainly, to avoid having subjects only give me the right answers after I taught them
what to say. The result is a rich set of data that demonstrates how object motion can
influence tasks that are solvable in principle by extremely "dumb" mechanisms. I argue
that the use of straightforward change detection tasks and image-level comparisons is
crucial to obtaining a clear picture of dynamic object perception. Though the ultimate
goal for a theory of object recognition must be to describe how labels are assigned to
images, the singular use of naming or categorization tasks can obscure important
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aspects of human perception. Worse, it is often very hard to know whether or not one is
studying vision or general cognition unless one can show an effect on something like
discriminability. In many of the studies I have cited in the preceding chapters, important
results hinge on observers reporting numbers on arbitrary scales or producing object
labels under circumstances that make the "right" response confusing at best. The result
is that we can't build a good model of behavior because we don't know what task the
observer was actually performing, nor do we know what would constitute optimal or
"ideal" behavior. A deep understanding of dynamic object perception will ultimately
require a great deal more data from studies in which we can see the influence of high-
level processes in tasks that seemingly require only low-level mechanisms. Though I
have experienced first-hand that this is a time-consuming and difficult way to work, I
think it is necessary for the development of useful models, be they conceptual or
computational.

Finally, though I confess I have not completely adhered to my own advice in this regard
(even within the boundaries of this thesis), the more work that can be done with
complex three-dimensional objects, the better. At the moment, studies of dynamic
perception seem to occupy two extremes: either very simple "objects" are being
employed (dots, for example) or fully natural scenes with multiple objects and
background clutter are being used as stimuli. What is desperately needed is more work
concerning the stimuli "in the middle" like isolated rigid objects with texture and shading,
real human figures as opposed to point-light walkers, and objects on backgrounds that
we can begin to understand structurally. We are very far from knowing what the right
dimensions of appearance space are for object perception, so working within the
confines of stimuli that we can obtain some amount of ground truth for is still very
important. This isn't to say that working at either extreme of the artificial/natural stimulus
spectrum is a bad idea, of course, only that I think there's a lot of fruitful work to be done
in the middle.

Closing Remarks
With that, I conclude this investigation of dynamic object perception. I have found that
the influence of object motion on recognition is a good bit more complicated than earlier
results have indicated, but that this complexity may point the way to a more general
(and equally elegant) process for object perception. Object motion helps the visual
system decide how to pick out discrete images from the continuous flood of sensory
data in the natural world, while simultaneously preserving our ability to maintain some
representation of an entire sequence. While we are still far from a complete realization
of a theory of dynamic object perception, this thesis has highlighted several important
constraints on such a theory, and provided a good platform for future work.
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