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Abstract

A new treatment tested in laboratory animals increases synaptic membrane and
cholinergic neurotransmission. This treatment involves giving three compounds; DHA, a
phosphatide precursor; choline, another phosphatide precursor present in the rodents'
diets but not varied in this study; and UMP, a precursor of CTP, the rate-limiting
compound in Kennedy Cycle production of phosphatides. Their administration increases
the quantities of phosphatides, the major constituent of neuronal membrane, per brain
cell, as well as specific synaptic proteins, the number of dendritic spines; and the
expression of genes related to hippocampal glutamatergic neurotransmission. Since such
membrane is the predominant component of synapses, the treatment might also
ameliorate the loss of synapses occurring in the brains of Alzheimer's patients. My study
involves assessing the behavioral effects of the treatment in individual rats or gerbils
subsequently shown to manifest its neurochemical effects (i.e., increased phosphatides).
My present findings show that the treatment improves performance on various tests of
memory function. The largest improvements in memory function and increases in
phosphatide levels are observed when DHA, choline, and UMP are consumed in
combination.

Thesis Supervisor: Richard J Wurtman
Title: Cecel H Green Distinguished Professor of Neuropharmacology
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Introduction



Our laboratory has been interested in the ability of several circulating compounds,

uridine monophosphate [UMP], docosahexaenoic acid [DHA], and choline - to increase

the production of membrane phospholipids in brain and, concurrently, to increase brain

levels of pre- and post- synaptic proteins (1) and the density of dendritic spines in the

hippocampus (2). Hence I undertook a series of experiments to determine whether this

treatment could also enhance various cognitive functions in experimental animals. My

initial studies utilized gerbils, because pyrimidine metabolism in this species (but not in

rat) is similar to that in humans (1).

Briefly, gerbils consumed UMP through their diet, and received DHA by daily

gavage, and effects on learning and memory were assessed via the four arm radial maze,

T-maze, and Y-maze tasks. I found that gerbils consuming UMP outperformed their

control counterparts in every task. Likewise, gerbils administered DHA outperformed

both the control, and the UMP-fed groups. Finally, gerbils receiving both UMP and

DHA outperformed all other groups tested (Chapter 1). In subsequent studies on rats

receiving dietary UMP and gavaged DHA, I compared the effects of these phosphatide

precursors on animals that had been exposed to enriched or impoverished environments;

learning and memory were assessed using the hidden and visible versions of the Morris

water maze. I found that giving UMP plus DHA protected environmentally-impoverished

rats from the cognitive decline usually associated with impoverishment; in contrast, the

UMP plus DHA did not enhance memory among environmentally-enriched rats (Chapter

2).

Measurements of whole brain phospholipid levels in gerbils and rats revealed that

the increases in these levels caused by UMP and DHA correlated with their



improvements in memory functions (Chapter 1, 2). Interestingly, rats exposed to an

enriched environment had significantly higher whole brain phospholipid levels than those

exposed to an impoverished environment; likewise otherwise-untreated environmentally-

enriched rats outperformed impoverished rats on the hidden version of the Morris water

maze (Chapter 2).

I elected to test learning and memory in gerbils using the radial maze, T-maze,

and Y-maze because these methods allow for simultaneous recordings of both working

and reference memory. Preliminary experiments also indicated that UMP and DHA can

not be shown to affect cognitive function using high thoroughput assays, so I used

protocols that allowed for one trial a day thus increasing the intertrial delay. The Morris

water maze, a more standard test of memory, was not used to study gerbils because this

species had difficulty learning how to swim, and thus the test itself would have been a

stressor.

I chose to test the cognitive affects of UMP and DHA in impoverished and

enriched rats using both the hidden and the visible versions of the Morris water maze

because these tasks test two different types of memory. The hidden version measures

hippocampal-dependent memory, and relies on spatial cues; the visible version measure

striatal-dependent memory, and relies on habitual learning. Altering the rats'

environmental conditions was incorporated in my studies because doing so provided a

way to induce cognitive impairment (impoverished conditions) or cognitive enhancement

(enhanced conditions), and UMP had previously been found in our laboratory to enhance

cognition in impoverished rats (3). We hypothesized that UMP plus DHA would

improve the memory functions of rats, including both impoverished and enriched rats,



since giving UMP plus DHA increases phospholipid levels and enhances cognition in

normal adult gerbils (Chapter 1).

1. Wurtman RJ, Ulus IH, Cansev M, Watkins CJ, Wang L, Marzloff G. Synaptic
proteins and phospholipids are increased in gerbil brain by administering uridine
plus docosahexaenoic acid orally. Brain Res, 2006; 1088: 83-92.

2. Sakamoto T, Cansev M, Wurtman RJ. Oral supplementation with
docosahexaenoic acid and uridine-5'-monophosphate increases dendritic spine
density in adult gerbil hippocampus. Brain Res, 2007; 1182: 50-9.

3. Teather LA, Wurtman RJ. Chronic administration of UMP ameliorates the
impairment of hippocampal-dependent memory in impoverished rats. J Nutr,
2006; 136: 2834-7.



Chapter 1:

Dietary Uridine Enhances the Improvement in Learning and Memory
Produced by Administering DHA plus Choline to Gerbils

Sarah Holguin, Joseph Martinez, Camille Chow, Richard Wurtman



Abstract

Docosahexaenoic acid (DHA) and choline, two circulating precursors for brain

phosphatides, can each improve cognitive abilities when administered to humans

and experimental animals: DHA consumption enhances learning and memory in

premature infants, and also in aged rats or rats infused intracerebrally with

amyloid beta. Choline administration early in life improves learning and memory

in adult gerbils, and choline also does so in malnourished humans. In the present

study, we show that oral DHA, co-administered to gerbils with choline chloride,

improves performance on various tests of learning and memory, including the

four arm radial maze (p < 0.001); T-maze (p< 0.021); and Y-maze (p < 0.001); as

described previously this treatment concurrently increases brain phosphatide

levels (p < 0.001). Co-administering a uridine source [uridine monophosphate

(UMP)] with DHA plus choline further enhances the increases in cognitive scores

and phosphatide levels. The uridine probably acts by generating CTP, which can

be limiting in phosphatide synthesis, and UTP, which activates P2Y receptors.



Introduction

Consumption of certain nutrients can influence brain function, even when the

nutrients are not being used to correct malnutrition syndromes (1). Consumption of

omega 3 fatty acids can improve cognition in animals or humans (2) or when given to

developing (3), or aged rats (4), or to rats infused intracerebrally with amyloid beta (5).

Aged rats consuming DHA for three weeks exhibited improved performance when tested

on an 8-arm radial maze (4); dentate gyri basally contained reduced DHA levels, which

were returned to normal after they consumed DHA-enriched diet for eight weeks (6).

The DHA may have acted by increasing brain phosphatide levels, thus enhancing

synaptic transmission (7; 8) and thereby improving cognition (9). Pups of dams fed a

DHA-enriched diet exhibited accelerated neurologic development (10), similarly treated

animals performed better on the Morris water maze as adults (11). DHA administered

chronically to rats reversed the behavioral impairment caused by infusing beta-amyloid

into the right ventricle (12), and rats fed a DHA-deficient diet had longer escape latencies

than control animals when tested on the Morris water maze (11).

Raising circulating and brain DHA levels can enhance the levels ofphosphatides and

of specific proteins in synaptic membrane (7), and the density of hippocampal dendritic

spines (13); this increase in dendritic spines could enhance synaptic transmission in the

hippocampus. Oral administration of UMP, a source of circulating and brain uridine

(14), also promotes the synthesis of synaptic phosphatides and proteins (7), acting via its

phosphorylated products UTP (which stimulates P2Y receptors [15]) and CTP

(which is rate-limiting in phosphatide synthesis via the Kennedy cycle [16]). Moreover,

the effects on phosphatide synthesis of giving UMP to animals receiving DHA and



choline tends to be substantially greater than the sum of the increases after either

treatment alone (7).

Numerous investigations have described improvements in learning and memory

among animals given a uridine source: local application of UMP into the hippocampus

thirty minutes prior to acquisition of the Y-maze reportedly improved performance as

examined forty-eight-hours later (17). Also, consuming a diet enriched with UMP

reversed the memory impairment usually observed among rats reared under impoverished

environmental conditions (18). Consumption of UMP along with DHA plus choline

amplified the increases in hippocampal dendritic density produced by givingUMP or

DHA plus choline alone (7, 13).

The ability of DHA, uridine, and choline to increase brain phosphatide synthesis

derives from the kinetic properties of the enzymes involved: all are of low affinity, and

thus unsaturated with their substrates. Choline is phosphorylated by choline kinase (CK)

to form phosphocholine, uridine is phosphorylated by uridine-cytidine kinase (CDK) to

form uridine triphosphate (UTP) (19), which is transformed to cytidine triphosphate

(CTP) by the enzyme CTP synthetase (20); DHA is taken up into and acylated by fatty

acyl-CoA synthetase, in neurons (21). Phosphocholine and CTP combine to form

cytidine- 5-diphosphocholine (CDP-choline), which combines with diacylglycerol

(DAG), preferentially that containing polyunsaturated fatty acids (PUFA) like DHA (21,

22) to form phosphatidylcholine (PC) (16). At normal plasma and brain levels (20), the

synthesis of PC by choline kinase (CK) is enhanced in animals (23) or humans (24) given

choline because CK is not saturated by choline (20). The conversion of uridine to UTP

and CTP is enhanced in PC12 cells (15) and rodent brain (7) when the saturation of



uridine-cytidine kinase (UCK) (25, 26, 27, 28, 29, 30), has been increased by providing

the pyrimidine (19). Plasma and brain CTP concentrations do not saturate CTP:

phosphocholine cytidylyltransferase (CT) (31), or the uptake into brain (32). Giving

animals DHA and choline plus uridine increases enzyme saturation by all three of these

precursors, and thus maximally enhances the synthesis of PC and other phosphatides (7).

We examined the effects on cognitive functions of giving gerbils UMP, DHA or both,

plus a choline-supplemented diet, and correlated those effects with the increases in their

produced brain membrane phosphatides. In humans, uridine is the principal circulating

pyrimidine; however, in rats, the principal circulating pyrimidine is cytidine, not uridine

(33). Pyrimidine metabolism in gerbils more closely resembles that in humans, hence, we

used Mongolian gerbils and not rats in this study. The gerbils received UMP and choline

via the diet and DHA by gavage, for four weeks prior to cognitive testing on a four arm

radial maze, T-maze or Y-maze.



Materials and Methods

Animals

Male gerbils (Meriones unguiculatus) (60-80 g) purchased from Charles River

Laboratories, Wilmington, MA, were housed in pairs, in a climate-controlled area kept on

a 12:12 light cycle (lights on at 7:00 h). An enriched environment was provided by

placing toys in the cage, providing a fresh paper towel for shredding twice a week, and

housing the animals in pairs. Each experiment was repeated at least 3 times and by at

least 2 different experimenters who were blind to the treatments. Efforts were made to

minimize animal suffering, according to NIH guidelines. Protocols were approved by the

Massachusetts Institute of Technology Committee on Animal Care (MIT's Institutional

Animal Care and Use Committee [IACUC]).

Treatments

Gerbils were allowed to eat 16% protein chow, or the same diet supplemented

with 0.5% UMP (Harlan-Teklad, Madison, WI). All diets contained 0.1% choline

chloride. Gerbils weighing 80g. typically consumed 4g. of food per day. In addition,

gerbils were gavaged daily with either a vehicle solution containing 5% arabic gum in

saline or the same vehicle supplemented with 300mg/kg DHA. At 3 months of age,

gerbils consumed UMP by dietary supplementation and DHA by gavage for four weeks

prior to behavioral training, and throughout all phases of behavioral testing.

4-Arm radial maze apparatus

The 4-arm radial maze apparatus consisted of a plastic square platform (15 cm x



15 cm), with 4 enclosed metal arms (10 cm x 37.5 cm), each with a small semi-

cylindrical trough (7.5 cm diameter x 2 cm deep) located 2.5 cm from the distal end 105.

for placing a food reward (.5 cm x .5 cm food pellet). The platform and arms were 106.

opaque (white) and 25 cm tall, without a top. The maze was located in a testing room

devoid of sound but with ample spatial cues including counters, chairs, etc. A 108.

constant level of ceiling illumination was provided throughout the study.

Radial maze training and behavioral measures

Food and water were available ad libitum until the day of experimental testing, at

which point gerbils were first fasted for 17 hours overnight and then provided with food

from 11AM to 6PM. Gerbils were handled daily for 4 days before testing to habituate

them to routine contact. They were familiarized with the maze for an additional 4 days by

placing food pellets throughout the arms and allowing 3 min for exploration. Gerbils

received 1 trial/day, and all surfaces were sanitized with 10% ethanol followed by

quatricide between trials. Arms were also rotated between each trial to ensure that

gerbils did not follow each others' scent to locate the food pellet. Training consisted of

placing a food pellet at the distal end of the same 2 arms for all trials. The gerbil was

placed in the center of the maze and allowed 2 min to find the food pellets. Testing

continued at the same time each day until gerbils had learned the task sufficiently well

(>80% accuracy for 3 consecutive days).

Working memory errors were recorded whenever a gerbil re-entered an arm

which contained a food pellet and which had previously been visited during a trial.

Reference memory errors were recorded whenever a gerbil entered an arm that had



not contained a food pellet during previous trials. The time it took to find both food

pellets and the path length chosen to obtain the pellets were also recorded.

T-maze apparatus

The T- maze apparatus consisted of a square platform (15 cm x 15 cm), with three

arms (10 cm x 37.5 cm) in the shape of a "T", each with a small cylindrical trough 131.

(7.5 130. cm diameter x 2 cm deep) located 2.5 cm from the distal end for placing a 132.

food reward (.5 cm x .5 cm food pellet). The platform and arms are opaque (white) 133.

and 25 cm tall. The maze was located in a testing room devoid of sound but with 134.

ample spatial cues including counters, chairs, etc. A constant level of ceiling illumination

was provided throughout the study.

T-maze training and behavioral measures

Food and water was available ad libitum until the day of testing. Gerbils

consumed 0.5% UMP-supplemented diet or control diet were given 300mg/kg of 139.

DHA (or its vehicle) daily by gavage at approximately three months of age, four 140.

weeks prior to behavioral training. Gerbils were handled daily for four days the week

prior to testing to habituate them to routine contact and were familiarized with 142. the

maze for an additional four days by placing food pellets throughout the arms and 143.

allowing three minutes for exploration. They were fasted for seventeen hours overnight,

tested on the T-maze, and then provided with food from 11 a.m. to 6 p.m. 145. They

continued to receive UMP and/or DHA throughout the remainder of training, 146.

approximately nine weeks total. They received one trial/day for five weeks. Training



consisted of placing a food pellet at the distal end of one arm in the "hat" 148. of the T.

The gerbils were placed at the end of the base of the T and allowed two 149. minutes to

find the food pellet. All surfaces were sanitized with quatricide and 10% 150. ethanol

between trials. Arms were also rotated between each trial to ensure that gerbils did not

follow each others' scent to locate the food pellet.

Working memory errors were recorded whenever a gerbil re-entered an arm that

contained a food pellet and after consuming the food pellet. Reference memory errors

were recorded whenever a gerbil entered an arm that did not contain a food pellet during

previous trials. The time required to find the food pellets and the path length used to

obtain the pellets were also recorded.

Y-maze apparatus

The Y-maze apparatus consisted of a wooden square platform (25 cm x 25 cm),

with one removable wall opening into the corner of a 120 0 triangular region (side

length 60 cm). All walls were 25 cm tall without a top. Two hinged doors (10 cm x

15 cm), were located symmetrically (10 cm from edge) on the wall opposite the square

platform. Behind one door was the gerbil's home cage, and behind the other door was an

identical clean cage. The maze was located in a testing room devoid of sound but with

ample spatial cues including counters, lamps, etc. A consistent level of ceiling

illumination was provided throughout the study.

Y-maze training and behavioral measures

Animals were first handled daily for 4 days to habituate them to routine contact.



Food and water were available ad libitum. Gerbils began to eat UMP-supplemented 169.

chow at 3 months of age, 2 weeks prior to behavioral training, and continued to do 170.

so throughout the remainder of training. Animals were not fasted for this test. Gerbils

underwent 3 trials per day, and all surfaces were sanitized with 10% ethanol 172.

between trials. Cages were also rotated between each trial to ensure that gerbils did 173.

not follow each others' scent to locate the food pellet. Training took place for 4

consecutive days, followed by 4 days of no training, and 4 days of training .

Training consisted of placing a gerbil in the square platform for 5 sec, removing the

removable wall, and allowing the gerbil 3 min to choose which door to enter.

Animals were not able to re-enter the testing chamber after entering a door. Trials 178.

followed the same procedure. The door chosen during each trial was recorded.

Rotarod apparatus and testing

The rotarod apparatus consisted of a 3.2-cm-diameter rod (RRAC-3002; O'Hara

& Company, Tokyo, Japan). The rotarod test was performed according to the

procedure described previously (34). Male gerbils, 5 months old, were used for

motor behavioral tests. During the training period, gerbils were placed on the

rotating rod starting at 4 rpm and gradually accelerated to 40 rpm at a rate of 0.15

rpm/s. The latency to fall (retention time) was measured with a cutoff time of 4 min.

Gerbils were trained for 3 consecutive days, receiving four trials per day with a 1 h

intertrial interval.

Sample Collection



Gerbil brains were obtained immediately following the conclusion of each

behavioral test by CO 2 anesthesia followed by decapitation and immediate dissection of

the whole brain. All brain tissue was weighed and homogenized in DI water such that

each sample contained the same ratio of tissue to water; i.e., 20mg tissue: lmL water.

Samples were stored at -80 C for further analysis.

Total DNA Assay

To determine the total DNA in each sample, previously described techniques (35)

were used. Briefly, known standards were diluted 50 ltg/mL in DNA buffer (50mM

KPO4, 2mM EDTA, 250mM NaC1, pH=7.4); 10 ýtL of standards and homogenized

tissue were placed in well plates (Falcon Micro Test 96-well Assay Plate, optilux Black).

Hoechst solution was diluted to 1 .tg/ýL in DNA buffer, and 200[tL was added to

standard- and sample-containing wells. Following a thirty minute incubation at RT and

in the dark, the plate was read and analyzed on Thermo Labsystem Fluoroskan Ascent

using Micro plate Manager Software at 450 nm.

Total Protein Assay

To determine the total protein in each sample, previously described techniques

(35) were used. Homogenized brain tissues were compared to known BSA standards.

Briefly, BSA standards and samples were added to well plates (clear Falcon Pro-Bind 96

well assay plate); CuSO4 solution was diluted 1:49 in bichinconinic acid and added to all

standard- and sample-containing wells. Following a thirty-minute incubation at RT, the

plate was read and analyzed on a 210. Bio Rad micro plate reader, model 550, using



Ascent Software at 450 nm.

Total Phospholipids Assay

Total phospholipid content was determined by comparing samples to potassium

phosphate standards. Phosphatides were extracted using previously described methods

(36): 1 mL homogenates were mixed with 3 mL of chloroform and methanol mixture (2:1

v/v) and vortexed for 30 seconds. After cooling on ice for 1 hour, the mixture was added

to 1 mL deionized water, and then added to 3 mL of chloroform and methanol (2:1 v/v).

After remaining at -4C for 18-20 hours, the mixture was separated by centrifugation at

3500 rpm for fifteen minutes at 4C; 100 ýtL aliquots of the bottom phase are dried in a

Savant lyopholizer and then digested in 70% perchloric acid for 1.5 hours at 150 C.

Phosphatides were measured as described previously (37): 300 ýIL of 15% ascorbic acid

and 200 tL of 5% ammonium molybdate were added to samples and standards. These

remained at RT for thirty minutes, and were then read at 450 nm on a Perkin-Elmer

Lambda 3B 224. UV/VIS.spectrophotometer. The absorbency reading of each sample

was compared 225. to the absorbency reading of the standards to determine the

phospholipid content in samples. This value was adjusted according to the total DNA

and protein determined previously.

Separation ofPhospholipids

To determine the amount of individual phospholipids, previously described

methods (38) were used. Digested samples were separated using thin layer

chromatography (TLC); 30 jtL of each sample was spotted onto Alltech silica gel G



channeled plates, placed in running buffer (30 mL chloroform, 34 mL ethanol, 30 mL

triethylamine, and 8 mL water) for 1.5 hours, and visualized by spraying plates with

petroleum ether containing 1,6-diphenyl- 1,3,5-hexatriene and viewing under UV light.

The bands corresponding to individual phospholipids were scraped, reconstituted in

methanol, and dried overnight in a Savant lyopholizer. Following this initial separation

step, samples were digested and assayed for phosporus as described for total

phospholipids above.

Data analysis

For all tests comparing 2 groups, two-tailed t-tests were used. For comparisons

involving more than one factor, or comparing more than 2 groups, factorial ANOVA 242.

was used.



Results

Body wt.

Body weight did not differ between UMP-supplemented, DHA gavaged, and

control groups (data not shown), indicating that gerbils probably were eating

equivalent amounts of diet with or without UMP or DHA supplementation.

Effects of UMP and DHA Supplementation on Gerbils Performance on a Four Arm
Radial Maze.

All groups were able to learn the four arm radial maze to some degree, showing a

decrease in the number of errors recorded over time (figure lA, B, C). Values are mean

± S.E.M, n=12. Reference memory errors were decreased by administration of either

UMP or DHA, the largest decrease was observed by co-administering UMP and DHA;

UMP [F(1,12)= 5.721, p<.038], DHA [F(1,12)= 12.315. p< .042, and UMP x DHA

[F(1,12) = 23.659, p< .001] (figure lA). Working memory errors were decreased by

administration of either UMP or DHA, the largest decrease was observed by co-

administering UMP and DHA; UMP [F(1,12) = 7.236, p< .029], DHA [F(1,12) = 19.145,

p < .035, UMP x DHA [F(1,12) = 17.329, p < .001] (figure IB). The total errors were

decreased by administration of either UMP or DHA, the largest decrease was observed by

co-administering UMP and DHA; UMP [F(1,12) = 8.237, p<.022], DHA [F(1,12)=

9.658, p< .034], UMP x DHA [F(1,12) = 18.521, p<.001) (figure IC). These results

indicate that long-term dietary treatment with UMP or oral DHA improves gerbils'

spatial memory; their spatial memory is further enhanced when UMP and DHA are co-

administered.



Effects of UMP and DHA Supplementation on Gerbils Performance on a T-Maze
with a Delayed Memory Test.

All groups were able to learn the T- maze to some degree, showing a decrease

in the number of errors recorded over time (figure 2A). Values are mean ± S.E.M, n=12.

The number of sessions required for gerbils to reach the criterion to have successfully

learned the maze were decreased by administration of either UMP or DHA, the largest

decrease was observed by co-administering UMP and DHA; UMP [F(1,12) = 5.764,

p<.038], DHA [F(1,12) = 7.861, p < .024, and UMP x DHA [F(1,12) = 16.325, p< .017]

(figure 2A). Following a 24 hour delay, gerbils administered with either UMP or DHA

were more likely to locate the correct arm; the gerbils most likely to locate the correct

one were those administered both UMP and DHA; UMP [F(1,12) = 7.365, p < .04], DHA

[F(1,12) = 6.295, p < .036, UMP x DHA [F(1,12) = 18.263, p< .021] (figure 2B). These

results indicate that long-term dietary treatment with UMP or oral DHA improves

gerbils' retention of spatial memory following a delay in testing; their retention of

spatial memory was further enhanced when UMP and DHA were co-administered.

Effects of UMP and DHA Supplementation on Gerbils Performance on a Y-Maze
with a Delayed Memory Test.

All groups were able to learn the Y- maze to some degree, showing an

increase in the number of times gerbils chose the correct door to their home cage

(figure 3), and indicated by a significant main effect of day (block of four training

trials/day) (P<.001). Values are mean ± S.E.M, n=12. No other significant main

effects were determined during acquisition of the task. Following a four day delay,

gerbils administered either UMP or DHA were more likely to choose the correct door, the



group most likely to choose the correct door were the gerbils co-administered UMP and

DHA; UMP [F(1,12) = 8.326, p<..012], DHA [F(1,12) = 10.296, p < .009, and UMP x

DHA [F(1,12) = 22.356, p< .001] (figure 3). These results indicate that long-term dietary

treatment with UMP or oral DHA improves gerbils' retention of spatial memory

following an extended delay in testing; their retention of spatial memory was further

enhanced when UMP and DHA were co-administered.

Effects of UMP and DHA Supplementation on Gerbils Performance on an
Accelerating Rotarod Test

All groups were able to learn the rotarod task, showing an increase in the length of

time they are able to remain on the accelerating rotarod (figure 4), and indicated by a

significant main effect of day (block of four training trials/day) (p<.02). Values are mean

+ S.E.M, n=12. No other significant main effects were determined (p's > .05),

suggesting that a UMP-supplemented diet and/or oral DHA has little to no effect on

motor activity.

Effects of a UMP- supplemented Diet alone or in Combination with DHA
Administration on Brain Phosphatide Levels

Chronic consumption of UMP (0.5%) increased gerbils' brain PC and PE levels

significantly, by 18%, and 33%, respectively (table 1). Administration of DHA (300

mg/kg) to gerbils consuming control diet increased gerbils' brain PC, PE, PS, and PI

levels significantly, by 26%, 10%, 50%, and 53%, respectively. Among gerbils receiving

both UMP and DHA, brain PC, PE, SM, PS, and PI levels rose significantly by 66%,

108%, 100%, 75%, and 94%, respectively. Total phospholipid levels were also



significantly increased in gerbils administered both UMP and DHA, by 32% (table 1).

Two-way ANOVA revealed a significant effect of dietary UMP or oral DHA on brain

PC, PE, PS, and PI levels (all < .05). Two way ANOVA also revealed a significant

effect of co-administering dietary UMP and oral DHA on brain PC, PE, SM, PS, PI, and

total phospholipids levels (all P < .001). Similar results were obtained when data were

expressed per ýtg DNA (data not shown).

Table 1. Effects of giving UMP-supplemented diet (0.5%) and
phosphatide levels in whole brain samples.

DHA (300 mg/kg) on

Treatment Total PL PC PE SM PS PI
Control 343+ 12 138 ± 11 58 ± 7 37 ± 8 24 ± 8 17+7
0.5% UMP 364 + 15 164 ± 12* 77 ± 10* 42 ± 5 32 ± 8 24 ± 7

300mg/kg DHA 411 ± 6 174 + 9* 64 9* 40 ± 9 36± 11* 26 9*

0.5% UMP + 300mg/kg 452 - 18*** 229 ± 121 + 74 ± 42 ± 33 +
DHA 15*** 13*** 10"** 12*** 4***

319. Gerbils were administered a UMP-containing (0.5%) diet, and received DHA (300
320. mg/kg) daily by gavage for 8 weeks. Values are mean ± S.E.M, n=12. Brains were
321. then obtained and their phosphatide levels determined as described in the text. Data
322. are presented as nmol/mg protein.
323. * p<.05 compared to control group
324. ** p<.01 compared to control group
325. *** p<.001 compared to control group
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Figure 1. The effects of a UMP-supplemented diet and/or daily administration of DHA
on acquisition of a four arm radial maze with two arms baited in gerbils. Values are
mean ± S.E.M, n=12. A. Reference memory errors (UMP p <.038, DHA p< .042, UMP x
DHA p< .001). B. Working memory errors (UMP p<.029, DHA p< .035, UMP x DHA
p<.001). C. Total errors (UMP p<.022, DHA p< .034, UMP x DHA p<.001).
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Figure 2. The effects of a UMP-supplemented diet and/or daily administration of DHA
on acquisition of a T-maze with one arm baited in gerbils. Values are mean + S.E.M,
n=12. A. Acquisition of the task was affected sessions to reach criterion (UMP p < .038,
DHA p < .024, UMP x DHA p < .017). B. Retention of the task was affected percent
correct in a 24 hour delay memory test (UMP p <.04, DHA p < .036, UMP x DHA
p<.021).
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Y-Maze Delay Memory Test
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Figure 3. The effects of a UMP-supplemented diet and/or daily administration of DHA
on acquisition of a Y-maze with a four day delay memory test. Values are mean ±
S.E.M, n=12. Retention of the task was affected percent correct (UMP p< .012, DHA p<
.009, UMP x DHA p <.001).
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spent on the rotarod was not affected (p's.> .05).

1 2 3
Blocks of 4 Trials



Discussion

These data show that oral administration to gerbils of either dietary UMP (0.5%)

or gavaged DHA (300 mg/kg) causes gerbils to exhibit improved performance

on various tests of cognition, including a four arm radial maze, T-maze, and Y- maze

(figures 1, 2, 3). Co-administration of the UMP and DHA further enhance the

improvements in performance on these tasks. Our data also confirm that administration of

either UMP or DHA increases levels of brain phosphatides (PC and PE), concurrent with

improving the cognitive behaviors. Moreover, co-administration of UMP and DHA

increases levels of all of the other brain phospholipids measured (PC, PE, SM, PS, PI), and

total phospholipid levels (table 1). The increases in the brain phosphatide levels correlated

with improved performance on tests of cognition.

Previous studies have shown that consumption by rodents of a DHA-deficient diet

decreases performance on tests of cognition (39), although not all of the effects described

could be attributed to deficits in learning and memory. Rats fed a diet deficient in DHA

exhibited impaired spatial learning in the Barnes circular maze (39), and impaired spatial

learning and memory in the Morris water maze (11). Potential confounders were not

usually evaluated, as noted by the authors of these papers, and could not be excluded as

alternative explanations for many of the observations. Most behavioral tests measure a

combination of performance and behavioral characteristics (40); the results from

commonly used water and radial maze tests are highly dependent on locomotor ability and

visual recognition of cues. Rodents consuming a DHA restricted diet can develop poor

visual function (41), and also suffer from diminished synthesis of the saturated and

monounsaturated fatty acids (42) needed as energy sources (43), and from high levels of



inflammation (44). Therefore, rodents consuming diets deficient in choline or DHA may

experience adverse affects not related to learning and memory, which may influence their

performance on tests of cognition. In the present study, all gerbils consumed diets that did

not restrict their consumption of DHA, hence the likelihood that improvement in

performance was based on locomotor ability or visual acuity was reduced.

Although some previous studies have shown that administration of DHA or UMP given

alone can improve memory, this to our knowledge is the first study to demonstrate that co-

administration of UMP further enhances the effects of DHA. This probably reflects the

fact that, prior to the 2006 demonstration that the two compounds potentiate each others'

effects on phosphatide synthesis (7), there was no compelling reason to examine their

possible interaction in promoting cognition. DHA administration to rodents was previously

shown to improve performance on tests of cognition that measure spatial learning such as

the radial maze (3,4), Morris water maze (45), and brightness discrimination learning task

(46). Chronic administration of UMP (0.1%) improved the hippocampal-dependent

memory deficits associated with rearing rats in an impoverished environment (18). Results

from the present study show that DHA and UMP apparently act in synergy to produce

further improvements in learning acquisition and in retention of spatial memory.

In humans, administration of DHA can also improve performance on tests of cognition.

DHA supplemented formulas fed to term infants (47) and pre-term infants (48, 49) resulted

in improved performance in cognitive or behavioral tests, and on visual acuity (47). Infants

of women who have higher levels of DHA in their breast milk have higher scores on the

NBAS Range of State cluster score, suggesting that the DHA may maintain optimal arousal

in infants (50). DHA supplementation of infant formula improved visual and cognitive



maturation during infancy, and visual and cognitive outcomes at 1 year (51) and 4 years of

age (52). Results from the present study indicate that cognition in humans may be further

improved if DHA and UMP are administered in combination.

Changes in brain phosphatide levels following administration of DHA and UMP may

contribute to improved cognition in gerbils. Synthesis of the brainphosphatide

phosphatidylcholine, the most abundant constituent of cellular membranes (53), is

increased by consumption of the uridine source UMP (7). Plasma uridine crosses the

blood-brain barrier (BBB) (54), and increases brain uridine levels (14). This uridine is

converted, via UTP, to cytidine triphosphate (CTP), which combines with phosphocholine

(formed by the phosphorylation of choline) to yield cytidine-5' diphosphate choline (CDP-

choline), the immediate precursor of PC (55). The CDP-choline then combines with a

diacylglycerol (DAG), preferentially one containing a polyunsaturated fatty acid (PUFA)

moity such as DHA, to form PC (16). The UTP also acts as a ligand for P2Y receptors

(15).

DHA and UMP supplementation increased phospholipid content and synaptic protein

levels (7), and increased dendritic spine density in the gerbil hippocampus (13). In the

present study, we confirmed that total phospholipid levels in the brain are increased with

chronic consumption of DHA, and that co-administration with UMP further amplifies those

effects (table 1). We also observed that the level of phospholipids in gerbil brain following

8 weeks of DHA-UMP-choline administration is significantly higher than that described

previously following 4 weeks of treatment (7); implying that an asymptote has not yet been

reached. The likely mechanism by which DHA increases brain PC content is by increasing

the synthesis of the phosphatide, inasmuch as levels of PC's immediate precursor, CDP-



choline, are simultaneously depleted when DHA is administered (56).

Besides enhancing phosphatide synthesis, DHA but not analogs such as DPAn-6 (57)

produces additional effects on brain that could contribute to its behavioral effect. It lowers

levels of inflammation (58), has free radical scavenging capabilities (59), and affects brain

neurotransmitter levels (60), among other actions. The actions of UMP may also, as

mentioned above, be mediated in part through activation of P2Y receptors. Uridine and

UTP activate P2Y receptors in PC 12 cells, and can thereby increase turnover of

inositolphosphate (IP) (15), and calcium release from intracellular stores (61); these

cellular messengers also reportedly improve learning and memory in animals (62).

In summary, the present study demonstrates that increased consumption of either UMP

or DHA plus choline increases brain phospholipid content and improves the acquisition and

retention of spatial memory by gerbils. The largest increases in phospholipids and

enhancements in memory occur when choline, DHA, and UMP are administered in

combination.
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Chronic Administration of DHA and UMP Improves the Impaired Memory
of Impoverished Rats
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Abstract

Living in an enriched environment (EC) during development enhances

memory function in adulthood; living in an impoverished environment (IC)

impairs memory function. Compounds previously demonstrated to improve

memory among IC rats include CDP-choline and uridine mono phosphate (UMP).

Brain phosphatidylcholine (PC) synthesis utilizes both the pyrimidine formed

from CDP-choline or UMP, and the choline formed from CDP-choline. It also

uses the polyunsaturated fatty acid (PUFA) DHA, a precursor for the

diacylglycerol used in PC synthesis. DHA administration also improves

cognition in young and aged rodents and humans. We examined the effects of co-

administering DHA and UMP on hippocampal- and striatal- dependent forms of

memory among rats exposed to EC or IC for 1 month starting at weaning. In the

present study, we show that IC rats receiving either dietary UMP (0.5%) or

gavaged DHA (300 mg/kg) exhibit improved performance on the hidden version

of the Morris water maze (all p<0.05), a hippocampal-dependent task. Co-

administration of UMP and DHA further enhances the IC rats' performance of

this task (p<0.001). UMP plus DHA administration does not affect EC rats

performance on the hidden version of the Morris water maze (p>0.05), nor the

performance of IC or EC rats on the visible version of the Morris water maze (all

p>0.05), a striatal-dependent task. We have also confirmed that co-administration

of UMP and DHA to rats increases brain levels of the phosphatides PC, PE, SM,

PS, PI, and total phospholipid levels (all p<0.05), and that animals reared in the

enriched environment have brain PC, PS, and PI levels that are 57%, 25%, and



41% higher, respectively (all p<0.01) than those of animals reared in an IC

environment. Total phospholipid levels were also significantly higher in EC

control rats than in IC control rats by 25% (p<0.01). These results suggest that

giving DHA plus UMP can ameliorate memory defecits associated with rearing

under impoverished conditions, and that this effect may be mediated through

enhanced synthesis of brain membranes.



Introduction

Changes in an animal's environment, and the ways in which that animal

reacts to those changes, can have significant long-term effects on the brain and

behavior [1]. Laboratory rodents are normally reared under standard conditions

(SC), during which rats are housed individually, with few novel objects to interact

with. Recently, rodents have been reared under enriched (EC) or impoverished

conditions (IC) to determine differences in cognition acquired through increased

or decreased environmental stimuli. Rats reared under EC are typically housed in

larger cages, with more cage mates, and novel objects to interact with. Rodents

reared under IC are housed in smaller cages, isolated from other rodents, and in a

cage devoid of all unnecessary objects [2]. Rats exposed to EC conditions have

improved memory compared to rats reared under SC [3]; rats exposed to IC

conditions have impaired memory [4].

Enrichment enhances memory performance in various learning tasks.

Enriched mice performed better on a water maze test of spatial memory [5, 6],

and enriched rats performed better on a T-maze [7] EC enhanced spatial learning

in adult and aged rats [8], and improved learning in rats with traumatic brain

injury (TBI) [9]. The hippocampus, which is essential in learning and memory

[1], is the brain region most profoundly effected by exposure to an enriched or

impoverished environment [10].

Impoverishment impairs memory function in various learning tasks; some

compounds can protect rodents from memory impairments. IC rats demonstrated

deficits when tested on a T-maze [3], and Morris water maze [11]. Rats exposed



to IC have hippocampal-dependent memory deficits [4]. Compounds previously

demonstrated to improve the memory of IC rats include CDP-choline and uridine

mono-phosphate (UMP). Long-term dietary supplementation with either CDP-

choline, a source of choline and cytidine (in rats) or uridine (in humans),

prevented memory impairment in IC rats tested on a hippocampal- dependent

spatial task [12, 13].

PC synthesis requires the use of three circulating compounds; choline, a

pyrimidine such as uridine, and a polyunsaturated fatty acid (PUFA) such as

docosahexaenoic acid (DHA) [14]. Furthermore, consumption of DHA, one of

the precursors to PC, improves learning and memory when given during

development [15], or to aged rats [16]. Chronic administration of either UMP or

DHA increased brain phosphatide levels, the largest increase occurred when DHA

and UMP were administered in combination [14].

DHA, uridine, and choline administration increase phosphatide synthesis

because the enzymes involved are of low affinity and unsaturated by their

substrates. Choline is phosphorylated by choline kinase (CK) to form

phosphocholine, uridine is phosphorylated by uridine-cytidine kinase (CDK) to

form uridine triphosphate (UTP) [17], which is transformed to cytidine

triphosphate (CTP) by the enzyme CTP synthetase [18]. DHA is acylated by fatty

acyl-CoA synthetase [19]. Phosphocholine and CTP combine to form cytidine-

5'-diphosphocholine (CDP-choline), which combines with diacylglycerol (DAG)

to form phosphatidylcholine (PC) [20]. DAG containing polyunsaturated fatty

acids (PUFA) such as DHA is preferentially incorporated into PC [19, 21]. The



synthesis of phosphocholine by choline kinase (CK) is enhanced in animals [22]

or humans [23] given choline because CK is not saturated by its substrate, choline

at normal plasma and brain levels [18]. Uridine conversion to UTP and CTP is

enhanced in PC12 cells [24] and rodent brain [14] when uridine-cytidine kinase

(UCK) [25, 26, 27, 28, 29, 30] is saturated following pyrimidine administration

[17]. Also, the concentrations of plasma and brain CTP do not saturate CTP:

phosphocholine cytidylyltransferase (CT) [31], or its uptake into brain [32].

Giving animals DHA and choline plus uridine increases enzyme saturation by all

three of these precursors, and thus maximally potentiates synthesis of PC and

other phosphatides [14].

Increased brain phosphatide levels may enhance learning and memory

[33]. We thus examined the effect of DHA and UMP on hippocampal- and

striatal- dependent forms of memory among rats exposed to EC or IC for 1 month

starting at weaning, using the hidden and visible versions of the Morris water

maze. Subsequently, brain samples were analyzed for their phospholipid content

and a correlation determined between increased brain phosphatides and improved

performance on the water maze task.



Materials and Methods

Rats and Diet.

Male Sprague Dawley rats, 4 weeks of age, were purchased from Charles

River Laboratories, Wilmington, MA, and were housed in a climate-controlled

area kept on a 12:12 light cycle (lights on at 7:00 h). At this time, rats were

matched according to body wt and assigned to either the IC or EC group.

Subgroups of IC rats were given either control diet, 0.5% UMP supplemented

chow, 300 mg/kg DHA daily by gavage, or 0.5% UMP and 300 mg/kg DHA daily

by gavage. Subgroups of EC rats were also given either control diet, 0.5% UMP

supplemented chow, 300 mg/kg DHA daily by gavage, or 0.5% UMP and 300

mg/kg DHA daily by gavage. Rats were weighed weekly to ensure that treated

and untreated rats were eating equivalent amounts of food. Efforts were made to

minimize animal suffering, according to NIH guidelines. Protocols were

approved by the Committee on Animal Care [Massachusetts Institute of

Technology's Institutional Animal Care and Use Committee (IACUC).]

Environmental Conditions

Rats were housed in the same rack in plastic cages with wire lids. Bedding

and water were regularly changed, and rats had ad libitum access to food and

water. EC rats were housed in groups of 2, in cages containing plastic toys

(blocks, balls, PVC tubing, etc.). Toys were rotated between groups twice a

week; new toys were introduced weekly. EC rats were exposed to a "playroom"

measuring 5 ft x 5 ft every other day for 45 min. The "playroom" contained



several toys including plastic tubing, small balls, plastic boxes, wire brushes, and

paper towels to shred. The IC rats were housed individually, without toys, and

handled 3 times/week. IC rats were allowed to exercise 3 times/week for 15 min

in an empty room measuring 5 feet x 5 feet, with only the experimenter present.

Water Maze Apparatus

The water maze was a galvanized circular tank, 6 feet in diameter and 2

feet in height. The tank was filled with water maintained at RT to a depth of 1

foot, and located in a dimly lit room containing several extramaze cues. Four

starting positions were spaced around the perimeter of the tank to divide the pool

into 4 equal quadrants. For the visible platform version of the water maze, a white

flag was attached to the top of the submerged platform and protruded above the

water surface. We mounted a video camera directly above the maze; this camera

was linked to a computer with video tracking software to automatically record the

escape latency (time to reach the platform), distance traveled (length of swim path

taken to find the platform), and swim speed of all rats (HVS Image).

Behavioral Test

All behavioral training was carried out as described previously [12, 13]

between 1400 and 1800 h, each experiment was repeated at least 3 times and by at

least 2 different experimenters who were blind to the treatments. Briefly, rats

were given 4 trials/day for 4 days to locate the hidden platform (1 cm below the

water surface), which remained in the same position for all trials for individual



rats (within 1 of 4 quadrants). If a rat did not find the platform within 90 sec, it

was guided to the escape platform by the experimenter. After mounting the

platform, rats were allowed to remain on the platform for 20 sec. Following each

trial, rats were removed from the maze and placed in a holding cage for a 30 sec

intertrial interval. On the fifth day, rats were given a probe test; the platform was

removed and the swim path and time spent searching in the quadrant of the pool

that previously contained the platform were measured over 60 sec.

In the visible version of the Morris water maze, rats were given 4

trials/day for 4 days to locate the visible platform; the visible escape platform was

placed in a different quadrant on each of the 4 trials. If a rat did not escape within

90 sec, it was manually guided to the escape platform by the experimenter. After

mounting the platform, rats remained on the platform for 20 sec. Following each

trial, rats were removed from the maze and placed in a holding cage for a 30 sec

intertrial interval.

Rotarod apparatus and testing

The rotarod apparatus consisted of a 3.2-cm-diameter rod (RRAC-3002;

O'Hara & Company, Tokyo, Japan). The rotarod test was performed according to

the procedure described previously [34]. Rats were tested on the rotarod

following the completion of all water maze testing. During the training period,

rats were placed on the rod, and rotation started at 4 rpm and gradually

accelerated to 40 rpm at a rate 0.15 rpm/s. The latency to fall (retention time) was

measured with a cutoff time of 4 min. Rats were trained for 3 consecutive days,



receiving four trials per day with a 1 h intertrial interval.

Sample Collection

Rat brains were obtained immediately following the conclusion of each

behavioral test by C02 anesthesia followed by decapitation and immediate

dissection of the whole brain. All brain tissue was weighed and homogenized in

DI water such that each sample contained the same ratio of tissue to water; i.e.,

20mg tissue:lmL water. Samples were stored at -80 C for further analysis.

Total DNA Assay

To determine the total DNA in each sample, previously described

techniques [35] were used. The DNA in homogenized brain tissue was compared

to standards. Briefly, known standards were diluted 50 Cpg/mL in DNA buffer

(50mM KH2PO4, 2mM EDTA, 250mM NaC1, pH=7.4); 10 ptL of standards and

homogenized tissue were placed in well plates (Falcon MicroTest 96-well Assay

Plate, optilux Black). Hoechst solution was diluted to 1 pg/p.L in DNA buffer, and

200p.L was added to standard- and sample-containing wells. Following a thirty

minute incubation at RT and in the dark, the plate was read and analyzed on

Thermo Labsystem Fluoroskan Ascent using Ascent software, at excitation 355

nm./emission 460 nm.

Total Protein Assay

To determine the total protein in each sample, previously described



techniques [35] were used. Homogenized brain tissues were compared to known

BSA standards. Briefly, BSA standards and samples were added to well plates

(clear Falcon Pro-Bind 96 well assay plate); CuSO4 solution was diluted 1:49 in

bichinconinic acid and added to all standard- and sample-containing wells.

Following a thirty-minute incubation at RT, the plate was read and analyzed on a

Bio Rad microplate reader, model 550, using Microplate Manager software, at

550 nm.

Total Phospholipid Assay

Total phospholipid content was determined by comparing samples to

potassium phosphate standards. Phosphatides were extracted using previously

described methods [36]: 1 mL homogenates were mixed with 3 mL of chloroform

and methanol mixture (2:1 v/v) and vortexed for 30 seconds. After cooling on ice

for I hour, the mixture was added to 1 mL deionized water, and then added to 3

mL of chloroform and methanol (2:1 v/v). After remaining at -4C for 18-20

hours, the mixture was separated by centrifugation at 3500 rpm for fifteen

minutes at 4C; 100 gpL aliquots of the bottom phase was dried in a savant

lyopholizer and then digested in 70% perchloric acid for 1.5 hours at 150 C.

Phosphatides were measured as described previously [37]: 300 ýtL of 15%

ascorbic acid and 200 giL of 5% ammonium molybdate was added to samples and

standards. These remained at RT for thirty minutes, and were then read on a

Perkin-Elmer Lambda 3B UV/VIS spectrophotometer, at 810 nm. The

absorbency reading of each sample was compared to the absorbency reading of



the standards to determine the phospholipid content in samples. This value was

adjusted according to the total DNA and protein determined previously.

Phospholipid Separation

To determine the amount of individual phospholipids, previously

described methods [38] were used. Digested samples were separated using thin

layer chromatography (TLC); 30 jtL of each sample was spotted onto Alltech

silica gel G channeled plates, placed in running buffer (30 mL chloroform, 34 mL

ethanol, 30 mL triethylamine, and 8 mL water) for 1.5 hours, and visualized by

spraying plates with petroleum ether containing 1,6-diphenyl-1,3,5-hexatriene and

viewing under UV light. The bands corresponding to individual phospholipids

were scraped, reconstituted in methanol, and dried overnight in a savant

lyopholizer. Following this initial separation step, procedures were the same as

those described for the total phospholipid assay above.

Data analysis

For all tests comparing 2 groups, two-tailed t-tests were used. For

comparisons involving more than one factor, or comparing more than 2 groups,

factorial ANOVA was used.



Results

Body wt.

Body weight did not differ between UMP, DHA, and environmental

conditions (data not shown), indicating that rats were eating equivalent amounts

of diet regardless of dietary supplementation or environmental conditions.

Effects of UMP, DHA, and Environmental Conditions on Rats Performance on a
Hippocampal-dependent Water Maze Test

All groups were able to learn the hidden version of the Morris water maze

to some degree, showing a decrease in the number of errors recorded over time

(figure 1A, B) and indicated by a significant main effect of day (block of 4

training trials per day) (p<0.001). Values are mean ± S.E.M, n=12 for each

group. A main effect of environment (p<0.001) and an environment x diet

interaction were also observed (p<0.05). IC rats treated with either UMP, DHA,

or UMP and DHA had decreased escape latencies compared to the IC control rats,

the largest decrease was observed in IC rats co-administered UMP and DHA;

UMP [F(1,12) = 7.563, p<.042], DHA [F(1,12) = 13.253. p< .035], and UMP x

DHA [F(1,12) = 27.635, p< .001] (figure lA). EC rats treated with either UMP,

DHA, or UMP and DHA did not acquire the task at a faster rate than did IC

control rats (p>0.05) (figure 1B). These results indicate that long-term dietary

treatment with UMP or oral DHA improves the spatial memory deficits normally

associated with impoverished conditions; spatial memory is further improved

when UMP and DHA are co-administered.

The results of the 60 sec probe test indicated that rats spent more time in



the quadrant that originally contained the platform, suggesting that all

experimental groups used spatial cues to locate the hidden platform (figure

1C).The percentage of swim time in the 4 quadrants during the probe test was

affected by environment (p<0.042), quadrant (p<0.001), and diet x environment

interaction (p<0.05). IC rats treated with UMP, DHA, or UMP and DHA spent

more time in the correct quadrant than did the IC control rats, UMP [F(1,12) =

7.845, p<0.025], DHA [F(1,12) = 12.374, p< 0.021], UMP x DHA [F(1,12) =

22.428, p<0.001) (figure 1C). EC rats treated with UMP, DHA, or UMP and

DHA did not spend more time in the correct quadrant than EC control rats

(p>0.05).

Effects of UMP, DHA, and Environmental Conditions on Rats Performance on a
Striatal-dependent Water Maze Test

All groups were able to learn the visible version of the Morris water maze

to some degree, showing a decrease in the number of errors recorded over time

(figure 2A, B) and a main effect of day (block of 4 training trials per day)

(p<0.001). Values are mean ± S.E.M, n=12. No other significant effects were

determined, suggesting that environment, UMP, and DHA have no effect on

striatal-dependent learning and memory.

Effects of UMP and DHA Supplementation on Rats Performance on an
Accelerating Rotarod Test

All groups were able to learn the rotarod task, showing an increase in the

length of time they are able to remain on the accelerating rotarod (figure 3), and

indicated by a significant main effect of day (block of four training trials/day)



(p<.015). Values are mean ± S.E.M, n=12. No other significant effects were

determined (p's > .05), suggesting that environment, UMP, and DHA have no

effect on motor activity.

Effects of a UMP- supplemented Diet alone or in Combination with DHA
Administration on Brain Phosphatide Levels in EC and IC Rats

Chronic consumption of UMP (0.5%) increased IC rats' brain PC, PS, and

PI levels significantly, by 23%, 28%, 46%, and 27%, respectively (Table 1).

Administration of DHA (300 mg/kg) to IC rats consuming control diet increased

rats' brain PC, SM, PS, and PI levels significantly, by 26%, 49%, 71%, and 59%,

respectively. Among IC rats receiving both UMP and DHA, brain PC, PE, SM,

PS, and PI levels rose significantly by 60%, 97%, 86%, 138%, and 100%,

respectively. Total phospholipids levels were also significantly increased in IC

rats administered DHA by 19%, and in IC rats administered both UMP and DHA,

by 29% (table 1). Two-way ANOVA revealed a significant effect of dietary UMP

or oral DHA on IC rats' brain PC, PE, PS, and PI levels (all p< .05). Two-way

ANOVA also revealed a significant effect administering DHA (p<.05) or co-

administering dietary UMP and oral DHA on IC rats brain total phospholipids

levels (p< .001). Similar results were obtained when data were expressed per jtg

DNA (data not shown).

Administration of DHA (300 mg/kg) to EC rats consuming control diet

increased rats' brain SM, PS, and PI levels significantly, by 66%, 30%, and 19%,

respectively (table 1). Among EC rats receiving both UMP and DHA, brain PC,

PE, SM, PS, and PI levels rose significantly by 18%, 46%, 100%, 107%, and



55%, respectively. Total phospholipids levels were significantly in EC rats co-

administered UMP and DHA (p<0.05), but were not significantly increased in EC

rats administered either UMP or DHA, or the combination of UMP and DHA (all

p>0.05) (table 1). Two-way ANOVA revealed a significant effect of oral DHA on

EC rats' brain SM, PS, and PI levels (all p< .05). Two-way ANOVA also

revealed a significant effect of dietary UMP and oral DHA on EC rats' brain PC,

PE, PS, and PI levels (all p< .05). Similar results were obtained when data were

expressed per pg DNA (data not shown).

An enriched environment increased rats' brain PC, PS, and PI levels by

57%, 25%, and 41%, respectively. Total phospholipid levels were also

significantly increased in EC control rats compared to IC control rats by 25%.

Two-way ANOVA revealed a significant effect of enriched environment on EC

rats' brain PC, PS, and PI levels (all p< 0.01). Two-way ANOVA also revealed a

significant effect of enriched environment on EC control rats compared to IC

control rats (p<.01).



Table 1. Effects of giving UMP-supplemented diet
on phosphatide levels in whole brain samples.

(0.5%) and DHA (300 mg/kg)

Treatment Total PL PC PE SM PS PI
(nmol/mg
protein)

IC-Control 420 ± 9 168 ± 6 74 ± 7 49 ± 8 24 ± 4 22 ± 3
IC-0.5% UMP 442 ± 12 206 + 8 95 ± 9* 52 ± 6 35 ± 5*** 28 ± 5*

IC-300mg/kg DHA 501 ± 7* 211 ± 11* 78 ± 6 73 + 5*** 41 ± 5*** 35 ± 5***

IC-0.5% UMP + 543 ± 269 ± 146 91 57 ± 6*** 44 ±
300mg/kg DHA 15* 9*** 10*** 6*** 4***
EC-Control 524 ± 223 ± 88 ± 9 47 ± 5 30 ± 5a 31 ±

11a 8aaa 6aa
EC-0.5% UMP 529 ± 9 212 ± 12 98 ± 11 49 ± 7 31 ± 4 28 ± 4

EC-300mg/kg 539 + 14 227 ± 7 77 ± 5 78 ± 39 ± 6** 37 ± 7*
DHA 8***
EC-0.5% UMP + 542 ± 12* 263 + 129 ± 8 94 ± 5 62 + 4* 8 ± 9***

300mg/kg DHA 11***

IC and EC rats were administered a UMP-containing (0.5%) diet, and received
DHA (300 mg/kg) daily by gavage for 6 weeks. Values are mean ± S.E.M, n=12.
Brains were then obtained and their phosphatides levels determined as described
in the text. Data are presented as nmol/mg protein.
* p<.05 compared to control group
** p<.01 compared to control group
*** p<.001 compared to control group

a p<0.05 EC control compared to IC control
aa p<0.01 EC control compared to IC control
aaa p<0.001 EC control compared to IC control



Discussion

These data show that IC rats administered either dietary UMP (0.5%) or

oral DHA (300 mg/kg) have improved performance on the Morris water maze, a

hippocampal-dependent task. Co-administration of UMP and DHA further

enhances the IC rats' improved performance on this task. We have also

confirmed that co-administration of UMP and DHA increases the level of brain

PC, PE, SM, PS, PI, and total phospholipid levels in rats. The increase in the rats'

brain phosphatide levels occurs in correlation with their improved performance on

tests of cognition demonstrating enhanced learning acquisition and retention of

spatial memory.

There are many models of cognitive impairment; we chose to use

environmental impoverishment because rats reared under IC produces cognitive

deficits [3, 4] that can be prevented by long-term dietary supplementation with

either CDP-choline or UMP [12, 13]. The cellular mechanisms associated with

impaired cognition in IC rats are similar to the mechanisms following damage or

degeneration in the central nervous system [39]. Thus, compounds that are able

to improve the memory of IC rats may also benefit patients with neuronal damage

[40].

We propose that UMP and DHA protect against cognitive impairment in

IC rats by increasing the formation of membrane, and possibly slowing the

degradation of membrane in the case of EC rats; thereby promoting

neurotransmission. Rats reared under IC display reduced phosphatide levels in

the brain (table 1), and reduced glutamatergic hippocampal transmission [3].



UMP and DHA administration increase the synthesis of phosphatides in the brain

[14], and increase the density of dendrites in the hippocampus [41], which utilizes

more synaptic membrane. DHA administration reversed the decline in GluR2 and

NR2B glutamate receptor subunits, thereby improving glutamatergic transmission

in the hippocampus [42]. In support of this interpretation, we confirmed

Wurtman R. et al., 2006 findings that administration of UMP and DHA increases

brain phosphatide levels (Table 1) and demonstrated that IC reared rats treated

with UMP plus DHA protected rats from memory impairment (Figure 1).

UMP and DHA may protect the brains of IC reared animals by restoring

neuronal function to levels normally observed in EC brains. Rats exposed to IC

conditions have decreased brain weight and size following 300 days in IC [43];

DHA deficiency decreases brain weight and size, while DHA administration

increases brain weight and size [44]. IC reared rats have decreased neurogenesis

[45] and synaptogenesis [46]; DHA promotes neurite outgrowth in hippocampal

neurons [47] and uridine promotes neurite outgrowth in PC12 cells [24]. DHA

supplementation increased brain-derived neurotrophic factor (BDNF) levels in

rats [48]; consuming a diet deficient in DHA decreased brain BDNF levels [49].

BDNF expression induces neurogenesis in the dentate gyrus of the hippocampus

[50].

There are many similarities between the neural effects of EC and of DHA

or UMP plus DHA administration. EC rodents have improved spatial memory

[8]; while administration of DHA improves cognitive impairment in mouse

models of mild cognitive dysfunction, brain lesions, and AD [51]. EC rats have



increased cell survival in C57BL/6 learning impaired mice [52], while DHA

increases cell survival in retinal photoreceptors [53]. EC rodents have increased

(nerve growth factor) NGF expression [54]; likewise DHA administation

increases expression of NGF [55]. EC rodents have increased BDNF mRNA

expression [8]; BDNF modulates synapsin 1 levels during learning [56].

Administration of UMP plus DHA increases synapsin 1 levels in gerbil brain [14].

EC rodents have increased release of acetylcholine [57]; likewise DHA

supplementation increases the release of potassium-evoked acetylcholine [58];

UMP supplementation increases the release of acetylcholine [59].

In summary, the present study demonstrates that increased consumption of

either UMP or DHA plus choline increases brain phospholipid content and

prevents memory impairment in IC reared rats. The largest increase in

phospholipids and protection from memory impairments occurs when choline,

DHA, and UMP are administered in combination. EC is implicated as a possible

course of treatment to prevent memory impairment in several diseases, including

traumatic brain injury (TBI) [40, 60], prenatal hypoxia and alcohol [61], epilepsy

[62], stroke [63], Huntington's Disease [64, 65], and depression [66]. Co-

administration of DHA and UMP may aid in the treatment of these patients as

well.



Acknowledgements

We thank Lisa Teather a for advice and assistance in preparing this paper.

We also thank Rona Stephanopoulos and Paul Jaffe for their assistance with

behavior and biochemistry assays. This study was supported by NIH grant MH-

28783 and the Center for Brain Sciences and Metabolism Charitable Trust.



Figure 1

Morris Water Maze - Hidden

- IC-Control

.. IC-0.5% UMP

IC-300mg/kg DHA

10 - --
0

1 2 3 4

Blocks of 4 Trials

Morris Water Maze - Hidden

90

80

70

S60

" 50

40 .

30

20

10

0

-- EC-Control

EC-0.5% UMP

EC-300mg/kg DHA

EC-0.5% UMP + 300mg/kg
DHA

1 2 3

Blocks of 4 Trials

90 -

80

70
+iiiai:i~ii~-

60

" 50

-U 40

30
w

20

B.



Probe Trial

60

50

C 40

30

20

E

10

0
IC-Control IC-0.5% IC- IC-0.5% EC-Control EC-0.5% EC- EC-0.5%

UMP 300mg/kg UMP + UMP 300mg/kg UMP +
DHA 300mg/kg DHA 300mg/kg

DHA DHA
re

Figure 1. The effects of environment, UMP, and DHA administration on memory
for a hippocampal-dependent hidden platform water maze in rats reared under EC
or IC conditions for 1 month immediately postweaning. Values are means +
SEM, n=12. A. IC rats administered UMP, DHA, or UMP and DHA had
decreased escape latencies compared to the IC control rats (all p< 0.05). B. EC
rats administered UMP, DHA, or UMP and DHA did not have decreased escape
latencies compared to the EC control rats (all p>0.05) C. The 60 sec probe test
was affected by environment (p<0.042), quadrant (p<0.001), and diet x
environment interaction (p<0.05).



Figure 2
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Figure 2. The effects of environment, UMP, and DHA administration on memory
for a striatal-dependent visible platform water maze in rats reared under EC or IC
conditions for 1 month immediately postweaning. Values are means + SEM,
n= 12. A. IC rats administered UMP, DHA, or UMP and DHA did not have
decreased escape latencies compared to the IC control rats (all p> 0.05). B. EC
rats administered UMP, DHA, or UMP and DHA did not have decreased escape
latencies compared to the EC control rats (all p>0.05).
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Figure 3. The effects of a UMP-supplemented diet and/or daily administration of
DHA on IC and EC rats tested on an accelerating rotarod motor activity test.
Values are mean ± S.E.M, n=12. The time spent on the rotarod was not affected
(p's.> .05).
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Conclusion



As described in the two manuscripts, I have shown that increasing brain

phospholipid levels by administering the phosphatide precursors UMP plus DHA also

enhances certain cognitive behaviors:. Gerbils consuming UMP and/or DHA perform

better on the radial arm maze, T-maze, and Y-maze than control, untreated gerbils

(Manuscript 1). Moreover, giving UMP plus DHA also protects impoverished rats from

the cognitive decline associated with living in an impoverished environment (Manuscript

2). The increases in brain phospholipid levels, in both gerbils and rats, caused by

administering these compounds correlate with the improvements in behavior.

(Manuscript 1, 2).

Although I did not measure the numbers of hippocampal dendritic spines or the

levels of synaptic proteins in my test animals, abundant published evidence indicates that

treatment with UMP plus DHA increases both (1, 2). . Therefore, I suggest that by

increasing phospholipid levels in brain, UMP plus DHA may increase synaptic

membrane, and the size and number of functional synapses, thus enhancing synaptic

transmission and contributing to the enhanced cognition observed in these studies.



Alzheimer's brains are deficient in DHA (3), and in synapses. Hence

supplementation with DHA could conceivably delay the progression of this disease,

particularly if given along with a uridine source like UMP. This treatment may also prove

useful in treating other neurological disorders associated with the loss of synapses; e.g.

stroke, cerebral palsy, Parkinson's disease, brain injury.
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