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Abstract

In this thesis I present new contributions to the fields of neuroscience and computer science.
The neuroscientific contribution is a new technique for automatically reconstructing complete
neural networks from densely stained 3d electron micrographs of brain tissue. The computer
science contribution is a new machine learning method for image segmentation and the
development of a new theory for supervised hierarchy learning based on ultrametric distance
functions.

It is well-known that the connectivity of neural networks in the brain can have a dramatic
influence on their computational function . However, our understanding of the complete
connectivity of neural circuits has been quite impoverished due to our inability to image all
the connections between all the neurons in biological network. Connectomics is an emerging
field in neuroscience that aims to revolutionize our understanding of the function of neural
circuits by imaging and reconstructing entire neural circuits.

In this thesis, I present an automated method for reconstructing neural circuitry from
3d electron micrographs of brain tissue. The cortical column, a basic unit of cortical micro-
circuitry, will produce a single 3d electron micrograph measuring many 100s terabytes once
imaged and contain neurites from well over 100,000 different neurons. It is estimated that
tracing the neurites in such a volume by hand would take several thousand human years.
Automated circuit tracing methods are thus crucial to the success of connectomics.

In computer vision, the circuit reconstruction problem of tracing neurites is known as
image segmentation. Segmentation is a grouping problem where image pixels belonging to the
same neurite are clustered together. While many algorithms for image segmentation exist,
few have parameters that can be optimized using groundtruth data to extract maximum
performance on a specialized dataset.

In this thesis, I present the first machine learning method to directly minimize an image
segmentation error. It is based the theory of ultrametric distances and hierarchical clustering.
Image segmentation is posed as the problem of learning and classifying ultrametric distances
between image pixels. Ultrametric distances on point set have the special property that



they correspond exactly to hierarchical clustering of the set. This special property implies
hierarchical clustering can be learned by directly learning ultrametric distances.

In this thesis, I develop convolutional networks as a machine learning architecture for
image processing. I use this powerful pattern recognition architecture with many tens of
thousands of free parameters for predicting affinity graphs and detecting object boundaries in
images. When trained using ultrametric learning, the convolutional network based algorithm
yields an extremely efficient linear-time segmentation algorithm.

In this thesis, I develop methods for assessing the quality of image segmentations pro-
duced by manual human efforts or by automated computer algorithms. These methods are
crucial for comparing the performance of different segmentation methods and is used through
out the thesis to demonstrate the quality of the reconstructions generated by the methods
in this thesis.

Thesis Supervisor: H. Sebastian Seung
Title: Professor of Computational Neuroscience; Investigator, Howard Hughes Medical In-
stitute
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Chapter 1

Introduction

This thesis makes several contributions. Firstly, it presents an automated computational
method for reconstructing neural circuitry from 3d electron micrographs solving a critical
problem in the field of connectomics. Secondly, it presents the first method for directly
training an image segmentation algorithm, developing a core method in machine learning
and computer vision. Thirdly, it presents a general method for the supervised learning
of ultrametric distance functions which is of general utility for the learning of hierarchical
clustering. And finally (fourthly?), it introduces some novel measures for the quality of

neurite tracings and image segmentation.

1.1 The dream of connectomics

The human brain has about 100 billion neurons, each of which connects to about 10 thousand
neurons through chemical connections known as synapses. Far from being random, these
connections between neurons are made in a highly structured way to form neural networks
with distinct functions. While much is known about the gross anatomical wiring of the brain,
little is known of the fine-scale local circuitry where most of the synapses are made.

A hypothesis is that the essential aspects of a local neural circuit are the list of all
the neurons participating in the neural circuit, and the list of all the synapses between these
neurons. We call this representation the connectome. It is hoped that the correlation between

the structure of a neural circuit and its function will be strong enough for us to learn about
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Figure 1-1: Neural circuit reconstruction requires the tracing of neurites through a tangled
spaghetti of neuropil. Conceptually, the problem of tracing neurites is that of correctly
assigning a unique color or identity to each neurite fragment. Such a coloring can then be
used to generate a connectivity diagram.

the functioning of a neural circuit by studying its connectome.

In the last few years, technological advances have placed us closer to the ability to
reconstruct the connectomes of neural circuits. Three dimensional electron microscopy has
become feasible through the development of techniques such as Serial Block-Face Scanning
Electron Microscopy (SBFSEM; Denk and Horstmann, 2004) and Automatic Tape-collecting
Lathe Ultramicrotome (ATLUM; Hayworth et al. [2006]). These techniques are now poised
to produce tens to hundreds of terabytes of imagery corresponding to volumes of brain tissue

of no more than a fraction of a cubic millimeter.

1.2 The reconstruction problem

Unlike the regular organization in the circuitry of human-designed microprocessors, the cir-
cuitry of biological neural networks have little organization. The axons and dendrites consti-
tuting the wires of neurons form a dense tangled mess, akin to a bowl of branched spaghetti
that has been compressed into a dense block. Reconstructing the connectivity of neurons
is similar to figuring out which two connecting ends of cable in tangle of wires belong to
the same cable. This process would be much simpler if the wires were color coded; this is
the circuit reconstruction problem. Reconstructing neural circuits requires the tracing or
“coloring” of neurite wires and synapses to make clear which synapses are formed between
which two neurons.

The neurite tracing problem can be understood as a grouping or clustering problem. The

task is to label all neurites belonging to the same neuron by the same color or unique identifier
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and to label neurites belonging to different neurons with different colors. In computer vision,
this grouping problem is known as image segmentation.

Image segmentation is defined as the partitioning of an image into distinct regions. There
are many computer vision problems that either implicitly or explicitly perform image seg-
mentation. For instance, a face detection algorithm built into an off-the-shelf digital camera
finds image pixels that correspond to a face and implicitly segment an image into face pixels
and non-face pixels. A more direct application of image segmentation involves the interpre-
tation of a magnetic resonance images of the brain. In this case, a 3d image of the brain
must be segmented into disjoint regions corresponding to different anatomical structures.

I consider the segmentation of neural processes, such as axons, dendrites and glia, from
volumetric images of brain tissue taken using serial block-face scanning electron microscopy
(SBF-SEM; Denk and Horstmann, 2004). This technique produces 3d images with a spatial
resolution of roughly 30 nm or better. If applied to a tissue sample of just 0.5 mm x 0.5
mm x 1.2 mm from the cerebral cortex, the method would yield a 3d image of several tens
of teravoxels. Such a volume would contain about 15,000 neurons and many thousands of
non-neuronal cells [Smith, 2007]. Neurons are particularly challenging to segment due to
their highly branched, intertwined and densely packed structure. In addition, at the imaging
resolution, axons can be as narrow as just a few voxels wide [Briggman and Denk, 2006]. The
sheer volume and complexity of data to be segmented precludes manual reconstruction and
makes automated reconstruction algorithms essential. Small differences in segmentation
performance could lead to differences in weeks to months of human effort to proofread
machine segmentations.

Prior work on electron and optical microscopic reconstruction of neurons has ranged
the spectrum from completely manual tracing [White et al., 1986, Fiala, 2005] to semi-
automated interactive methods [Carlbom et al., 1994] and fully automated methods [Jurrus
et al., 2006, Mishchenko, 2009]. White et al. [1986] took over 10 years to complete the
manual reconstruction of the entire nervous system of a nematode worm C-elegans which
contains only 302 neurons, underscoring the need for significant automation. Most attempts
at automation have involved hand-designed filtering architectures with little machine learning

[Al-Kofahi et al., 2002, Jurrus et al., 2006, Andres et al., 2008, Mishchenko, 2009]. For
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example, Jurrus et al. [2006] first do an extensive denoising procedure, followed by an initial
2d segmentation and then a Kalman filter to track an object outline through successive
sections. Carlbom et al. [1994] adapted the widely-used active contour (snakes) technique
for semi-automated neuron tracing. However this process is interactive and requires human
selection of seed points and careful controlling of parameters for each neuron to be segmented.
In contrast to these approaches, Helmstaedter et al. [2008] use supervised learning in the
form of a nearest neighbor classifier to segment EM images, eliminating the need for human
interaction and parameter tuning. Other popular segmentation methods make use of Markov
random fields (MRFs). Convolutional networks are closely related to, but provide superior

performance to MRFs, as explained in our prior work [Jain et al., 2007].

1.3 The machine learning solution

Machine learning has been applied successfully to many computer vision problems. How-
ever, image segmentation has not benefited significantly from machine learning. This is for
three reasons. (1) The lack of a trainable architecture for image segmentation. There has
been some work on training classifiers for boundary detection [Fowlkes et al., 2003, Dollar
et al., 2006], but the output of a boundary detector is not a final segmentation. A post-
processing step such as a graph partitioning algorithm [Shi and Malik, 2000, Felzenszwalb
and Huttenlocher, 2004] or watershed [Vincent and Soille, 1991] must be used to generate
a segmentation, and there has not been a good way to optimize the parameters of these
algorithms. (2) The lack of a standard metric for measuring segmentation performance.
A machine learning based solution requires two components: a flexible trainable architec-
ture, and a cost function by which to optimize performance. There has recently been some
progress in this area. The work of Unnikrishnan et al. [2007] establishes the Rand Index
as a good measure of segmentation performance. (3) The lack of a database with reliable
groundtruth. The Berkeley Segmentation Data Set [Martin et al., 2001] has been an amazing
resource for the computer vision community. It has found diverse applications from develop-
ing algorithms as diverse as image denoising and boundary detection. However, its use for

benchmarking image segmentation algorithms has been limited due to the large variability
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in the groundtruth segmentations of natural images. This large variability is useful in un-
derstanding the way humans process natural scenes, but detrimental to developing machine
learning algorithms since the algorithm must model the variation as well as the average case.
In this proposal, we make progress on all three of these issues.

The classic problems of regression and classification have been well-studied in the pattern
recognition community resulting in the invention of neural networks, support vector machines
and bayesian graphical models. Unfortunately, it is not immediately obvious how to apply
these learning methods to the image segmentation problem. It has been recognized that the
problems of image segmentation and clustering data points is closely related. This insight
has led to the application of clustering algorithms such as k-means, mean shift and spectral
methods to image segmentation [Hartigan and Wong, 1979, Comaniciu and Meer, 2002, Shi
and Malik, 2000].

Clustering-based algorithms usually solve the segmentation problem by constructing and
then partitioning an affinity graph where the nodes correspond to image pixels or image
regions. Edges between image pixels are weighted and reflect the affinity between nodes.
The affinity functions used to compute the edge weights are traditionally hand-designed,
and use local image features such as image intensity, spatial derivatives, texture or color to
estimate the degree to which nodes correspond to the same segment [Shi and Malik, 2000,
Fowlkes et al., 2003].

It has been recognized for some time that the performance of a graph-based segmentation
algorithm can be hampered by poor choices in affinity function design. To this end, there has
been a limited amount of prior work on learning affinity functions from training datasets.
Much prior work has been confined to estimating affinities by classifying carefully chosen
hand-designed image features which are often image domain specific [Fowlkes et al., 2003].
In part, this may have been for lack of a good image processing architecture that can discover
the appropriate features directly from the raw image.

Here, I propose a novel machine learning architecture that unifies clustering with classi-
fication. The connectivity classifier for learning clustering.

The research proposed in this thesis is about the development of a new method. The

novel parts of this method will be described in the next section. Here, I describe general
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methodologies that are common to all machine learning algorithms.

1.3.1 Groundtruth datasets

A machine learning algorithm requires data to learn from. For learning of image segmenta-
tion, we will require a groundtruth dataset in the form of raw imagery and corresponding
human expert generated segmentations.

Given our focus on developing tools for connectomics, I shall use electron microscopic
imagery acquired through a collaboration with the laboratory of Winfried Denk of the Max-
Planck Institute of Heidelberg, Germany. These images are generated by imaging with the
SBFSEM technique [Denk and Horstmann, 2004]. The dataset will correspond to several 3d
images acquired at a resolution of approximately 25nm x 25nm x 25nm. These images have
been segmented by human experts at the Denk laboratory.

There exist a number of databases of human segmented natural images. For example,
the Berkeley Segmentation Data Set (BSDS, Martin et al. [2001]) and the LabelMe dataset.
However, in contrast to the human segmentations of EM images, natural images can have
extremely variable interpretations and context dependent segmentations. I believe that it

would be easier to develop a machine learning algorithm using the more reliable EM database.

1.3.2 Validation

Machine learning is the art of creating an algorithm that once trained on one dataset will
generalize to other datasets. The most worrisome pitfall of this strategy is that of overfitting,.
This is where the machine learns to perform really well on the training dataset, but has poor
performance on other datasets.

A common strategy for detecting this problem is to use two disjoint groundtruth datasets.
The first training dataset is used to train the machine, and the generalization of this machine
is tested using the test dataset. A good machine will have equally good performance on both
the training and test datasets.

More complicated versions of this validation strategy exist, such as leave-one-out cross

validation. We will use these as needed.
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1.4 Thesis organization

This thesis introduces a formalism for generating hierarchical segmentations of images based
in large part on the minimum spanning tree representation. This constitutes a unification
of existing segmentation algorithms based on boundary maps and affinity graphs. I present
this formalism in Chapter 2.

This thesis develops the use of a machine learning architecture for image processing
known as a convolutional network. These networks can be used as boundary detectors and
for affinity graph generation. I present the basics of convolutional network architecture and
training procedure in Chapter 4 and demonstrate how to apply these networks to generate
affinity graphs in Chapter 5.

This thesis presents the first truly end-to-end segmentation learning algorithm. Based
on the theory of hierarchical partitioning and ultrametric distance functions, I develop a
new learning algorithm for training a machine learning architecture to produce hierarchical
segmentations that directly minimize a measure of segmentation error, rather than proxy
error measures as in the past. Chapter 6 presents the theory of ultrametric distances, their
relationship to hierarchical clustering and gives a new learning algorithm for learning to
generate hierarchies. Chapter 7 presents a specialization of the minimax ultrametric learning
algorithm to learning image segmentation by a convolutional network for affinity graphs.

And finally Chapter 8 discusses the relationship of the work presented here to prior work

in image segmentation and clustering. We conclude with some directions for future research.
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Chapter 2

Hierarchical segmentations of boundary

maps and affinity graphs with minimum

spanning trees

An image segmentation is a partitioning of image pixels into regions corresponding to dif-
ferent objects. A hierarchical image segmentation is a recursive grouping of image regions
or pixels. Regions of high confidence can be merged together to form larger regions of lower
confidence. Such a representation is also useful when an image can be segmented into ob-
jects which themselves can be further sub-divided into parts of objects with specific meaning.
This chapter describes a general means of generating hierarchical segmentations by means
of a minimum spanning tree computation on a graph over image pixels.

There are two classic approaches to generating hierarchical segmentations based on the
different representations of boundary maps and affinity graphs. I will show how both appar-
ently disparate approaches can be unified in the context of computing minimum spanning
trees. Hierarchical segmentations generated in this way are special in that they define a
particular distance over image pixels known as an ultrametric distance. We will use this fact
in Chapter 6 to develop a learning algorithm for training boundary detectors and affinity
functions. Together, this chapter and Chapter 6 constitute a new understanding of classic
image segmentation algorithms, and the first machine learning algorithm for image segmen-

tation to directly optimize a segmentation error. The resulting algorithm is presented in
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Chapter 7.

The algorithms for generating hierarchical segmentations generalize Kruskal’s minimum
spanning tree and the connected components algorithms [Cormen et al., 1990] for graphs
to segment affinity graphs and boundary maps. These generalizations include the recent
efficient affinity graph partitioning algorithm by Felzenszwalb and Huttenlocher [2004], and
such classic boundary map segmentation algorithms as the watershed transform [Vincent
and Soille, 1991, Meyer, 1994], Ultrametric Contour Maps [Arbelaez, 2006] and the image
connected components labeling algorithm [Gonzalez and Woods, 2002]. An important goal
of this chapter is present a unified view of these disparate algorithms for the first time.

I will start by reviewing the basic graph theory that will be useful for the discussion.

2.1 Graph representations and algorithms

A graph G is defined by a set of vertices or nodes V' and a set of edges E that connect the
vertices. Edges and nodes can be weighted or not. Edges can be directed or not. In this
thesis, we will use graph representations in two very distinct ways.

Note: we will use undirected, edge-weighted graphs to represent segmentations. And
we will use directed graphs to represent convolutional networks in Chapter 4. This chapter

is concerned with the former.

2.1.1 Minimum spanning trees

A spanning tree of a graph G is a graph T that contains all the vertices of G and a subset
of the edges in G that span all the vertices. A minimum spanning tree Tyssr of a weighted
graph G is the subset of edges chosen such that they minimize the sum of the edge weights.

A spanning tree has the property that it contains no loops. This property can be leveraged
to construct a greedy algorithm for finding MSTs. Kruskal’s MST algorithm is one such
algorithm. Kruskal’s algorithm constructs an MST by starting with a graph with all the
original vertices and none of the edges. Edges are then added to this graph one at a time in
increasing order of weight so long as they do not create a cycle.

The main computational step in Kruskal’s algorithm is determining whether an edge
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Figure 2-1: The minimum spanning tree (black edges) of an undirected weighted graph (all
edges). Note that the spanning tree has no loops, and that it connects all graph vertices.

would create a cycle if added. This is done by maintaining and updating a “clustering” of all
the vertices in the graph. Initially, all the vertices start out in separate clusters of size one.
Edges are only added to the tree if each of the two vertices connected by the edge belong to
two different clusters. And adding an edge leads to the merging of these two clusters. This
construction guarantees that clusters contain vertices that are connected to each other by
paths. Thus edges whose vertices are in the same cluster are never added since they will
always create loops.

An efficient implementation of Kruskal’s algorithm using a soft heap and disjoint sets data.
structures [Chazelle, 2000, Cormen et al., 1990] has a runtime complexity of O(|E| - a(|E|)),
where |E| is the number of edges in the graph and «(-) is the inverse Ackermann function
that grows extremely slowly. In fact, a(n) is less than 5 for any conceivable input, since
a2

the graph.

21019729

) = 4. Thus Kruskal’s MST algorithm is roughly linear in the number of edges of
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Figure 2-2: Stages of Kruskal’s minimum spanning tree algorithm. (Left to right,
top to bottom) Edges are examined in increasing order of weight, and are added (green) to
the MST if they do not create a loop. Loop-causing edges are ignored (red). In the case of
edges of equal weight, ties are broken arbitrarily.
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Algorithm 2.1 KruskalMST(V,E)
Initialize graph T" with the vertices V' and no edges

Initialize clustering of vertices with each vertex in its own cluster
For each edge E;; in increasing order of weight, breaking ties arbitrarily

if IN-SAME-CLUSTER(:,5)

then do nothing
else MERGE(CLUSTER(:),CLUSTER(j)), add E;; to T

Return T

2.1.2 Hierarchical clustering, dendrograms and MST

Kruskal’s algorithm can be viewed as an algorithm that starts out with a clustering of all
the vertices in the graph into separate clusters and then iteratively updates the clustering.
However, our updating of the clusters is quite constrained. We only ever merge pairs of
clusters; we never split clusters or reassign individual vertices. This iterative merging algo-
rithm corresponds to a class of clustering procedures known as hierarchical clustering. In
particular, the MST corresponds to single-linkage hierarchical clustering.

Hierachical clusterings can be visualized using dendrograms. A dendrogram is a rooted
binary tree whose leaf nodes consist of the objects being clustered. In our case, this cor-
responds to the vertices of the graph. Each internal node of this tree represents a cluster
corresponding to all its child leaf nodes. In the case where a hierarchical clustering of nodes
is generated by the minimum spanning tree of a weighted graph, the internal nodes also have
a one-to-one correspondence with edges in the MST, and the height of each internal node

represents the weight of its corresponding edge.

2.1.3 Connected components and single-level clustering

A single clustering of the vertices of a graph can be generated from a hierarchical clustering
by “cutting” the dendrogram at a chosen height threshold. This corresponds to pruning away
all edges in the MST of weight greater than the threshold. The connected components of

this pruned graph constitute a clusters.
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Figure 2-3: A dendrogram representation of a minimum spanning tree. The leaf nodes in
the dendrogram correspond to vertices in the MST. The internal nodes in the dendrogram
correspond to edges in the MST. The height of the internal nodes corresponds to the weight
of the edge in the MST.

The same single clustering can be generated in a more efficient manner by directly pruning
the edges in the original graph that are greater than the threshold and finding the connected
components of this pruned graph. Here, we exploit the fact that the connected components
of the pruned original graph are identical to the connected components of the pruned MST.
This fact can be seen by noticing that extra edges in the pruned graph as compared to the

pruned MST do not impact the connectivity of the connected components.

2.2 Hierarchical segmentations of affinity graphs

2.2.1 Affinity graphs and graph partitioning

An affinity graph is a weighted graph A whose nodes correspond to image pixels and edges
A;; between image pixels 7 and j reflect the affinity of the pixel pair (i,j) to be grouped
together. In an affinity graph, edges with large weights between pixels are interpreted to

mean that the pixels belong to the same segment and vice versa.
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A segmentation algorithm involving the use of an affinity graph has two stages. The
first computation is that of the prediction of an affinity graph from the image. This is
generally viewed as a low-level vision operation involving the detection of local boundary cues
such as as edges defined by image gradients. The second computation involves “cutting” or
“partitioning” the affinity graph to generate an image segmentation. This is generally viewed
as a global integration of local cues based on a prior assumption about what constitutes good
segmentations.

The affinity between two pixels is frequently estimated by means of a hand designed
function that compares the similarity of the two image patches containing the pixels. Com-
monly used features for comparison include pixel intensities, local color histograms and local
texture histograms [Shi and Malik, 2000, Felzenszwalb and Huttenlocher, 2004]. Commonly
used graph partitioning algorithms include Normalized Cuts [Shi and Malik, 2000], Graph
Cuts [Boykov et al., 2001] and the MST-based “efficient graph partitioning” algorithm by
Felzenszwalb and Huttenlocher [2004].

Recently, there has been some work on using supervised machine learning to predict
the weights of edges in the affinity graph. In principle, one would like to train the affin-
ity prediction module to produce affinity graphs which once partitioned, would yield good
segmentations. However, this is a non-trivial machine learning problem [Bach and Jordan,
2006, Cour et al., 2005b, Meila and Shi, 2001]. It involves understanding exactly how small
changes in the weight of individual affinity edges leads to changes in image segmentation in
order to compute a gradient of a segmentation error measure with respect to the weight of
affinity edges. Approximate solutions to this problem for the normalized cuts graph parti-
tioning algorithm have been suggested, but they suffer from significant technical problems,
many of which are inherent to the normalized cuts algorithm [Bach and Jordan, 2006, Cour
et al., 2005b, Meila and Shi, 2001].

In practice, the supervised learning of affinity graphs has involved training the prediction
module to minimize a proxy purely local, non-segmentation error measure [Fowlkes et al.,
2003, Turaga et al., in press]. We demonstrate this approach for the convolutional network
architecture for producing affinity graphs in Chapter 5. In Chapter 7, we introduce an

algorithm based on ultrametric learning, that for the first time allows the exact training of
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the same convolutional network architecture to minimize a segmentation error [Turaga et al.,

submitted].

2.2.2 Graph partitioning and hierarchical segmentation by maxi-

mum spanning trees

In this section, I propose an algorithm for generating hierarchical image segmentations using
spanning trees over image pixels. This algorithm is closely related to the “efficient graph
partitioning algorithm” by Felzenszwalb and Huttenlocher [2004]. The idea is that an image
segmentation corresponds to a clustering of image pixels. Thus, a spanning tree computed
from a weighted graph over image pixels can be used to represent a hierarchical image
segmentation by clustering the pixels. Individual segmentations can be generated by simply
finding the connected components of the weighted graph with edges of affinity lower than a
given threshold pruned.

Affinity graphs have the opposite semantics of the general graphs we discussed earlier.
High edge weight between a pixel pair reflects high affinity for them to be part of the
same segment. For this reason, we propose generating hierarchical segmentations using the
mazimum spanning tree algorithm. We define the mazimum spanning tree as the spanning
tree with the largest edge weights. This is computed in exactly the same manner as Kruskal’s
MST algorithm, except that we sort the edges in decreasing order of cost. This yields a
hierarchical segmentation algorithm that is roughly linear in the number of edges in the
graph, since the maximum spanning tree algorithm has complexity O(|E| - a(|E|)). For
images that contain simply-connected objects, a nearest-neighbor affinity graph is sufficient
to encode all possible segmentations. Such a graph has |E| = k|V/| for some constant k. But
if the images contain occluded objects, where there may not be a simply-connected path
of pixels between the two regions of an image, an all-to-all connected graph is necessary to
represent all possible segmentations, requiring a weighted graph with |E| = [V|2.

An image segmentation at a given height of the hierarchical segmentation dendrogram
can be computed even more efficiently than the full hierarchical segmentation, which requires

the spanning tree. This image segmentation corresponds to the connected components of
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Figure 2-4: Segmenting with affinity graphs. Nearest neighbor affinity graphs encode
hierarchical segmentations. A single level of the image segmentation can be computed effi-
ciently by edge thresholding, followed by connected components.

the affinity graph with edges of affinity less than given threshold pruned away.

2.3 Hierarchical segmentations of boundary maps

A boundary map is an image where the value B; of pixel i represents the degree to which
pixel ¢ constitutes a boundary. Classically, high values are used to represent boundary
pixels and low values represent the absence of an object boundary as shown in Fig. 2-5.
However, SBFSEM images naturally look like noisy boundary maps, with boundaries having
low image intensities'. So we adopt an inverted representation for SBFSEM boundary maps
where boundaries are low and the interiors of objects as high; a representation we sometimes
refer to as in-out for “in"-side of cells and “out™side of cells (boundaries). An example of this
may be seen in Fig. 2-6.

A binary boundary map can be regarded as representing a segmentation in the sense that
image regions bounded by boundary pixels correspond to segments. The image connected
components labeling algorithm provides a means of performing this operation in O(N) for

an image with NV pixels.

Interestingly, the raw image generated from scanning backscattered scanning electron microscopy tech-
niques such as SBFSEM look much like the boundary maps in Fig. 2-5 with high backscatter intensities near
electron dense boundaries. However, by convention, SBFSEM images are inverted to match transmission
electron microscopy images.
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Figure 2-5: Binary boundary maps generated from human segmentations of natural im-
ages from the Berkeley Segmentation Data Set [Martin et al., 2001]. Here, boundaries are
represented as high with 1s and non-boundaries as low with 0Os.
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Figure 2-6: Binary “in-out” boundary maps generated from human segmentations of SBF-
SEM images. In contrast to the previous figure, boundaries are represented as low with Os
and non-boundaries are high. This inversion of representation is of no real consequence, but
corresponds well to our intuitive notion of a “denoised” binary SBFSEM image, since the
original SBFSEM images have the same semantics.
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Figure 2-7: Continuous boundary maps and flooding. Raising and dropping the “water-level”
changes the segmentation by splitting and merging segments.

2.3.1 Continuous boundary maps and flooding

Binary boundary maps have a unique segmentation interpretation when using connected
components. However, a continuous boundary map is a richer representation in that it can
be regarded as representing a hierarchy of nested segmentations.

One way to understand this is to consider thresholding the boundary map to generate
binary boundary maps at different thresholds. Connected components labeling of each of
these thresholded boundary maps will lead to different segmentations.

Suprisingly, the hierarchical segmentations generated by flooding correspond exactly to
performing a maximum spanning tree computation on a weighted nearest-neighbor affinity
graph generated from the boundary map as A;; = min(B;, B;) for nearest neighbor pixels

i, J according to the definition of topological connectedness used for the flooding.

2.4 Comparing affinity graph and boundary map repre-
sentations

While both affinity graphs and boundary maps can represent hierarchical segmentations,
there is a difference in the representational power of these representations. In particular,
the boundary map can only represent simply-connected segments; occluded objects that are
disconnected in pixel space cannot by segmented as one object. The nearest-neighbor affinity

graph suffers from the same problem. An all-to-all connected affinity graph is required in
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Figure 2-8: Hierarchical segmentation of a hypothetical 1d in-out boundary map. “Flooding”
by varying the threshold (gray dashed line) for binarizing the continuous boundary map. A
region merging hierarchy is formed by lowering the threshold.
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these situations.

In 3d serial block-face scanning electron microscopic images of neural tissue, there is no
occlusion, and a nearest neighbor affinity graph is sufficient to encode all image segmen-
tations, but a boundary map might be insufficient. However, due to the limited imaging
resolution, the neighborhood required might be a radius as large as several pixels large.

In other serial electron microscopy methods, there is frequently a large difference in
the £ — y vs. z resolution, and subsequent image sections may be imperfectly aligned.
A boundary map representation is insufficient to represent image segmentations in these
images. A nearest neighbor affinity graph with a small same-section z — y radius, but large

across-section x — ¥ radius is required to represent all possible segmentations.
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Chapter 3

Measures of reconstruction quality

We will want to measure the quality of reconstructions for three reasons.

Absolute performance. How well are we doing? How many mistakes are in a final recon-
struction? How much time will it take a human expert to proof-read and correct a

machine reconstruction? What is the error rate inherent to a reconstruction technique?

Relative performance. Which method for producing segmentations is better? By how

much? Which human experts are more reliable than others?

Optimizing performance. Training machine learning algorithms. Automatically adjust-
ing the parameters of an algorithm to improve segmentation performance. Generaliza-

tion performance of a trained algorithm.

In contrast to classification and regression where well-defined performance measures exist,
there are few good measures for quantifying segmentation and circuit reconstruction perfor-
mance. We have developed a few such measures, some of which have been generalized from
the classification literature, which we detail in the following section.

Up until this point, we have been treating the problems of neurite tracing and image
segmentation as identical. But there is a subtle way in which the segmentation of one
dimensional cylinder-like objects is different from generic image segmentation. In tracing
neurons, the primary goal is to ensure that all the synapses are correctly grouped with the

same cell body. For this, we care more deeply about the correct grouping of image pixels
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along the neurite, but not too much about getting the thickness of the neurite exactly right.

In this sense, it is sufficient to correctly segment the skeleton of the neurite.

Pixel-to-pixel measures compare two segmentations that have been generated at the
finest pixel scale and are useful for comparing generic image segmentations. A pri-

mary consideration here is to correctly assign the connectivity of the segmentations

Pixel-to-skeleton measures can be used to compare pixel-level image segmentations to
skeletonized image segmentations and are preliminarily useful for segmentations of
generic cylinder-like structures including neurons. Here too, we will be primarily con-

cerned with the connectivity.

Skeleton-to-skeleton measures will be used to compare two skeletons for segmentations
of branching cylindrical neuron-like tree structures. In this case, we will be interested

in comparing the topologies of the reconstructed skeletons.

3.1 Basic classic performance measure primitives and their

interpretation

3.1.1 Binary classification error

For measuring the performance of a predictor of a binary value, the simplest quantity is the
misclassification rate. Ehipary = % 3= 6(9i,y:) where 6(z,y) is 1 if z = y and 0 otherwise.

This metric lumps together two kinds of errors which can be useful to measure separately.

False positives are errors of commission. These are examples that are in truth negative,

but erroneously declared positive by the predictor.

False negatives are errors of omission. These are examples that are in truth positive, but

erroneously declared negative by the predictor.

To see the need for explicitly measuring false positives and negatives, consider the scenario

where the training dataset contains a large imbalance in the number of true positive and
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negative examples. For instance, a bomb detector at an airport may contain a few examples
of actual bombs (let’s say 1%), but many many times more examples of situations where no
bombs were encountered (99%), reflecting the normal statistics of operation. (Even a 1%
rate of encountering bombs is probably abnormally high. One would not want to use this
airport.) A trivially “good” predictor that always reports a negative bomb sighting would be
considered bad, even though it is right 99% of the time and would have an Epizary = 0.01.
We would only understand why this is bad when we notice that our predictor has a bias
problem — it only makes false negative errors but no false positives. Further, it declares
every positive example falsely negative! (One would never want to use an airport with such
a bomb detector.)

There are a few established ways of summarizing false positive and false negative infor-

mation which I review here.

3.1.2 Confusion matrices

A confusion matrix is a visual representation of the performance of a binary classifier. A
perfect classifier would have zero false negatives and positives and hence have a confusion
matrix that has no off diagonal entries. The larger the off-diagonal entries, the worse the

classifier.
actual value

p n total
prediction 5 True positive (TP) | False positive (FP) P
outcome # | False negative (FN) | True negative (TN) | N
total P N

3.1.3 Receiver Operating Characteristic (ROC) for binary classifi-
cation

In signal detection theory, which relates to such things as the detection of bombs, a reciever
operating characteristic is a graphical plot of the true positive rate (TPR) vs. the false
positive rate (FPR) of a detector/classifier/predictor, where TPR = TP/P and FPR =
FP/N. A good classifier would have a very high TPR (close to 1) and a very low FPR (close
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to 0).

While a given binary classifier would only have a single (TPR, FPR) corresponding to
a single point on a ROC plot, ROC curves can be generated for parametrized classifiers by
scanning the parameters. For binary predictors that produce an analog confidence of the
binary prediction instead of just a binary output, this confidence value must be thresholded
to yield a binary prediction. Thus, many different binary classifiers can be created, based
on what value of threshold is chosen. The ROC curve is generated by computing TPR and
FPR for different values of the threshold.

3.1.4 Precision-recall for binary classification

In information retrieval theory, which relates to such things as the search engines and
databases, a precision-recall curve measures the number of items that are returned by a
search when compared with the number of actually relevant items.

The precision-recall curve is constructed by computing the values of precision and recall
for all values of the classifier threshold, and this methodology has been used to evaluate
segmentation algorithms [Martin et al., 2004]. Precision measures the fraction of examples
classified positive that are truly positive Precision = T P/(T P+ F P), while recall measures
the total fraction of positive examples that are classified positive Recall = TP/(TP +
FN). A good classifier would have a precision close to 1 for all values of recall, except
when recall equals 1. The curve can be characterized by a single F-score which is the
maximum of the weighted harmonic mean of precision p and recall r over the curve, F =
max pr/(ap+(1—a)r) , where here the weighting factor is a = 0.5. Higher F-scores indicate
better performance. An advantage of the precision-recall measure is that it can emphasize

performance on the rarer of the two classes.

3.1.5 Rand index of clustering performance

In clustering theory, the Rand index [Rand, 1971] is a measure of similarity between two
partitionings of a dataset. A clustering of N items into k clusters can be represented as a

labeling of each item by an integer in (1, 2...k) such that items belonging to the same cluster
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share the same label S;.

The Rand index measures the number of pairs of points in the data set that are correctly
grouped together. Defining the “same cluster” matrix SC for each clustering as SCj; =
8(S;, S;), we can define the Rand index as measuring the discrepancy between the “same

cluster” matrices for two differrent clusterings.

RI(SC!,5C?) = ( )225(505,502

i j<i

3.2 Boundary error

An image segmentation can be used to generate a boundary map over the image. A sim-
plistic measure of image segmentation is to simply quantify the number of pixels incorrectly

classified as boundary or not.

Eboundary = N

This measure has the nice property that a boundary detector can be easily be trained to
minimize this boundary misclassification error.

Unfortunately, this measure is only partly reflective of segmentation performance. Firstly,
boundaries can frequently be displaced by small amounts leading to large boundary misclas-
sification errors, but leave the segmentation unchanged. This is most commonly a problem
with human generated segmentations where humans frequently draw boundaries that can be
quite variable

The biggest problem with this measure is that it has little to do with segmentation
performance. A boundary detector need only make a few mistakes to dramatically alter the

segmentation interpretation of the boundary map.
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Figure 3-1: Human segmentations of natural images exhibit a large degree of variability. Both
boundary locations as well as the granularity of segmentation can be different. Adapted from
[Martin et al., 2004].
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Figure 3-2: Boundaries in human generated image segmentations of EM images have large
variability but there are few topological disagreements.

Figure 3-3: Boundary classification is a poor measure of segmentation performance.
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3.3 Segmentation error

3.3.1 The Rand index quantifies segmentation performance

Image segmentation can be viewed as a special case of the general problem of clustering, as
image segments are clusters of image pixels. Long ago, Rand proposed an index of similarity
between two clusterings Rand [1971]. Recently it has been proposed that the Rand index be
applied to image segmentations [Unnikrishnan et al., 2007]. Define a segmentation S as an
assignment of a segment label s; to each pixel 7. The indicator function 4(s;, s;) is 1 if pixels
i and j belong to the same segment (s; = s;) and 0 otherwise. Given two segmentations S

and $ of an image with N pixels, define the function

-1

1— RI(3,S) = (1;’ ) S 1656, 55) — 8(64,35) (3.1)

i<j

which is the fraction of image pixel pairs on which the two segmentations disagree. We will
refer to the function 1 — RI (S’ ,S) as the Rand index, although strictly speaking the Rand
index is RI (S‘ ,S), the fraction of image pixel pairs on which the two segmentations agree.
In other words, the Rand index is a measure of similarity, but we will often apply that term
to a measure of dissimilarity.

In this paper, the Rand index is applied to compare the output S of a segmentation
algorithm with a ground truth segmentation S, and will serve as an objective function for
learning. Figure 7-1 illustrates why the Rand index is a sensible measure of segmentation
performance. The segmentation of affinity graph #1 incurs a huge Rand index penalty
relative to the ground truth. A single wrongly classified edge of the affinity graph leads
to an incorrect merger of two segments, causing many pairs of image pixels to be wrongly
assigned to the same segment. On the other hand, the segmentation corresponding to affinity
graph #2 has a perfect Rand index, even though there are misclassifications in the affinity
graph. In short, the Rand index makes sense because it strongly penalizes errors in the

affinity graph that lead to split and merger errors.
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Figure 3-4: The Rand index quantifies segmentation performance by comparing
the difference in pixel pair connectivity between the groundtruth and test seg-
mentations. Pixel pair connectivities can be visualized as symmetric binary block-diagonal
matrices 0(s;, s;). Each diagonal block corresponds to connected pixel pairs belonging to one
of the image segments. The Rand index incurs penalties when pixels pairs that must not be
connected are connected or vice versa. This corresponds to locations where the two matrices
disagree. An erroneous merger of two groundtruth segments incurs a penalty proportional
to the product of the sizes of the two segments. Split errors are similarly penalized.

3.3.2 Measuring large-scale connectivity errors: splits and mergers

The number of splits and mergers caused by an algorithm is a useful measure of segmentation
performance. Split errors are quantified as the number of fragments an object in the ground
truth dataset is broken into. Merge errors are quantified simply as the number of times
objects in the ground truth were erroneously connected to each other. These quantities are
computed as a function of two segmentations, the groundtruth and a test segmentation.

A bipartite graph is constructed, where the nodes of the graph fall into two groups.
The first group of nodes represents the objects in the groundtruth segmentation, with one
node for each object. Similarly, the second group of nodes represents the objects in the
test segmentation. Edges in this bipartite graph are undirected and unweighted, and drawn
between a groundtruth node and a test node if they claim a common region in the image.
This graph now represents the overlap between objects in each segmentation. This overlap
graph can be used to compute the number of splits and merges in the test segmentation. A
perfect segmentation with no splits or merges would result in a one-to-one correspondence
of nodes in the overlap graph with each node having exactly one edge. Splits and mergers
result in changes of the degree of the overlap graph.

A split is said to occur when an object in the groundtruth is erroneously broken into
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Figure 3-5: Bipartite graph representing splits and mergers. Test segmentation is overlayed
on the groundtruth segmentation and the overlap between objects is measured. Overlap
codified as a bipartite graph is shown for the example cases of a) perfect segmentation, b)
merger, ¢) split and d) two splits and a merger.
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more than one object in the test segmentation. In the overlap graph, this corresponds to a
situation where one node in the groundtruth has edges to more than one node in the test
segmentation. The number of splits corresponds to the number of edges of a groundtruth
node in excess of 1. This may be computed by subtracting the number of groundtruth nodes
with edges, from the total number of edges in the bipartite graph.

A merge is said to occur when an object in the groundtruth is erroneously joined with
another groundtruth object. This happens when a test object overlaps with more than one
groundtruth object. In the overlap graph, this corresponds to nodes in the groundtruth
becoming connected via nodes in the test segmentation. A merge has occured between a
pair groundtruth objects if there is atleast one node in the test segmentation that has edges
to both groundtruth nodes. To compute the number of merges, we first compute distance
matrix for all pairs of groundtruth nodes. The number of merges corresponds to the number
of pairs of groundtruth nodes with distance equal to 2. This implies that they are connected
by the shortest possible path in the bipartite graph via one test node. For a small fraction of
pairs of objects, there may be more than one such shortest path corresponding to situations
as depicted in Fig. 3-5. Here a coincidence of splits and merges leads to the same two objects
being merged in two different locations. We choose to count such merges only once since the
same two objects are involved.

It should be noted that the measurement of splits and mergers is agnostic to variations
in the number of voxels in the estimated and groundtruth objects. Therefore, a neurite with
an extra voxel or a missing voxel would not contribute to split or merge errors. A missing
voxel that does not lead to the splitting of a neurite (in the case of an extremely narrow
neurite) causes no errors; and an extra voxel is not measured as a merge error as long as it
does not lead to the merging of two neurites. Thus the split-merge metric is robust to minor

variations in the sizes of segments.

3.3.3 Application to measuring skeleton-to-pixel error

Both the Rand index and the split-merge measure can be applied to measuring skeleton-
to-pixel segmentation errors in a rather straightforward manner. In both cases, we simply

restrict the pixels considered in the error measure to pixels exclusively on the skeleton. When
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applied to the Rand index, this yields a measure of the connectivity of pairs of skeleton pixels.

When applied to the split-merge metric, this measures the number of skeleton regions split

or merged.
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Chapter 4

Convolutional networks

Convolutional networks (CN) are a powerful image processing architecture. Classically, they
have been developed as a constrained version of regular neural networks for the purpose of
handwritten digit recognition. More recently, these networks have been applied successfully
for face detection and object recognition. We have developed versions of these networks for
image processing.

We use convolutional networks to transform one or more input images into one or more
output images. CNs achieve this computation by effectively performing a non-linear filtering
of the input image. And since CNs derive from NNs, they inherit the properties of universal
function approximation, given sufficient complexity and training data. In the filtering sense,
this corresponds to the ability to represent any mapping from an image patch to a pixel.

I will use the nonlinear filtering computation to compute boundary maps and nearest-
neighbor affinity graphs corresponding to EM images. In this chapter, I present the mathe-

matical details required for performing inference and for training convolutional networks

4.1 Inference in convolutional networks

In this section, I present the convolutional network formalism. Although CNs are closely
related to NNs and are classically derived as constrained NNs, here I present them directly.
In a following section, I show how they can be regarded as both a specialization of neural

networks and vice versa.
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Figure 4-1: The convolutional network transforms a 3d image into one or more 3d images.
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Figure 4-2: The convolutional network architecture can also be represented as a directed
graph where each node is an image, and each edge represents convolution by a filter. The
CN shown here contains four layers of convolutions with six feature maps each and produces

three output images.
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Formally, a CN is defined on a directed graph! as in Figure 4-2. The ath node of the
graph corresponds to an image-valued activation I, and a scalar-valued bias h,, and the edge
from node b to a corresponds to the convolution filter wg. In addition, there is a smooth
activation function, often the sigmoid f(z) = (1 +¢e~®)~!. The images at different nodes are

related by the equation:
IL=f (Z Wap * Ip + ha) (41)
b

The sum runs over all nodes b with edges into node a. Here wgp* I, represents the convolution
of image I, with the filter w,. After adding the bias h, to all pixels of the summed image,
I, is generated by applying the element-wise nonlinearity f(z) to the result.

The CNs studied in this paper are based on graphs with nodes grouped into multiple
layers. In an image processing application, the first layer typically consists of a single input
image. The final layer consists of one or more output images. In our case, we shall generate
several output images, one image for each edge class in the nearest neighbor graph (Figure 5-
2A). The intermediate or hidden layers also consist of images or feature maps, which represent
the features detected, and are the intermediate results of the overall computation.

The filters w,, and the biases h, constitute the adjustable parameters of the CN. Features
in the image are detected by convolution with the filters wg. Thus learning the filters from
the training data corresponds to automatically learning the features that are most useful to
the classifier. The role of the values h, is to bias the network for or against the detection of
the features. The training procedure for h, can be thought of as finding the correct a prior:

belief as to the existence of certain features in the image.

4.2 Training convolutional networks using gradient de-
scent

The well-known error backpropagation algorithm for training NNs can be easily generalized
for training wg and h, in a CN [LeCun et al., 1989, 1998]. This gradient descent procedure

minimizes a cost function that measures the discrepancy between the output image produced

1The directed graph representing a CN must not be confused with the undirected affinity graph.
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by the CN, Io, and a desired output image I3, L(Io,18) = 3 e, 50— I3)2. The gradient
of the CN parameters with respect to this cost function can be computed using the following

equations

So = (Io—13)® f (lo)

Sy = (Z Sa @wab> © f (L) (4.2)
vy = 71, ® S
Ahy = 1) S

pizels

These equations implement an efficient recursive gradient computation that gives the back-
propagation algorithm its name. While Eq. (4.1) implements a recursive computation where
information flows in the direction indicated by the directed edges of the CN graph, the re-
cursion in Eq. 4.2 progresses in the opposite direction. The sum in this equation is over all
edges leading out of a given node b. Here S, ® wa, represents the cross-correlation of the
image S, with the filter wg, © is a pixel-wise image multiplication operation and f(z) is
the derivative of the nonlinearity f(z). The size of the gradient update at each iteration is

controlled by the constant 7.

4.3 Some tips and tricks for convolutional network train-
ing
To speed up convergence of the gradient procedure, we used some simple tricks from LeCun
et al. [1998] which we detail here.
We initialize all the elements of the filters wg;, and the biases h, randomly from a normal
distribution of standard deviation o = 1/4/|w| - |b|, where |w| is the number of elements
in each filter (frequently, 5°), and |b| is the number of input feature maps incident on a

particular output feature map. This choice mirrors a suggestion in LeCun et al. [1998] that

weight vectors have unit norm.
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We train the randomly initialized CN using the iterative optimization procedure of
stochastic gradient descent with diagonal rescaling [LeCun et al., 1998]. On each iteration,
a “mini-batch” was generated by randomly sampling 6x6x6 image patches from the training
image. Backpropagation is performed to compute the gradient, which is then rescaled by a
diagonal approximation to the Hessian as in LeCun et al. [1998] with a learning rate of 10~
Training is usually stopped after the training error had plateau-ed. There seems to rarely

be a need for cross-validation as little overfitting was ever observed in our networks.

4.4 Comparison to previous work on convolutional net-
works

In the past, convolutional networks have been successfully used for image processing ap-
plications such as object recognition, handwritten digit classification and cell segmentation
[LeCun et al., 1989, Ning et al., 2005]. For recognition tasks, the network is trained to pro-
duce a categorical classification, such as the identity of the digit. In the cell segmentation
application [Ning et al., 2005], a CN produces five outputs (such as cell wall, nucleus, out-
side medium, etc.) for every input pixel. In our case, we use these networks to perform a
nonlinear transformation that maps one 3d image to a set of other 3d images. There are two
important contrasts between our work and Ning et al. [2005]: First, our architecture does
not include subsampling layers, which means that all filters at every layer are learned, rather
than some layers containing predefined down-sampling filters. This leads to output images
that are at the same resolution as the input image. Second, we use these networks to generate
a nearest-neighbor graph, where the number of edges is proportional to the size of the image.
This allows our networks (in combination with a graph partitioning algorithm) to segment
objects which may have no boundary pixels separating them (in contrast to [Ning et al,
2005], which would require atleast one pixel separation between adjacent objects). This is
important in our application where we are severely resolution limited when compared to the

thickness of cell boundaries and neurites.
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4.5 Comparing convolutional and neural networks

4.5.1 Neural networks and image processing

Conventionally, neural networks are classifiers that operate on vector valued input to produce
scalar or vector valued output predictions. Similar to a CN, the NN is described using a
graph. But while the nodes and edges of a CN are image valued, those of a NN are scalar
valued. And the values of the nodes z, in a NN are computed as z, = f(3_, Wz, + hs),
where W and h; are now scalars. Despite the differences, there is an equivalence between
these two architectures in the context of image processing.

There are several ways in which a neural network may be applied to an image processing
problem. In the simplest case, the pixels of an entire image may be re-ordered as a vector and
provided as input to a NN. This approach lends itself well to tasks such as image recognition
where the input is image-valued, but the output is scalar-valued or vector-valued. A second
approach is more suitable to non-linear filtering applications where we wish both the input
and the output to be image-valued. The translational invariance required by a filtering
application is achieved by applying a NN to overlapping image windows. The image-valued
output is generated by pasting together scalar-valued NN output from translated windows
of the image. We call this a patch-based NN. The network labeled “NN” in our experiments

is exactly such a network and a cartoon of it is shown in Fig 4-3.

4.5.2 Patch-based neural networks are a special case of convolu-

tional networks

Using the terminology developed in 4, we can represent any patch-based NN classifier as

special case of CNs. Let us recall the standard forms of the neural network and convolutional

network equations.

o = f (Z Waf’x,,+h,,)

B
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I, = f(zwablb+ha)
b

where z,, z3, W8 and h, are scalars; I,, I, are images, wg is a filter and h, is a scalar.
In the case of the first layer of a patch-based NN, the elements of zg form the pixels in
the image patch. But since the output of a patch-based NN is constructed by translating
the network, there is an exact equivalence between convolutional filtering and linear matrix
multiplication implied in this equation for the first layer of the NN. This means each row
W of the weight matrix can be exactly interpreted as the filter w,; applied to the input
image I,. This implies a pairing between I, and z,. Each image in the second layer I, is
constructed by pasting together the values of z, derived from translating the image patch.

After the first layer, all further computation in a NN occurs through simple linear combi-
nations of the existing features z,. Thus the convolutional network implied by a patch-based
NN performs no filtering after the first layer. The “filters” w,; in the later layers corresponds
exactly to scalars given by W4,

Thus the crucial difference between a NN and a CN is in the nature of the w,; parameters.
A NN restricts all w, filters not operating directly on the input image to be scalars. This
means that only the first layer of computation involves image convolutions, while the rest
are constrained to be simple linear combinations of existing image features I,, followed by
a nonlinearity. A CN may be seen as more powerful generalization of a NN in a manner
appropriate for image processing applications since convolutions are allowed at all stages in

the network.

4.5.3 Convolutional networks are a special case of neural networks

A CN can also be seen as a special case of a NN with vectorial output by recalling that
convolution is a linear operation that can be represented in terms of matrix multiplication
by a special “convolution matrix”. In this view, I, is an image represented as a vector, and

W is the convolution matrix representing convolution by the filter wgp.

L=f (z wer, + ha) (4.3)
b
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Figure 4-3: A convolutional network constructs progressively larger as well as more complex
image features. A neural network can only construct more complex features at each layer,

but not larger features.

Since a convolution matrix M may be constructed from a filter w as M;; = w;_;, we can see
that the weight matrix of an NN equivalent to a CN has a constrained translation-invariant
structure that is useful for image processing. However, the notation, interpretation and
representation of the weight matrix and corresponding hidden units becomes complicated

and less useful for a CN with more than one hidden unit in each layer.
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Chapter 5

Learning nearest neighbor affinity graphs

with convolutional networks

Abstract

Many image segmentation algorithms first generate an affinity graph and then partition it.
We present a machine learning approach to computing an affinity graph using a convolutional
network (CN) trained using ground truth provided by human experts. The CN affinity graph
can be paired with any standard partitioning algorithm and improves segmentation accuracy
significantly compared to standard hand-designed affinity functions.

We apply our algorithm to the challenging 3d segmentation problem of reconstructing
neuronal processes from volumetric electron microscopy (EM) and show that we are able to
learn a good affinity graph directly from the raw EM images. Further, we show that our
affinity graph improves the segmentation accuracy of both simple and sophisticated graph
partitioning algorithms.

In contrast to previous work, we do not rely on prior knowledge in the form of hand-
designed image features or image preprocessing. Thus, we expect our algorithm to generalize
effectively to arbitrary image types.

5.1 Introduction

Image segmentation algorithms aim to partition pixels into domains corresponding to differ-
ent objects. Graph-based algorithms solve the segmentation problem by constructing and
then partitioning an affinity graph where the nodes correspond to image pixels or image

regions. Edges between image pixels are weighted and reflect the affinity between nodes.
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Affinity functions used to compute the edge weights are traditionally hand-designed, and use
local image features such as image intensity, spatial derivatives, texture or color to estimate
the degree to which nodes correspond to the same segment [Shi and Malik, 2000, Fowlkes
et al., 2003]. In this paper, we have pursued a different approach, which is to use learning to
generate the affinity graph. Using a machine learning architecture known as a convolutional
network [LeCun et al., 1989, and ground truth segmentations generated by human experts,
we train a function that maps a raw image directly to an affinity graph. This learned affinity
graph can then be partitioned using any standard partitioning algorithm.

It has been recognized for some time that the performance of a graph-based segmentation
algorithm can be hampered by poor choices in affinity function design. To this end, there has
been a limited amount of prior work on learning affinity functions from training datasets.
Much prior work has been confined to estimating affinities by classifying carefully chosen
hand-designed image features which are often image domain specific [Fowlkes et al., 2003].
This may have been for lack of a good image processing architecture that can discover
the appropriate features directly from the raw image. Here, we present a new approach
using convolutional networks. With a rich architecture possessing many thousands of free
parameters, it can in principle extract and effectively utilize a huge variety of image features.
We demonstrate in practice that a gradient descent procedure is able to adjust the many
parameters of the network to achieve good segmentation performance. Since our approach
does not contain image domain specific assumptions, we expect it to generalize to images
from diverse application.

We have conducted quantitative performance tests on a database of electron microscopic
brain images described below. The tests demonstrate a marked improvement in the quality
of segmentations resulting from partitioning our learned affinity graph versus commonly used
heuristic affinity functions.

We consider the segmentation of neural processes, such as axons, dendrites and glia, from
volumetric images of brain tissue taken using serial block-face scanning electron microscopy
(SBF-SEM; Denk and Horstmann, 2004). This technique produces 3d images with a spatial
resolution of roughly 30 nm or better (Figure 5-1A). If applied to a tissue sample of just 0.5

mm x 0.5 mm x 1.2 mm from the cerebral cortex, the method would yield a 3d image of several

56



tens of teravoxels. Such a.volume would contain about 15,000 neurons and many thousands
of non-neuronal cells [Smith, 2007]. Neurons are particularly challenging to segment due to
their highly branched, intertwined and densely packed structure. In addition, at the imaging
resolution, axons can be as narrow as just a few voxels wide [Briggman and Denk, 2006]. The
sheer volume and complexity of data to be segmented precludes manual reconstruction and
makes automated reconstruction algorithms essential. Small differences in segmentation
performance could lead to differences in weeks to months of human effort to proofread
machine segmentations.

Prior work on electron and optical microscopic reconstruction of neurons has ranged the
spectrum from completely manual tracing [White et al., 1986, Fiala, 2005] to semi-automated
interactive methods [Carlbom et al., 1994] and fully automated methods [Mishchenko, 2009,
Jurrus et al., 2006, Helmstaedter et al., 2008, Andres et al., 2008]. White et al. [White
et al., 1986] took over 10 years to complete the manual reconstruction of the entire nervous
system of a nematode worm C-elegans which contains only 302 neurons, underscoring the
need for significant automation. Most attempts at automation have involved hand-designed
filtering architectures with little machine learning [Al-Kofahi et al., 2002, Jurrus et al., 2006,
Mishchenko, 2009, Andres et al., 2008]. For example, Jurrus et al. [Jurrus et al., 2006]
first do an extensive denoising procedure, followed by an initial 2d segmentation and then a
Kalman filter to track an object outline through successive sections. Carlbom et al. [Carlbom
et al., 1994] adapted the widely-used active contour (snakes) technique for semi-automated
neuron tracing. However this process is interactive and requires human selection of seed
points and careful controlling of parameters for each neuron to be segmented. In contrast
to these approaches, Helmstaedter et al. [Helmstaedter et al., 2008] use supervised learning
in the form of a nearest neighbor classifier to segment EM images, eliminating the need for
human interaction and parameter tuning. Other popular segmentation methods make use of
Markov random fields (MRFs). Convolutional networks are closely related to, but provide

superior performance to MRFs, as explained in our prior work [Jain et al., 2007].

5.1.1 Organization
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Figure 5-1: A) View of 3d stack of images generated by serial block-face scanning electron
microscopy (SBF-SEM). Tissue is from the outer plexiform layer of the rabbit retina. The
total volume is 800x600x100 voxels corresponding to 20.96x15.72x5 pm?. B) Larger view
of a section from this volume. The region traced by humans is divided into training and
test sets, shown in green and blue. Some of the large gray objects are axons terminals
of light-sensitive rod cells, while many of the smaller, brighter objects are dendrites. C)
Original images and human tracings of two sections, each 100x100x100 voxels, where each
color indicates a different process. Red arrows indicate challenging regions for segmentation
algorithms. In section 22 (top), the boundary between two processes is faint, yet these
processes are segmented as different objects. In section 38 (bottom), some processes become
very small, less than 10 voxels in area through this section.
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The paper is organized as follows. We first define convolutional networks in Section 4.
Section 5.2 describes the structure of the affinity graph, and how we apply convolutional
networks to produce this graph directly from the raw image. In Section 5.3 we present results
from various network architectures and graph partitioning algorithms, and quantitatively
evaluate the results against human labeled ground-truth. We conclude in Section 5.4 with
some future directions, and the two appendices give algorithmic details and performance

metrics.

5.2 Using convolutional networks to generate an affinity
graph

Figure 5-2 illustrates the computational problem solved in this paper using convolutional
networks. We wish to map an input image to a set of affinities corresponding to the edges
of an affinity graph. The nodes of the graph represent image voxels, which form a three-
dimensional cubic lattice. There are edges between all pairs of nearest neighbors. Each
node is connected to six neighbors in the z, y, and z directions, as shown in the right side of
Figure 5-2A. Since each edge is shared by a pair of nodes, there are three times as many edges
as nodes. As shown in Figure 5-2A, we can think of the affinity graph as 3 different images,
each representing the affinities of the edges of a particular direction. Therefore, the problem
can be seen as the transform of one input image into three output images representing the
affinity graph.

Ultimately, our goal is to generate an image segmentation. This is accomplished by using
a graph partitioning algorithm to cut the affinity graph into a set of discrete objects. This
partitioning segments the image by cutting weak affinity edges to create clusters of nodes
which correspond to different image segments. The computational problem of segmentation
thus involves two steps: first the transformation of the input image into an affinity graph,
and second the partitioning of this graph into a segmentation. The quality of a segmentation
can be improved by generating affinity graphs that accurately indicate segment boundaries.

We define the desired affinity graph as a “same-segment” indicator function. Edges be-
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tween nodes in the same segment have value 1 and edges between nodes not contained in
the same segment have value 0 (see Figure 5-2C). Further, boundary voxels are also defined
to have 0 affinity with each other. This causes boundary voxels to form separate segments;
this is a subtlety in our definitions that leads to a more robust segmentation. If reproduced
faithfully, this affinity graph should lead to perfect segmentation, since the graph can be
easily partitioned along segment boundaries. It should be noted, however, that this is only

one of many affinity graphs that are capable of yielding perfect segmentation.

5.3 Results

In this section, we first demonstrate the ability of convolutional networks to produce affinity
graphs directly from the images. We find that after training, our CN is able to correctly
predict the affinity between two voxels about 90% of the time. This is comparable to the
level of agreement between two humans concerning object boundaries. We then test the
segmentation performance of this affinity graph using two graph partitioning algorithms:
the well-known normalized cuts and a more simple connected components method. The
segmentation using our affinity graph is dramatically better than with a standard affinity
graph; this is quantified using three different segmentation metrics and compared against
inter-human variability in segmentation by experts. We also find that our improved affinity
enables partitioning by connected components to be more accurate at segmentation than the
normalized cuts algorithm. This is a pleasant surprise, as connected components also runs

much faster than normalized cuts.

5.3.1 About the dataset

We use images of retinal tissue collected with the serial block-face scanning electron micro-
scope (SBF-SEM; Denk and Horstmann, 2004). We imaged a volume of dimension 21x15.6x5
pm3, corresponding to 800x600x100 voxels at a resolution of 26x26x50 nm® (Figure 5-1A).
Cell bodies compose the majority of the volume at the sides, while in the center, much
smaller neurites are more common. To focus on neurites, a central region of 320x200x100

voxels was selected for investigating automated segmentations (Figure 5-1B). A subvolume

60



of 100x100x100 voxels was completely segmented by two human experts who traced the con-
tours of all objects within this volume (Figure 5-1C). These segmentations were converted
into desired affinity graphs, as described in Section 5.2, and half the volume was used for
training and the other half for testing. While we refer to human tracings as ground truth,
it should be noted that there is disagreement between experts on the exact placements of
boundaries. This variability is used in our analysis to suggest a baseline inter-human error
rate. Figure 5-1C highlights some of the difficult regions typical of those encountered in this
data (red arrows). In z section 22 (upper panel), the boundary between two objects is very
faint which could lead to an incorrect merge of these processes. Section 38 (lower panel)
shows objects packed closely together with small cross-sections, which can be as little as 4
voxels per section. These processes could be split by incorrect labeling of only a few voxels.
Since such splits and mergers are important properties of the resulting segmentations, we

have developed metrics to quantify them.

5.3.2 Convolutional networks can be trained to produce high-quality
affinity graphs

Convolutional networks are trained using backpropagation learning to take an EM image as
input and output three images representing the desired affinity graph. The gradient descent
procedure is detailed in Chapter 4.

Our CN has an architecture with three hidden layers, each containing 6 feature maps. All
filters in the CN are of size 5x5x5, but since CN contains four convolutions between input
and output, a single output voxel is a function of a 17x17x17 voxel region of the input image.

After gradient-based training, the performance of the network at generating affinities
can be quantified by measuring the classifier error at each edge as compared with target
affinities generated from the human segmentations. The optimal threshold for classification
is chosen by optimization with respect to the training set. To demonstrate generalization,
we quantify these results on both the training and test image volumes. The classifier error
on this test image is quantified in Figure 5-3A, showing that approximately 90% of the

edges are classified correctly. Figure 5-3B quantifies the performance at edge classification

61



using a precision-recall curve [Martin et al., 2004]. The curve shows how the classification
performance changes as the threshold is varied from a high value (left) to a low value (right).
The definitions of precision and recall are given in Chapter 3. Here it’s enough to know that
perfect performance would be a curve close to the upper and right boundaries of the graph.
The precision-recall curve is sometimes summarized by a single number, the F-score, which
equals one for perfect performance. As in Martin et al. [2004], we present the precision-
recall curve for classification of the rarer class of boundary edges. In our representation, this
corresponds to the precision and recall of negative examples.

From Figure 5-3B, we can see that the absolute performance of the CN network is encour-
aging. This demonstrates that it is possible to apply machine learning to image segmentation
without using hand-selection of features. The CN has an input dimensionality of 4,913 voxels
and 12,021 free parameters. In spite of the large number of parameters, there appears to
be little overfitting, given that performance on the test set is comparable to the training
results. The lack of overfitting may be due to the large size of the training set, about half
a megavoxels. This could be viewed as half a million examples of the affinity graph gener-
ation task, though this estimate is a bit misleading since the examples are not statistically
independent. In contrast, other machine learning approaches to segmentation have relied
on specially selected features and only used learning to optimize the combinations of these
features. For example, Fowlkes et al. [Fowlkes et al., 2003] use classifiers with 7 inputs and
only a few dozens of free parameters. Our approach shows that good performance can be

achieved without the careful design and selection of image features.

5.3.3 Normalized cuts

The multiway normalized cut problem is posed as finding the partition of a graph G into &k

groups of nodes V; such that the following objective function is minimized.

Z llnkS(v'n g\V )

NCut({W,...,Vi}) = degree(V

(5.1)

where G\V; is the set of vertices not in V;. The number links(V;, G\V;) is usually referred to

as the cut value since it represents the sum of gll the edges cut due to the partition V;. Here,
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the cut value is normalized by the association of this region given by degree(V;) (which is
the sum of all edges between nodes in V;). Roughly speaking, links(V;, G\V;) is proportional
to the surface area of of the region V;, while degree(V;) is proportional to the volume. So
normalized cuts may be thought of as generating partitions with minimal surface area to
volume ratios.

Since the problem of optimizing 5.1 is known to be NP-hard, Shi and Malik suggested
a polynomial time approximation based on spectral methods [Shi and Malik, 2000]. This
algorithm was prohibitively slow and memory-intensive for our application, because a k-way
segmentation requires finding at least k + 1 eigenvectors of a very large matrix. Instead,
we used the fast multi-scale kernel weighted k-means algorithm, which finds local minima
of the normalized cuts cost function [Dhillon et al., 2005]. For large problems such as
ours (>100,000 nodes), this algorithm is significantly faster than the spectral method, and
achieves better results.

We found that superior segmentations were obtained if the affinity graph was first coars-
ened by finding atomic regions. This is a standard procedure in segmentation algorithms
where strongly connected regions are grouped together to form “super-pixels”. Edges between
the super-pixels now correspond to the sum of all affinities between original nodes in each
super-pixel.

When running the algorithm, the desired number of segments, k, was set to the true
number of segments, which was known in the training and test sets. While this information
would not be available in practice, it was used here to optimize the performance of normalized

cuts.

5.3.4 Affinity graphs generated using CN improve segmentation

performance

In the previous section, we quantified network performance by measuring the ability to
generate the desired affinity graph. However, the affinity graph is not an end in itself, but
only an intermediate step towards a segmentation. Therefore we evaluated the CN affinity
graphs by applying the popular normalized cuts algorithm to partition the affinity graph
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into segments (Appendix 5.3.3). It bears repeating, however, that our affinity graph can be
paired with any graph partitioning algorithm.

Figure 5-4 shows that the segmentations using normalized cuts (lower left) qualitatively
match the human tracings (upper right). To more thoroughly quantify the segmentation
performance we measured the number of split and merge errors made in our segmentation.
These results are shown in Figure 5-5. In comparing the segmentation errors of the nor-
malized cuts algorithm using the standard affinity with the CN affinity (NCUT-STD vs.
NCUT-CN), we see a striking reduction of an order of magnitude in the number of splits
and a several fold improvement in the number of splits. Because two independent human
labelings are available, we can compare human vs. human segmentations with the same
metrics (Human-Human).

Note that normalized cuts requires the selection of the number of segments in an image,
k. The true number of segments is difficult to determine ahead of time and scales with
the image size in an unpredictable manner. This is known to be a difficult parameter to
optimize and for our experiments, we choose k to be the known true number of segments
to demonstrate the best possible performance of this algorithm, although this information

would typically be unavailable at test time.

5.3.5 CN affinity graph allows efficient graph partitioning using
connected components

A significant disadvantage of the normalized cuts algorithm is its considerable computational
cost. As described in Appendix 5.3.3, the run time is typically at least quadratic in the
image size, and our images contain a large number of voxels. There is a simpler alternative to
normalized cuts which does not require the solution of a complex optimization problem. The
affinity graph is first pruned by removing all edges with affinities below a certain threshold.
Then a segmentation is generated by finding the connected components (CC) of the pruned
graph, where a connected component is defined as a set of vertices that can be reached by
following a path of connected edges [Cormen et al., 1990]. Since the connected components

can be found in run time roughly linear in the number of voxels, this approach is significantly
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faster. Unlike with the normalized cuts procedure, the number of objects need not be known
ahead of time since the adjustable threshold parameter is independent of the number of
objects.

This algorithm is extremely sensitive to errors in the affinity graph since a single misclas-
sified link can alter a segmentation by merging objects. In practice, we find that our learned
affinity graph is accurate enough that this rarely happens. In contrast, the hand-designed
affinity graph is extremely noisy and leads to poor segmentations using this partitioning
algorithm.

Varying the threshold parameter for binarizing the graph results in segmentations rang-
ing from over- to under-segmentation of the image. The performance of this segmentation
algorithm using the CN affinity can be seen for various thresholds in Figure 5-5. The perfor-
mance of the standard affinity using connected components is too poor to fit in this plot. It is
notable that the simple connected components strategy outperforms the more sophisticated
normalized cuts graph partitioning algorithm.

Visualizations of typical components are shown in Figure 5-6, comparing the original
human segmentation to CN+CC and CN+NCUT. In Figure 5-6A, the large branching com-
ponent is segmented correctly by both algorithms, while in B, both algorithms split the
component at narrow regions (CC preserves slightly more of the object), in C, the thin

branching component is correctly segmented.

5.4 Discussion

In this section, we discuss existing machine learning approaches to image segmentation and
how our approach differs. In general, most existing approaches use extensive pre- and post-
processing with learning as a middle step. We show that emphasizing the learning stage can
lead to an efficient segmentation algorithm with simple and computationally efficient pre-
and post- processing.

As an example, the problem of segmenting retinal blood vessels is an important medi-
cal application for which many machine learning approaches have been implemented [Ricci

and Perfetti, 2007, Sinthanayothin et al., 1999]. Most methods can be characterized as
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using edge detectors or wavelet features followed by a classifier that produces a binary
vessel /no-vessel decision at each pixel, and post-processing to remove small spurious seg-
ments. Sinthanayothin et al. [1999] use a neural network on image patches augmented with
Canny edge-detected versions of the same patches. They argue qualitatively that relying
less on the learned network and more on pre-/post- processing makes the computation more
efficient and relies on less training data. We essentially take an opposite view: that relying
more on the network avoids hand-designed features, which may throw away data or bias
results. In other work, Ricci and Perfetti [2007] use a hand-designed set of thin, oriented line
detectors, as well as local average intensities, as features for input to an SVM classifier. The
classifier outputs are vessel/no-vessel decisions at each pixel location in the image. Prepro-
cessing for these methods generally includes a local adaptive contrast equalization method
specifically designed for these retinal images. In contrast, our method uses only minimal
preprocessing and relies on the learning procedure to account for contrast and other image
variations. While our method may require a larger training set to include a statistically
representative set of image variations, the learned convolutional filters are directly adapted
to improve the target metric, and so are less likely to throw away valuable information than
hand-designed pre-processing.

To appreciate the power of the convolutional network (CN), it is useful to compare it to
a standard multilayer perceptron neural network (NN), which has long been used to classify
image patches [Egmont-Petersen et al., 2002, Sinthanayothin et al., 1999]. Conceptually, the
main difference between a CN and an NN is the fact that an NN only has one stage of spatial
filtering, while a CN can incorporate filtering at every layer of the network. This is a subtle
difference however, since patch-based NNs can be constructed that are constrained in a way
that makes them exactly equivalent to a given CN, and vice versa. We explore the details
of this relationship in the Appendix. The practical benefit of using a CN is that it is easier
to codify and implement the spatial constraints that are relevant to an image processing
problem.

We can compare an unconstrained patch-based NN to a CN to understand the potential
benefits of a CN. The unconstrained patch-based NN is a special case of the CN, where
filters in all layers after the first are scalars. In this NN, the image context used to make

66



classification is fixed to be the size of the filters in the first layer, regardless of the number
of layers in the network. In contrast, as sketched in Fig. 4-3, the image context of a CN
grows with every additional layer in the network. This suggests the capability of each layer
in the CN to construct larger spatial features using smaller spatial features detected by the

previous layer.

5.4.1 Efficient graph partitioning

There has been much research in recent years on developing good graph partitioning criteria
and algorithms [Shi and Malik, 2000, Felzenszwalb and Huttenlocher, 2004, Boykov et al.,
2001, Cour et al., 2005a, Gdalyahu et al., 1999]. Continuing our theme of relying more on
learning methods and less on elaborate post-processing, we have instead focused on a method
for generating better affinity graphs. We have shown that convolutional networks can learn
an affinity graph (directly from image patches) which is good enough to be segmented without
the need for complex graph partitioning such as normalized cuts. While it is reasonable to
expect that normalized cuts would not be optimal for segmenting neurons, it is surprising
that the simpler connected components algorithms works this well. This points to the degree
to which the learned affinity graph simplifies the segmentation problem.

A consideration of the normalized cut objective suggests why it has trouble with our
data set. The normalized cuts criterion specifically aims to find segments with minimal
surface-area to volume ratios, while neurons are highly branched structures with extremely
high surface area. This makes the criterion ill-suited to our problem. Also, normalized cut
is biased towards segments of roughly equal size. Because the objects in our database vary
in volume over two orders of magnitude, this bias is not helpful. This illustrates the danger
of using incorrect assumptions in an image segmentation application, and the advantages of
adapting the algorithm to the application by using training data.

In contrast to existing methods where affinities are computed based on a few hand-picked
features, our approach is considerably more powerful in that it learns both the features and
their transformation. This allows us to learn affinity graphs for applications where there is
little pre-existing knowledge of good features. This added flexibility comes at the price of

training a classifier with many parameters. But our results show that such a classifier can
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be trained effectively using a CN.

Interestingly, our good segmentation performance is found using a graph with only
nearest-neighbor edges. One could argue that better performance might be achieved by
learning a graph with more edges between voxels. Indeed, researchers have found empiri-
cally that segmentation performance using hand-designed affinity functions can be improved
by adding more edges [Cour et al., 2005a]. The extension of our learned affinity functions to

more edges is left for future work.

5.4.2 Progress towards neural circuit reconstruction using serial-

section EM

We have made a first step towards automated reconstructing of neural circuits using images
from serial block-face scanning electron microscopy (SBF-SEM; Denk and Horstmann, 2004).
Figure 5-7 shows the 3d reconstruction of selected neural processes in the image volume,
confirming that the generated segments are biologically realistic. Figure 5-8 elaborates on
this by showing the largest 100 components in the 320x200x100 volume (omitting large glia
and cell bodies). Most of the largest 40 components span the volume, and smaller components
appear to either terminate within the volume or be fragments of glial-like processes. While
we have observed good performance with our current segmentation algorithm, significant
progress must yet be made in order to achieve large scale neural reconstruction. In particular,
while performance is close to human level on voxel error and merged objects, there are
significantly more split objects in our network output. This indicates that there are small,
thin processes which are broken and could be reconnected using heuristics or another higher-
level learning procedure. We have yet to make use of high-level segmentation cues such as the
identity and shapes of the neurons in our data set. Efficiently representing and integrating

such high-level information with low-level affinity decisions is the next challenge.

5.5 Comparing CN and NN for affinity graph generation
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In order to assess the advantages of CN over NN, we also trained a CN with NN constraints
on the task of affinity graph generation. This network (Figure 4-2) has a single hidden
layer of 75 feature maps. The filters connecting the input image to the feature maps in the
hidden layer have size 7x7x7. The filters connecting the feature maps in the hidden layer
to the output images are 1x1x1 scalars. Since these filters are scalars, each output image
is a linear combination of the images in the hidden layer after passing through a sigmoid
non-linearity. In contrast to our CN, this network requires more than twice as many free
parameters (25,876) to process an input patch of only 7x7x7. Our attempts to train NN-
like networks with larger filters was plagued with poor generalization performance and with
gradient-learning optimizing to poor local minima in parameter space.

From Figure 5-10, we can see that the CN is slightly superior to the NN on the training
set. Since the NN has twice as many parameters as CN, one might expect it to be a more
powerful representation, and achieve lower training error. However, the CN uses a larger
context than the NN (17x17x17 versus 7x7x7), and this may help the CN achieve lower
training error. In addition to the improvement in performance, after training has been
completed, the CN is about twice as fast as the NN at the task of generating an affinity
graph. The run time is roughly proportional to the number of parameters, and the NN has
twice as many as the CN. More importantly, CN makes fewer split and merge errors, leading
to superior segmentation performance.

While the CN and NN can both learn the affinity graph generation task without hand
selection of features. The CN achieves both superior speed and accuracy compared to the NN.
This is probably because the CN representation is more efficient for image processing tasks
than the NN. The difference between the CN and the NN on this data set is not large, and
therefore may not be statistically significant. However, the differences in affinity prediction
as well as segmentation performance seem to be larger in preliminary investigations using

larger data sets not reported here.
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Figure 5-2: A) Creating the affinity graph using a convolutional network. The input to the
network is the 3d EM image and the desired output is a set of 3d images: one each for the
z,y and z directions representing the affinity graph. B) The edges of the nearest-neighbor
affinity graph form a lattice. C) Desired affinities for a set of three segments (gray). Edges
contained within a segment have desired affinity 1 (green for  edges and red for y edges).
Edges not contained within a segment have desired affinity 0, implying that boundary voxels
are “disconnected from themselves”.
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Figure 5-3: Performance of the convolutional network at predicting affinity between indi-
vidual voxels. A) Approximately 10% of the affinities are misclassified in the test set. B)
A more thorough quantification of the continuous-valued CN output using precision-recall
curves (see Appendix) as in Martin et al. [2004] shows good performance (higher F-scores
and curves closest to the upper right are superior).
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Figure 5-4: Top row: Original EM images and human-labeled segmentation, where differ-
ent colors correspond to different segments. Bottom left: Using normalized cuts on the
output of the CN network qualitatively segments many of the objects correctly. Bottom
right: The connected components procedure using CN affinity creates segmentations that
are structurally superior to normalized cuts with fewer splits and mergers, and the segments
are shrunken within the intracellular regions.
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Figure 5-5: Segmentation performance is quantified by measuring the number of splits and
merges per true segment. Points closer to the origin have lower segmentation error. Circles
and asterisks are used to denote the test and training set errors, respectively. CC+STD has
split-merge errors of (121.9,15.7) and (97.9,13.2) on the training and test set respectively,
and is omitted here for clarity. Many different segmentations can be generated by varying
the threshold parameter for the CC algorithm, yielding under- to over-segmentation.
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Figure 5-6: Components traced by human (left) compared with automated results, convo-
lutional network with connected component segmentation CN-CC (middle), and with nor-
malized cut segmentation CN-NCUT (right). A) Correctly reconstructed object, showing
close agreement between human tracings and algorithm output. B) An object which has
thin processes which are incorrectly split by the algorithms. A larger part of the object is
split by normalized cuts than connected components. The red oval indicates the size of the
process that was split. C) Both algorithms correctly segment a thin branching process.
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Figure 5-7: 3d reconstructions of selected processes using our algorithm (CN+CC). Large
cell bodies are not shown to avoid hiding smaller processes.
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Figure 5-8: The 100 largest components in a 320x200x100 volume (7.86 um x 5.24 um x
5um), omitting cell bodies and large glial processes for clarity.
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1 Hidden Layer
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Figure 5-9: A restricted convolutional network that is equivalent to a two layer neural
network. Only the first layer of the network is convolutional; edges from the input image
to the hidden nodes represent convolution filters, while edges from the hidden units to the
output units are scalar valued. This network has many more nodes in the hidden layer than
our CN, but has fewer layers.
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Figure 5-10: CN and NN have similar performance at affinity prediction, but CN has superior
segmentation performance. A) Approximately 10% of the affinities are misclassified in the
test set. B) A more thorough quantification of the continuous-valued affinity output using
precision-recall curves as in Fowlkes et al.[Fowlkes et al., 2003] shows good performance
(higher F-scores and curves closest to the upper right are superior). C) CN outperforms NN
with fewer split and merge errors (curves closest to the origin are superior).
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Chapter 6

Ultrametricity and hierarchy learning

In this chapter I introduce the concept of an ultrametric distance function, its relationship
with hierarchical clustering and a means for learning it. Image segmentation can be repre-
sented as a clustering problem, so this formalism will be useful for constructing an algorithm

for the direct end-to-end machine learning of image segmentation.

6.1 Metric and ultrametric distance functions

A metric on a set X is a function d : X x X — R satisying the following properties

d(z,y) > 0 withequality if and onlyifz =1y (6.1)
d(z,y) = d(y,z) (6.2)
d(z,y) < d(z,2)+d(y,2) (6.3)

Here, the first two properties require positive definiteness and symmetry of the distance
function and the third is the triangle inequality.
An ultrametric distance function is a metric distance that satisfies a stronger version of
the triangle inequality.
d(z,y) < max(d(z, z), d(y, 2)) (6.4)

Therefore all ultrametrics are metric, but not vice versa.
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Ultrametric spaces have some non-intuitive properties deriving from the conditions above.
Proposition 6.1. All triangles are isosceles. But not all isosceles triangles are possible.

Recall that triangles with two sides of equal length are called isosceles. The repeated
application of the ultrametric triangle inequality to the same three points with z, y and z
relabeled implies that all triangles formed by any three points in an ultrametric space are
isosceles. Further, the length of the two equal sides of the triangle must be greater than or
equal to the length of the third side.

Proposition 6.2. Every point inside a ball of finite radius is at its center.

Given a ball centered around z of radius r defined by B(z;r) = {y|d(z,y) < r}, for every
point y contained in B(z;7), B(z;r) = B(y;r). This surprising fact is related to the strong

triangle inequality due to which the diameter of a ball is the same as its radius.

Proposition 6.3. Whenever two balls intersect, one ball is entirely contained within the

other.

By the strong triangle inequality, whenever two balls A(z,r) and B(y,r’) intersect, where
the radius of ball 7' is larger than r, there can never be a partial intersection where only
some of the points in ball A are contained within ball B. We can prove this by contradiction.
Assume point z is the only point contained in A N B. This would require that d(z,y) £
max(d(z, z), d(y, z)) which is impossible in an ultrametric space.

Taken together, Propositions 6.2 and 6.3 imply a rather peculiar but extremely useful
topology. Since balls of the same radius either never intersect or overlap completely, they
form a unique partitioning or clustering of points in an ultrametric space.

These facts together imply that an ultrametric distance defined over a set of points can

be represented uniquely as a dendrogram.

6.2 Ultrametricity, hierarchies and dendrograms

There exists a bijection between the ultrametric distances on a finite set of points and a
dendrogram-based hierarchical clustering of the set. Thus ultrametric spaces can be used to

exactly represent hierarchical partitionings.
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Figure 6-1: Balls in an ultrametric space form a nested partitioning of points due to the
strong triangle inequality. The strong triangle inequality prohibits partially overlapping
balls in an ultrametric space.
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6.2.1 Constructing dendrograms from ultrametric distances

Given a set of points and ultrametric distances between them, one can construct a unique

dendrogram by use of the nesting property of balls in an ultrametric space (Fig. 6-1).

6.2.2 Ultrametric distance corresponding to a dendrogram

Dendrograms can be used to define ultrametric distances. Recall from 2 that a dendrogram
is representation of a hierarchical clustering. It is a rooted tree graph whose leaf nodes

correspond to points being clustered and whose internal nodes represent groups of objects.

Definition 6.4. The tree distance between two points is the height of their earliest common

ancestor node.
Proposition 6.5. Tree distances on a dendrogram are ultrametric.

It can be easily verified that the ultrametricity conditions hold for the tree distance.

6.3 Hierarchy learning by learning ultrametric distances
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Figure 6-2: There is a one-to-one correspondence between ultrametric distances on a set of
points and a dendrogram.

Metric learning has long been used as a technique for the supervised learning of clustering,.
Given a parametrized distance function, the idea is to adjust the parameters such that points
belonging to the same cluster are close together and points belonging to different clusters
are far apart. However, general distance functions are not consistent in the following sense.
Even though two points may be far apart from each other, there may be a high density path
of points between which makes the interpretation of the clustering dependent not only on
the distances between the two points but also on the distances between all the other points
in the dataset.

Ultrametric distances have the useful property of “transitive consistency”. If points a and
b are far apart, and c is close to a, then ¢ is also far from b. Conversely, if a and b are close
to each other, and ¢ is close to a, then a, b and ¢ are all close to each other. This property
does not hold for general metric distances and leads to inconsistent partitioning cues from
the distance function.

We suggest that learning of ultrametric distances is more appropriate for clustering prob-

lems than general metric distances. In the next chapter, we train minimax graph distances
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in order to learn the clustering problem of image segmentation.
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Chapter 7

Learning image segmentation using

ultrametric learning

Abstract

Images can be segmented by first using a classifier to predict an affinity graph that reflects
the degree to which image pixels must be grouped together and then partitioning the graph
to yield a segmentation. Machine learning has been applied to the affinity classifier to pro-
duce affinity graphs that are good in the sense of minimizing edge misclassification rates.
However, this error measure is only indirectly related to the quality of segmentations pro-
duced by ultimately partitioning the affinity graph. We present the first machine learning
algorithm for training a classifier to produce affinity graphs that are good in the sense of
producing segmentations that directly minimize the Rand index, a well known segmentation
performance measure.

The Rand index measures segmentation performance by quantifying the classification of
the connectivity of image pixel pairs after segmentation. By using the simple graph parti-
tioning algorithm of finding the connected components of the thresholded affinity graph, we
are able to train an affinity classifier to directly minimize the Rand index of segmentations
resulting from the graph partitioning. Our learning algorithm corresponds to the learn-
ing of maximin affinities between image pixel pairs, which are predictive of the pixel-pair
connectivity.

7.1 Introduction

Supervised learning has emerged as a serious contender in the field of image segmentation,

ever since the creation of training sets of images with “ground truth” segmentations provided
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by humans, such as the Berkeley Segmentation Dataset Martin et al. [2001]. Supervised
learning requires 1) a parametrized algorithm that map images to segmentations, 2) an
objective function that quantifies the performance of a segmentation algorithm relative to
ground truth, and 3) a means of searching the parameter space of the segmentation algorithm
for an optimum of the objective function.

In the supervised learning method presented here, the segmentation algorithm consists of
a parametrized classifier that predicts the weights of a nearest neighbor affinity graph over
image pixels, followed by a graph partitioner that thresholds the affinity graph and finds its
connected components. Our objective function is the Rand index Rand [1971], which has
recently been proposed as a quantitative measure of segmentation performance Unnikrishnan
et al. [2007]. We “soften” the thresholding of the classifier output and adjust the parameters
of the classifier by gradient learning based on the Rand index.

Because maximin edges of the affinity graph play a key role in our learning method,
we call it mazimin affinity learning of image segmentation, or MALIS. The minimax path
and edge are standard concepts in graph theory, and maximin is the opposite-sign sibling
of minimax. Hence our work can be viewed as a machine learning application of these
graph theoretic concepts. MALIS focuses on improving classifier output at maximin edges,
because classifying these edges incorrectly leads to genuine segmentation errors, the splitting
or merging of segments.

To the best of our knowledge, MALIS is the first supervised learning method that is based
on optimizing a genuine measure of segmentation performance. The idea of training a classi-
fier to predict the weights of an affinity graph is not novel. Affinity classifiers were previously
trained to minimize the number of misclassified affinity edges Fowlkes et al. [2003], Martin
et al. [2004]. This is not the same as optimizing segmentations produced by partitioning the
affinity graph. There have been attempts to train affinity classifiers to produce good segmen-
tations when partitioned by normalized cuts Meila and Shi [2001], Bach and Jordan [2006].
But these approaches do not optimize a genuine measure of segmentation performance such
as the Rand index. The work of Bach and Jordan Bach and Jordan [2006] is the closest to
our work. However, they only minimize an upper bound to a renormalized version of the

Rand index. Both approaches require many approximations to make the learning tractable.
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In other related work, classifiers have been trained to optimize performance at detecting
image pixels that belong to object boundaries Martin et al. [2004], Dollar et al. [2006], Maire
et al. [2008]. Our classifier can also be viewed as a boundary detector, since a nearest
neighbor affinity graph is essentially the same as a boundary map, up to a sign inversion.
However, we combine our classifier with a graph partitioner to produce segmentations. The
classifier parameters are not trained to optimize performance at boundary detection, but to
optimize performance at segmentation as measured by the Rand index.

There are also methods for supervised learning of image labeling using Markov or condi-
tional random fields He et al. [2004]. But image labeling is more similar to multi-class pixel
classification rather than image segmentation, as the latter task may require distinguishing
between multiple objects in a single image that all have the same label.

In the cases where probabilistic random field models have been used for image parsing
and segmentation, the models have either been simplistic for tractability reasons Kumar
and Hebert [2003] or have been trained piecemeal. For instance, Tu et al. Tu et al. [2005]
separately train low-level discriminative modules based on a boosting classifier, and train
high-level modules of their algorithm to model the joint distribution of the image and the

labeling. These models have never been trained to minimize the Rand index.

7.2 Partitioning a thresholded affinity graph by connected
components

Our class of segmentation algorithms is constructed by combining a classifier and a graph
partitioner (see Figure 7-1). The classifier is used to generate the weights of an affinity
graph. The nodes of the graph are image pixels, and the edges are between nearest neighbor
pairs of pixels. The weights of the edges are called affinities. A high affinity means that the
two pixels tend to belong to the same segment. The classifier computes the affinity of each
edge based on an image patch surrounding the edge.

The graph partitioner first thresholds the affinity graph by removing all edges with

weights less than some threshold value #. The connected components of this thresholded
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Figure 7-1: (left) Our segmentation algorithm. We first generate a nearest neighbor
weighted affinity graph representing the degree to which nearest neighbor pixels should be
grouped together. The segmentation is generated by finding the connected components
of the thresholded affinity graph. (right) Affinity misclassification rates are a poor
measure of segmentation performance. Affinity graph +1 makes only 1 error (dashed
edge) but results in poor segmentations, while graph #2 generates a perfect segmentation
despite making many affinity misclassifications (dashed edges).

affinity graph are the segments of the image.

For this class of segmentation algorithms, it’s obvious that a single misclassified edge of
the affinity graph can dramatically alter the resulting segmentation by splitting or merging
two segments (see Fig. 7-1). This is why it is important to learn by optimizing a measure
of segmentation performance rather than affinity prediction.

We are well aware that connected components is an exceedingly simple method of graph
partitioning. More sophisticated algorithms, such as spectral clustering Shi and Malik [2000]
or graph cuts Boykov et al. [2001], might be more robust to misclassifications of one or a few
edges of the affinity graph. Why not use them instead? We have two replies to this question.

First, because of the simplicity of our graph partitioning, we can derive a simple and
direct method of supervised learning that optimizes a true measure of image segmentation
performance. So far learning based on more sophisticated graph partitioning methods has
fallen short of this goal Meila and Shi [2001]. Bach and Jordan [2006].

Second, even if it were possible to properly learn the affinities used by more sophisticated
graph partitioning methods, we would still prefer our simple connected components. The
classifier in our segmentation algorithm can also carry out sophisticated computations, if its
representational power is sufficiently great. Putting the sophistication in the classifier has

the advantage of making it learnable, rather than hand-designed.
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The sophisticated partitioning methods clean up the affinity graph by using prior as-
sumptions about the properties of image segmentations. But these prior assumptions could
be incorrect. The spirit of the machine learning approach is to use a large amount of training
data and minimize the use of prior assumptions. If the sophisticated partitioning methods
are indeed the best way of achieving good segmentation performance, we suspect that our
classifier will learn them from the training data. If they are not the best way, we hope that

our classifier will do even better.

7.3 Connectivity and maximin affinity

Recall that our segmentation algorithm works by finding connected components of the thresh-
olded affinity graph. Let S be the segmentation produced in this way. To apply the Rand
index to train our classifier, we need a simple way of relating the indicator function &(3;, 5;)
in the Rand index to classifier output. In other words, we would like a way of characterizing
whether two pixels are connected in the thresholded affinity graph.

To do this, we introduce the concept of maximin affinity, which is defined for any pair of
pixels in an affinity graph (the definition is generally applicable to any weighted graph). Let
Aybe the affinity of pixels k and . Let P;; be the set of all paths in the graph that connect
pixels i and j. For every path P in P;;, there is an edge (or edges) with minimal affinity.
This is written as ming jyep Axi, where (k,1) € P means that the edge between pixels k£ and
[ are in the path P.

A maximin path P, is a path between pixels 7 and j that maximizes the minimal affinity,

*.
J

P = i 7.1
7 = argmax min Ay (7.1)

The maximin affinity of pixels 4 and j is the affinity of the maximin edge, or the minimal

affinity of the maximin path,

* _ .
A = Jex (ﬁ)lgpAkl (7.2)

We are now ready for a trivial but important theorem.
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Theorem 7.1. A pair of pizels is connected in the thresholded affinity graph if and only if

their mazimin affinity exceeds the threshold value.

Proof. By definition, a pixel pair is connected in the thresholded affinity graph if and only if
there exists a path between them. Such a path is equivalent to a path in the unthresholded
affinity graph for which the minimal affinity is above the threshold value. This path in turn

exists if and only if the maximin affinity is above the threshold value. a

As a consequence of this theorem, pixel pairs can be classified as connected or discon-
nected by thresholding maximin affinities. Let S be the segmentation produced by thresh-
olding the affinity graph A;; and then finding connected components. Then the connectivity

indicator function is
6(5:,8;) = H(Aj; — 0) (7.3)

where H is the Heaviside step function.

Maximin affinities can be computed efficiently using minimum spanning tree algorithms
Fischer et al. [2004]. A maximum spanning tree is equivalent to a minimum spanning tree,
up to a sign change of the weights. Any path in a maximum spanning tree is a maximin
path. For our nearest neighbor affinity graphs, the maximin affinity of a pixel pair can be
computed in O(|E|-«(|V|)) where |E| is the number of graph edges and |V| is the number of
pixels and a(:) is the inverse Ackerman function which grows sub-logarithmically. The full
matrix A}; can be computed in time O(|V|?) since the computation can be shared. Note that
maximin affinities are required for training, but not testing. For segmenting the image at
test time, only a connected components computation need be performed, which takes time

linear in the number of edges |E|.

7.4 Optimizing the Rand index by learning maximin affini-
ties

Since the affinities and maximin affinities are both functions of the image I and the classifier

parameters W, we will write them as A;;(1; W) and Aj;(I; W), respectively. By Eq. (7.3) of
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the previous section, the Rand index of Eq. (3.1) takes the form

N\? .

1= Ri(s, W) = (5 ) 3 I s) — HUAG(EW) - 0)
i<j

Since this is a discontinuous function of the maximin affinities, we make the usual relaxation

by replacing |6(s;, s;)—H (A};(I; W)—6)| with a continuous loss function {(é(s;, s5), Aj; (I w)).

Any standard loss such as the such as the square loss, %(x — £)2, or the hinge loss can be

used for I(z,£). Thus we obtain a cost function suitable for gradient learning,

B(S, ;W) = (g’)_ S (850, 55), A (I W)

i<j

-1
(5) uotsuss) s g, Autisw) (74
The max and min operations are continuous and differentiable (though not continuously
differentiable). If the loss function [ is smooth, and the affinity Ay (I;W) is a smooth
function, then the gradient of the cost function is well-defined, and gradient descent can be
used as an optimization method.
Define (k,l) = mm(4, ) to be the maximin edge for the pixel pair (4, ). If there is a tie,

choose between the maximin edges at random. Then the cost function takes the form

-1
B(S, ;W) = (’;’) S U855, 85), Ammisy (L W)

i<j

It’s instructive to compare this with the cost function for standard affinity learning

2
FEstandard(S, I; W) = N E 1(8(si, 85), Aij(I; W)
(3,5)

where the sum is over all nearest neighbor pixel pairs (z,7) and c is the number of nearest
neighbors Fowlkes et al. [2003]. In contrast, the sum in the MALIS cost function is over all
pairs of pixels, whether or not they are adjacent in the affinity graph. Note that a single
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Algorithm 7.1 Maximin affinity learning

1. Pick a random pair of (not necessarily nearest neighbor) pixels i and j from a randomly
drawn training image I.

2. Find a maximin edge mm(i, 5)

3. Make the gradient update: W — W + n2%:1(8(si, ;), Amm,5) (I; W)

Algorithm 7.2 Standard affinity learning

1. Pick a random pair of nearest neighbor pixels i and j from a randomly drawn training
image I

2. Make the gradient update: W — W +ng%:1(8(si, s5), Ai; (I; W))

edge can be the maximin edge for multiple pairs of pixels, so its affinity can appear multiple
times in the MALIS cost function. Roughly speaking, the MALIS cost function is similar
to the standard cost function, except that each edge in the affinity graph is weighted by the

number of pixel pairs that it causes to be incorrectly classified.

7.5 Online stochastic gradient descent

Computing the cost function or its gradient requires finding the maximin edges for all pixel
pairs. Such a batch computation could be used for gradient learning. However, online
stochastic gradient learning is often more efficient than batch learning LeCun et al. [1998].
Online learning makes a gradient update of the parameters after each pair of pixels, and is
implemented as described in the box.

For comparison, we also show the standard affinity learning Fowlkes et al. [2003]. For
each iteration, both learning methods pick a random pair of pixels from a random image.
Both compute the gradient of the weight of a single edge in the affinity graph. However,
the standard method picks a nearest neighbor pixel pair and trains the affinity of the edge
between them. The maximin method picks a pixel pair of arbitrary separation and trains
the minimal affinity on a maximin path between them.

Effectively, our connected components performs spatial integration over the nearest neigh-
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bor affinity graph to make connectivity decisions about pixel pairs at large distances. MALIS
trains these global decisions, while standard affinity learning trains only local decisions.
MALIS is superior because it truly learns segmentation, but this superiority comes at a price.
The maximin computation requires that on each iteration the affinity graph be computed for
the whole image. Therefore it is slower than the standard learning method, which requires
only a local affinity prediction for the edge being trained. Thus there is a computational

price to be paid for the optimization of a true segmentation error.

7.6 Application to electron microscopic images of neu-

rons

7.6.1 Electron microscopic images of neural tissue

By 3d imaging of brain tissue at sufficiently high resolution, as well as identifying synapses
and tracing all axons and dendrites in these images, it is possible in principle to reconstruct
connectomes, complete “wiring diagrams” for a brain or piece of brain Seung [2009], Briggman
and Denk [2006], Smith [2007]. Axons can be narrower than 100 nm in diameter, necessitating
the use of electron microscopy (EM) Seung [2009]. At such high spatial resolution, just
one cubic millimeter of brain tissue yields teravoxel scale image sizes. Recent advances in
automation are making it possible to collect such images Seung [2009], Briggman and Denk
[2006], Smith [2007], but image analysis remains a challenge. Tracing axons and dendrites
is a very large-scale image segmentation problem requiring high accuracy. The images used
for this study were from the inner plexiform layer of the rabbit retina, and were taken using
Serial Block-Face Scanning Electron Microscopy Denk and Horstmann [2004]. Two large
image volumes of 100% voxels were hand segmented and reserved for training and testing

purposes.

7.6.2 Training convolutional networks for affinity classification

Any classifier that is a smooth function of its parameters can be used for maximin affinity

learning. We have used convolutional networks (CN), but our method is not restricted to
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this choice. Convolutional networks have previously been shown to be effective for similar
EM images of brain tissue Jain et al. [2007].

We trained two identical four-layer CNs, one with standard affinity learning and the
second with MALIS. The CNs contained 5 feature maps in each layer with sigmoid nonlin-
earities. All filters in the CN were 5 x 5 x 5 in size. This led to an affinity classifier that uses
a 17 x 17 x 17 cubic image patch to classify a affinity edge. We used the square-square loss
function I(z, %) = z - max(0,1 — £ — m)? + (1 — z) - max(0, £ — m)?, with a margin m = 0.3.

As noted earlier, maximin affinity learning can be significantly slower than standard
affinity learning, due to the need for computing the entire affinity graph on each iteration,
while standard affinity training need only predict the weight of a single edge in the graph.
For this reason, we constructed a proxy training image dataset by picking all possible 21 x
21 x 21 sized overlapping sub-images from the original training set. Since each 21 x 21 x 21
sub-image is smaller than the original image, the size of the affinity graph needed to be
predicted for the sub-image is significantly smaller, leading to faster training. A consequence
of this approximation is that the maximum separation between image pixel pairs chosen for
training is less than about 20 pixels. A second means of speeding up the maximin procedure
is by pretraining the maximin CN for 500,000 iterations using the fast standard affinity
classification cost function. At the end, both CNs were trained for a total of 1,000,000

iterations by which point the training error plateaued.

7.6.3 Maximin learning leads to dramatic improvement in segmen-

tation performance
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A. Clustering accuracy B. ROC curve C. Precision-Recall curve D. Splits vs. Mergers

1 1 [ B) — « - Standard (Train)
.~ 099 Q Ll ———— Standard (Test)
131 = 0.8 o] 08 1 — + - Minimax (Train)
© 098 - o Minimax (Test)
5 @ < )
o 097 = R S 08
c ‘@ @ @
-% 0.96 =] 8 04 2 04
o =
@
uEi e 2 = 02 = 0.2
0.94 = : §
0.93 : 0 0
05 06 07 08 09 0 0.5 1 0 o 1 2 3 4 5
Threshold False positive rate Splits/object

Figure 7-2: Quantification of segmentation performance on 3d electron micro-
scopic images of neural tissue. A) Clustering accuracy measuring the number of cor-
rectly classified pixel pairs. B) and C) ROC curve and precision-recall quantification of
pixel-pair connectivity classification shows near perfect performance. D) Segmentation error

as measured by the number of splits and mergers.

We benchmarked the performance of the standard and maximin affinity classifiers by mea-
suring the the pixel-pair connectivity classification performance using the Rand index. After
training the standard and MALIS affinity classifiers, we generated affinity graphs for the
training and test images. In principle, the training algorithm suggests a single threshold
for the graph partitioning. In practice, one can generate a full spectrum of segmentations
leading from over-segmentations to under-segmentations by varying the threshold parameter.
In Fig. 7-2, we plot the Rand index for segmentations resulting from a range of threshold
values.

In images with large numbers of segments, most pixel pairs will be disconnected from one
another leading to a large imbalancing the number of connected and disconnected pixel pairs.
This is reflected in the fact that the Rand index is over 95% for both segmentation algorithms.
While this imbalance between positive and negative examples is not a significant problem
for training the affinity classifier, it can make comparisons between classifiers difficult to
interpret. Instead, we can use the ROC and precision-recall methodologies, which provide
for accurate quantification of the accuracy of classifiers even in the presence of large class
imbalance. From these curves, we observe that our maximin affinity classifier dramatically
outperforms the standard affinity classifier.

Our positive results have an intriguing interpretation. The poor performance of the con-
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Figure 7-3: A 2d cross-section through a 3d segmentation of the test image. The
maximin segmentation correctly segments several objects which are merged in the standard
segmentation, and even correctly segments objects which are missing in the groundtruth
segmentation. Not all segments merged in the standard segmentation are merged at locations
visible in this cross section. Pixels colored black in the machine segmentations correspond
to pixels completely disconnected from their neighbors and represent boundary regions.

nected components when applied to a standard learned affinity classifier could be interpreted
to imply that 1) a local classifier lacks the context important for good affinity prediction;
2) connected components is a poor strategy for image segmentation since mistakes in the
affinity prediction of just a few edges can merge or split segments. On the contrary, our
experiments suggest that when trained properly, thresholded affinity classification followed

by connected components can be an extremely competitive method of image segmentations.

7.7 Discussion

In this paper, we have trained an affinity classifier to produce affinity graphs that result
in excellent segmentations when partitioned by the simple graph partitioning algorithm
of thresholding followed by connected components. The key to good performance is the
training of a segmentation-based cost function, and the use of a powerful trainable classifier
to predict affinity graphs. Once trained, our segmentation algorithm is fast. In contrast
to classic graph-based segmentation algorithms where the partitioning phase dominates, our
partitioning algorithm is simple and can partition graphs in time linearly proportional to the
number of edges in the graph. We also do not require any prior knowledge of the number of

image segments or image segment sizes at test time, in contrast to other graph partitioning
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algorithms [Felzenszwalb and Huttenlocher, 2004, Shi and Malik, 2000].

The formalism of maximin affinities used to derive our learning algorithm has connections
to single-linkage hierarchical clustering, minimum spanning trees and ultrametric distances.
Felzenszwalb and Huttenlocher [2004] describe a graph partitioning algorithm based on a
minimum spanning tree computation which resembles our segmentation algorithm, in part.
The Ultrametric Contour Map algorithm [Arbelaez, 2006] generates hierarchical segmenta-
tions nearly identical those generated by varying the threshold of our graph partitioning
algorithm. Neither of these methods incorporates a means for learning from labeled data,
but our work shows how the performance of these algorithms can be improved by use of our

maximin affinity learning.
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Chapter 8

Concluding thoughts

8.1 A method for neural circuit reconstruction

In this thesis, I presented a new method for the challenging problem of automatic recon-
struction of neural circuits from 3d electron micrographs. This method is adaptive it uses
machine learning and groundtruth human reconstructions of small volumes of imagery to
specialize to the unique properties (staining, imaging, cell types) of a particular dataset but
also to generalize to imagery of the same type previously unseen. It is expected that such
an adaptive method can be tuned to outperform other engineered non-adaptive methods. I
believe this method to be the best currently available for this task. However, performance is
not the only consideration when dealing with images that can be hundreds of terabytes large;
speed is of equal consideration. The method presented here can generate segmentations in
linear time in the size of the image. This is the best possible asymptotic performance, since
every pixel in the image must atleast be examined once. Thus this method is provably the
fastest.

Is this method good enough? No. Current error rates are still on the order of one mistake
per tens of microns of neurite. However, error rates on the order of a mistake per millimeter
or better are probably achievable through the training of convolutional networks with larger
fields of view and more free parameters, in conjunction with better model selection and
cross validation. The primary obstacle to this is the time required to train the convolutional

networks, which currently takes on the order of months. It is expected that the use of
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modern computing architectures such as GPUs will yield speedups of several-fold to an
order of magnitude or more. Clusters of such computers can be used to perform a parallel
search over the space of convolutional network architectures. It is also conceivable that recent
semi-supervised training methods [Hinton and Salakhutdinov, 2006, Bengio et al., 2007] will
lead to improvements in training time and generalization performance.

Ultimately, it is possible that the method described in this thesis will saturate and radi-
cally different methods will be required to assemble fragments generated by this method in
conjunction with a high-level model of neuronal shape. As with speech analysis, there will
likely be low-level, mid-level and high-level models which together will yield the performance

required for the success of connectomics.

8.2 Measures for comparing reconstructions

With the rapid growth of research into automated reconstruction methods, it is crucial to
have good measures of the quality of reconstructions for comparison purposes. It is hoped

that the methods presented here will find good use.

8.3 Convolutional networks for computing hierarchical
segmentations

At first glance, convolutional networks appear as a curious choice for image segmentation,
given their origin in application to high-level vision tasks such as digit and object recognition.
In this thesis, I show that they are uniquely suited to image processing applications such
as boundary detection. While boundary detection is usually considered a low-level vision
task prone to errors and mis-interpretation, with the use of convolutional networks, we can
achieve low-level boundary decisions that are informed by a powerful architecture capable
of using high-level information to correctly assign low-level boundaries.

It is generally assumed that low-level boundary detectors cannot help but produce mis-
takes such as numerous tiny breaks in the boundaries. This has lead to the development of

models with strong priors for local continuity such as markov random fields and level sets.
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However, producing locally closed contours is a rather trivial task for more modern classi-
fiers. What was truly lacking was a good means of training the classifier to produce closed
contours. This problem has been remedied by the ultrametric learning procedure introduced
in this thesis.

Probabilistic random fields, graph partitioning and level set based methods currently
constitute the state of the art in computer vision for image segmentation. In their canonical
form, the success of all of these methods is due in large part to the use of strong low-level
priors to exclude segmentations that are really bad. In the absence of large amounts of
training data, such methods are the only reasonable methods. However, in the large training
data limit, the effect of a prior is minimized and it is important to have flexible and powerful
discriminitively trained methods. In principle, random field and graph partitioning models
can be trained discriminitively using the methods provided in this thesis. But it is still
likely that convolutional networks with many hundreds of thousands of free parameters will
outperform other models.

While the application of machine learning for image segmentation in this thesis has been
restricted to 3d EM images of brain tissue, the methods are not restricted to connectomics.
They make no assumptions regarding the type of image to be segmented and can be used

directly with no modification to any image domain with training data.

8.4 Generalizing ultrametric learning

The learning algorithm for image segmentation relied on learning a special kind of distance
between image pixels known as an ultrametric distance. It is a specialization of regular
metric distances with rather curious and useful properties. The most interesting property
is the correspondence of ultrametric distances to dendrogram representations of hierarchical
clustering. In this thesis, I presented a means for learning minimax distances corresponding
to single-linkage clustering.

While there has been some work in learning hierarchies and tree structured representa-
tions of data, I believe the minimax learning algorithm to be uniquely useful. In contrast

to other methods, single-linkage clustering can be performed exactly in polynomial time.
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Further, our training of this ultrametric requires little in the way of approximations. I hope
this model of hierarchy learning will find more general utility than image segmentation.
I believe ultrametric learning in its most general setting will prove to be a promising

avenue for future research.
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