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ABSTRACT

The Words-and-Rules theory (WR) posits that different mental processes
underlie regular and irregular past tense formation: regular forms are rule-
generated ('add -ed'), whereas irregular forms are retrieved from memory.
These mental processes are hypothesized to engage distinct neural mechanisms.
The goal of the present thesis was to localize and differentiate the neural
substrates of regular and irregular past tense generation. Two neuroimaging
techniques, magnetoencephalography (MEG) and functional magnetic resonance
imaging (fMRI) were used to test healthy, right-handed subjects who were
native speakers of English in a past tense production paradigm, in addition to a
lexical access study. The results indicate that there is a dissociation in both the
time course of activation and brain areas involved for the regular vs. the
irregular past tense formation.

Thesis Supervisor: Steven Pinker
Title: Peter de Florez Professor of Psychology
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Chapter 1

Introduction

Paul Broca's seminal paper on aphasia, "Remarques sur le siege de la faculte de la

parole articulde; suivies d'une observation d'aphemie (perte de parole)"

appeared in 1861, in the midst of the phrenology debate (Caplan, 1986). The

question Broca was trying to address was whether various brain functions could

indeed be localized to specific brain areas, as the phrenologists argued. Based on

the behavioral patterns of his patient Labourgne, who could comprehend, but

not produce language, and a subsequent brain autopsy of the unfortunate man,

Broca concluded that language production, but not comprehension, was localized

in the left frontal cortex (Broca, 1861 and 1865). The brain area he pinpointed as

necessary for language production, Brodman's area (BA) 44/45, has since been

called "Broca's area" (see Fig. 1), and the disease accompanying a lesion in that

area "Broca's aphasia".

Put Fig. 1 about here

Soon after, two other brain areas were implicated in language function,

Wenicke's area (BA 22) and the Arcuate fasciculus (see Fig. 2). The standard

model of language production and comprehension that came out of these earlier



aphasiological studies is commonly referred to as the Wernicke-Geschwind

model of language and gesture (see Fig.2).

Put Fig. 2 about here

The model proposes the following steps for the simple task of repeating a word:

the information flows from the primary auditory cortex (BA 41) to higher areas

in the auditory cortex (BA 42), and then to the angular gyrus (BA 39) which

associates incoming sensory information. From there, the information passes on

to Wemicke's area (BA 22) and then, on to Broca's area (BA 44/45) via the

arcuate fasciculus. The perceptual processing of the perceived word occurs in

Wernicke's area, and the grammatical and phonological encoding necessary to

repeat/articulate a word in Broca's area. The latter information is then sent to the

motor cortex, for articulation.

According to the Wernicke-Geschwind model, a lesion in Broca's area

results in Broca's aphasia, where patients are severely impaired in language

production, especially in the grammatical aspects, but retain language

comprehension. A lesion in Wemicke's area results in the opposite clinical

observation, Wernicke's aphasia, in which patients have fluent language output,

but are impaired in language comprehension. And a lesion in the arcuate



fasciculus would result in conduction aphasia, in which patients suffer from both

object naming and word repetition deficits.

With the onset of modem cognitive and imaging studies, however, this

standard model has been challenged on two separate fronts. First, simply

mapping language functions to a few distinctive cortical areas has proved to be

elusive. With respect to neuroanatomy, we now know that many other brain

areas besides the original three are crucial, including subcortical areas, such as the

basal ganglia and the brainstem (see e.g. Brunner et al., 1982, and Ullman et al.,

1997b). Other brain areas that have been implicated in verbal processing are the

anterior LIPC (Left Inferior Prefrontal Cortex, BA 45/47) for semantic selection

(see e.g. Wagner, 2001) or BA 40, in the posterior parietal cortex, for short term

storage and retrieval of verbal information (see e.g. Jonides et al., 1998; see

chapter 6 for further discussion).

Second, the standard Wernicke-Geschwind model fails to explain all of the

available data on the human language faculty. For instance, not all strokes that

affect BA 44/45 result in Broca's aphasia, while some strokes that leave BA 44/45

intact do (see e.g. Basso et al., 1985).

On the cognitive side, the number of "stations" involved in language

processing has proliferated: at the very least, we now assume the existence of

both phonological (auditory) and visual (graphemic) input and output stores, a

lexical/semantic store, a grammatical processing station, a facility to interpret

prosody, as well as working memory components (which have yet to be worked

out fully).



Furthermore, with the onset of modern linguistic theory, language itself

has been split into two different components: one is comprised of the rules that

operate within a language, such as 'a reflexive pronoun like himself needs a

referent within the sentence it occurs in'. The other is comprised of all the parts

these rules work on, such as words (e.g. want), idioms (e.g. a change of heart) and

morphemes (e.g. -s, as in brother-s), which I will hereafter broadly refer to as

'words' from now on. This entails a separation between language processes

which are based on rules, e.g. syntactic processing, and language processes

which are based on words, e.g. lexical processing.

The work reported in this thesis tries answer the following questions:

what are the neural computations regular and irregular morphology depend on?

The particular case investigated was the English past tense.

Why the English past tense? Why not any other language, or any other

construction? There are two reasons the English past tense is an ideal system to

study language in general. The first is that the English past tense has been

intensely studied in several disciplines, and offers a wealth of data and theoretical

frameworks.

Second, it meets the requirement of being both simple enough to be

tackled, and yet complex enough to be relevant. It is a rather straightforward

system, with only two classes of verbs, regular and irregular. The regular pairs

(such as walk-walked) are entirely predictable (i.e. add -ed to the stem), while the

irregular forms (such as bring-brought) are not and have to be learned and



committed to memory. Otherwise, they are exactly the same, as they are

matched in meaning (pastness), grammar (tensed), and complexity (one

phonological word). However, past tense formation also has grammatical

components, much like the formation of a sentence, while being much simpler

than sentence processing itself: the feature of 'past-ness' has to be looked up and

incorporated, and a suffix has to be added to the end of the stem form, following

a rule (past tense = stem + -ed). Similarly, during the formation of a sentence,

tense features have to observed, and a strict order of the components has to be

followed (e.g. the verb always follows the subject; see table 1).

Given the differences and similarities between regular and irregular

English verbs, the question my thesis tried to look into should perhaps be

sharpened and rephrased in the following manner: are regular and irregular

English verbs categorically distinct, i.e. do they depend on only one, or on two

distinct neural computations?

Obviously, two general theoretical positions are possible, one that states

that regular and irregular verbs are not categorically distinct, and depend only

one neural computation (Single System Theories). The other would state that

regular and irregular verbs are categorically distinct, and would depend on two

distinct neural computations (Dual System Theories).

The Single System Theory I am going to discuss briefly is called

Connectionism. Connectionism takes much of its philosophy from the branch of

AI called Parallel Distributed Processing, or PDP (Rumelhart & McClelland, 1986).

In PDP, the parts of the brain relevant to a particular cognitive function is

represented by a gigantic neural network, which goes about its business of



cognition by two basic processes, summation of input from various input units,

and setting of synaptic weights that determine how strongly the activation of

one unit affects the next unit (see Fig. 3).

Put Fig. 3 about here

The above network has only one type of function, deriving the output

from the inputs in some sort of additive fashion, and this function is distributed

over the entire network (hence the name PDP). By its very nature, the network

does not distinguish between different types of procedures, nor could it reserve

particular areas for particular calculations.

Connectionist models (e.g. Rumelhart & McClelland, 1986; Rumelhart &

McClelland, 1987; Hahn & Chater, 1998; Marchman, Plunkett & Goodman, 1997;

Plunkett & Nakisa, 1997) propose that one generalized network subserves both

regular and irregular forms. The difference between them is not due to a

categorical distinction, but to the fact that they inhabit different probability

spaces within the same network: there are many more regular verbs than

irregular ones, which would induce the learner to assume that in most cases the

past tense form is the stem + -ed; only in a few special cases would the past tense

form look different. In other words, the pathways that lead from the input nodes

to the correct output nodes are much more often traveled for regular verbs than

for irregulars.



For irregular verbs, the network knows to derive kept from keep and flung

fromfling because they are similar to other verbs which undergo the same

transformation: keep-weep-creep-sleep all become kept-wept-crept-slept, for

instance, and fling-sting-string all become flung-stung-strung. Words such as bring

and eat are problematic, since the information about their phonological

resemblance is not useful. In the case of bring, the network might be tempted to

derive the wrong forms brung (by analogy to slung) or brang (by analogy to

sing). In the case of eat, the network might want to output et (by analogy to meet-

met or eat (by analogy to beat-beat), instead of the correct ate. For words like

these, the network has to be extensively trained before it can produce the correct

forms.

The processing differences between regular and irregular verbs, then, are

solely due to frequency, similarity effects and their distribution in phonological

space, and not due to a categorical distinction between them (see Pinker &

Prince, 1994; Seidenberg & Hoeffner, 1998; and Bates, 1999, and the references

cited there for a more detailed discussion).

Assuming a single network which is not comprised of sets of smaller

networks, this entails that there should be no macroscopic double dissociations

between the computations underlying regular and irregular past tense

formation. Microscopically, there should be differences in activation patterns for

individual items, but these should not translate into large scale dissociations (see

Bullinaria and Chater (1995 and 1996) for detailed arguments as to why

connectionist models in general cannot display double dissociations (see also

Pinker, 2001)).



The general problem with the connectionist models is that they have yet

to implement a connectionist network which can successfully account for all the

data on the English past tense production. Their models either fail to behave like

English speakers, or if they do, can do so only with artificial manipulations (e.g.

by altering the ratio of regular to irregular verbs the network encountered, see

Pinker and Prince, 1988, and Marcus et al., 1992, for further details.)

Representing Dual System Theories is the Words and Rules theory

(Pinker, 1991). In this framework, that regular and irregular past tense forms are

different, in that they are stored, produced and processed differently (e.g. Pinker,

1991a; Pinker & Prince, 1988; Pinker & Prince, 1994). Regular past tense forms are

usually derived by the application of a default rule, which is 'add -ed to the stem',

whereas irregular past tense forms are stored in an associative type of memory

and have to be recalled. Regular and irregular past tense formation should

therefore be distinct in a fashion similar to the distinction between syntactic and

lexical processing, and depend on distinct neural computations.

Note that the issue here is finding dissociating neural computations, and

not just any differences as such. Clearly, regular and irregular verbs are

different, in token and type frequency, in phonological neighborhood densities,

in productivity, in difficulty. What is important is whether it can be shown if they

rely on distinct neural processes or not, once confounds such as frequency and

difficulty are removed, and previous research indicates that this is indeed

possible.



Bolstering the Words/Rules theory, many other studies have concluded

that a double dissociation can be observed between regular and irregular

processing, even though the results are not always unambiguous. Among clinical

studies, Marslen-Wilson & Tyler (1997) reported a double dissociation between

two different clinical population using an auditory priming task. Priming in

general refers to the facilitation of a behavioral response based on prior

exposure to the material. A typical example is semantic priming, in which

subjects are presented with a prime word, and then are asked to judge whether

the following word, the target, is a lexical item or not. If the target word is

semantically related, the reaction times are significantly shorter.

In Marslen-Wilson and Tyler's study, both prime and target words were

presented auditorily, and subjects were asked to judge whether the target word

was a lexical item or not. Their results are as follows: one aphasic subpopulation,

which no longer showed semantic priming, also failed to show priming for

irregular forms, while priming for regular forms was intact. In another

subpopulation, the reverse was true: priming for regular forms was severely

impaired, while both semantic and irregular priming were still intact.

Another double dissociation was reported by Ullman and his colleagues

(Ullman et al., 1997a): Alzheimer's patients, who undergo severe memory loss,

performed worse than control subjects when forming irregular forms.

Parkinson's patients, on the other hand, who have difficulties with initiating

movements, which Ullman et al. posit to be connected to the application of rules

in general, showed the opposite pattern.



In addition, child acquisition data indicate that there is a difference

between regular and irregular verbs. Around age two, children occasionally

overregularize irregular verbs (holded, eated). This occurs when they start

marking regular verbs for past tense reliably in obligatory contexts. As they get

older, the frequency of their errors declines. Regular verbs are irregularized

(wipe/wope) occasionally, but much less often (e.g. Pinker, 1991b; Marcus, Pinker,

Ullman, Hollander, Rosen & Xu, 1992). This behavior can be mimicked by a

connectionist network only if the ratio of irregular to regular verbs in the input

training set is drastically altered, which does not correctly reflect the input

children receive..

As for neuroimaging studies, the first neuroimaging paper published on

the English past tense was Jaeger et al.'s PET study (Jaeger et al., 1996). They

asked subjects to perform two tests. The first one was to view regular (e.g. walk),

irregular (e.g. teach) and novel (e.g. sitch) verb stems on a screen, and the second

to silently generate the past tense forms. Their results indicated that there was a

distinction between the brain areas that subserve irregular and regular past tense

morphology: area 46 (Left dorsolateral prefrontal area) was more active in the

regular past production, than in the irregular past production. Area 10 (Left

superior frontal gyrus), on the other hand, was more active in the irregular than

in the regular past production.

However, there were several problems with their study, which called

these clear-cut results into question. First, they did not perform the relevant

subtractions. They only subtracted each reading task from its accompanying past



tense task, but not regular from irregular past formation. The last subtraction is

crucial, as they cannot compare regular and irregular past tense formation

directly otherwise. Ideally, these kind of data should be analyzed as a subtraction

of subtractions ((regular past minus regular read) minus (irregular past minus

irregular read)). In ANOVA terms, that is equivalent to looking for the

interaction term. Without the last comparison (the interaction term), the authors

cannot claim that they found a dissociation between the two conditions, as the

differences could just reflect type II errors..

Second, since the above was a PET study, they had to present their stimuli

in a blocked fashion, i.e. they had to show blocks of verbs within the same

category. Blocking stimuli always leaves open the possibility that subjects come

up with a strategy to make the task easier. One possibility is that the subjects

spent less attention on novel words and regular verbs less than on irregular

verbs, since they knew with the first two categories that all they had to do was

add -ed to the stem. In contrast, they had to pay attention to every irregular item

since an irregular past tense form is not necessarily predictable (compare sing-

sang-sung with bring-brought-brought).

Third, the brain areas Jaeger and her colleagues reported for regular (area

46) and irregular (area 10) past formation do not agree with the results of three

other neuroimaging studies (Indefrey et al., 1997; Ullman, Bergida & O'Craven,

1997; Bergida, O'Craven, Savoy, & Ullman, 1997).

Indefrey et al.'s study was a crossed-design PET experiment of German

verbal inflection; subjects were asked to overtly insert the inflected past tense or

past participle form of a stem form into a sentence frame; the baseline condition



consisted of reading the inflected, and not the stem forms. They reported that

the right inferior temporal gyrus (BA 37) and the left angular gyrus (BA39) were

more active for regular and for irregular verbs, and that, among others, left BA

46 and let BA 44/6 were more active for irregular verbs than regular verbs, in

contrast to Jaeger et al.'s study.

Ullman et al. (1997) reported a blocked fMRI study, in which subjects

were asked to silently produce the past tense forms of stem forms. The baseline

condition was fixation, and not reading the stem. Their results indicated that left

frontal cortex and the basal ganglia were more active for irregular than regular

verbs. Furthermore, in temporo/temporo-parietal regions, irregular verbs

showed a decrease in activation relative to fixation, whereas regular verbs did

not show this decrease. However, in a later abstract (Bergida et al., 1998), they

reanalyzed the same experiment and reported that temporo/temporo-parietal

regions showed a decreased activation for irregulars but not regulars in, and "a

left prefrontal region" showed an increase in activation for irregulars, but a

decrease in activation for regulars.

The results of the three studies outlined above show little convergence.

However, these studies all differ from each other in their experimental design

and data analysis, so perhaps a direct comparison is somewhat inappropriate. As

Seidenberg and Hoeffner (1998) concede that a true neural double dissociation

would be strong evidence against a connectionist model; however, they also

point out that the data reported so far are not necessarily convincing, and that

serious confounds call the arguments in favor of Dual Systems in question. The



experiments presented here are hopefully a first step toward showing clearly

what the neural computations are that regular and irregular past tense formation

depend on, and whether they show a clear double dissociation or not.

The starting point is a set of preliminary studies I conducted on the

production of English past tense forms, using magnetoencephalography, or

MEG (Rhee, Pinker & Ullman, 1999), which were subsequently fortified with

functional magnetic resonance imaging (fMRI) experiments. The next 3 chapters

will present a detailed past tense model (chapter 2), a description of the imaging

techniques involved (chapter 3) and the data from 2 imaging studies of past tense

formation (chapters 4 and 5).



Chapter 2

A Specific Past Tense Model

As stated in the previous chapter, the Words-and-Rules the(

dissociation between the neural computations regular and ii

formation depend on, while connectionist models do not, at

macroscopic scale. In this chapter, I will outline a past tense :

incorporates the Words-and-Rules theory, which can then b

connectionist model.

The Words-and-Rules theory proposes the following

regular and irregular past tense formation: regular past tens

not stored, but are derived by adding the suffix -ed to the st,

'default rule'. Irregular past tense forms, on the other hand,

memory, with some associative properties, and have to be 1

taught). While the search for the correct form is going on, hc

rule is activated as well. Successful look-up will suppress the

rule, and the output is the correct irregular form. If look-up

hand, because the memory trace was not strong enough, foi

there actually is no stored item in memory, then the rule is a

of last resort, or default. The output then consists of forms li

taught (memory failure for known irregular item) or wuggec

trace for a novel word). Note that this is a parallel model, in

activation of the rule occur simultaneously (see Fig. 4).



Put Fig. 4 about here

This distinction between regular and irregular processing hinges on the

use of a 'default rule'. 'Default rule' here is a technical term. In essence, it means

that irregular morphology is the marked form, which applies only in very

narrowly prescribed circumstances, whereas the default is the unmarked form,

and applies everywhere else. Among other things, the default past tense rule

applies when the word is novel, i.e. has no entry in the lexicon and could not

possibly be marked and so undergoes the default rule (wug-wugged).

Therefore, the relevant distinction between regular and irregular past

tense formation in English would hold for other morphological processes that

involve regular vs. irregular words, in any other language. To give another

example: the plural formation of English nouns is mostly regular ('as the default

rule, add -s to the stem'). Many common nouns, however, have irregular plural

forms, e.g. child-children, foot-feet. These forms have to be stored in the lexicon

and recalled, just like irregular past tense forms.

According to the theory, it is coincidental that in English, the class of verbs

(and nouns) to which the default rule applies is much larger than the class of

verbs (and nouns) to which the marked rules applies. In German, the class of

verbs which undergo the default rule, which is 'add -t to the stem to form the

past participle' as in kaufen-gekauft, is smaller than the class which undergoes the

------------------------------------

------------------------------------



marked rule, which is 'add -en to the stem to form the past participle', as in

singen-gesungen (Marcus et al., 1995).

Thus, the specific past tense model that is outlined below should also

apply to other kinds of morphological processing, with some minor

modifications. For purposes of clarity, however, I will couch the discussion in

terms of the English past tense formation.

In overview, the basic steps of deriving the past tense forms are the same

for both kinds of verbs: the word has to be heard/seen and then it has to be

recognized/looked up in a sensory input lexicon (either visual or auditory), for

perceptual recognition (Caramazza, 1997). This first step typically applies only to

psycholinguistic experiments in which subjects are presented with the stem form

and are asked to produce the past tense form. During voluntary speech, the stem

would be accessed directly in the lexicon.

The next step is to determine the correct semantic, syntactic and

morphological features of the verb, including its 'past-ness'. These have to be

looked up in the lexicon. Regular verbs undergoing the default rule for past

tense formation do not have to be marked, by definition, while irregular words

are. 'Marked' here means that there is a connection between the stem form and

the inflected form, which indicates that the desired form is to be found in the

lexicon.

Once the verb has been properly processed in the lexicon, and its features

have been correctly assigned, activation spreads to the phonological or the

graphemic output lexicon, where the phonological or graphemic features of the



verb are looked up. After this point, the pathways for regular and irregular

verbs diverge. In the case of regular verbs, processing their past tense forms is

straightforward. The default rule automatically kicks in and concatenates the

stem with the suffix -ed, to produce forms like walked.

However, for irregular verbs, finding the correct past tense form is more

complicated. The retrieval call to the past tense form of an irregular verb will

activate both the default rule and the search for the stored past tense form. As

the search for the correct irregular form proceeds and the activation of the

memorized past tense form passes a certain threshold (i.e. it becomes clear that it

can be found), the default rule has to be prevented from applying, otherwise the

output could consist of incorrect forms such as bleeded (overregularized) or bleded

(doubly marked). If the search for the irregular form is not successful, due to

memory failure, for instance, the default will not be suppressed, and a form like

bleeded is produced. Alternatively, an incorrect form such as brang could be

produced as well as a consequence of memory failure. In this case, the regular

rule was successfully suppressed, but the correct stored form was not retrieved,

and brang was output by analogy to sing-sang.

Finally, after the verb has been successfully processed, either through the

rule or by lexical lookup, activation spreads to the output (motor) areas, in

preparation for writing or pronouncing the past tense form.

What is unclear is the role of verbal working memory. For both

categories of verbs, verbal working memory could possibly be involved in

keeping the stem form on line while the past tense form is produced. This seems

unlikely, since most language functions seems to be highly automated, given the

i 1
i IF



fast reaction times (mean RT=808 ms for irregular past tense formation and

mean RT=780 ms for regular past tense formation in the experiment reported

here, see chapter 4)1.

In addition, there might be a selection component involved in the

formation of the irregular past tense forms in order to choose the correct

irregular form among different possibilities. This might be implausible, given

how quickly irregular past tense forms are produced (mean RT=808 ms in the

experiment reported here, see chapter 4). On the other hand, stem completion

tasks, which obviously have a selection from memory component, can have

mean RTs of 1045 ms (Buckner et al., 1995), which is not that much slower.

Adding specific brain areas to the general outline is difficult, mostly

because our knowledge of localization of function in the brain is still preliminary.

Below, I will present a model that is based on various research data coming out

of studies on lexical access (e.g. Levelt, Roelofs & Mayer, 1998), aphasia (e.g.

Ullman, Corkin, Coppola, Hickok, Growdon, Koroshetz & Pinker, 1997), and

morphological processing (e.g. Koenig, Itzel & Caramazza, 1996),

The model is specific to my experimental paradigm, in which subjects

were asked to pronounce the past tense form of a visually presented stem form.

Therefore, I will only mention the visual input lexicon (for the visually presented

stimuli) and the phonological output lexicon (for the production of the past tense

forms), and omit the graphemic output and phonological input lexicons.

Reaction times alone cannot decide whether a task is automated or not, of course; to my knowledge, no
data have been reported on dual task studies involving past tense formation.



For both kinds of verbs, the pathway to a past tense form begins with the

visual input lexicon, which could be stored in the visual cortex (BA 17, 18, 19).

This occurs in the dominant hemisphere for language, usually the left (see e.g.

Petersen et al., 1989, and Petersen et al., 1990). Alternatively, the visual input

lexicon could be stored in the left occipito-temporal region, in the middle portion

of the left fusiform gyrus, which is also known as the Visual Word Form (VWF)

area (see e.g. Cohen, Dehaene, Naccache , Lehericy, Dehaene-Lambertz, Henaff,

& Michel, 2000).

Then, the words have to be looked up in the lexicon, which is taken to be

distributed over the perisylvian region. It has not been settled yet whether the

lexicon should be located bilaterally or left-lateralized. There is considerable

evidence for bilateral distribution, regardless of the subject's handedness

(Pulvermiiller, 1998; Martin, Haxby, Lalonde, Wiggs & Ungerleider, 1995;

Martin, Wiggs, Ungerleider & Haxby, 1996; Damasio & Tranel, 1993; Caramazza

& Hillis, 1991). On the other hand, Damasio and his colleagues (Damasio,

Grabowski, Tranel, Hichwa & Damasio, 1996) reported that lexical retrieval

activated only left temporal areas. Since this dispute is not settled, I will leave this

particular point open.

Then the activation spreads to the phonological output lexicon, which is

mostly localized to the dominant hemisphere, but should show some

representation in the other hemisphere as well (Koenig et al., 1992), and which is

tentatively located in the left Superior Temporal Gyrus (STG), or BA 21/22 (see

e.g. Howard et al., 1992; Price et al., 1996a; Price et al., 1996b; Petersen et al.,

1989; and Fiez and Petersen, 1998, for an overview). BA 21/22 has been



consistently implicated in the above studies in reading words, both silently and

aloud, and might be involved in the transformation from graphemic to

phonological representations. In addition, it does not seem to be activated by

non-word auditory stimuli (Lauter et al., 1985). Hence, it might be a candidate for

the phonological output lexicon.

After the phonological features have been looked up, the past tense

processing takes place. For regular verbs, activation spreads to a grammatical

processing station where suffixation (concatenation) takes place. This is

tentatively taken to occur in the left inferior frontal gyrus, BA 44/45, based on

studies which imply BA44 in syntactic tasks. For instance, Embick et al. (1999)

implicated BA44/45 to be more active in a syntactic processing task (monitoring

word order mistakes) than in a non-syntactic task (monitoring incorrectly spelled

words in grammatically correct sentences). Also, Caplan et al. (1996) reported

that three patients with lesions in BA 44/45 showed impaired syntactic

processing capacities, while Stromswold et al. (1996) showed that BA44/45 was

more active during the processing of syntactically more complex sentences.

Irregular past tense forms, on the other hand, are being looked up in the

lexicon. While the irregular form is being matched and retrieved, the default

concatenation process (in BA 44/45) has to be terminated. One suggestion, put

forth by Jaeger et al. (1996), is that this is done through BA 10, which was more

active during the IrregPast-IrregStem subtraction condition than in the RegPast-

RegStem subtraction condition in their past tense production study2; another

2 This result is not completely convincing, though, since they failed to report the correct double
subtraction conditions, as discussed above.



suggestion is that the inhibition has to proceed through the basal ganglia, via the

striatum (Ullman et al., 1997).

For both classes of verbs, once their past tense forms are derived or

found, the activation would spread to possibly the left precentral gyrus of the

insula (Dronkers, 1996), and the output areas in the motor cortex (BA 4), which

would then result in the overt pronunciation/writing of the words.

The above model, with the tentatively assigned brain areas involved,

contains fewer features than what the theory would demand exactly: steps such

as the assignment of the grammatical feature of 'pastness' and the suppression of

the default rule are not fully discussed. Nevertheless, it provides enough details

to base imaging studies on it.

Using a past tense production paradigm, one could expect to find the

following activations, according to the above model. There should be more

activation in left BA 44 (for the application of the default rule) for regular verbs

than for irregular verbs. Irregular verbs, on the other hand, should show more

activation of temporal areas, where the lexicon is taken to be located. Although

regular verbs have to be looked up in the lexicon as well, searching for the

memorized past tense form in addition to looking up the stem form should

represent a 'double dip', which would result in greater activation for irregular

past tense forms than regular ones. Both should show equal activation in the

visual input lexicons, and BA 4 (motor output area) if speech activity is involved

in the task (see Fig.5).



Put Fig. 5 about here

For connectionist models, the following predictions might hold: assuming

that the single English past tense network is part of the lexicon, both regular and

irregular past tense formation should activate temporal lobes. While individual

items should show different activation patterns from each other, and irregular

patterns should be more similar to each other than to regular patterns, no

macroscopic differences should be observed.

The relevant data will be shown in the chapters 4 and 5.



Chapter 3

Brain Imaging Methods

This chapter will give a brief overview of the brain imaging techniques used in

this thesis, magnetoenecephalography (MEG) and functional magnetic resonance

imaging (fMRI). These techniques are by now well established in the cognitive

neuropsychology community, and do not need lengthy introductions and

explanations. For more details, see e.g. Lewis and Orrison (1995), on MEG, and

e.g. the Visiting Fellowship in fMRI Handbook (2000) for fMRI.

Magnetoencephalography (MEG)

We know from Maxwell's equations that electric currents generate magnetic

fields and vice versa; the geometric shape of the magnetic field generated by the

electric current can be predicted by the so-called "right-hand rule: point your

right thumb along the direction of the current flow, and the magnetic field lines

will point in the direction of your curled fingers, i.e. they will lie in concentric

circles around the current (see Fig. 6).

Put Fig. 6 about here

I
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Since much of neuronal activity is the result of electric activity, it follows

that neuronal activity generates magnetic fields, some of which will be

measurable extra-cranially. And measuring these extracranial magnetic fields is

the basis of MEG. Due to various biophysical properties, the neuronal activity

that mostly contributes to extracranial magnetic fields comes from the dentritic

potentials of cortical pyramidal cells. In addition, the head is a spherical

conductor, which absorbs magnetic fields tangential to the skull. And since only

pyramidal cells which are oriented in parallel to the surface of the skull produce

magnetic fields with components perpendicular to the skull's surface, only those

contribute to the signal measured by the MEG sensor (see Fig. 7). So all in all, the

magnetic activity the MEG sensors register represents only a small fraction of the

overall neuronal activity going on, the radial components of the magnetic field

generated by pyramidal cells located in the sulci3 (see Fig. 8 for a typical dipolar

current pattern).

Put Fig. 7 about here

3 The source of the signals EEG measure are not restricted to such a large degree.



Put Fig. 8 about here

How does the magnetic field generated by neuronal activity compare to

other, familiar magnetic fields? It is exceedingly small, as one might have

expected (see Table 2).

Put Table 2 about here

Measuring magnetic fields that are a few hundred femtotesla strong, if that

much, is no mean task. For this purpose, the measurements are performed in a

magnetically shielded room by extremely sensitive, superconducting sensors

called SQUIDS (Superconducting Quantum Interference Devices). The

magnetically shielded room is designed to exclude external, stable magnetic

fields, such as the earth's magnetic field, as well as fluctuating magnetic fields.

However, low frequency fluctuations, such as those created by nearby cables,

are much less effectively excluded, and have to be subtracted from the data prior

to analysis.

------------------------------------

------------------------------------



There are several advantages to using MEG over other imaging

techniques, such as Event-Related Potentials (ERP) and Positron Emission

Tomography (PET). In contrast to PET, MEG provides a temporal resolution that

can realistically depict ongoing neuronal activity (milliseconds vs. seconds), and it

is completely non-invasive. In contrast to EEG, there is no smearing of the signal

due to the skull and tissue surrounding the brain, because the tissues distort

electric but not magnetic fields. The result is that it is more feasible to localize the

source of the neuronal activity using MEG data than using ERP data, even

though it is by no means uncontroversial to do so.

Localizing the source of activity ('source localization') using MEG data is

commonly stated as "the inverse problem", going from the distribution to the

source4. An inverse problem is computationally ill-posed in the sense that there

is no unique computational solution to it, as follows from Maxwell's equations. In

order to constrain the search space of possible solutions, one usually makes three

assumptions. The first is that the source of the activity is a discreet point source

current dipole, i.e. that the source of the activity can be localized to a discrete

4 Computing source localizations with ERP data faces similar problems. The algorithm for using
EEG data is even more complicated than for MEG data, because of the smearing of the
signal across the different tissues, and because ERP data are measured as potential
differences between electrodes (i.e. additional data analysis has to be performed to turn
the potential differences into absolute values before source localization can occur). Note
that ERP papers, until recently, rarely report source localizations, in contrast to MEG
papers, and that there is a trend to equate the position of the sensor with the brain area
that sensor is sitting on top of.



point on the cortex. The other two are that the head is a sphere, and that this

sphere is of uniform conductivity5.

Armed with the above assumptions, a standard algorithm will take the

following steps to calculate a source for the magnetic activity observed. First, a

particular current dipole with a specific location, dipole orientation and strength

is assumed. Then the algorithm computes the field this hypothetical current

dipole, located within a sphere of uniform conductivity, would have generated at

each sensor. Next, the algorithm calculates the mismatch term between the

actual signal recorded at each sensor and the calculated, hypothetical value. This

mismatch term is squared and summed over all sensors to generate an overall

mismatch value. Then, the parameters of the hypothetical current dipole are

changed, and the whole process is repeated iteratively until a best fit is found.

The best fit here means a hypothetical dipole that results in the smallest overall

mismatch term between itself and the observed data, and its location, orientation

and strength parameters are taken to reflect the relevant neuronal currents.

How reliable the hypothesized current dipole is, depends on the

assumptions that went into the algorithm to compute the dipole. The natural

question to ask is how approximate are these assumptions?. The third, that the

head displays uniform conductivity, is perhaps the least controversial one. Even

though different kinds of tissue (skin, bone, cerebrospinal fluid, brain) have

different conductivities, they can be modeled as concentric spheres which then

can be summed up and modeled as one large sphere with uniform conductivity.

s That the head is a sphere is the most convenient assumption to make, since it makes the
search for a solution to the forward problem the easiest.



Error estimates that compare simulations of non-uniform vs. uniform

conductivities conclude that the error margins are about 1 cm (Cuffin, 1983).

Similarly, approximating the head as a sphere leads to inaccuracies of

localization, especially in the temporal lobes, but the level of resolution still

remains in the mm range (Cuffin, 1993).

The first assumption, however, that neuronal activity can be modeled as

one current dipole, is problematic. Obviously, modeling cognitive activity with

one point source (or even multiple point sources) at any given time will result in

only very crude approximations of the regions involved. Ideally, then, one

would want to model current distributions, rather than point sources.

One possible way of doing this has been under development in the

laboratory of Anders Dale at the MGH NMR center in Charlestown. His

program, Freesurfer, is designed to combine MEG and fMRI data into "fMEG".

The structural MR data would provide the anatomical basis for localizing sources

of neuronal activity, and the functional data from MRI would be used to

constrain the search space for neuronal sources. They would replace the

assumptions currently made in calculating current source dipoles. The end results

of one's data analysis process using Freesurfer would resemble the traditional

fMRI images which show areas of activation, and not single current dipoles, but

with finer temporal resolution than fMRI, in the range of milliseconds instead of

seconds (Dale et al., 2000). This approach, however, is controversial. For one, it

smears activation over large areas of the brain. In addition, the method could

misidentify the center of activation of a distributed source.



Another possibility would be using the software program BrainVoyager,

which initially was geared toward MEG and EEG data analysis; recently, the

makers, Brain Innovation B.V., announced a collaboration with SPM, one of the

leading software programs to analyze PET and fMRI data.



functional Magnetic Resonance Imaging (fMRI)

fMRI takes advantage of two unrelated facts. The first one is that certain atomic

nuclei have a magnetic spin that can be measured, after they have been aligned

and locked in phase. The second is that blood contains both water and red blood

cells, which carry oxygen.

The first fact is relevant for the basic physics behind fMRI, since the basis

of fMRI is nuclear magnetic resonance (NMR), which essentially measures the

amount of magnetic spin present in the sample (for a more detailed course on

NMR, see Saunders and Hunt (1982)). Not all atomic nuclei display magnetic spin

(only those with odd numbers of protons do) and for those that do, the amount

of spin varies substantially

For brain imaging purposes, the relevant nucleus is the hydrogen atom,

due to its abundance in biological tissue (as water), and the strength of its signal.

And because different kinds of tissue contain different amounts of water, fMRI

can easily distinguish between them based on the different amount of signal

measured.

The second factor, that blood contains both red blood cells and water, is

relevant for distinguishing between more and less active brain areas. This has to

do with the well-known fact that active brain areas show increased blood flow

(Roy and Sherrington, 1890). As blood flow increases, so does the local

concentration of oxygenated blood; oxygen consumption, however, does not

markedly rise, with the effect that there is more oxygenated venous blood



circulating (which of course leaves the question open why there is increased

blood flow in the first place - see Fig. 9).

Put Fig. 9 about here

It so turns out that de-oxygenated red blood cell has a magnetic spin, and that

the oxygenated red blood cell does not (see Fig. 10).

Put Fig. 10 about here

The de-oxygenated red blood cells' local magnetic fields dephase the signal from

the hydrogen atoms in the blood, among other bodily fluids, effectively

decreasing the signal that can be measured. Consequently, venous blood in

active areas, which carries more oxygenated red blood cells (and therefore fewer

de-oxygenated cells) will give a stronger signal than venous blood in less active

areas. This is the so-called 'BOLD (Blood Oxygen Level Dependent) effect' and

forms the basis of modem fMRI techniques (see Fig. 11). Thus, fMRI is an indirect

------------------------------------



measure of neuronal activity: it gives an index of local blood flow and/or

volume, which has a curious relationship to activity.6

Put Fig. 11 about here

Given the obscure relationships between local blood flow/volume, blood

oxygenation levels and neuronal activity, interpreting an increase/decrease in

the BOLD effect as an increase/decrease in neuronal activity requires a certain

leap of faith. On top of it, there are three additional pitfalls. First, fMRI data are

always subtraction data, i.e. one usually sees differences in activation between

conditions and not the raw data themselves. The rationale behind this procedure

is that all of the brain is active at any given point, and one could not discern

which areas are significantly more active in one condition than in another just by

looking at the activation for one condition alone, especially if the condition is a

complex task. Rather, careful subtractions of conditions should reveal the brain

areas of interest for a given cognitive task, assuming that cognitive functions can

be decomposed into several individual steps. If task A comprises steps 1-5 and

task B comprises steps 1-6 of a particular cognitive task, then subtracting task A

6 Again, the relationship between blood flow and blood volume is not straightforward; for the
remainder of the chapter, I will simply use flow/volume to stand for the relationship
between blood flow and volume.



from B should yield only those brain areas that are involved in the sixth step of

the cognitive task, assuming there are no interactions. Selecting the correct

subtractions is crucial for isolating the relevant effects.

Second, the data are rarely viewed in their raw format. Instead, statistical

maps are generated, using programs such as SPM99, which present only those

voxels which survive a certain statistical threshold for a given subtraction,

thereby introducing another level of interpretation between the data and the

researcher. Also, the data are only as good as the statistical assumptions used in

any given statistical package.

Third, collecting the brain activity following more than one stimulus is

inherently difficult with fMRI, since the hemodynamic response takes many

seconds, and not milliseconds. Thus, the hemodynamic response recorded for

one stimulus overlaps with the response for the next. Separating out the

different, overlapping components of hemodynamic signal is more difficult in

blocked designs than in event-related designs, since in the latter, one can jitter

the trial presentations and therefore decompose the signal more easily.

However, fMRI does offer advantages as well: it offers excellent spatial

resolution without having to solve the inverse problem, and information about

the activity of the entire brain, as opposed to cortical pyramidal cells which are

oriented parallel to the skull surface (see above). Again, combining fMRI and

MEG into "fMEG" should be a remedy for the poor time resolution offered by

fMRI.



Chapter 4

Testing the hypotheses, part one: An MEG study

This was a straight-forward experiment to test the hypotheses: ask;

either read stems or produce the past tense forms of the same stemn

recording their brain responses continuously with a whole-head MI

Materials and Methods

Participants

36 right-handed volunteers (26 male), aged between 18 and 35 yearn

mean age of 20 years), who were native speakers of American Engl

informed consent to participate in the experiment.

Materials

The stimuli used in this work were developed by Michael Ullman, aj

other studies of regular and irregular processing (Newman et al., 19

al., 1997, Bergida et al., 1997, Newman et al., 1999, Ullman, 2000). Th

constructed with the goal of matching the groups of regular and irr

as closely as possible on several dimension (syllable length, frequen

pronounceability).



Sixty-four pairs of regular (reg) and irregular (irreg) verbs were obtained,

according to the following criteria. Each pair of irregular and regular verbs was

matched four-way for frequencies of both stem and past forms, i.e. the

frequencies of each of the four members in each pair (irregular stem, irregular

past, regular stem and regular past) were the same, according to the Francis and

Kucera (Francis and Kucera, 1982), Associated Press (AP, 1988) and Cobuild

(Department of English, University of Birmingham, 1980) corpora. The

frequencies ranged from 427/300 (number of occurrence) for the pair take/ask

(most frequent) to 0 for the pair breed/vie (least frequent) according to the Francis

and Kucera corpus.

A pair of words received the rating of 1 for goodness of match when the

difference in the natural logarithm of their frequency counts was smaller than

0.5. If the difference was between 0.5 and 1, the word pair received a rating of

1.5. Word pairs with differences larger than 1 were rejected. Furthermore, the

mean frequencies of irregular and regular verbs were compared by a paired t-

test, and the p-values were larger than 0.1 ((mean(irregular)=3.05,

mean(regular)=3.05, p=.24 for the FK corpus; mean(irregular)=6.02,

mean(regular)=6.04, p=.83 for the AP corpus; and mean(irregular)=4.77,

mean(regular)=4.67, p=.29 for the Cobuild corpus).

Similarly, each word pair was tested for similarity in the difficulty of

pronounceability of the past tense form, based on similarity of the final cluster.

Thirty-one of the 64 pairs were judged to be extremely well matched, i.e. they

ended in the same configuration of consonants and vowels, such as /-pt/ for the

pair wept-whipped. The other 33 pairs were only moderately well matched, i.e.

~



they did not end in exactly the same configuration of sounds, but were still

judged to be equally pronounceable (e.g. caught-played).

Procedure

Participants were recorded for 2 sessions, each of which consisted of 128 trials.

Each trial began with a fixation cross, which was presented for 700 ms. This was

followed by the stimulus, which was presented for 300 ms, and then by a mask

consisting of 6 asterisks. The mask was set to disappear when the subject started

to speak, and the screen went blank for either 500, 700, 900 or 1100 ms (see Fig.

12).

Put Fig. 12 about here

Subjects were asked to read aloud the verb they saw on the screen (Stem

Condition, session 1), or overtly produce the past tense form of the verb they

saw (Past Condition, session 2; see Appendix I for the complete set of verbal

instructions).

MEM



In addition, participants were asked to read aloud the 128 trial stimuli to

become familiarized with them, and were given a brief practice session before

recording. The verbs used for practice session were not used in the actual

scanning.

During the experiment, the subject's head was positioned in a helmet-

shaped Dewar and tightly pressed against its inner vault. The stimuli were

presented on a Macintosh computer using PsyScope 1.2.5 (Cohen, MacWhinney,

Flatt and Provost, 1993) and were projected via a collimating lens onto a mirror

and from there onto the ceiling.

Within each session, regular and irregular verbs were randomly

intermixed. Each subject was presented with all 128 verbs in each session. Across

subjects, the stimuli were presented in a Latin square design (see Appendix II for

a complete list of stimuli).

Data Acquisition

During the experiment, subjects lay in a dimly lit magnetically shielded room in

the KIT/MIT MEG laboratory and neuromagnetic fields were measured using an

axial gradiometer whole-head system (Kanazawa Institute of Technology,



Japan). After the participation of the first 21 subjects, the KIT system was

upgraded from 64 channels to 93 channels.

Head position with respect to the MEG sensor array was measured with 5

head position indicator coils placed on pre-defined scalp sites. In addition, a head

frame coordinate system was established by recording the coordinates of the

LPA, RPA, and the nasion of the subject, and the positions of the 5 head position

coils with respect to these three landmarks were recorded as well. Later on, these

two frameworks were combined in a so-called coregistered probe in the

following manner: the coordinates of the subject's LPA, RPA and nasion were

used to determine the point of origin and to set up a spherical 3D coordinate

system. The position of the 5 head position coils in this framework were

compared to their position in the MEG sensor framework, which then enabled

the positioning of the MEG sensors within the coordinate system set up by the

subject's landmarks.

At the beginning of the recording session, the magnetic signals produced

by the head position indicator coils on the scalp were measured by the sensors to

obtain head position with respect to the sensor array.

Data were recorded at 500 Hz, with acquisition between 1 and 200 Hz. The

recording time for each session varied between 12 and 15 minutes, depending on

how quickly the subject responded.



Behavioral Data

The reaction times were calculated from the onset of the visual stimulus.

Incorrect responses, and RTs deviating over 2SD from the mean for the

particular subject were rejected. The same trials were excluded from the MEG

averages. The averages across subjects were then compared with repeated

measures ANOVA with factors of task, subject and regularity.

Signal Analysis

The raw signals were first processed to remove contamination from the third

rail of the subway7 . Before the laboratory upgrade, noise-reduction consisted of

subway noise subtraction using a signal-space projection method; after the

upgrade, the Continuously Adjusted Least-Squares Method was adopted

(CALM, Adachi et al., in press).

Then the signals for each condition were averaged separately off-line

from 100 ms prior to onset of stimulus to 800 ms after the onset of the stimulus.

Epochs containing MEG signals exceeding 2,500 fT/cm were omitted (<5% of all

epochs), since they were assumed to include motion artifacts. In addition, the

7 The third rail carries the current for the subway train to operate, and causes a very low
frequency disturbance (around 0.5 Hz) of the recorded data.
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averaged files were bandpass filtered between 2 and 40 Hz, and baseline

corrected using the 100 ms pre-stimulus interval. The processed data were then

displayed as isocontour maps (see Fig. 13 for a sample isocontour map).

Put Fig. 13 about here

Further data analysis consisted of RMS (Root Mean Square) analysis for

source analysis (see below). The sources of the magnetic fields were modeled as

equivalent current dipoles (ECDs) whose three-dimensional locations,

orientations, and current strengths were estimated from the measured and

averaged signals.

RMS analysis

After the data were cleaned of subway noise and averaged across trials within

each subject, they underwent RMS analysis. In this kind of analysis, first a

suitable subset of channels and a time window of analysis are chosen, then the

data at each time point within the selected time window are squared for each

-di



channel and summed across all the relevant channels (see below for a description

of how this is done). After this, the square root is taken, and the resulting data

are plotted as a graph (see Fig. 14 for a sample RMS graph). This is done for each

individual subject. The data, in the form of peak (or component) latencies and

peak amplitudes, are then compared across subjects.

Put Fig. 14 about here

The RMS results give an indication of the overall activity across the

selected channels, and can be used to compare one set of channels across

different conditions. This method has the advantage of increasing the signal-to-

noise ratio through the summation across channels. The disadvantage is that

'channel' can no longer be used as a factor in a statistical analysis, and that

within-subject comparisons are not possible.

The selection of sensors is crucial. Typically, the selection is made by

inspecting the isocontour maps for dipolar field patterns (see Fig. 7 in chapter 3)

over the entire time course of the averaged data. If such dipolar field patterns

occur, the channels selected are the ones that make up this particular field pattern

(see Fig. 15 for an example of the selection of channels).



Put Fig. 15 about here

These channels are appropriate only for the time window which contains the

dipolar field patterns based on which they were picked in the first place. If a later

dipolar field pattern is distributed over different channels, the RMS is henceforth

computed over the new set of channels. Usually, an averaged data set shows

several dipolar field distributions during different time windows over its entire

time course, often distributed over different sets of channels, and RMS is

computed separately over each different set of channels.

Normally, only one dipolar field pattern is clearly discernible in any given

time window, unless the concurrently occurring field patterns show bilateral and

symmetric distributions. Otherwise, the field patterns would overlap, given that

a typical field pattern takes up about 10-20 channels (64 channel system) and 15-

25 channels (93 channel system) and there are only 32 (or 46) channels in each

hemisphere. Overlapping dipolar field patterns result in field patterns which are

no longer clearly recognizable as dipolar.

As stated above, RMS data have two indices, peak latencies and peak

amplitudes. These peaks, in analogy to the ERP literature, are named after the

typical post-stimulus onset time at which they occur, preceded by an M (as in

'MEG'). In contrast to ERP, all peaks are positive (by necessity, given how they



were derived8 .) Based on the kind of cognitive task the subject is asked to

perform, and the modality of stimulus presentation, one can expect to see certain

peaks, which have been established by prior MEG studies. For a visually

presented language task, the following peaks should be expected: M100, in the

time window from 80 to 100 ms after onset of stimulus, M170, in the time

window of 150-200 ms, M250 , in the time window of 230-280 ms, and M350, in

the time window of 300-400 ms.

M100 and M170 represent components of early visual activation and occur

bilaterally; localization of these components is tricky, for several reasons (see

Ahlfors et al., 1999, for a discussion of localizing dipoles in the visual cortex.) The

later two peaks, M250 and M350, are both taken to be related to lexical access

and processing (Koyama, Kakigi, Hoshiyama and Kitamura, 1998; Kuriki,

Takeuchi and Hirata, 1998; Kuriki, Hirata, Fujimaki and Kobayashi, 1996;

Sekiguchi, Koyama and Kakigi, 2000; Helenius, Salmelin, Service, Connolly, 1998,

1999; Pylkkinen, Stringfellow, Flagg and Marantz, 2000; Embick, Hackl,

Schaeffer, Kelepir and Marantz, to appear).

For the current experiment, then, only the later two established peaks,

and peaks following them, were of interest, and RMS analysis was performed

only on peaks occurring after 200 ms after onset of stimulus.

The number of channels used varied from 10 to 20 for the 64 channel

system, and from 25 to 35 for the 93 channel system, depending on the time

window and the dipolar field patterns they represented. The channels were all

8 However, the magnetic field patterns still show a particular polarity and orientation.



located in the left hemisphere, as the activation patterns in most subjects were

left-lateralized.

Subjects who did not show clear visual M100 and M170 peaks in their RMS

data were excluded from the across-subject analysis; since the M100 and M170

represent early visual responses, their absence called the validity of the more

downstream peaks into question.

Source Modeling

ECD analysis is typically performed if the RMS data and the sensor-by-sensor

comparison show a significant difference between conditions over one specific

set of channels, as confirmed by a repeated measures ANOVA design across

subjects. The significant differences seen in these analyses go to confer a measure

of validity on the results from the ECD analysis, in the following manner: the

same channels, in the same time windows that were used for perform RMS

analysis are used to do ECD analysis. The dipole localization algorithm will locate

a dipole within the dipolar field pattern and within the time window observed;

any difference in dipolar localizations can then be assumed to represent a

statistically significant difference in brain activity.

The ECDs that best explained the most dominant signals were determined

by a least-squares search, as outlined in chapter 3, using the EMSE dipole



software package (EMSE Suite, Source Signal Imaging, Inc9 ). For each subset of

channels, ECDs were calculated over the entire time window containing the

dipolar field pattern. Only ECDs accounting for >80% of the field variance at

selected periods of time for each subset of channels were accepted.

The output of the ECD analysis is a set of dipoles and their coordinates;

these coordinates are located in a 3-D space determined by the subject's

coregistered probe which was derived from the MEG sensor framework and the

subject's head framework (see above, under 'Data Acquisition'). To plot the

dipoles, one last step was necessary. The subject's coregistered probe had to be

transformed from EMSE coordinates into Talairach space (Talairach and

Tournoux, 1988) by matching the subject's landmarks with the standard ones.

This transformation then was used to transpose the coordinates of the dipoles

into Talairach space as well. Some distortions could not be avoided in the

process, as a particular individual's landmarks do not necessarily match up well

with the standardized ones.

Finally, the analysis was performed on both individual subject and grand

averaged (averaged across sublets) data. For grand averaged data, one particular

subject's coregistered probe was used, as no grand averaged probe was

available.

9 EMSE was previously calibrated by correctly localizing the auditory response to a 1kH tone
test to approximately the auditory cortex.



Statistical Analysis

The latencies and amplitudes of the peaks of the RMS analysis were compared

with ANOVA with repeated measurements with factors of task, regularity,

subject and time, with subjects as the random factor, using StatView.

In addition, to further validate the ECD data for the past conditions, a

sensor-by-sensor comparison was done, using the same channels as those for the

RMS analysis, with a repeated measures ANOVA with factors of subject,

regularity, sensor and time. The factor of 'time' did not represent individual time

points, but time points averaged across a window that contained a peak, which is

standard procedure in ERP research.

Predictions

For the Words-and-Rules model, the following predictions were made: both

irregular and regular past tense formation should activate temporal areas

(lexical lookup), but only regular formation should activate frontal areas (rule

processing) as well. For the connectionist model, no neural dissociations were

expected.



Results

Behavioral Data

As Table 2 shows, the reaction times for the Stem condition (mean=564 ms) were

faster than for the Past Condition (mean=795 ms; F=173.6, p<.0001, df=1, 35).

Within the Stem condition, the reaction times for irregular (mean=577 ms) and

regular verbs (mean=560 ms) did not differ significantly, although they were

somewhat faster for regular verbs (F=3, p=.09, df=1,35). Within the Past

condition, the reaction times for irregular verbs (mean=808 ms) were

significantly slower than for regular verbs (mean=781 ms; F=7.007, p<.05,

df=1,35; see Table 3). The task X regularity interaction term was not significant

(F=.419, p=.5 2 , df=1,35)10.

Put Table 3 about here

10 This could be somewhat problematic, since there should be no differences between the two
stem conditions, according to the Words-and-Rules theory. However, there are studies that
indicate that the size of a derivational family can influence lexical retrieval times: the
larger the family, the slower the retrieval (Baayen, 1997). Irregular verbs have a larger
derivational family than regular verbs, since the psat tense forms are memorized. Also,
there could be competitive inhibition from the memorized irregular past tense forms in the
retrieval of the irregular stem forms.



Isocontour maps and RMS data

Figure 16 shows the relevant isocontour maps in each of the time windows for

each of the conditions. These maps were chosen to best represent the dipolar

field patterns occurring in each time widow for which RMS analysis was

performed. All sensors are shown.

Put Fig. 16 about here

The following dipolar field patterns are shown: there is a visual response early

on, around 100 ms (frame 1), followed by a another visual response around 170

ms (frame 2), followed by a field pattern around 230 ms (frame 3). The next one

occurs around 320-370 ms (frame 4), and the last one occurs around 410-440 ms,

and is confined to the past conditions.

Two sets of RMS analyses were conducted in the following time windows,

based on the above dipole field distributions: the first lasted from 200 ms to 300

ms, and consisted of the channels distributed medially over the left hemisphere.

The second lasted from 300 to 500 ms, and consisted of channels distributed

more anterior to the first set (see Appendix II for a full list of channels).



The RMS data are as follows. For the first RMS set, from 200 to 300 ms, the

first relevant peak occurs around 230 ms and is followed by one around 290 ms.

For these two peaks, the following pattern of means can be observed: the

latencies for the past conditions are significantly longer from those for the stem

conditions (F=47.675, p<.001, df=1,30). Within the past and stem conditions, the

latencies are not reliably different between regulars and irregulars (F=3.462, p<.l,

df=1,30). The regularity X task interaction term is not significant (F=0.073, p<l,

df=1,30). This is as expected, since the first two peaks occur too early to be

involved in the past tense formation (see Table 4).

However, the amplitude data are unexpected. For both peaks, within the

past condition, the amplitudes for the regulars were consistently smaller than for

the irregulars. Within the stem condition, the amplitudes for the regulars were

consistently larger than for the irregulars. As a result, the interaction term

regularity X task is significant, at p=.001 (F=13.406, df=1,30; see Figure 17 for a

graph for the amplitude data). This difference is puzzling, especially since the

amplitudes for the later peaks show no significant interaction (see Table 5 for the

RMS statistics).

Put Table 4 about here

Put Table 5 about here



Put Figure 17 about here

For the second set of RMS analysis, from 300 to 500 ms, the data are as

follows: the next peak occurs around 320-370 ms, and both stem conditions show

significantly faster latencies than the past conditions (F=54.003, p<.05, df=1,30).

Within the past condition, the regular condition shows a significantly faster

latency than the irregular condition (F=3.36, p<.001, df=1,30). Since this is the first

time the irregular past and regular past conditions differ in their peak latencies,

this could signify that the onset of past tense formation as such (as opposed to

lexical lookup etc.) occurred sometime around 344 ms (which is the mean latency

for the past condition), and that the peak following this one reflects the

processing differences in regular vs. irregular past tense formation.

As stated above, there are no significant differences in the amplitudes

(F=0.061, df=1,30, p<.5).

The final peak occurs around 410-440 ms, and is confined to the past

condition. There is a significant difference in the latencies between the regular

(mean=411 ms) and irregular conditions (mean=431 ms; F=26,96, df=1,30,

p<.0001), but not in amplitudes (F=0.121, df=1,30, p<.5; see Tables 4 and 5).



In sum, the RMS data show that there is a significant and consistent

difference between the stem and the past conditions in peak latencies, and

between the regular past and the irregular past conditions, again in peak

latencies. The RMS data were then used for the ECD data, which was expected to

mirror the RMS differences within the various conditions.

ECD data

For single subject data, ECD analysis could not be performed successfully,

presumably because the signal-to-noise ratio was too low, given the small

number of stimuli (at most 64). Instead, ECD data from data averaged across

subjects (grand-averaged) will be shown below. These data have to be taken

with caution, for several reasons. First, dipoles derived from grand averaged

data are much less interpretable than ECD data from single subjects, since

averaging across subjects only means averaging across the data points at each

channel, without taking differences in shape, general anatomy and relative head

position with respect to sensors into consideration.

Second, I used a particular subject's coregistered probe (see above) to

locate the dipoles, since I did not have an averaged coregistered probe at my

disposal. Third, the transformation of the EMSE coordinates into Talairach

coordinates resulted in some unavoidable distortions. Fourth, since the error

margins for dipole localizations using a uniformly conducting sphere as model

are under 1cm, only dipoles which are at least 2 cm apart in all coordinates could

be safely deemed as distinct.



'1

With all the above caveats, the ECD data are shown below, with the

suggestion they could nevertheless give an idea of localization of activity (see

Table 6 for exact coordinates and Figure 18 for an approximate localization.)

Put Table 6 about here

Put Fig. 18 about here

The distribution of dipoles (ECDs), from the above table, is as follows: there is no

difference between the dipoles within the stem condition between regular and

irregular verbs. Dipoles were found from about 200 ms on to about 340ms.

Within the past condition, the dipoles for the regular condition started out

together with the ones for the irregular condition, and were very similar from

200 ms to about 300 ms, again confined to left temporal areas. Thereafter, there

was a split, as the two remaining regular dipoles between 300 ms and 500 ms

moved anterior and occurred earlier, while the two remaining irregular dipoles

Th itibtio ofdple Elsfo the above caetteE d tablre, is asfollows:it therisn

difference between the dipoles within the stem condition between regular and

irregular verbs. Dipoles were found from about 200 ms on to about 340ms.

Within the past condition, the dipoles for the regular condition started out

together with the ones for the irregular condition, and were very similar from

200 ms to about 300 ms, again confined to left temporal areas. Thereafter, there

was a split, as the two remaining regular dipoles between 300 ms and 500 ms

moved anterior and occurred earlier, while the two remaining irregular dipoles

remained in temporal areas, and occurred later than regular dipoles. This split



can be taken to be reliable, since the distar

sets is more than 2 cm, under the assumpi

(Cuffin, 1985).

The localization of the dipoles to sp

reasons outlined above; the Talairach coor

approximately [-50, 6, 22], which could be

even with an error margin of 1 cm, for the

defined to be anterior of the central sulcus

from about +35 mm to +12 mm. At z=+22

sulcus are about +15 mm. Even with an er:

located forward for the central sulcus and

The posterior dipoles, whose Talair

10], are approximately located in temporal

margin.

The temporal distribution of dipole,

RMS analysis. This is so by necessity, since

were selected on the basis of the RMS resu

outcome of the ECD analysis; however, sir

significant by objective criteria (repeated n

found through in the ECD analysis can be

(see above.)

Affirming the differences in the regi

sensor-by-sensor analysis revealed that th4



significant: sensor X time (F=1.86, df=48,1440, p=.004), regularity X sensor

(F=3.005, df-16, 480, p<.001) and sensor X regularity X time (F=2.385,, df=48,1440,

p<.001; see Table 7).

Put Table 7 about here

Discussion

The data show the expected peaks that have previously been found in MEG

studies of visual language tasks (M100, M170, M220, M350), in addition to

another peak around 400 ms post-stimulus. M100 and M170 are connected to the

visual processing of stimuli, and M220 and M350 possibly to lexical access; the last

peak could then be related to the past tense processes.

The data also indicate that there is indeed a dissociation between regular

and irregular past tense formation, both in time and space, in support of the

Words-and-Rules theory over connectionist models. Irregular past tense

formation takes significantly more time than regular past tense formation, as

seen in the behavioral (RT) and MEG data. In space, regular past tense formation

seems to involve anterior (perisylvian) regions, while irregular formation does

_ _ ____ __



not, according to the ECD analysis performed on grand ave

anterior areas for the late regular dipoles could be the areas

application of the rule (add -ed to the stem). The posterior ý

and early regular dipoles could be indicative of lexical proce

for both kinds of stems, lexical lookup of the irregular past

lexicon is taken to be located in temporal areas (see chapter

So far, this represents evidence to corroborate the W

theory, with the caveat that ECD analysis done on grand av

interpretable than ECD analysis done on single subject data



Chapter 5

Testing the hypotheses, part two: An f

This was a replication of the past tense production st

goal was to provide better spatial resolution for the

the ECD data analysis performed on MEG data.

Materials and Methods

Participants

21 right-handed volunteers (12 male), aged between

mean age of 20 years), who were native speakers of

informed consent to participate in the experiment.

Materials

The stimuli consisted of the same 64 pairs of regular

MEG experiment.

Procedure

Participants were scanned for 1 session. The stimuli

followed by 700 ms of a central fixation cross, follow



screen to indicate the end of each trial. Subjects were asked to either read silently

the verb they saw on the screen (Stem Condition), or silently produce the past

tense form of the verb (Past Condition; see Appendix III for a description of the

verbal instructions). Each Stimulus was preceded by a cue word (either 'Read' or

'Past') which lasted for 300 ms, to indicate which task was required, and a fixation

point, which lasted for 200 ms (see Fig. 19.)

Put Fig. 19 about here

Participants were given brief practice before scanning. The stimuli used during

the practice were not part of the actual stimulus set used during scanning.

The stimuli were split into 2 subgroups of 32 pairs of verbs; each subject

saw one group in the Stem condition, and the other group in the Past condition.

The stimuli were presented in a pseudorandom fashion such that the four

conditions (StemReg, StemIrreg, PastReg, PastIrreg) followed each other equally

frequently to maximize the ability to decompose the hemodynamic signal

associated with the different conditions. To add up to an overall scanning

duration of 384 seconds for the scanning session, which was again calculated to

maximize the BOLD signal contrast between the conditions, the stimuli, which

_ __



added up only to 256 sec

each), were padded witi

visually presented stimu

word was 'Fixate'. This (

condition. In addition, tl

across participants.

FMRI methods

Scanning was per

whole-head coil. Functi(

planar pulse sequence (I

.1 mm inter-slice gap, 19:

(MP-RAGE) anatomical i

motion was restricted us

a Macintosh computer ai

which was viewed throu

Data analysis

Data were processed usii

package (Wellcome Dep-



roughly through three basic steps of data processing, preprocessing, model

estimation and model inference. During preprocessing, images are first corrected

for differences in slice acquisition timing by resampling all slices in time to match

the first slice, followed by motion correction across all runs to correct for

subjects' head movements. Subjects with head movements of more than one

voxel size (3mm) were excluded from further analysis

Structural and functional data were then spatially normalized to the space

of a standardized T2*-sensitive Echo Planar Image which is based on a

representative image of an averaged brain of the MNI (Montreal Neurological

Institute) stereotactic space, using a 12-parameter affine transformation along

with a nonlinear transformation using cosine basis functions, to enable reliable

localization of activation within subjects, and between subject comparisons.

Images were resampled into 3mm cubic voxels and then spatially

smoothed with an 8-mm FW-HM (full-width, half-maximum) isotropic Gaussian

kernel to increase the signal-to-noise ratio.

The next step is model estimation, during which the functional data are

compared against an standard hemodynamic response, the activation one would

expect to see if the null-hypothesis were correct . This is done using the general

linear model in SPM99. Trials from each condition are modeled using a canonical

hemodynamic response. Effects (the goodness of fit between the model and the

actual data) are estimated, with session-specific effects and low-frequency signal

components treated as error (for more details on SPM99, consult their webpage,

http:/ /www.mailbase.ac.uk/lists/spm).



The last step is drawing inferences from the data. This is done using linear

contrasts, to obtain subject-specific estimates for each effect. These estimates are

entered into a second-level analysis treating subjects as a random effect, using a

one-sample t-test against a contrast value of zero at each voxel. Regions were

considered reliable to the extent that they consisted of at least 5 contiguous

voxels that exceeded an uncorrected threshold of p < .001. The maxima of these

regions are localized on the normalized structural images and labeled using the

nomenclature of Talairach and Tournoux (1988) and Brodmann (1909).

Finally, ROI (Region of Interest) analysis was performed, using the SPM

ROI toolbox. ROI analysis was performed for two reasons, to extract the

timecourse of activation for each of the condition, or to test the effects with

increased power, due to pooling of multiple voxels across clusters.

In ROI analysis, regions (clusters) of interest are pre-selected, then the

voxels in each cluster are collapsed. Finally, each individual subject's data set is

re-sampled for those ROIs, their timecourse data extracted, and the extracted

data can then be subjected to a repeated measures design ANOVA, with the

random factor of subject, to isolate areas which show the desired significant

interaction effects.

For this study, the goal was to explore for each ROI, which had a radius of

6 mm and at least 5 voxels, whether there was a significant interaction between

regularity (irregular-regular) and task (past-stem), equivalent to a subtraction of

subtractions. ROIs or voxels which showed a significant interaction could be

taken to be more active either specifically in the irregular past formation

condition ((IrregPast-IrregStem)>(RegPast-RegStem)) or vice versa.



One can choose ROIs either based on previous literature, or on one's own

group data. In the latter case, one starts with the most general and unbiased

contrast. If none of the ROIs show a significant interaction, one can go down to

the less general contrasts. This is more likely to yield clusters with significant

interaction effects, since the ROIs in these conditions were picked from data

which had the bias built-in through a specific contrast analysis.

In this study, the most unbiased and general contrast condition was All-

Fixation, which showed the areas active in all four conditions, from which the

baseline fixation condition was subtracted. The next less general contrast

condition was past-stem, in which both past conditions were collapsed and

compared to both stem conditions, to look for areas more active in the pas

conditions than in the stem conditions. The next less general contrast condition

were the two single subtraction conditions, RegPast-RegStem and IrregPast-

IrregStem. The RegPast-RegStem condition was analyzed to locate areas active in

the regular past condition, irrespective of irregular verbs, and IrregPast-

IrregStem, to locate areas active in the irregular past condition, irrespective of

regular verbs. Finally, the most biased contrasts were the two double

subtractions, (RegPast-RegStem)-(IrregPast-IrregStem) and vice versa (see Table

8).

Put Table 8 about here

_ __

------------------------------------



Predictions

Based on the Words-and-Rules model, the following predictions were made:

both irregular and regular past tense formation should involve temporal areas

(lexical lookup), but only regular formation should involve frontal areas (rule

processing). The connectionist model predicts that there should be no

dissociations.

Results

All-fixation

The general pattern of activity for this condition, which indicates the general

pattern of activity for the entire experiment, shows that most of the active

clusters are limited to frontal and parietal areas. There is very little occipital and

temporal activation 1 .

This comparison did not yield any clusters or ROIs which showed a

significant effect for the regularity X task X time interaction (see Fig. 20).

" This pattern holds for the conditions in which fixation was subtracted from only one
experimental condition, e.g. IrregStem: activation was limited to parietal and frontal
areas. These data are not presented, as they could be confounded with word effects, since
the control subtraction condition was fixation, and not the same set of words processed in a
different manner. In other words, the relevant effects could be due to the nature of the words
themselves, and not due to the way they were processed.



Put Fig. 20 about here

Past-Stem

The active voxels in this contrast were mostly localized in the left frontal and

parietal lobes, with distinctly less activation than in the all>fixation condition (see

Fig. 21). This comparison did not yield any clusters or ROIs which showed a

significant effect for the regularity X task X time interaction, either

Put Fig. 21 about here

Single Subtractions

Regular Past-Regular Stem

Since this contrast analysis was a rather biased one, one could have expected to

find ROIs which show a significant interaction term. The regions exhibiting

greater event-related responses to the Regular Past than to Regular Stem
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conditions were largely confined to the frontal lobes of both hemispheres (see

Table 9 and Figure 22).

Put Table 9 about here

Put Fig. 22 about here

Given the hypotheses to be tested, the cluster I focused on was the one centered

around the voxel with the coordinates [-48, 6, 18], which corresponds to BA

44/45, or Broca's area. Given that Broca's area has been implicated in a number

of language related tasks, especially syntactic processing (see chapter two), this

cluster might be involved in the application of the default past tense rule, i.e. 'add

-ed to the stem'.

The other clusters are distributed in the following manner: one cluster is

located in the right Superior Frontal Gyrus (SFG), or BA6, and one in the left

SFG. One cluster is located in BA 7 (posterior parietal), and the other 4 clusters

are located in the white matter.

_ _ _ _ __ _ __ __ i_



However, none of the ROIs showed a significant effect for the regularity

X task X time interaction.

Irregular Past-Irregular Stem

The regions exhibiting greater event-related responses to the Irregular Past than

to Irregular Stem conditions were again largely confined to the frontal lobes of

both hemispheres, and to one cluster in the left temporal lobe (see Table 10 and

Fig. 23).

Put Table 10 about here

Put Fig. 23 about here

In addition to temporal lobe activation, the formation of irregular past tense

forms involved the same area as the regular past tense formation, BA 44/45, on

top of one other frontal area, centered around [-42, 33,-3], which corresponds to

BA45/47 (see Fig. 22). A direct comparison between the clusters that are relevant



to the two single subtraction conditions revealed why BA44/45 did not show a

significant interaction effect: both conditions show active clusters in this area

which are contiguous and overlapping (see Fig. 24).

Put Fig. 24 about here

Double Subtractions

Regular-Irregular

There was only one region exhibiting greater event-related responses to the

Regular subtraction condition than to the Irregular subtraction condition,

centered around [21, -33, 42], in the right parietal region (see Table 11 and Figure

25).

Put Table 11 about here

MEMMMW



Put Fig. 25 about here

Irregular-Regular

There were 7 regions exhibiting greater event-related responses to the Irregular

subtraction condition than to the Regular subtraction condition (see Table 12 and

Figure 26.)

Put Table 12 about here

Put Fig. 26 about here

The significant clusters in this double subtraction condition can be described as

follows: one cluster of 12 voxels, located in the anterior left inferior prefrontal

cortex, BA 45/47; one cluster of 10 voxels, located in the right anterior cingulate;

one cluster of 6 voxels located in the left parietal cortex; one cluster of 5, located

in the right parietal cortex; one cluster of 5 voxels is located in the anterior right

_ ___ _ ___ ~_



inferior prefrontal cortex, BA 45/47, and one cluster centered around [-3, 39, 3]

(see Table 10 above).

Discussion

The fMRI data indicate that both regular and irregular past tense formation use

left prefrontal areas: overlapping, but not identical areas in BA 44/45 are active in

both conditions, and BA45/47 is active only in the irregular condition. This

indicates an anterior involvement for irregular verbs, in contrast to the Words-

and-Rules hypothesis. On the other hand, this still constitutes a dissociation

between the conditions, in contrast to what the connectionist model predicted.

Moreover, since BA 45/47 has been widely implicated in semantic retrieval

processes, its activation in the irregular condition should perhaps be not too

much of a surprise (see below for a detailed discussion).

As for BA 44/45, no good methodology currently exists to tease apart the

two overlapping clusters. Assuming they are identical, this leaves the question of

the functionality of Broca's area open. Given the strong evidence that it is active

in grammatical processing, it would stand to reason that it would be active in

grammatical processing in this task as well. One possibility is that it supplies the



feature of 'past-ness' to both conditions early on when the verb is processed in

the lexicon, and is hence active in both2.

In addition, no temporal areas were found to be significantly more active

in the irregular condition than in the regular condition. This could be due to a

number of reasons. The easiest suspect is the subtraction method; since both

stem and past conditions should involve lexical access, subtracting the stem

condition from the past condition would result in temporal areas being taken out

of the analysis. However, the All-fixation contrast, in addition to the

SingleCondition-Fixation contrasts, did not show much temporal activation,

either. Thus, the subtraction of trial conditions is probably not the culprit.

Another possibility is that the lack of temporal activation is an artifact due

to the experimental paradigm used: during the baseline condition, subjects were

given the cue word 'FIXATE", which could have resulted in strong activation of

lexical areas for the baseline condition already. A subsequent All-fixation or

SingleCondition-fixation subtraction could then show no significantly higher

activation for the trial conditions than the baseline condition. This is not so far-

fetched, as another language and memory study, run on the same magnet with a

similar event-related design and the same subjects, also failed to yield any

activation in temporal areas (Dav Clark, p.c.)13 .

12 Supplying the past-ness feature might be separate from concatenating the stem to the affix; if
it is, one might expect a 'double-dip' effect for regular past tense formation. This 'double-
dip' could not easily be observed without much faster time course data than what fMRI can
currently offer, unless it resulted in much higher activation for the regular condition for the
irregular.

13 In general, recording from temporal lobes is generally not robust.

- --



Finally, both conditions use parietal areas which have been implicated in

working memory, although, as discussed in chapter 2, the involvement of

working memory in the regular past tense formation is implausible (see below

for a detailed discussion).



Chapter 6.

General Discussion

Table 13 shows a summary of the data, juxtaposed wi

two hypotheses and data:

Put Table 13 about here

To repeat, the Words-and-Rules hypothesis predicted

between regular and irregular past tense formation, si

a lexical lookup procedure, which should be localized

whereas the regulars should involve both temporal ar

lookup of stem) and frontal areas (late stages, applicat

the connectionist model predicted no neural difference

irregular processing.

From the above table, one can see that the fMR

evidence in favor of the Words-and-Rules theory, sinc

dissociations between the neural computations regula:

formation depend on, over the connectionist model, e

match the Words-and-Rules predictions exactly.



The MEG data correlate better with the Words-and-Rules predictions than

the fMRI data. As hypothesized, there was a dissociation, both in time and space,

between regular and irregular past tense formation: both processes started out

in temporal areas, but the regular dipoles jumped anterior, possibly to Broca's

area, while the irregular dipoles remained in temporal areas. Moreover, the

regular past condition had a faster time course than the irregular past condition,

as predicted by the reaction time data. In the stem conditions, no significant

difference, both in time and space, could be seen between regular and irregular

verbs1 4.

However, the fMRI data are more difficult to reconcile with the stated

Words-and-Rules hypothesis, that there should be an anterior-posterior

dissociation between regular and irregular past tense formation. While the fMRI

data confirm a frontal involvement for regular verbs, they also indicate a frontal

involvement for irregular verbs as well. Furthermore, there was no activation in

temporal areas for either regular or irregular verbs, as discussed above.

There are two main possible interpretations of the cluster in the anterior

left inferior cortex, BA 45/47, which was significantly more active in the irregular

subtraction condition than in the regular subtraction condition, which involve a

modification of the original hypothesis. First, this cluster could be involved in the

inhibition (or control) of the default rule in the irregular past condition. Second, it

could be responsible for semantic retrieval and selection of the correct irregular

form.

14 This is assuming that the dipole localizations can be trusted.



With respect to the first option, many imaging experiments have

implicated left prefrontal areas in the control of cognitive processes (e.g. in

suppressing the pre-potent response, which is reading the word in the color it is

written in, instead of the word itself, in a modified Stroop test (MacDonald III et

al., 2000); or in suppressing the pre-potent response in Piaget's A-not-B task,

which is looking for the object in the old location (A) instead of the new (B)

(Diamond et al., 1989). However, a inhibitory role for BA 45/47 in the production

of irregular past tense forms seems to be unlikely, because the left prefrontal

area most often mentioned as the locus of control is Dorsolateral Prefrontal

Cortex (DLPFC) or BA 9/46, and not BA 45/47 (see e.g. Miller and Cohen, in

press; Goldman-Rakic, 1987; Bunge et al., 2000; Fuster, 1997, for a discussion of

prefrontal involvement of cognitive control).

The second possibility, that BA 45/47 is involved in the selection of the

correct irregular form, is more plausible. There is extensive brain imaging

literature that indicates that BA45/47 is involved in semantic and/or lexical

retrieval and selection during language tasks, with two possibilities: either BA

45/47 is engaged in semantic retrieval per se, i.e. it facilitates access to relevant

semantic knowledge, or it is necessary for the selection of task-relevant

representations from among competitors.

In favor of the first possibility, Desmond et al. (1998) showed this area

was active in a stem-completion paradigm, which clearly involves selection from

the lexicon; Petersen et al. (1988) showed that BA 45/47 is selectively active

during the recall of a semantically related word to a visually presented stimulus

(e.g. eat to cake). Furthermore, Wagner et al. (1998) and Kirchhoff et al. (2000)
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implicated BA 45/47 in the process of correctly encoding verbal stimuli (words)

as opposed to non-verbal stimuli such as pictures, and Poldrack et al. (1998)

showed that semantic processes (abstract/concrete decision) activated BA 45/47

more than phonological ones (syllable counting). In addition, Demb et al. (1995)

showed that while BA 45/47 was more active in the semantic (abstract/concrete

decision) than in the non-semantic (upper case/lower case or

ascending/descending judgements) condition; they also showed that this

differential activation was not due to the semantic task being harder, since BA

45/47 was more active in the semantic condition than in the

ascending/descending judgement, even though the latter task was more difficult

(as shown by longer RTs for the latter task.).

In favor of the second possibility, Wagner et al. (submitted) suggested

that BA 45/47 is engaged in controlled semantic retrieval, i.e. BA 45/47 may be

active under retrieval conditions in which there are no pre-potent responses.

They used a similar paradigm to Thompson-Schill et al.'s (Thompson-Schill et al.,

1997, 1998, 1999), in which a target word had to be selected from a list given a

cue word, but kept the selection demands to a minimum, and showed that BA

45/47 was reliably active only in conditions in which the cue-target association

strength was weak, or when the size of the target group increased (see Wagner

(in press) for an overview of the literature).

To apply these findings to the current study, irregular past tense forms

are stored in memory with some associative properties. It is plausible that while

brought has to be retrieved as the correct form for bring, the associative

properties of the memory stores could also bring incorrect forms on line, which
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could be correct, by analogy to other irregular verbs. In the case of bring, the

incorrect forms brought on line would include brang (by analogy to sing) and

brung (by analogy tofling). BA 45/47 could be involved in selecting the correct

form from the possible choices, even though there is a prepotent response (the

correct form).

This makes a hypothetically verifiable prediction: irregular verbs which

reside in dense phonological neighborhoods, such as bring, sing, andfling, should

activate BA 45/47 more strongly than irregular verbs which do not, such as eat

and build. The obstacle to this verification would the small number of verbs

available for the study, which would greatly reduce the signal to noise ratio.

Alternatively, BA 45/47 could be involved in simply retrieving the form

that corresponds to bring + past feature; in this model, BA 45/47 would just

retrieve the correct form brought, without ever having to bring other forms

such as brang or brung on line.

The two overlapping clusters, which correspond to left BA 44, or Broca's

area, are more difficult to interpret. There are two main possibilities, depending

on whether they represent two distinct clusters or not. Presently, it is impossible

to reach a conclusion, given the data; therefore, for the purpose of discussion, I

will assume these clusters are not distinct. Since both irregular and regular past

tense formation make use of this area, one possibility is that it supplies the

grammatical feature of 'pastness' or 'finite-ness', or any other feature that

distinguishes past tense forms from stems, to the overall process of past tense

formation, in addition to concatenating the stem with the suffix, as discussed
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The parietal regions which show a significant activation for the double

subtraction conditions are similar to those implicated by Jonides et al. (1998) and

Awh et al. (1996) in verbal working memory paradigms, in which subjects were

asked to memorize and retrieve novel words. In these studies, posterior parietal

regions, BA 7 and BA 40, were reliably active during both the storage and the

retrieval conditions, but not during the encoding condition. While it might be

plausible to posit a semantic retrieval component for irregular verbs, however, a

short term storage component is difficult to reconcile with both the speed and

automated nature of regular past tense processing, or even the retrieval process

of irregular forms.

Finally, the anterior cingulate, which is active only in the irregular double

subtraction condition, is known to co-vary frequently with left frontal activity,

although the manner in which this happens is still unclear. It has been implicated

in an array of related function, in making and monitoring of decisions (Liddle et

al., 2000), in controlling or inhibiting a prepotent response (MacDonald II et al.,

above. Another is that this area is in fact involved in appending the suffix -ed to

the stem in the regular condition, and it is active in the irregular condition as

well, since the regular rule applies by default. For irregular verbs, the incorrect,

overregularized form (such as bringed) would have to be selected against. Again,

this selection could the be role of BA 45/47. This would be a slight modification

to the Words and Rules theory, in that the default rule no longer has to be

blocked from applying to irregular verbs; instead, the rules applies anyway, and

only the incorrect, overregularized form has to be selected against.
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2000; Rubia et al., 2001), attentional regulation and feedback (Thayer and Land,

2000), and monitoring on-line processing (Ochsner et al., 2001), to name a few.

How any of the above functions could have a bearing on the formation of the

English past tense, if any, is a subject of further investigation.

Another open question is why the MEG data do not indicate any frontal

involvement for the formation of irregular past tense forms; this was possibly

due to the ECD analysis looking to localize only 1 dipole, as opposed to several.

It is doubtful that the differences between the MEG and fMRI data can all be

ascribed to one involving overt (MEG) and the other covert (fMRI) production of

words. As reviewed by Fiez and Petersen (1998), the major differences in

activation between overt silent language production tasks were more activation

in the motor areas (BA4 and 6) and auditory cortex (BA 22), due to activation

through one's own voice. The bigger difference is probably the fact that the MEG

experiment was run in the past tense production conditions and the stem reading

conditions in one block each, whereas in the fMRI experiment, both conditions

were randomly intermixed. In addition, the MEG data are not subtraction data,

and show the timecourse of activation, which allowed the dissociation between

regular and irregular past tense formation in the later stages to emerge.

The combined MEG and fMRI data lend support to the Words-and-Rules

theory over connectionist models, in that irregular and regular past tense

formation can be dissociated, both in their time course and their neural

substrates, in contrast to what the connectionist model predicted. The irregular

past tense formation activates temporal areas, and the regular past tense

formation activates frontal areas. A modification is suggested, in light of the



fMRI data, which indicate frontal involvement for irregular forms as well. The

details, however, still have to be worked out; it is unclear whether the left frontal

areas around Broca's area are distinct clusters or not, and what the role of the

anterior cingulate is, or the exact role of BA 45/47, why there was no temporal-

lobe activation overall in the fMRI data, and whether the parietal areas found in

the fMRI data are indeed connected to verbal working memory and storage.

More experiments will have to be conducted in order to answer these questions.

Future experiments would include the following: a re-analysis of the

current fMRI data without smoothing; this will reduce the spatial extent of the

data, and thus perhaps separate the two overlapping clusters located in BA

44/45. For the same purpose, the same fMRI experiment could be run, either on

a stronger magnet, or with surface coils focused on left prefrontal areas instead

of a whole head coil, in order to increase the signal to noise ratio.

Another possible re-analysis would involve looking at irregular verbs in

high phonological density neighborhoods vs. low density neighborhoods. If BA

45/47 is indeed involved in selection, verbs in low density neighborhoods should

show less activation in BA 45/47 than verbs in high density neighborhoods. For

this experiment, more subjects would have to be recruited, since dividing the

stimuli into smaller bins would drastically reduce the signal to noise ratio of the

currently available data set. Alternatively, one could present the same set of

verbs multiple types per subject.

Another possible experiment would look at the putative working

memory components of the past tense formation, by making the process so

hard that it would become less automated and more dependent on working



memory, perhaps by embedding a few regular verbs in many irregular verbs

and vice versa.

Finally, in order to correctly merge the MEG with the fMRI data sets, the

MEG experiment would have to be re-run with exactly the same event-related

design as the fMRI experiment.

In sum, the work presented here indicates that words and rules can

indeed be dissociated in the brain, and that further work, using both techniques,

should shed further light on the intricacies of neurolinguistics.



Figures

Figure 1
Broca's area
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The brain of Lebourgne showing a lesion in Broca's area (Source: Moutier 1908: 78)



Figure 2
Broca's and Wenicke's areas

Lateral surface of the left hemisphere

sulcus gyrus

Source: Kandell et al.,1991
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Figure 3
Basic Neural Network
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Figure 4
The Words and Rules Past Tense Model

Source: Pinker, 1999
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Figure 5
The Words and Rules Model in the Brain

)·
N1

r

j!·
liii

G

eI;

N

/

Irregular Verbs
Regular Verbs

I



Figure 6
Magnetic Field Lines Around Current Flow

All electrical currents, whether in telephone wires or brain cells, produce a magnetic field in
the surrounding space, following the right-hand rule.

Source: Orrison et al., 1988a



Figure 7
Cortical Cells and Their Contribution to the MEG Signal

Cells oriented perpendicular to the skull surface (A) fail to generate an extracranial magnetic
field. Cells oriented parallel to the skull surface (C) produce a significant radial magnetic
field which can be picked up the MEG sensors. Cells of intermediate orientation (B) have
both radial tangetial components.

Pyramidal
cells

magnenc neia

Source: Orrison et al., 1988a
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Figure 8
A Current Dipole

Isofield contour map of the magnetic field generated by a dipole embedded in a half-space
below the plane of measurement. The dipole (arrow) is located below the origin and
oriented along the x axis.

Source: Orrison et al., 1988a



Figure 9
Model of Increased Blood Flow in Active Brain Areas
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Figure 10
Oxygenated vs. De-oxygenated Blood

Field Homogeneity and Oxygen State
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Oxygenated Red Cell de-Oxygenated Red Cell

Source: Visiting Fellowship in fMRI, 2000



Figure 11
The BOLD Effect
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Figure 12
Scan Sequence of the MEG Experiment
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Figure 13
A Sample MEG Isocontour Map
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Figure 
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Figure 14
A Sample RMS graph
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Figure 15
Selection of Channels for RMS Data Anslysis
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Figure 16
Isocontour Maps For the Four Conditions in the MEG Experiment

Irregular Past Tense Formation
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Isocontour Maps For the Four Conditions in the MEG Experiment

Regular Past Tense Formation
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Isocontour Maps For the Four Conditions in the MEG Experiment

Irregular Stem Reading

0

0 100 200 300 400
Time (ms)

-- ----



Isocontour Maps For the Four Conditions in the MEG Experiment
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Figure 17
RMS Amplitude Data For the First Two Peaks

I Irregular Past
Irregular Stem

I Regular Past
Regular Stem

Peak 1 (230 ms) Peak 2 (290 ms)

Latencies

These are the amplitude data for the peaks in which the
Regularity x Task interaction term was significant at
p<.001.
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Figure 18
Approximate Dipole Localizations for the MEG Experiment

Regular Past Tense, 350-450 m, [-50, 6, 22], left frontal lobe

Regular Past Tense, 210-310 ms, [-40, -19, 4], left temporal lobe

Irregular Past Tense, 210-470 ms,[-40, -20, -10], left temporal lobe
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Figure 19
Scan Sequence for the fMRI Experiment
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Figure 20
All-Fixation Subtraction Data
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Figure 21
Past-Stem Subtraction Data
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Figur 22

Figure 22.
RegularPast-RegularStem Subtraction Data
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Figure 23
IrregularPast-IrregularStem Subtraction Data
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Figure 24

Extent of Overlap Between Regular and Irregular Past Tense Formation in BA 44/45
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Figure 25
(RegularPast-RegularStem)-(IrregularPast-IrregularStem) Subtraction Data
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Figure 26
(IrregularPast-IrregularStem)-(RegularPast-RegularStem) Subtraction Data
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Tables

Table 1
Regular and Irregular Verbs

Irregulars Regulars
(dig-dug) (look-looked)

Are matched in:

Complexity One phonological word

Syntax Tensed

Meaning Past

But are different in:

Very Low Very High
Predictability (sing-sang, bring-brought, (verb + -/d/)

fling-flung)

Productivity Very low Very High
(nearly fixed list:180 verbs) (faxed, snarfed;

novel verbs: plagged)
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Table 2
Common Magnetic Sources

116

Magnetic Source Strength (fT)
Field applied in MRI 101
Field near a small bar magnet 1013
Earth's magnetic field 1011
Urban noise 109

Abdominal currents 105

Cardiac activity, skeletal muscle 105

Cortical evoked fields 102
SQUID noise 10



Table 3.
Behavioral Data for the MEG Experiment

Condition Mean RT SD SE
Irregular

Past 808 99.9 16.6
Stem 577 80.4 13.4

Regular
Past 781 105.2 17.5
Stem 560 70.1 11.7

Note: RT=Reaction Time, in ms
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Table 4
RMS Data of the MEG Experiment

Peak1 Peak2 Peak3 Peak4
Condition Mean SD S Mean SD E Mean SD SE Mean SD I

Latencya
Irregular

Past 231 16.1 2.9 295 30.7 5.5 361 15.8 2.852 431 17.3 3.1
Stem 218 17.3 3.1 269 14.2 2.5 329 16.5 2.8

Regular
Past 221 16.9 3.1 293 14.9 2.6 344 20.3 3.6 412 15.1 2.7
Stem 216 16.2 2.9 262 17.6 3.1 326 17.6 3.1

Amplitudeb
Irregular

Past 7.8 3.1 0.5 6.7 4.9 0.8 5.8 4.6 0.8 5.2 2.3 0.4
Stem 6.2 3.1 0.6 5.5 1.9 0.3 5.4 3.1 0.5

Regular
Past 6.3 2.9 0.5 5.3 2.3 0.4 5.1 2.2 0.3 5.1 2.2 0.4
Stem 7.3 3.2 0.5 6.2 3.5 0.6 5.1 2.9 0.5

b units are 10-i3T



Table 5
Statistics of the RMS Data

1. 200-300ms After Onset of Stimulus
Source df F-Value

Amplitude
regularity 1,30 0.697
task 1,30 0.181
time 1,30 9.224*
regularity * task 1,30 13.406*
regularity * time 1,30 0.053
task * time 1,30 0.061
regularity * task * time 1,30 0.183

Latency
regularity 1,30 3.462
task 1,30 47.675**
time 1,30 1726.144**
'regularity * task 1,30 0.073
regularity * time 1,30 0.075
task * time 1,30 20.442**
regularity * task * time 1,30 2.045
* p<.01, ** p<.001
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Table 5, continued

2. 300-400ms After Onset of Stimulus
Source df F-Value

Amplitude
regularity 1,30 1.931
task 1,30 0.061
regularity * task 1,30 0.348

Latency
regularity 1,30 12.356**
task 1,30 54.003***
regularity * task 1,30 4.642*
* p<.0 5 , ** p<.01, *** P<.001

3. 400-500ms After Onset of Stimulus
Source df F-Value

Amplitude
regularity 1,30 0.121

Latency
regularity 1,30 26.96*
* p<.0 0 1
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Table 6.
ECD data of the MEG Past Tense Production Experiment

EMSE Coordinates (mm)' Talairach Coordinates (mm)2
condition time (ms) x y z x y z
Irregular

Past 210-230 -40 48 42 -45 -20 7
290-310 -35 40 35 -40 -18 4
350-380 -35 42 30 -42 -18 2
430-450 -42 40 19 -40 -20 -10

Stem 200-230 -40 40 19 -40 -20 -10
250-280 -41 35 29 -35 -21 2
320-340 -45 45 35 -42 -24 4

Regular
Past 220-240 -38 40 35 -40 -19 4

290-310 -32 33 30 -33 -9 2
330-350 35 38 55 -50 6 22
410-430 30 35 50 -47 4 18

Stem 200-230 -41 48 25 -45 -21 -7
250-280 -40 50 31 -49 -20 2
320-340 -46 35 34 -35 -25 4

Note.
'3-D coordinate system for the EMSE coordinates are as follows: the origin (0,0,0) marks the points defined
by the intersection between (a) the line between the tragus landmark on each ear, and (b) a line drawn
perpendicular to this line from the nasion. The x-y plane is defined by these two lines.

+x = anterior; -x = posterior
+y = left; -y = right
+z = superior; -z = inferior
2very approximate (see text)
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Table 7
Statistics on Sensor by Sensor Comparison of the MEG Data
Last Two Peaks, Past Tense Conditions Only

Source df F-value
sensor 16,480 3,349***
regularity 1,30 0.12
sensorXregularity 16,480 3.005***
time 3,90 0.275
sensorXpeak 48,1440 1.86***
regularityXtime 3,90 .58
sensorXregularityXtime 48,1440 2.385***
*** p<.001
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Table 8
Contrast Values for the fMRI Subtractions

Subtraction Condition Contrast
Value

All-Fixation RegularPast 1
RegularStem 1
IrregularPast 1
IrreularStem 1

Past-Stem RegularPast 1
RegularStem -1
IrregularPast 1
IrreularStem -1

RegularPast- RegularPast 1
RegularStem RegularStem -1

IrregularPast 0
IrreularStem 0

IrregularPast- RegularPast 0
IrregularStem RegularStem 0

IrregularPast 1
IrregularStem -1

(RegularPast- RegularPast 1
RegularStem) - RegularStem -1
(IrregularPast- IrregularPast -1
IrregulsrStem) Irregularstem 1

(IrregularPast- RegularPast -1
IrregularStem RegularStem 1
(RegularPast- IrreguarPast 1
RegularStem) IrregularStem -1
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Table 9
RegularPast-Regular Stem, Significant Clusters

x,y,z (mm) Location T (Z) Puncorrected

-48, 6,18 left BA 44/45 5.63 4.12 0.000

27, 36, -6 right BA 47 5.51 4.07 0.000

27, -12, 45 right BA 6 5.45 4.04 0.000
-21, 15, -15 left 4.84 3.75 0.000

paraphippocampal
gyrus

6, 3, 57 right BA 6 4.77 3.71 0.000

12, 6, 51 right BA 6 4.27 3.44 0.000
12, -6, 30 right BA 24 4.43 3.53 0.000

-27, -3, 63 left BA 6 4.3 3.46 0.000
-21, -57, 42 left BA 7 4.09 3.33 0.000
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Table 10
IrregularPast-Irregula

x,y,z (mm) Loca
-6, 12, 18 left c

callo
-39, 30, -3 left B

-6, 3, 51 left I
-3, 12, 60 left E
-6, 15, 48 left E
-48, 6, 24 left BA
-36, 6, 27 left

-39, -24, -15 le
paraphipr

gyr
-21, -63, 33 left E

-48, 39, 3 left ,
-45, -42, 39 left B

9, 9, -9 right E
21, -54, 36 right
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Table 11
(RegularPast-RegularStem)-(IrregularPast-IrregularStem), Significant Clusters

x,y,z (mm) location T (Z) Puncorrected
21,-33, 42 right parietal 4.38 3.5 0.000
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Table 12
(IrregularPast-IrregularStem)-(RegularPast-RegularegaStem), Significant Clusters

x,y,z (mm) Location T (Z) Puncorrected
-24. -75, 21 left parietal 4.5 3.56 0.000

6, 24, 48 right anterior cingulate 4.3 3.45 0.000
-42, 33, -3 left BA 45/47 4.24 3.42 0.000

-3, 39, 3 left anterior cingulate 3.93 3.24 0.001
48, 21, -6 right IFG 3.58 3.02 0.001

27, -57, 42 right parietal 3.49 2.96 0.002
-36, 6, 39 left IFG 3.32 2.86 0.002

127

~---~--~-~-----~--~'~



Table 13
Summary of Hypotheses and Results

Condition Hypotheses Data

Words and Rules Connectionist fMRI MEG
Past

Irregular Activation in temporal * Right anterior cingulate Temporal areas
areas (lexical look-up of * Left frontal clusters (entire time course)
stem and stored past tense entered around
form) No differences [-42,33,-3] and around

[-36,6,39]
* Right parietal cluster

Regular Activation in temporal Posterior areas
areas (lexical lookup of * Right parietal cluster (early) and anterior
stem) and Broca's area areas (late)
(application of the rule)

Stem Activation in temporal No differences N/A Temporal areas
areas

~L--~--·-----i--i---:-~-----~-
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Appendix I

Complete List of Experimental Items for the Past Tense Production Study

The items used in the Past Tense Production Study are listed below, in
their past tense forms. Word pairs 1 through 28 and paris 33-35 are matched for
both frequency (of both stem and past tense forms) and pronounceability of the
past tense forms, the rest is matched for frequency only.

Frequency
Match Rating

1
1
1
1
1
1
1
1
1

1.5
1
1
1
1
1

1.5
1
1
1
1
1
1
1

1.5
1.5
1
1
1

Phonol. Match
Rating

1
1
1
1
1
1
1
1
1

1.5
1
1
1
1

1.5
1
1
1
1
1
1
1
1
1
1

1.5
1.5
1.5
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Match # Irregular
Past
wept
dealt
lent

crept
bound
sought
strode
ground

sold
dug
ate

slept
bred

taught
swam
spent
bent
lost
slid

swept
held
kept
told

meant
built
froze

brought
caught

Regular
Past

whipped
sailed
fanned

stripped
drowned

stayed
owed

frowned
rolled

sprayed
weighed
slipped

vied
tied

swayed
planned
strained
passed
sighed

stepped
pulled

stopped
called
joined
failed

viewed
tried

played



Frequency
Match Rating

1
1
1
1
1
1
1
1
1
1
1

1.5
1
1
1

1.5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Phonol. Match
Rating

2
2
2
2

1.5
1.5
1.5
2
2
2
2
2

2.5
2.5
3
3

3.5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
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Match #

29
30
31
32
33
34
35

Irregular
Past

strung
slung
sang
rang
sent
sank
stuck
flung
stole
hid
fed

stung
felt

spun
swung
wrung
swroe
clung
threw
fought

flew
grew
struck

bought
wrote
broke

ran
bore
won
shot

spoke
thought

rode
bled
took
drove

Regular
Past
dyed
glued
shared
poured
raised
signed
cried
dried

scored
stirred
dared
spied

seemed
roared
stared
stored
cared
begged
talked

changed
jumped
watched
hoped
caused
used

dropped
walked
snapped
helped
urged

worked
looked
wished

scrawled
asked
served



Appendix II
Channels Used for RMS analysis
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Time Window System Channels
64 channels 3, 4 ,5, 7, 18, 19, 20, 22, 24, 32, 46, 55, 60,

200-300ms 63
93 channels 3, 9, 19, 23, 26, 28, 32, 36, 41, 42, 44, 62, 65,

71, 79, 81, 83, 84, 91

64 channels 3, 7, 18, 19, 22, 23, 26, 28, 32, 41, 42, 44, 46,
300-500ms 54, 58, 60, 61, 62

93 channels 3, 7, 9, 18, 19, 41, 42, 44, 54, 60, 61, 62, 65,
66, 71, 79, 80, 81, 83, 84, 87, 91

1 . `



Appendix III
Verbal Instructions for the MEG Experiment

Thank you for participating!

The experiment has two parts; the following are the instructions for the first half only.
The second half is very similar to the first and you will receive a separate set of
instructions on the screen inside the MEG machine.

Please read the following carefully.

When you are inside the machine and the doors are closed, we will first take a
measurement of the marker coils on your head. This will take about 2 minutes. Then, the
screen above your head will display a sign that says: We are about to begin.

Please continue to look at the screen.

First an asterisk will appear in the middle of the screen:

Then it will disappear, and a verb will appear in its place:

pack

(Please produce the past tense form of the verb/Please read the verb)
have recognized it:

as soon as you

packed.

Please speak loudly and clearly. Then the verb will disappear, and a row of asterisks
will appear:

They will disappear as soon as you start speaking.

(Please pronounce the verb in the past tense form that seems most natural to you, the
one you would use in your ordinary speech.)

Try to be as fast and as accurate as possible.

You will first get 10 practice trials, so you can get used to the set-up. You will be
warned before the experiment begins in earnest.

Please speak clearly and loudly, and move as little as possible. There will be 5 breaks,
during which you can relax a bit. These breaks last for a few seconds only, however, so
do not get too relaxed, or move by a large amount.

If you have any questions, please ask them now.
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Appendix IV
Verbal Instructions for the fMRI Experiment

Thank you for participating!

The experiment has one part, and the following are the instructions. Please read them
carefully.

Once you have been put inside the scanner, and the anatomical scans are over, the
following sentence will be displayed on the screen:

Get ready.

Please continue to look at the screen.

First an asterisk will appear in the middle of the screen:

+

Then it will disappear, and a CUE word will appear in its place. There are three CUE
words, 'READ', 'PAST' and 'FIXATE'. If the CUE word is 'READ', the task is to read
the following word silently. If the CUE word is 'PAST', the task is to produce the past
tense form of the following verb silently. If the CUE word is 'FIXATE', the task is to
fixate on the following fixation cross.

The CUE word will disappear, and either a verb, or a fixation cross will appear in its
place:

'Pack' or '+'

Please follow the instructions provided by the CUE words silently, and as quickly as
possible.

Then the verb will disappear, and another fixation cross will appear. When the screen
goes blank, the trial is over.
If you were not able to follow the task until that point, please just go on to the next
word.

If the pronounce the verb in the past tense form that seems most natural to you, the one
you would use in your ordinary speech.

Try to be as fast and as accurate as possible.

You will first get 10 practice trials, so you can get used to the set-up. You will be
warned before the experiment begins in earnest.
The experiment will last for approximately 6 minutes. During this time, we would ask
you to move as little as possible, especially your head.

If you have any questions, please ask them now.
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