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ABSTRACT

Ecologically relevant search typically requires making rapid and strategic eye movements
in complex, cluttered environments. Attention allocation is known to be influenced by low
level image features, visual scene context, and top down task constraints. Scene specific
context develops when observers repeatedly search the same environment (e.g. one's
workplace or home) and this often leads to faster search performance. How does prior
experience influence the deployment of eye movements when searching a familiar scene?
One challenge lies in distinguishing between the roles of scene specific experience and
general scene knowledge. Chapter 1 investigates eye guidance in novel scenes by
comparing how well several models of search guidance predict fixation locations, and
establishes a benchmark for inter-observer fixation agreement. Chapters 2 and 3 explore
spatial and temporal characteristics of eye guidance from scene specific location priors.
Chapter 2 describes comparative map analysis, a novel technique for analyzing spatial
patterns in eye movement data, and reveals that past history influences fixation selection in
three search experiments. In Chapter 3, two experiments use a response-deadline approach
to investigate the time course of memory-based search guidance. Altogether, these results
describe how using long-term memory of scene specific representations can effectively
guide the eyes to informative regions when searching a familiar scene.
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CHAPTER 1

Introduction

As humans, our perception of the world is mediated by sensory and cognitive constraints that
limit the extent to which information can be acquired with a single gaze. Ecologically important
activities such as navigation and search rely on a series of saccadic eye movements to inspect
and interpret the visual scene. The capacity for efficient visual search, therefore, is an important
part of adaptive behavior. Decades of study have produced a rich body of knowledge about
visual search behavior in artificial displays and, correspondingly, been used to develop models of
attentional processing (e.g. Duncan and Humphreys, 1989; Triesman & Gelade, 1980; Wolfe,
1994). Recently, real world scenes have also been used to model the guidance of attention
(Chapter 1; Hwang, Higgins, Pomplun, 2009; Itti & Koch, 2000; Torralba, Oliva, Castelhano, &
Henerson, 2006; Zelinsky, 2008).

Before moving your eyes to a region of space, attention is deployed to that region first (Deubel
& Schneider, 1996). Two recent developments have been central to improving our understanding
of how attention operates in naturalistic scenes: first, the ability to readily record the center gaze
with eye tracking technology (e.g. Hayhoe & Ballard, 2005; Henderson, 2003) and, second,
advances in computational approaches to scene understanding (e.g. Itti & Koch, 2000; Oliva &
Torralba, 2001). Contemporary models of eye guidance in visual search incorporate mechanisms
for bottom up feature based guidance, as well as top down task constraints, although models vary
in the implementations of each component (Chikkerur, Tan, Serre, & Poggio, 2010; Kannan,
Tong, Zhang, & Cottrell, 2009; Torralba et al, 2006).

Laboratory based visual search studies typically instruct participants to localize an object that
may be present in the display (or indicate its absence) while recording the time required to make
a response. Reaction times (RTs) are considered indicative of the difficulty of search (Duncan &
Humphreys, 1998) and are highly correlated with the number of fixations made in the display
(Zelinsky & Sheinberg, 1995). RTs in search experiments can be influenced by any processing
stage between the retina and the hand (Wolfe, Oliva, Horowitz, Butcher, & Bompas, 2002).
Traditionally, the efficiency of visual search has been studied by measuring how steeply RT rises
when items are added to the display (Wolfe, 1998). Efficient visual searches have little or no cost
of adding items to a search display, for example looking for a red target among blue distractors,
while more difficult searches involve longer RTs and steeper slopes when the set size of the
display increases (Wolfe, 1998).

Investigating search guidance in realistic scenes represents a challenge for this approach,
because set size is a difficult construct to define in a world of overlapping surfaces and objects.
Furthermore, a lifetime of experience navigating and searching real world environments is not
wasted by the visual system. Experience with different types of scenes- e.g. outdoor places like
city streets, indoor places like kitchens- can bias attention based on perceived situational
regularities. Early search fixations- even the initial saccade- are direct toward a contextually
consistent region of the scene, for example toward horizontal surfaces when looking for a mug or



vertical surfaces when looking for a painting (Torralba et al, 2006). As highlighted above, it is
well established that eye fixations will vary, among other things, depending on the object of
search and the scene context (Buswell, 1935; Yarbus, 1967). Does eye guidance also depend on
past experience with specific scene contexts?

Before being studying the role of scene-specific experience, it is important to have a sense how
strongly general scene context (e.g. knowing to look for mugs on waist-level surfaces) guides
eye movements across different observers and different environments. Chapter 2 investigates eye
guidance during search of novel real world scenes. In this experiment, we recorded 14 observers
eye movements as they performed a search task (person detection) in 912 outdoor scenes.
Interestingly, observers were highly consistent in the regions fixated during search, even when
the target was absent from the scene. These eye movements were then used to evaluate
computational models of search guidance from three sources: saliency, target features, and scene
context. Each of these models independently outperformed a cross-image control in predicting
human fixations. Models that combined sources of guidance ultimately predicted 94% of human
agreement, with the scene context component providing the most explanatory power. None of
the models, however, could reach the precision and fidelity of an attentional map defined by
human fixations. In addition to providing a benchmark for inter-observer fixation agreement, eye
movements from these observers were used in the spatial eye movement analyses of Chapter 3.

Scene specific location priors develop when particular environments are searched repeatedly,
thereby associating a scene's identity (e.g. one's own office) with the target's location (or
absence). This phenomenon has been studied extensively in the contextual cuing paradigm
(Chun & Jiang, 1998) albeit primarily in artificial displays (but see Brockmole, Castelhano, &
Henderson, 2006; Brockmole & Henderson 2006a, 2006b; Ehinger & Brockmole, 2008). Search
in these studies, however, typically entails looking for a letter-target somewhere within the
display. In contrast, everyday search tasks involve looking for objects associated with real world
contexts. In chapters 2 and 3, I outline a distinct role for scene-specific experience in guiding the
eyes during search for a context-consistent target object (e.g. person in urban scenes, a book in
indoor scenes).

In chapter 3, I investigate the role of the person, place, and past in guiding gaze in familiar
environments. At the level of eye fixations, it not known whether a person's specific search
experience influences attentional selection. Eye movements are notoriously variable: people
often foveate different places when searching for the same target in the same scene (Mannan,
Ruddock, Wooding, 1997). Do individual differences in fixation locations influence how the
scene is subsequently examined? Here, I introduce a method, comparative map analysis, for
analyzing spatial patterns in eye movement data. This analysis was used to quantify the
consistency of fixated locations within the same observer and between observers during search
of real world scenes. The results of three independent search experiments show a remarkably
high degree of similarity in the locations fixated by the same observer across multiple searches
of a given scene. Critically, the role of observer-specific guidance was shown to be distinct from
other sources of guidance such as global scene context and familiarity with the scene. This is
interpreted as evidence for a uniquely informative role of an individual's search experience on
attentional guidance in a familiar scene.



The time course of memory retrieval is the topic of chapter 4, in particular, the speed of using

scene specific location priors to guide visual search. As suggested above, repeated searching of a

specific environment strengthens its representation in memory as the scene's identity becomes
increasingly predictive of a target's location. Retrieving these scene specific location priors,
however, may not always occur on each instance of search of a familiar environment. To what

extent does time increase the probability of retrieving and using scene specific memory to guide

search? In chapter 4, I introduce an experimental paradigm- the delayed search approach- to

evaluate speed-accuracy tradeoffs in oculomotor behavior when searching novel and familiar

scenes. Two experiments tested the hypothesis that scene specific memory can influence

attentional mechanisms in a temporally predictable manner. Specifically, I propose that longer

time intervals increase the effectiveness of using memory to help guide attention to the target.
Experiment 1 was a people-search task of outdoor scenes in which observers fixated for a typical

or an "extended" duration on the scene before making an initial saccade. Interestingly, steeper
learning curves and overall lower reaction times resulted when observers were delayed for an

extended interval. Experiment 2 was a book-search task of indoor scenes in which observers
were delayed for a variable amount of time on any given search trial of novel or familiar scenes.

Surprisingly, longer delays improve search performance on both novel and familiar scenes. Eye

movement data, however, indicate that longer delays improve the probability of directing overt

attention directly to the target. The main conclusion of this chapter is that achieving stronger
memory retrieval before initiating search enhances the efficacy of attentional guidance in

familiar environments. Overall, this thesis supports the idea that scene specific experience is

associated with unique spatial and temporal characteristics that help guide the eyes to

informative regions of a familiar scene.
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Introduction

Daily human activities involve a preponderance of visually-guided actions, requiring observers
to determine the presence and location of particular objects. How predictable are human search
fixations? Can we model the mechanisms that guide visual search? Here, we present a dataset of
45,144 fixations recorded while observers searched 912 real-world scenes and evaluate the
extent to which search behavior is (1) consistent across individuals and (2) predicted by
computational models of visual search guidance.

Studies of free viewing have found that the regions selected for fixation vary greatly across
observers (Andrews & Coppola, 1999; Einhauser, Rutishauser, Koch, 2008; Parkhurst & Neibur,
2003; Tatler, Baddeley, Gilchrist, 2006). However, the effect of behavioral goals on eye
movement control has been known since the classic demonstrations by Buswell (1935) and
Yarbus (1967) showing that observers' patterns of gaze depended critically on the task.
Likewise, a central result emerging from studies of oculomotor behavior during ecological tasks
(driving, e.g. Land & Lee, 1994; food preparation, e.g. Hayhoe, Shrivastava, Mruczek, & Pelz,
2003; sports, e.g. Land & McLeod, 2000) is the functional relation of gaze to one's momentary
information processing needs (Hayhoe & Ballard, 2005).

In general, specifying a goal can serve as a referent for interpreting internal computations that
occur during task execution. Visual search - locating a given target in the environment - is an
example of a behavioral goal which produces consistent patterns of eye movements across
observers. Figure 1 shows typical fixation patterns of observers searching for pedestrians in
natural images. Different observers often fixate remarkably consistent scene regions, suggesting
that it is possible to identify reliable, strategic mechanisms underlying visual search and to create
computational models that predict human eye fixations.

Various mechanisms have been proposed which may contribute to attention guidance during
visual search. Guidance by statistically unexpected, or salient, regions of a natural image has
been explored in depth in both modeling and behavioral work (e.g., Bruce, & Tsotsos, 2005; Itti,
Koch & Niebur, 1998; Koch & Ullman, 1985; Li, 2002; Rosenholtz, 1999; Torralba, 2003).
Numerous studies have shown that regions where the local statistics differ from the background
statistics are more likely to attract an observer's gaze: distinctive color, motion, orientation, or
size constitute the most common salient attributes, at least in simple displays (for a review,
Wolfe & Horowitz, 2004). Guidance by saliency may also contribute to early fixations on
complex images (Bruce & Tsotsos, 2005; Harel, Koch & Perona, 2006; Itti & Koch, 2000;
Parkhurst, Law & Niebur, 2002; van Zoest, Donk, & Theeuwes, 2004), particularly when the
scene context is not informative (Parkhurst et al., 2002; Peters, Iyer, Itti & Koch, 2005) or during
free viewing. In natural images, it is interesting to note that objects are typically more salient
than their background (Torralba, Oliva, Castelhano, & Henderson, 2006; Elazary & Itti, 2008),
so oculomotor guidance processes may use saliency as a heuristic to fixate objects in the scene
rather than the background.

In addition to bottom-up guidance by saliency, there is a top-down component to visual
attention that is modulated by task. During search, observers can selectively attend to the scene
regions most likely to contain the target. In classical search tasks, target features are an



ubiquitous source of guidance (Treisman & Gelade, 1980; Wolfe, Cave & Franzel, 1998; Wolfe,
1994, 2007; Zelinsky, 2008): for example, when observers search for a red target, attention is
rapidly deployed towards red objects in the scene. Although a natural object, such as a
pedestrian, has no single defining feature, it still has statistically reliable properties (upright
form, round head, straight body) that could be selected by visual attention. In fact, there is
considerable evidence for target-driven attentional guidance in real world search tasks
(Einhauser et al, 2008; Pomplun, 2006; Rao, Zelinsky, Hayhoe, & Ballard, 2002; Rodriguez-
Sanchez, Simine & Tsotsos, 2007; Tsotsos, Culhane, Wai, Lai, Davis & Nuflo, 1995; Zelinsky,
2008).

Another top-down component which applies in ecological search tasks is scene context.
Statistical regularities of natural scenes provide rich cues to target location and appearance
(Eckstein, Drescher & Shimozaki, 2006; Hoiem, Efros, & Hebert, 2006; Torralba & Oliva, 2002,
2003; Oliva & Torralba, 2007). Within a glance, global information can provide useful
information about spatial layout and scene category (Joubert, Rousselet, Fize & Fabre-Thorpe,
2007; Greene & Oliva, 2009; Renninger & Malik, 2004; McCotter, Gosselin, Sowden, &
Schyns, 2005; Rousselet, Joubert, & Fabre-Thorpe, 2005; Schyns & Oliva, 1994). Categorical
scene information informs a viewer of which objects are likely to be in the scene and where (Bar,
2004; Biederman, Mezzanotte, & Rabinowitz, 1982; De Graef, 1990; Friedman, 1979;
Henderson, Weeks & Hollingworth, 1999; Loftus & Mackworth, 1978). Furthermore, global
features can be extracted quickly enough to influence early search mechanisms and fixations
(Castelhano & Henderson, 2007; Chaumon, Drouet & Tallon-Baudry, 2008; Neider & Zelinky,
2006; Torralba et al., 2006; Zelinsky & Schmidt, this issue).

In the present work, we recorded eye movements as observers searched for a target object (a
person) in over 900 natural scenes and evaluated the predictive value of several computational
models of search. The purpose of this modeling effort was to study search guidance, that is,
where observers look while deciding whether a scene contains a target. We modeled three
sources of guidance: bottom-up visual saliency, learned visual features of the target's
appearance, and a learned relationship between target location and scene context.
Informativeness of these models was assessed by comparing the regions selected by each model
to human search fixations, particularly in target absent scenes (which provide the most
straightforward and rigorous comparison).

The diversity and size of our dataset (14 observers' fixations on 912 urban scenes)I provides a
challenge for computational models of attentional guidance in real world scenes. Intelligent
search behavior requires an understanding of scenes, objects and the relationships between them.
Although humans perform this task intuitively and efficiently, modeling visual search is
challenging from a computational viewpoint. The combined model presented here achieves 94%
of human agreement on our database, however a comprehensive understanding of human search
behavior environments stands to benefit from mutual interest by cognitive and computer vision
scientists alike.

1 The complete dataset and analysis tools will be made available at the authors' website.



Experimental Method

Participants. Fourteen (14) observers (18-40 years old with normal acuity) were paid for their
participation ($15/hour). They gave informed consent and passed the eyetracking calibration test.

Apparatus. Eye movements were recorded at 240 Hz using an ISCAN RK-464 video-based
eyetracker. Observers sat at 75 cm from the display monitor, 65 cm from the eyetracking camera,
with their head centered and stabilized in a headrest. The position of the right eye was tracked
and viewing conditions were binocular. Stimuli were presented on a 21" CRT monitor with a
resolution of 1024 by 768 pixels and a refresh rate of 100 Hz. Presentation of the stimuli was
controlled with Matlab and Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). The following
calibration procedure was performed at the beginning of the experiment and repeated following
breaks. Participants sequentially fixated 5 static targets positioned at 00 (center) and at 100 of
eccentricity. Subsequently, the accuracy of the calibration was tested at each of 9 locations
evenly distributed across the screen, including the 5 calibrated locations plus 4 targets at +/-
5.250 horizontally and vertically from center. Estimated fixation position had to be within 0.75'
of visual angle for all 9 points, otherwise the experiment halted and the observer was re-
calibrated.

Stimuli. The scenes consisted of 912 color pictures of urban environments, half containing a
pedestrian (target present) and half without (target absent). Images were of resolution 800 by 600
pixels, subtending 23.5 0 by 17.7 0 of visual angle. When present, pedestrians subtended on
average 0.9 0 by 1.8 0 (corresponding to roughly 31 by 64 pixels). For the target present images,
targets were spatially distributed across the image periphery (target locations ranged from 2.7 0 to
13 0 from the screen center; median eccentricity was 8.6 0), and were located in each quadrant of

2
the screen with approximately equal frequency

Procedure. Participants were instructed to decide as quickly as possible whether or not a person
was present in the scene. Responses were registered via the keyboard, which terminated the
image presentation. Reaction time and eye movements were recorded. The first block consisted
of the same 48 images for all participants, and was used as a practice block to verify that the eyes
could be tracked accurately. The experiment was composed of 19 blocks of 48 trials each and
50% target prevalence within each block. Eyetracking calibration was checked after each block
to ensure tracking accuracy within 0.75 0 of each calibration target. Each participant performed
912 experimental trials, resulting in an experiment duration of 1 hour.

Eye movement analysis. Fixations were identified on smoothed eye position data, averaging the
raw data over a moving window of 8 data points (33 ms). Beginning and end positions of
saccades were detected using an algorithm implementing an acceleration criterion (Araujo,
Kowler, & Pavel, 2001). Specifically, the velocity was calculated for two overlapping 17 ms
intervals; the onset of the second interval was 4.17 ms after the first. The acceleration threshold
was a velocity change of 6 O/s between the two intervals. Saccade onset was defined as the time
when acceleration exceeded threshold and the saccade terminated when acceleration dropped

2 See additional figures on authors' website for distribution of targets and fixations across all images in the database



below threshold. Fixations were defined as the periods between successive saccades. Saccades
occurring within 50 ms of each other were considered to be continuous.

Human Eye Movements Result

Accuracy and Eye Movement Statistics
On average, participants' correct responses when the target was present (hits) was 87%. The

false alarm rate (fa) in target absent scenes was 3%. On correct trials, observers' mean reaction
time was 1050 ms (one standard error of the mean or s.e.m = 18) for target present and 1517 ms
(one s.e.m = 14) for target absent. Observers made an average of 3.5 fixations (excluding the
initial central fixation but including fixations on the target) in target present scenes and 5.1
fixations in target absent scenes. The duration of "search fixations" exclusively (i.e. exploratory
fixations excluding initial central fixation and those landing on the target) averaged 147 ms on
target present trials and 225 ms on target absent trials. Observers spent an average of 428 ms
fixating the target-person in the image before indicating a response.

We focused our modeling efforts on predicting locations of the first three fixations in each
scene (but very similar results were obtained when we included all fixations). We introduce
below the measures used to compare search model's predictions and humans' fixations.

Agreement among Observers
How much eye movement variability exists when different observers look at the same image

and perform the same task? First, we computed the regularity, or agreement among locations
fixated by separate observers (Mannan, Ruddock, Wooding, 1995; Tatler, Baddeley, Gilchrist,
2005). As in Torralba et al (2006), a measure of inter-observer agreement was obtained for each
image by using the fixations generated by all-except-one observers. The "observer-defined"
image region was created by assigning a value of 1 to each fixated pixel and 0 to all other pixels,
then applying a Gaussian blur (cutoff frequency = 8 cycles per image, about 1 visual angle).
The observer-defined region was then used to predict fixations of the excluded observer. For
each image, this process was iterated for all observers. Thus, this measure reflected how
consistently different observers selected similar regions to. Figure 1 shows examples of target
absent scenes with high and low values of inter-observer agreement.



(a) High inter-observer agreement

Figure 1. Examples of target absent scenes with (a) high and (b) low inter-observer agreement. Red
dots represent the first 3 fixations from each observer.

Not all of the agreement between observers is driven by the image, however - human fixations
exhibit regularities that distinguish them from randomly-selected image locations. In this issue,
Tatler & Vincent present compelling evidence that robust oculomotor biases constrain fixation
selection independently of visual information or task (see also Tatler 2007). Qualitatively, we
observe in our dataset that the corners of the image, and the top and bottom edges, were less
frequently fixated than regions near the image center. We therefore derived a measure to
quantify the proportion of inter-observer agreement that was independent of the particular
scene's content (see also Foulsham & Underwood, 2008; Henderson, Brockmole, Castelhano,
Mack, 2007). Our "cross-image control" was obtained using the procedure described above, with
the variation that the observer-defined region for one image was used to predict the excluded
observer's fixations from a different image selected at random.

The Receiver Operating Characteristic (ROC) curves for inter-observer agreement and the
cross-image control are shown in Figure 2. These curves show the proportion of fixations that
fall within the fixation-defined map (detection rate) in relation to the proportion of the image
area selected by the map (false alarm rate). In the following, we report the area under the curve
(AUC), which corresponds to the probability that the model will rank an actual fixation location
more highly than a non-fixated location, with a value ranging from 0.5 (chance performance) to
1 (perfect performance) (Harel et al, 2006; Renninger, Verghese & Coughlan 2007; Tatler et al
2005).

The results in Figure 2 show a high degree of inter-observer agreement, indicating high
consistency in the regions fixated by different observers for both target absent scenes (AUC =
0.93) and target present scenes (AUC = 0.95). Overall, inter-observer agreement was higher in
target present than in target absent scenes (t(805) = 11.6, p<0.000 1), most likely because fixating
the target was the primary goal of the search. These human agreement curves represent the upper
bound on performance, against which the computational models will be compared. Furthermore,
the cross-image consistency produced an AUC of 0.68 and 0.62 for target absent and present

........................................................... .. . ...... .
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scenes respectively (random chance: AUC = 0.5). The cross-image control line represents the
proportion of human agreement due to oculomotor biases and other biases in the stimuli set, and
serves as the lower bound on the performance of the models.

Target Absent Target Present
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- Inter-Observer Agreement ... Cross-Image Control

Figure 2. Inter-observer agreement and cross-image control for target absent (left) and present
(right) scenes. The false alarm rate, on the x-axis, corresponds to the proportion of the image
selected by the model.

Modeling Methods

Here we used the framework of visual search guidance from Torralba (2003) and Torralba et al
(2006). In this framework, the attentional map (M), which will be used to predict the locations
fixated by human observers, is computed by combining three sources of information: image
saliency at each location (Ms), a model of guidance by target features (MT), and a model of
guidance by the scene context (Mc).

M(x,y) = Ms(x,y) i1 MT(x,y)12 M c(x,y)3 (1)

The exponents (yl, y2, y3), which will act like weights if we take the logarithm of Equation 1,
are constants which are required when combining distributions with high-dimensional inputs that
were independently trained, to ensure that the combined distribution is not dominated by one
source (the procedure for selecting the exponents is described below). Together, these three
components (Ms, M and Mc) make up the combined attentional map (M).

Figure 3 illustrates a scene with its corresponding saliency, target features, and scene context
maps, as well as a combined map integrating the three sources of guidance. Each model makes
different predictions, represented as a surface map, of the regions that are likely to be fixated.
The best model should capture as many fixations as possible within as finely-constrained a
region as possible. In the following sections, we evaluate the performance of each of the three
models individually, and then combined models.
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guidance sources
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Figure 3: Illustration of an image, the computational maps for three sources of guidance, and the
overall, combined attentional map. The flattened maps show the image regions selected when the
model is thresholded at 30% of the image. Fixations within the selected region are shown in green.

Guidance by Saliency

Computational models of saliency are generally based on one principle: they use a mixture of
local image features (e.g. color and orientation at various spatial scales) to determine regions that
are local outliers given the statistical distribution of features across a larger region of the image.
The hypothesis underlying these models is that locations whose properties differ from
neighboring regions or the image as a whole are the most informative. Indeed, rare image
features in an image are more likely to be diagnostic of objects (Elazary & Itti, 2008; Torralba et
al., 2006), whereas repetitive image features or large homogenous regions are unlikely to be
object-like (Rosenholtz, Li & Nakano, 2007; Bravo & Farid, 2004).

Computing saliency involves estimating the distribution of local features in the image. Here we
used the statistical saliency model described in Torralba et al (2006), including the use of an
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independent validation set to determine an appropriate value for the exponent3 . The independent
validation set was composed of 50 target present and 50 target absent scenes selected randomly
from the 912 experimental images and excluded from all other analyses. Figure 4 shows maps of
the best and worst predictions of the saliency model on our stimuli set.

Best performance ) Worst performance

AUC = 0.94 AUC = 0.80 AUC = 0.36

Figure 4. Saliency maps from images with the best, mid-range, and worst performance in predicting
fixations (highlighted region represents the highest X% selected by the model).

Guidance by Target Features

To date, the most ubiquitous source of search guidance are target features (for reviews, Wolfe,
2007; Zelinsky, 2008). Identifying the relevant features of an object's appearance remains a
difficult issue, although recent computer vision approaches have reached excellent performance
for some object classes (i.e. faces, Ullman, Vidal-Naquet, & Sali, 2002; cars, Papageorgiou &
Poggio, 2000; pedestrians, Dalal & Triggs, 2005; cars, bicycles and pedestrians, Serre, Wolf,
Bileschi, Riesenhuber & Poggio, 2007; Torralba, Fergus & Freeman, 2008). Here, we used the
person detector developed by Dalal & Triggs (2005) and Dalal, Triggs, & Schmid (2006) to
model target features, as their code is available online4, and gives state of the art detection
performance at a reasonable speed.

Implementation of the DT person detector. The Dalal &Triggs (DT) detector is a classifier-
based detector that uses a scanning window approach to explore the image at all locations and
scales. The classifier extracts a set of features from that window and applies a linear Support
Vector Machine (SVM) to classify the window as belonging to the target or background classes.
The features are a grid of Histograms of Oriented Gradients (HOG) descriptors. The detector is
sensitive to the gross structure of an upright human figure but relatively tolerant to variation in
the pose of the arms and legs. We trained various implementations of the DT detector with
different training set sizes and scanning window sizes, but here we report the only the results
from the implementation which ultimately gave the best performance on our validation set'. This
implementation used a scanning window of 32 x 64 pixels and was trained on 2000 upright,
unoccluded pedestrians, along with their left-right reflections. Pedestrians were cropped from

3 In our validation set, the best exponent for the saliency map was 0.025, which is within the optimal range of 0.01-0.3 found
by Torralba et al (2006).

4 See people detector code at http://pascal.inrialpes.fr/soft/olt/
5 See the authors' website for details and results from the other implementations.
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images in the LabelMe database (Russell, Torralba, Murphy, & Freeman, 2008) and reduced in
size to fill three-quarters of the height of the detection window. Negative training examples
consisted of 30 randomly-selected 32 x 64 pixel patches from 2000 images of outdoor scenes
which did not contain people. None of the experimental stimuli were used as training images.
The training process was as described in Dalal & Triggs (2005).

Person detection

0.95

0.9

0.85

QA

- 0.75 - --

0.7 -- - - -
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0.55

0 5
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

False positives per window (FPPW)

Figure 5. The detection curve of the best implementation of the DT pedestrian detector (trained on
2000 examples of window size 64x32 pixels) on our database of 456 target present images.

The detector was tested on our stimuli set with cropped, resized pedestrians from our target
present scenes serving as positive test examples and 32 x 64 pixel windows from our target
absent scenes serving as negative test examples. Figure 5 shows the detection performance of our
selected DT model implementation6 . This implementation gave over 90% correct detections at a
false positive rate of 10%, confirming the reliability of the DT detector on our database.
Although this performance might be considered low given the exceptional performance of the
DT detector on other image sets, the scenes used for our search task were particularly
challenging: targets were small, often occluded, and embedded in high clutter. It is worth nothing
that our goal was not to detect target-people in the dataset, but to use a reliable object detector as
a predictor of human search fixations.

Targetfeatures map. To generate target features maps for each image, the detector was run
using a sliding window that moved across the image in steps of 8 pixels. Multiscale detection
was achieved by iteratively reducing the image by 20% and rerunning the sliding window
detector; this process was repeated until the image height was less than the height of the detector
window (see Dalal & Triggs, 2005, for details). This meant that each pixel was involved in many
detection windows, and therefore the detector returned many values for each pixel. We created
the object detector map (MT) by assigning to each pixel the highest detection score returned for
that pixel (from any detection window at any scale). As with the saliency map, the resulting
object detector map was raised to an exponent (0.025, determined by iteratively varying the
exponent to obtain the best performance on the validation set) and then blurred by applying a

6 See the authors' website for the detection curves of the other model implementations.
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Gaussian filter with 50% cut-off frequency at an 8 cycles/image. Figure 6 shows maps of the best
and worst predictions of the target features model on our stimuli set.

Best performance ) Worst performance

AUC = 0.95 AUC = 0.78 AUC = 0.50

Figure 6. Target features maps from images with the best, mid-range, and worst performance in
predicting fixations.

Guidance by Scene Context Features

The mandatory role of scene context in object detection and search has been acknowledged for
decades (for reviews, Bar, 2004; Chun, 2003; Oliva & Torralba, 2007). However, formal models
of scene context guidance face the same problem as models of object appearance: they require
knowledge about how humans represent visual scenes. Several models of scene recognition have
been proposed in recent years (Bosch, Zisserman, & Mui'oz, 2008; Fei-Fei & Perona, 2005;
Grossberg, & Huang, in press; Lazebnik, Schmidt, & Ponce, 2006; Oliva & Torralba, 2001;
Vogel & Schiele, 2007; Renninger & Malik, 2004), with most of the approaches summarizing an
image's "global" features by pooling responses from low-level filters at multiple scales and
orientations sampled over regions in the image.

Our model of scene context implements a top-down constraint that selects "relevant" image
regions for a search task. Top-down constraints in a people-search task, for example, would
select regions corresponding to sidewalks but not sky or trees. As in Oliva and Torralba (2001),
we adopted a representation of the image using a set of "global features" that provide a holistic
description of the spatial organization of spatial frequencies and orientations in the image. The
implementation was identical to the description in Torralba et al (2006), with the exception that
the scene context model incorporated a finer spatial analysis (i.e. an 8x8 grid of non-overlapping
windows) and was trained on more images (1880 images). From each training image, we
produced 10 random crops of 320x240 pixels to generate a training set with a uniform
distribution of target locations. As in Torralba et al (2006), the model learned the associations
between the global features of an image and the location of the target. The trained computational
context model compared the global scene features of a novel image with learned global scene
features to predict the image region most highly associated with the presence of a pedestrian.
This region is represented by a horizontal line at the height predicted by the model. Figure 7
shows maps of the best and worst predictions of the scene context model on our stimuli set.



Best performance ) Worst performance

AUC = 0.95 AUC = 0.87 AUC = 0.27

Figure 7. Scene context maps from images with the best, mid-range, and worst performance in
predicting fixations.

There are cases where the scene context model failed to predict human fixations simply
because it selected the wrong region (see Figures 7 and 8). In these cases, it would be interesting
to see whether performance could be improved by a "context oracle" which knows the true
context region in each image. It is possible to approximate contextual "ground truth" for an
image by asking observers to indicate the best possible context region in each scene (Droll &
Eckstein, 2008). With this information, we can establish an upper bound on the performance of a
model based solely on scene context.

Evaluating the ground truth of Scene Context: a "Context Oracle." Seven new participants
marked the context region for pedestrians in each scene in the database. The instructions were to
imagine pedestrians in the most plausible places in the scene and to position a horizontal bar at
the height where the heads would be. Participants were encouraged to use cues such as the
horizon, the heights of doorways, and the heights of cars and signs in order to make the most
accurate estimate of human head height. Image presentation was randomized and self-paced.
Each participant's results served as an individual "context model" which identified the
contextually relevant location for a pedestrian for each scene. The "context oracle" was created
by pooling responses from all observers. Context oracle maps (Figure 8), were created by
applying a Gaussian blur to the horizontal line selected by each observer, and then summing the
maps produced by all participants.

Figure 8: Example of a target-
absent image showing its

.. computationally-defined scene
_ _i_ context map (left) and an

empirically-defined context
oracle map (right). Fixations
within the top 30% of each

model's selected region are
(a) Scene context model (b) Context oracle shown in green.

............ ...



Guidance by a Combined Model of Attention

The three models were combined by multiplying the weighted maps as shown in Equation 1.
The weights (yl = 0.1, y2 = 0.85, y3 = 0.05) were selected by testing various weights in the range
[0,1] to find the combination which gave the best performance on the validation set. Examples of
combined source model maps are shown in Figure 9.

Best performance ) Worst performance

Figure 9. The combined source maps from images with the best, mid-range, and worst performance
in predicting fixations.



Modeling Results

The ROC curves for all models are shown in Figure 10 and the performances are given in
Table 1. Averaging across target absent and target present scenes, the scene context model
predicted fixated regions with greater accuracy (AUC = 0.845) than models of saliency (0.795)
or target features (0.811) alone. A combination of the three sources of guidance, however,
resulted in greater overall accuracy (0.895) than any single source model, with the overall
highest performance given by a model that integrated saliency and target features with the
"context oracle" model of scene context (0.899). Relative to human agreement, the purely
computational combined model achieved 94% of the AUC for human agreement in both target
present and absent scenes. When the context oracle was substituted for the scene context model,
the combined model achieved on average 96% of the AUC of human agreement.

Target Absent

False alarm rate (proportion of image area)

Target Present

02 0.4 0.6 0. 1

False alarm rate (proportion of image area)

.---- Human Agreement
Cross-Image Control

-- - Saliency Model
Target Features Model

-- - -Context Model

-- Context Oracle
-- Combined Source Model

Figure 10: ROC curves for various models. The ROC curves for human agreement and human
chance level consistency correspond respectively to the upper bounds and lower bounds of
performances against which models will be compared.

Saliency and target features models

The saliency model had the lowest overall performance, with an AUC of 0.77 and 0.82 in
target absent and present scenes. This performance is within the range of values given by other
saliency models predicting fixations in free viewing tasks (AUC of 0.727 for Itti et al., 1998;
0.767 for Bruce & Tsotsos, 2006; see also Harel et al., 2005).
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The best example shown in Figure 4 is typical of the type of scene in which the saliency model
performs very well. The saliency model does best in scenes with large homogenous regions (sky,
road), and in which most of the salient features coincide with the region where observers might
reasonably expect to find the target. This illustrates the difficulty in determining how saliency
influences eye movement guidance: in many cases, the salient regions of a real-world scene are
also the most contextually relevant regions. In fact, recent studies suggest that the correlation
between saliency and observer's fixation selection may be an artifact of correlations between
salience and higher-level information (Einhauser et al, 2008; Foulsham & Underwood, 2008;
Henderson et al, 2007; Stirk & Underwood, 2007; Tatler, 2007). The saliency model can also
give very poor predictions of human fixations in some scenes, as shown by the example in
Figure 4. In a search task, saliency alone is a rather unreliable source of guidance because
saliency is often created by an accidental feature (such as a reflection or a differently-colored gap
between two objects) that does not necessarily correspond to an informative region.

In target present scenes, not surprisingly, the target features model (AUC = 0.85) performed
significantly better than the saliency model (t(404) = 4.753, p < .001). In target absent scenes,
however, the target features model (AUC = 0.78) did not perform significantly above the
saliency model (t(405) < 1). Interestingly, both models were significantly correlated with each
other (0.37, p < .001), suggesting that scenes for which the saliency model was able to predict
fixations well tended to be scenes in which the target features model also predicted fixations
well.

Figure 5 shows target absent images for which the target features model gave the best and
worst predictions. Similar to the saliency model, the target model tended to perform best when
most of the objects were concentrated within the contextually relevant region for a pedestrian.
Also like the saliency model, the target features performed poorly when it selected accidental,
non-object features of the image (such as tree branches that happened to overlap in a vaguely
human-like shape). It is important to note that the performance of the target features model is not
due solely to fixations on the target. In the target absent scenes, there was no target to find, yet
the target features model was still able to predict human fixations significantly above the level of
the cross-image control. Even in target present scenes, replacing predictions of the target features
model with the true location of the target (a "target oracle") did not explain the target model's
performance on this dataset7.

Context models

Overall, scene context was the most accurate single source of guidance in this search task. The
computational model of scene context predicted fixation locations with an overall accuracy of
0.85 and 0.84 in target absent and present scenes respectively. The scene context model
performed significantly better than the target features model in target absent scenes (t(405) =
11.122, p < .001), although the two models did not significantly differ in target present scenes
(t(404)< 1).

7 See the authors' website for a comparison of the ROC curves of the target features model and the target oracle.



In the majority of our scenes, the computational scene context model gave a very good
approximation of the location of search fixations. The first and second images in Figure 7 show
the model's best and median performance, respectively, for target absent scenes. In fact, the
context model failed to predict fixated regions (i.e., had an AUC below the mean AUC of the
cross-image control) in only 26 target absent scenes and 24 target present scenes. Typical
failures are shown in Figures 7 and 8: in a few scenes, the model incorrectly identifies the
relationship between scene layout and probable target location. In order to get around this
problem and get a sense of the true predictive power of a context-only model of search guidance,
we used the "context oracle." The empirically-determined context oracle should be able to
distinguish between cases in which the context model fails because it fails to identify the
appropriate context region, and cases in which it fails because human fixations were largely
outside the context region.

Overall performance of the context oracle was 0.88 and 0.89 for target absent and target
present images respectively. The context oracle performed significantly better than the
computational model of scene context in target absent (t(405) = 8.265, p < .001) and target
present (t(404) = 8.861, p < .001) scenes. Unlike any of the computational models, the context
oracle performed above chance on all images of the dataset; at worst, it performed at about the
level of the average AUC for the cross-image control (0.68 for target absent scenes). Examples
of these failures are shown in Figure 11.

AUC = 0.68 AUC = 0.69

AUC = 0.71 AUC = 0.72

Figure 11: Examples of images for which the context oracle performs poorly.
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Combined source models

A combined source model that integrated saliency, target features, and scene context
outperformed all of the single-source models, with an overall AUC of 0.88 in target absent
scenes and 0.90 in target present scenes (see Table 1). The combined guidance model performed
better than the best single-source model (scene context) in both target absent (t(405) = 10.450, p
< .001) and target present (t(404) = 13.501, p < .001) scenes.

Across the image set, performance of the combined model was strongly correlated with that of
the scene context model (r = 0.80, p < .001 in target absent scenes). The combined model was
also moderately correlated with the saliency model (r = 0.51, p < .001 in target absent scenes),
and the target features model correlated weakly (r = 0.25, p < 0.001 in target absent scenes).
Taken together, this suggests that the success or failure of the combined model depended largely
on the success or failure of its scene context component, and less on the other two components.

In order to analyze the combined model in greater detail, we also tested partial models that
were missing one of the three sources of guidance (see Table 1). Removing the saliency
component of the combined model produced a small but significant drop in performance in target
absent (t(405) = 6.922, p < .001) and target present (t(404) = 2.668, p < .01) scenes. Likewise,
removing the target features component of the model also produced a small but significant drop
in performance in target absent (t(405) = 5.440, p < .001) and target present (t(404) = 10.980, p
< .001) scenes. The high significance value of these extremely small drops in performance is
somewhat deceptive; the reasons for this are addressed in the general discussion. Notably, the
largest drop in performance resulted when the scene context component was removed from the
combined model (target absent: t(405) = 17.381, p < .001; target present: t(404) = 6.759, p <
.001).

Interestingly, the combined source model performed very similarly to the empirically-defined
context oracle. The difference between these two models was not significant in target absent
(t(405) = -1.233, p = .218) or target present (t(404) = 2.346, p = .019) scenes.

Finally, the high performance of the context oracle motivated us to substitute it for the scene
context component of the combined model, to see whether performance could be boosted even
further. Indeed, substituting the context oracle for computational scene context improved
performance in both target absent (t(405) = 5.565, p < .001) and target present (t(404) = 3.461, p
= .001) scenes. The resulting hybrid model was almost entirely driven by the context oracle, as
suggested by its very high correlation with the context oracle (r = 0.97, p < .001 in target absent
scenes).



TABLE 1
Summary of performance of human observers, single source models, and combined

source of guidance models

Performance at 2WtI Performance at I(7'
Area under curve threshold threshold

Target-absent scenes
Human agreement .930 .923 .775
Cross-image control .683 .404 .217

Saliency modd .773 .558 .342

Target features model .778 .539 .313
Scene context model .845 .738 .448

Context oracle .881 .842 .547

Saliency xTarget .814 .633 .399
features

Context x Saliency .876 .801 .570
Context x Target .861 .784 .493

features
Combined source .877 .804 .574

model
Combined model, .893 .852 .605

using context oracle

Target-present scenes
Human agreement .955 .952 .880

Cross-image control .622 .346 .186

Sabency modd .818 .658 .454

Target features model .845 .697 .515

Scene context model .844 .727 .451

Context oracle .889 .867 .562

Salincy xTarget .872 .773 .586
features

Context x Salency .894 .840 .621
Context x Target .890 .824 .606

features
Combined source modd .896 .845 .629
Combined model, .906 .886 .646

using context oracle



General Discussion

We assembled a large dataset of 912 real world scenes and recorded eye movements from
observers performing a visual search task. The scene regions fixated were very consistent across
different observers, regardless of whether the target was present or absent in the scene.
Motivated by the regularity of search behavior, we implemented computational models for
several proposed methods of search guidance and evaluated how well these models predicted
observers' fixation locations. Over the entire database, the scene context model generated better
predictions on target absent scenes (it was the best single map in 276 out of the 406 scenes) than
saliency (71 scenes) or target features (59 scenes) models. Even in target present scenes, scene
context provided better predictions (191 of 405 scenes) than saliency (72 scenes) but only
slightly more than target features (142 scenes). Ultimately, combining models of attentional
guidance predicted 94% of human agreement, with the scene context component providing the
most explanatory power.

Although the combined model is reasonably accurate at predicting human fixations, there is
still room for improvement. Moving forward, even small improvements in model specificity will
represent a significant achievement. Our data shows that human observers are reasonable
predictors of fixations even as map selectivity increases: 94% and 83% accuracy for selected
region sizes of 20% and 10% respectively. In contrast, the accuracy of all models fell off
drastically as map selectivity increased and a region size of roughly 40% is needed for the
combined source model to achieve the same detection rate as human observers. Figure 12
illustrates this gap between the best computational model and human performance: observers'
fixations are tightly clustered in very specific regions, but the model selects a much more general
region containing many non-fixated objects. In the following, we offer several approaches that
may contribute to an improved representation of search guidance in real-world scenes.

(a) Combined computational model

AUC = 0.95 AUC = 0.95

(b) Region defined by human fixations

AUC = 0.98 AUC = 0.98

Figure 12. Illustration of the discrepancy between model and human performance. Human fixations
are concentrated in a very small region of the image (bottom). The combined guidance model (top)
selects this region, but also selects areas that human observers do not fixate
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Figure 11 shows the worst performance of the context oracle for target absent scenes. Why was
contextual guidance insufficient for predicting the fixated regions of these scenes? One reason
may be that our model of the context region did not adequately represent the real context region
in certain complex scenes. We modeled the context region as a single height in the image plane,
which is appropriate for most images (typically pedestrians appear on the ground plane and
nowhere else). However, when the scenes contain multiple surfaces (such as balconies, ramps,
and stairs) at different heights, the simplified model tends to fail. Improving the implementation
of scene context to reflect that observers have expectations associated with multiple scene
regions may reduce the discrepancy between model predictions and where observers look.

In addition, observers may be guided by contextual information beyond what is represented
here. It is important to note that scene context can be represented with a number of approaches.
Associations between the target and other objects in the scene, for example, may also contribute
to search guidance (Kumar & Hebert, 2005; Rabinovich, Vedaldi, Galleguillos, Wiewiora &
Belongie, 2007; Torralba, Murphy & Freeman, 2004, 2007). In our search task, for example, the
presence of a person may be more strongly associated with a doorway than a garbage can. The
role of semantic influences in search guidance remains an interesting and open question. In this
issue, Zelinsky & Schmidt explore an intermediate between search of semantically meaningful
scenes and search in which observers lack expectations of target location. They find evidence
that scene segmentation and flexible semantic cues can be used very rapidly to bias search to
regions associated with the target (see also Eckstein et al, 2006; Neider & Zelinsky, 2006).

Scene context seems to provide the most accurate predictions in this task, which provokes the
question: Is scene context typically the dominant source of guidance in real world search tasks?
Similarly, how well do the findings of this study generalize to search for other object classes?
Our search task may be biased toward context-guided search in the following ways. First,
observers may have been biased to adopt a context-based strategy rather than relying on target
features simply because the target pedestrians were generally very small (less than 1% of image
area) and often occluded, so a search strategy based mainly on target features might have
produced more false alarms than detections. Second, the large database tested here represented
both semantically-consistent associations (pedestrians were supported by surfaces; Biederman et
al, 1982) and location-consistent associations (pedestrians were located on ground surfaces). As
a result, even when the target was absent from the scene, viewers expected to find their target
within the context region, and therefore the scene context model predicted fixations more
effectively than the target-features or saliency models. Searching scenes in which the target
location violated these prior expectations (e.g. person on a cloud or rooftop) might bias the
pattern of fixations such that emphasis on different sources of guidance is different from the
weights on the current model.

A fully generalizeable model of search behavior may need to incorporate flexible weights on
the individual sources of search guidance. Consider the example of searching for a pen in an
office. Looking for a pen from the doorway may induce strategies based on convenient object
relations, such as looking first to a desk, which is both strongly associated with the target and
easy to discriminate from background objects. On the other hand, looking for a pen while
standing in front of the desk may cause facilitate the use of other strategies, such as searching for



pen-like features. It follows that the features of the target may vary in informativeness as an
observer navigates through their environment. A counting task, for example, may enhance the
importance of a target features model (Kanan, Tong, Zhang, & Cottrell, 2009). The implications
for the combined source model of guidance are that, not only would the model benefit from an
improved representation of target features (e.g. Zelinsky, 2008) or saliency (Kanan et al, 2009)
or context, but the weights themselves may need to be flexible, depending on constraints not
currently modeled.

In short, there is much room for further exploration: we need to investigate a variety of natural
scene search tasks in order to fully understand the sources of guidance that drive attention and
how they interact. It is important to acknowledge that we have chosen to implement only one of
several possible representations of image saliency, target features, or scene context. Therefore,
performance of the individual guidance models discussed in this paper may vary with different
computational approaches. Our aim, nevertheless, is to set a performance benchmark for how
accurately a model representing combined sources of guidance can predict where human
observers will fixate during natural search tasks.

Concluding Remarks

We present a model of search guidance that combines saliency, target features, and scene
context, and accounts for 94% of the agreement between human observers searching for targets
in over 900 scenes. In this people-search task, the scene context model proves to be the single
most important component driving the high performance of the combined source model. None of
the models, however, fully capture the selectivity of the observer-defined map. A comprehensive
understanding of search behavior may require that future models capture mechanisms that
underlie the tight clustering of search fixations.
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analysis reveals an effect of observer specific experience on eye
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Introduction

An important feature of ecological visual search is that there are few truly novel, unfamiliar
places in which a person is likely to search. Daily tasks often involve examining the same place
repeatedly, such as the many occasions spent searching for a specific utensil in one's own
kitchen. Locating the target in question benefits from both category based information (e.g.
utensils are on countertops) and place specific information (e.g. in this kitchen, utensils hang
over the stove). Combining these sources of information can happen automatically and often
without awareness (Chun & Jiang, 1998). Previous work characterizing attentional deployment
during search has neglected the role of a person's past experience with familiar environments.
Does prior search experience, assessed using fixation locations, have a distinct role in guiding
attention in familiar scenes?

Typically, searching an environment involves making eye movements and directing attentional
resources to certain parts of the scene while ignoring others (Findlay & Gilchrist, 2005). This
non-uniform sampling of the visual environment has inspired a great deal of interest in
identifying what information the visual system uses to select fixation targets within a scene. An
early observation by Yarbus (1967) was that the same visual scene (e.g. a painting depicting a
scene) was inspected differently, according to the observer's cognitive goal. Later models of
oculomotor guidance in natural scenes emphasized low level accounts, such as differences in
visual feature content (local contrast, orientation) between fixated and unfixated scene regions
(Itti & Koch, 2000; Parkhurst, Law & Niebur, 2002; Reinagel & Zador, 1999). A growing body
of evidence suggests that observers combine high level information, such as learned target
features and scene context, with low level image features to guide their gaze when searching in
complex scenes (Chapter 1: Ehinger*, Hidalgo-Sotelo*, Torralba, & Oliva, 2009; Hwang,
Higgins, Pomplun, 2009; Torralba, Oliva, Castelhano, Henderson, 2006; Zelinsky, 2008).
Among these sources, the use of contextual information is most relevant to the focus of the
present study.

Scene context refers to the fact that certain objects are more likely to occur in a particular
environment than others: within the context of a kitchen, a whisk is more common than a
hairbrush, while the opposite is true in the context of a bedroom. Numerous behavioral studies
have documented an interactive role of context for identifying objects in scenes (Biederman,
Mezzanotte, & Rabinowitz, 1982; Boyce, Pollatsek, & Rayner, 1989; Davenport & Potter, 2004;
Palmer, 1975). Importantly, this contextual knowledge contains information about object
locations as well as object identities (Gronau, Neta, & Bar, 2008; Oliva & Torralba, 2007).
While it is not well understood how context is represented in different tasks, there is substantial
evidence that observers use scene context as a heuristic for deciding where to search. These
contextual influences, termed category location priors, refer to guidance by the spatial layout of
a given scene category. A brief glimpse of a real world scene (about 200 ms) provides basic level
category and spatial layout information that facilitates attention to relevant scene regions
(Castelhano & Henderson, 2007; Henderson, Weeks, & Hollingworth, 1999; Hollingworth,
2009; Sanocki & Epstein, 1997). Even observers' first search fixation is typically directed
towards a contextually relevant region (Eckstein, Drescher & Shimozaki, 2006; Neider &
Zelinsky, 2006; Torralba et al, 2006), for example inspecting countertop surfaces when searching
for a utensil in a kitchen.



Recognition, along with attentional guidance, contributes to the search process when observers
search within a familiar context such as a personal office or home. Over time, these places have
become associated with certain objects and their characteristic locations. These contextual
influences, termed scene specific location priors, result from a person's experience of searching
within a particular place. There is little evidence of how eye movements are affected by
recognizing a familiar scene, and indeed whether memory can be used to guide gaze direction at
all. The contextual cuing paradigm has been widely used to study scene specific location priors:
when specific scenes are repeated with the target in a consistent location, observers gradually
find targets faster in those scenes than in novel scenes, even when repeated scenes cannot be
explicitly recognized (Chun & Jiang, 1998, 2003). Few studies have recorded observer's eye
movements as they search and learn scene specific associations (Brockmole & Henderson, 2006;
Hidalgo-Sotelo, Oliva, Torralba, 2005; Peterson & Kramer, 2001; Tseng & Li, 2004). The most
consistent finding is that fewer saccades are made in repeated scenes, while other eye movement
parameters, such as average fixation duration, time to initiate search, and saccade amplitude do
not systematically change with learning.

Beyond a gross decrease in the number of fixations, does recognition affect the spatial
distribution of scene regions that are fixated? Interestingly, Peterson & Kramer (2001) showed
that searchers occasionally landed their initial search fixation on the target location in the
repeated displays, implying that scene recognition occurred rapidly and guided attention directly
to the target. More commonly, however, the scene was recognized after search had begun yet
still resulted in fewer fixations on repeated scenes (Peterson & Kramer, 2001). This result
suggests that searching a scene again and again increases memory driven search guidance, but
that the strength of recognition is not wholly consistent across trials. As such, the question
remains: how systematic is the relationship between scene specific location priors and eye
guidance?

Distinguishing "experience based" influences from the myriad of sources that guide attention
in natural scenes is tricky for several reasons. One challenge is that attention is strongly guided
by information that does not depend on scene specific experience. For example, one study
recently reported very high fixation agreement across observers, 93%, when participants
searched for people in photographs of outdoor scenes, with or without a target (Chapter 1). To
illustrate the regularities that exist in eye movements across and within observers, consider the
kitchen image in Figure 1 and the different populations of fixations that have been projected onto
the scene. Figure 1A shows fixations from 9 observers as they searched for a book in this kitchen
scene: the high density of fixations along countertop and cabinet surfaces demonstrates that
general scene information such as spatial layout and context guide where observers look.
Another challenge in studying eye guidance is that systematic biases unrelated to the scene's
content also influence gaze location. In Figure IB, fixations were randomly sampled from
observers' search of other scenes and have been projected onto the kitchen scene for illustrative
purposes. The non-uniform, central bias in the fixation distribution is driven by oculomotor
tendencies (Tatler, 2007; Tatler & Vincent, 2009) and photographer bias (Tseng, Carmi,
Cameron, Munoz, & Itti, 2009). The result of these common guidance mechanisms and
systematic biases is that observers may fixate similar scene regions, regardless of scene specific
experience.



Figure 1: Regularities in eye movements while searching for books (Experiment 1). (A) Fixations
from 9 observers searching for a book in this kitchen (green dots). Context and spatial layout
constraints of the scene contribute to a non-uniform distribution of fixations, e.g. high fixation density
along countertop surfaces in the foreground and background. (B) Fixations sampled from random
scenes (not including this kitchen) were projected onto this scene (pink dots). Oculomotor and
photographer bias contribute to a tendency for fixations to be centrally distributed, e.g. sparsely
fixated top and bottom of the image. (C) Fixations from 2 observers who repeated many searches of
this kitchen. Each observer's fixations are shown in 2 panels: Left- Initial search trial (red dots),
Right- All subsequent search trials (blue dots). Individual differences in fixation patterns are evident,
before and after learning.

Despite overall high agreement across observers, predicting where any one individual will look
in a scene is subject to spatial uncertainty. Even when searching for the same object in the same
scene, two independent observers may fixate different scene regions, illustrated in Figure 1 C
with the eye movements of observers TF and DB. The two panels on the left show each
observer's fixations from thefirst time this kitchen scene was searched (red dots). Although each
observer inspected different locations, the overall pattern of fixations is consistent with the
locations fixated by an independent set of observers (in Figure 1 A). The two panels on the right
show each observer's fixations from the next seven search trials of this kitchen (blue dots).
Interestingly, individual differences in fixation patterns can be seen in the initial search of the
scene and they also persist across multiple search trials. This observation suggests that variation
in the viewing patterns across observers may partially guide gaze location on subsequent
searches of the scene. Such an effect would be masked by pooling over multiple observers with
scene specific experience (Figure 1 C, right panels) because the population as a whole would look
similar to the population of observers without scene specific experience (Figure 1A). To
reasonably estimate the influence of past experience, the search patterns of observers who have
never viewed the scene should be contrasted with different observers who have previously
searched the scene.

-_ -- - - - I ... ....... . .......... ......



In this paper, we present (1) a novel data analysis approach termed comparative map analysis
for evaluating how different sources of information contribute to the placement of individual
fixation locations, and (2) the eye movement data from three independent experiments
investigating the role of scene specific experience in visual search. The main question
underlying this work is whether a person's past experience- as measured by fixated
locations- biases attentional selection when searching a familiar scene. Each search
experiment presented here was originally designed to investigate a different issue related to how
observers search familiar scenes. Some dependent measures from these experiments have been
previously published (Chapter 1; Hidalgo-Sotelo et al, 2005). Spatial characteristics of our
participant's search fixations, however, have not previously been reported. Using comparative
map analysis on these data sets, we show that eye fixations are guided by a person's past
experience of searching in familiar scenes (experiments 1-3), regardless of the presence of a
target in the familiar scene (experiments 2-3), and despite an inconsistent learning environment
(experiment 3).

Comparative Map Analysis

The approach we describe as comparative map analysis can be used to evaluate how well
different distributions of fixations predict where observers will look in a scene. Critically, each
fixation distribution is sampled from a different, strategically chosen, population of fixations.
The resulting distributions are evaluated using Receiver Operating Characteristic curves to assess
how precisely they distinguish between fixated and unfixated locations. In the present paper, this
analysis was used to investigate whether an observer's experience, measured by fixated
locations, plays a distinct role in guiding attention during search of familiar scenes. Toward this
goal, we broadly study two classes of populations: scene dependent fixations, which are driven
by the content of that specific scene, and scene independentfixations, which provide controls for
sources of bias that are unrelated to the scene's content.

Logic of the approach

Given the challenges outlined in the introduction, how can we isolate the bias resulting from an
individual's experience searching a specific scene? The solution lies in strategically identifying
fixation populations relevant to the question of interest. One population, for example, is defined
by the fixation locations of different novel searchers of a given scene (i.e. observers who have
never searched that particular scene). Another population is defined by the fixation locations of a
single observer who has searched that particular scene on several instances. Whereas the first
population represents the influence of (general) scene context on search, the second population
reflects any specific idiosyncrasies of the observer's own examination of the scene. Fixation
maps are created by sampling from these populations.

Each fixation map is used to predict the fixation locations of a separate trial, and its accuracy is
quantified using an ROC curve. Signal detection measures such as the ROC curve are becoming
increasingly used for evaluating eye fixation prediction (Bruce & Tsotsos, 2009; Einhaiiser,
Spain & Perona, 2008; Renninger, Verghese, Coughlan, 2007; Tatler, Baddeley, and Gilchrist,



2005). This approach is based on the logic that if a map (e.g. an image saliency map) can
discriminate between fixated and control locations, then the information in the map is predictive
of which locations will be fixated. The map's performance can be summarized by evaluating the
area under the ROC curve. Accordingly, if there is no significant difference in the accuracy of
two maps, then the underlying information is considered to be equally informative for predicting
fixation locations.

Recent studies of attentional guidance have constructed control distributions by randomly
sampling from populations of real fixations (e.g. Chapter 1; Renninger et al, 2007; Zhang, Tong,
Marks, Shan & Cottrell, 2009). Drawing control distributions from real fixations creates an
appropriate baseline condition with the same bias (Tatler et al, 2005). For example, when
evaluating whether a saliency model predicted human fixations better than chance, Parkhurst &
Niebur (2003) noted that comparison should be against saliency values drawn from actual fixated
locations on randomly selected images (see also Henderson, Brockmole, Castelhano, and Mack,
2007). Similarly, Tatler and Vincent (2009) have used this technique to evaluate the predictive
power of oculomotor biases.

Comparative map analysis extends this rationale by evaluating several populations that vary
with respect to whether information about the "person," "past," and "place" is represented. To
specify each population, we consider what information was available to observers who generated
the fixations in that population. "Place" information, for instance, refers to how the scene's
schema (i.e. spatial layout and semantic knowledge) guides observer's attention. Searching for
an object in a new place, like someone else's office or bedroom, recruits this information to
deploy attention across the scene. Depending on the task and content of the scene, place
information constrains observers eye movements to a varying degree. Looking for a book in a
very sparse scene such as a bathroom, for example, may compel gaze to the few object-
containing scene regions, while searching within an untidy bedroom would provide fewer gaze
constraints. Critically, what we term place information is distinct from information acquired
through episodic experience. "Past" information refers to knowledge gained by repeated
experience with a particular place; the speeded reaction times observed in contextual cuing (e.g.
Chun & Jiang, 1998; Brockmole & Henderson, 2006) reflect the use of this information.
Individual observers, however, may differ in where they look on any given search of a familiar
or novel scene. "Person" information, therefore, refers to the scene regions fixated by a single
observer during their search of a specific scene.

The previous paragraph describes how scene content drives observers to look at certain parts of
the scene, which constitutes the class of scene dependentfixations. Within this class, we
specifically define: (1) fixations made by a single observer's repeated searches, (2) fixations of
other familiar observers (i.e. searched the scene repeatedly), and (3) fixations of novel observers
(i.e. searched the scene once). Importantly, these populations represent slightly different sources
of information: self-consistency, learned scene knowledge and general scene context,
respectively.

Control populations are crucial for assessing the relative informativeness of other regularities
(e.g. oculomotor biases) in predicting the same eye movements. For this reason, we compare the
above populations against scene independentfixations, which provide controls for sources of



bias that are unrelated to the scene's content. These populations are defined using: (4) fixations
from the same observer on random scenes, and (5) fixations from different observers on random
scenes. These populations reflect spatial biases in oculomotor behavior that manifest across the
set of scenes (intra-observer and inter-observer biases respectively).

Two simple model-based populations (as opposed to sampling from empirical fixations) serve
as controls to evaluate the extent to which a central Gaussian distribution (6) and uniform
distribution (7) predict observers' fixations. The uniform distribution serves as the true measure
of chance, while the central fixation bias in human eye movements (Tatler, 2007) suggests that a
central Gaussian distribution may predict fixations above chance level.
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Figure 2: Schematic of comparative map analysis. This illustrates the source of fixation populations
(1-5) and how they are sampled to create fixation maps that represent several influences on eye
guidance. The following steps are performed iteratively for each of R trials: select one search trial
(i.e. first 3 fixations of one trial) from Fself; use the remaining N fixations to create a prediction map
for intra-observer similarity. Fixation maps for populations (2-5) are created by sampling N times
from the corresponding distributions. Red (familiar observers) and blue (novel) outlines represent
scene dependent populations. Dashed outlines indicate non-self fixation populations.

Building fixation maps

Fixation maps were created for each of the above populations using the following procedure,
shown schematically in Figure 2. First, we collected a list of the locations fixated by one
observer in all repeated searches of a scene; trials in which the eye was lost or the observer failed
to find the target object were not included. For each repeated search trial R, a self-consistency
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fixation map (1) was built by excluding fixations from one search trial and using the remaining N
fixations to define a prediction map. Next, the other fixation maps were created by sampling N
times from the appropriate population of empirical fixations (2-5) or statistical model (6-7). This
process was iterated for R repeated search trials, and the resulting fixation maps were used to
predict the excluded trial's fixations (probe fixations).

Except where noted, the first 3 search fixations in each trial were used to build the fixation
maps in the present analysis. Search fixations are defined as fixations made during active
exploration of the scene, thus excluding fixations landing on the target and the initial central
fixation. For each repeated search, the maps were compared in terms of how well they predicted
the first 3 search fixations of an excluded trial. Given past findings that the consistency of
fixation locations across observers decreases over time (Mannan, Ruddock, Wooding, 1997;
Yarbus, 1967), we used the first 3 search fixations because it represented a time window
appropriate for capturing the highest consistency across novel and repeated conditions.

Evaluating fixation maps

We used the Receiver Operator Characteristic to evaluate how well fixated and unfixated
locations could be discriminated. The ROC curve is a common signal detection technique that
represents the proportion of real fixations falling within a fixation map (detection rate) in relation
to the proportion of the image area selected (false alarm rate) (e.g. Chapter 1; Renninger et al,
2007; Tatler et al, 2005). We used the area under the curve or AUC area (Green & Swets, 1966)
to compare differences in prediction maps.



Search Experiment 1

The purpose of this experiment was to investigate whether memory-guided visual search
improves as a function of the amount of time to retrieve scene-specific location priors. Observers
were given the task of finding a book in indoor scenes (e.g. kitchens, bedrooms) that were either
searched once (Novel condition) or searched repeatedly (Familiar condition). Importantly, the
book's location was unchanged in repeated presentations of the same scene, allowing observers
to learn an association between a specific scene and the location of a book in that scene. Previous
findings from our lab (Chapter 3) and others (Kunar, Flusberg, & Wolfe, 2008; Peterson &
Kramer, 2001) suggest that a familiar spatial context may indeed guide attention to a learned
target location, but that using this form of guidance is slow. We tested this question by
introducing a variable stimulus onset asynchrony (SOA) between the scene onset (observers
fixating centrally) and the initial searchfixation on the scene.

A similar paradigm was used in a previous search study (Chapter 3, Experiment 1) in which
observers were required to keep their eyes on a fixation cross superimposed on the middle of a
scene for 1300 ms (long-delay group) or 300 ms (short-delay group) before initiating overt
search to find the person in the scene. As in the present experiment, observers searched novel
scenes and scenes that were repeated in each of 8 blocks. Our main question was whether
prolonging central fixation on a familiar scene would enable participants to use their memory to
guide search more effectively. Indeed, we observed that participants in the long-delay group had
faster learning curves (RT x block) than participants who were delayed for only 300 seconds.
This effect, we hypothesized, was driven by the fact that eye movements can be executed rapidly
(latency to initiate the first saccade is typically 250-300 ms, e.g. Castelhano & Rayner, 2008),
but a longer delay makes it more likely that scene specific associations will be retrieved from
long term memory and used to the eyes to the target.

The present experiment was designed to test this hypothesis by varying the critical conditions,
scene familiarity (novel or familiar) and retrieval time (SOA), within-subject. In an initial
Learning phase, observers learned scene specific location priors for the repeated scenes. A
subsequent Test phase presented each scene briefly (200 ms) followed by a variable SOA
(ranging from 0.2 to 1.6 seconds). We predicted that there would be an interaction between scene
familiarity and SOA, such that longer delays would predict shorter search times on familiar, but
not novel, scenes. Since this variable was tested using a within-subject design, the eye
movements from this search study have been collapsed across SOA levels for the purpose of this
comparative map analysis.

METHOD

Participants. Twenty two observers, ages 18-34, with normal acuity gave informed consent,
passed an eyetracking calibration test, and were paid $15/hr for their participation.

Materials. Eye movements were collected using an ISCAN RK-464 video-based eyetracker with
a sampling rate of 240 Hz. The stimuli were high resolution color photographs of indoor scenes
presented on a 15" LCD monitor with a resolution of 1280 x 1024 px and refresh rate of 60 Hz.



Presentation of the stimuli was controlled with Matlab and Psychophysics Toolbox (Brainard,
1997; Pelli, 1997). The target prevalence in the stimuli set was 100%: all scenes contained a
target and, importantly, the target location never changed in a particular scene. To make the task
challenging, book targets were small (1 to 20) and spatially distributed across the periphery.

Procedure. The experiment consisted of a Learning phase followed by a Test phase. Observers
were instructed, at the beginning of each phase, to find the book in each scene as quickly as
possible. The purpose of the Learning phase was for participants to learn the location of a book
in scenes that became familiar because they were searched once in each block. The purpose of
the Test phase was to manipulate the amount of time between the scene onset (observers fixating
centrally) and the initial searchfixation on each scene; participants searched following a variable
SOA (200, 400, 800, or 1600 ms) on a novel or familiar scene. Each phase was comprised of 4
search blocks: 24 repeated scenes and 8 novel scenes were randomly intermixed in each block
(32 trials per block). Scenes were counterbalanced across observers with respect to the novel or
repeated conditions.

The trial sequence was designed to be similar in Learning and Test phases, in order to habituate
participants to the procedure of holding their gaze on a fixation cross. As shown in Figure 3,
participants fixated a central fixation cross for 500 ms to begin the trial (gaze contingent). Next,
the scene was presented with a blue fixation cross superimposed and participants were required
to fixate the central cross for the duration of this interval (600 ms or 200 ins, Learning and Test
phase respectively) without making a saccade, otherwise trial terminated. In the Learning phase,
the fixation cross then briefly turned red (40 ms) and disappeared, signaling participants to
actively explored the scene to find the book. In the Test phase, the initial scene presentation (200
ms) was followed by a variable delay on a gray screen, giving an overall SOA (delay plus the
initial presentation time) of 200 ms, 400 ms, 800 ms, or 1600 ms; the same scene was then
presented again and participants moved their eyes to find the target. Participants had a maximum
of 8 s to respond via key press (Learning phase) or by fixating the target for 750 ms (Test phase).
Feedback was given after each trial (reaction time displayed for 750 ms) to encourage observers
to search speedily throughout the experiment. Short mandatory breaks were enforced in order to
avoid eye fatigue. The entire experiment lasted approximately 50 min.

A) Learning Phase 8) Test Phase

500 ms 500 ms

600 ms urrwas:o 200 mns Yur RT vas:

40 mns 3.21s Variable1.3

Search until (0-1400 ms) search until
key press 750 ms Tfixation 750 ms

Figure 3. Trial sequence for each phase of Experiment 1. In the Learning Phase, participants
learned the location of books in repeated scenes. In the Test Phase, a scene (novel or repeated)
was briefly shown, followed by a variable SOA, then participants searched until the target was
fixated. The size of the fixation cross is exaggerated for illustration: all fixation crosses were 2*x 2*.



Eyetracker calibration was critical for the gaze contingent aspects of the procedure, as well as
to ensure accurate dependent measures (fixation locations). For this reason, calibration was
checked at 9 locations evenly distributed across the screen after each search block; fixation
position had to be within 0.750 of visual angle for all points, the experiment halted and the
observer was recalibrated.

Eye movement analysis. Fixations were identified on smoothed eye position data, averaging the
raw data over a moving window of eight data points (33 ms). Beginning and end positions of
saccades were detected using an algorithm implementing an acceleration criterion (Araujo,
Kowler, & Pavel, 2001). Specifically, the velocity was calculated for two overlapping 17 ms
intervals; the onset of the second interval was 4.17 ms after the first. The acceleration threshold
was a velocity change of 6 deg/s between the two intervals. Saccade onset was defined as the
time when acceleration exceeded threshold and the saccade terminated when acceleration
dropped below threshold. Fixations were defined as the periods between successive saccades.
Saccades occurring within 50 ms of each other were considered to be continuous.

Comparative map analysis. As described above, comparative map analysis is based on
comparing patterns of gaze within-observer and between-observers as they search a scene.
Accordingly, the analysis is performed separately for each scene, and the critical factor is to have
many examples of within and between observer variation. In this experiment, a total of 48 scenes
were searched by were searched by equal numbers of participants in the novel and repeated
conditions: observers in group A searched scenes 1-24 repeatedly and searched scenes 25-48
only once, while the other observers in group B searched scenes 25-48 repeatedly and scenes 1-
24 once. Notably, the design of this experiment meant that observers who generated the fixation
populations for repeated search (Fself and Fgroup) were the same observers who contributed to the
fixation populations for novel search (Fnove1). The Learning and Test phases were combined for
this comparative map analysis (excluding the first block'), yielding a maximum of 7 repeated
trials for each observer (N=1l observers per scene). The following experiment conditions
correspond to each population: (1) Fself: one person's repeated searches of a familiar scene, (2)
Fgroup: other observers' repeated searches of the same familiar scene, (3) Fnovei: different
observers' novel search of the same scene, (4) Fchar: random scenes searched by the same
observer as Fself, (5) Fscene: random scenes searched by random novel observers.

8 The first block is excluded from the Fself and Fgroup distributions because these populations represent the role of experience,
and including the first block would provide overlap with Fnovel.



RESULTS

Behavioral results are summarized in Table 1 and presented in greater detail in Chapter 3. The
results of comparative map analysis are shown in Figure 4. Our main finding is that individuals
are highly consistent in their pattern of fixations across multiple searches of the same image. A
person's own history of where they fixated in a particular scene provides the most accurate
prediction of where that individual is likely to look, specifically during the first 3 search fixations
in a scene. An identical pattern of results was found when using only the first search fixation.
Additionally, comparative map analysis replicates previous reports in the literature that scene
context (e.g. Neider & Zelinsky, 2006; Torralba et al, 2006) and oculomotor biases (Tatler, 2007;
Tatler & Vincent, 2009) play a significant role in guiding the location of gaze. We first report
results from the populations based on scene dependent information (Fself, Fgroup, Fnovei), followed
by the scene independent control populations.

Two measures of performance are reported. The AUC, or area under the ROC curve, provides a
summary of how well each prediction map performed over all thresholds. The performance of
each prediction map at a 10% threshold is also reported, which is a single point along the ROC
curve which gives a sense of how sensitively- 10% of the image area- each fixation population
predicts the observer's fixations. The mean AUC values of all conditions in all three experiments
is summarized in Table 2.

Table 1

Summary of behavioral eye movement measures in experiment 1

Repeated Novel
Condition Condition

Reaction Time
M 1628 ms 2401 ms

SE 67 54

Number of Search Fixations
M 2.1 4.5
SE 0.22 0.16

Avg Fixation Duration
M 176 ms 212 ms
SE 6.6 6.9

Avg Saccade Size
M 7.9 7.8

SE 0.18 0.18

Role of the person

The role of a person's own search experience was evaluated by using the locations of their
own fixations (Fself) to predict empirical fixations from the same observer on a separate search
trial of the same image. We found that this population provided the most accurate predictions
(mean AUC=0.907) relative to the other scene dependent populations Fgroup (t(47)=9.04, p <

0.001) and Fnovei (t(47)=9.33, p < 0.001), and was significantly higher than all control
populations. Furthermore, using a person's own population of fixations to predict where they
look (on a separate trial) results in very spatially selective predictions, as evidenced by the steep
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Fself ROC curve, which indicates high detection rates at low false alarm thresholds. For example,
if each fixation distribution was used to select a region representing which 10% of the image was
most likely to be fixated, using the Fself population yield more accurate predictions than using the
Fgoup or Fnovei populations (mean Hit rates of 0.76, 0.62, and 0.58 at a FA rate of 0.10).
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Figure 4. Results of comparative map analysis for Search Experiment 1. The full ROC curve for each
fixation distribution is shown on the left (e.g. Fnovel, fixations from novel searchers of a scene, is in
blue). The overall performance of each distribution is summarized using the area under the ROC
curve (AUC), plotted on the right; error bars represent the standard error of the mean. These data
represent the average across scenes.

Role of the past

The role of past experience was evaluated using the fixation locations from other observers
who searched the same scene repeatedly (Fgroup). There was a small but significant difference
between the prediction accuracy of this group and a group of novel observers (mean AUCs of
0.859 and 0.827, respectively; t(47)=4.16, p < 0.001). This suggests that sampling from many
individuals with past experience may be slightly more informative for predicting where other
experienced observers than sampling from the population of novel observers.

Role of the place

The role of the place is perhaps the most intuitive information that guides where a person
looks in a scene: given the context of a scene (e.g. basic-level category, spatial layout), observers
wisely direct their eyes to fixate scene regions that are likely to contain the target. The fixation
distribution, Fnovei, reflected which scene regions were fixated by novel observers (different
participants who searched the scene only once) when looking for a book. As expected, the Fnovei
population provided a significant source of guidance relative to the random scene control Fscene
(mean AUCs of 0.827 and 0.666, respectively; t(47)=12.8, p < 0.001). This result, obtained with
comparative map analysis, is consistent with other reports in the literature of overall high
consistency across observers in search tasks where targets are found in context-consistent
locations (e.g. Chapter 1; Torralba et al, 2006).

.... ....... ... .................... .. .... ... .. .. .. .....



Scene Independent Control Populations

Using a random-scene control has become popular in the fixation modeling literature for
reasons outlined above in the Comparative Map Analysis section. Here, two control distributions
were used: Fchar, a population created by sampling random scene fixations of the same observer
as those being predicted (also same as Fself), and Fscene, a population created by sampling from
different observers' fixations on random scenes. Although there are purportedly individual
differences in eye movement parameters such as saccade length (e.g. Andrews & Coppola,
1999), we believed that using fixations from random scenes to predict the fixations on a
different scene would be equally well (or poorly) predicted by using one person's fixations
(Fchar) as by using different people's fixations (Fscene). Indeed, these populations performed
higher than chance (0.5) at predicting fixations, Fchar 0.669 and Fscene= 0.666, and were not
significantly different from one another (t(47)=0.52). The overlap in these distributions is not
surprising given that these populations reflect systematic oculomotor tendencies and regularities
in the stimuli set (e.g. photographer bias).

Two model distributions, central gaussian and uniform, were used to compare with the other
populations and examine the soundness of the approach of sampling from fixation distributions.
Since human fixations have been shown to exhibit a central bias (e.g. Tatler, 2007), we expected
a central Gaussian model to predict fixation locations more accurately than a uniform model
(chance). Indeed, the central gaussian model was a better predictor of fixations than the uniform
distribution (mean AUCs 0.598 and 0.518, t(4 7)=8. 2 , p < 0.001). The fact that the uniform model
performance was near the ROC diagonal (AUC 0.5) suggests that the approach of comparative
map analysis is reliable.

INTERPRETATION

These results indicate that people are highly self-consistent in selecting fixation locations across
multiple searches of the same scene. How does this finding fit into what is already known about
visual search and memory? On one hand, search times are known to reliably improve when a
particular spatial configuration predicts the location of a target. On the other hand, individual eye
fixations tend to be rapidly executed- about every 250-300 ms (Rayner, 1998)- and although
scene familiarity appears to influence the deployment of attention, it is not clear how systematic
the relationship is between scene specific location priors and eye guidance. Using comparative
map analysis to analyze spatial regularities in observer's search fixations has shown that
(1) scene specific memory plays unique a role in guiding attention beyond the influence of
general scene context, and beyond that, (2) a person's own scene specific search experience
influences where they will look when searching a familiar scene.

Is this effect in fact due to a person's specific search experience of having fixated certain
locations but not others? Perhaps the high degree of within-observer consistency was driven, not
by the person's past history of fixations, but by an incidental feature of performing the search
task repeatedly (e.g. general familiarity with the scene). For example, if a particular object in a
scene effectively attracted fixations across multiple search repetitions, we might expect that one
familiar observer's fixations would predict any other familiar observer with equal accuracy. A
quick comparison of the red ROC curves in Figure 4 indicates that this is was not the case. The
Fself population, which was created from a person's own search fixations, was consistently more



accurate than the Fgroup population, sampled from different observer's repeated searches of a
scene. To the extent that fixation locations provide a way to operationalize a person's specific
scene priors, we interpret this as evidence that the relationship between scene specific memory
and eye guidance is systematic and robust.

One concern is that the experimental paradigm itself may have contributed to the observed
pattern of results. Given recent findings that guidance by a familiar spatial context is effective
but slow (Chapter 3; Kunar et al, 2008; Peterson & Kramer, 2001), the fact that our task involved
a central delay9 may have exaggerated the influence of memory relative to what would be
observed during normal conditions of scene viewing. Towards this end, we performed
comparative map analysis on from two search experiments, previously published in Hidalgo-
Sotelo et al (2005), which were collected with a more traditional search paradigm (no delay or
fixation cross overlaid on scenes). If a similar pattern of results is obtained (Role of Person >
Role of Past > Role of Place) without a delay introduced between scene onset and search
fixations, as in Experiment 1, that would constitute stronger evidence of a unique role of a
person's past search experience on attentional guidance.

Furthermore, it is not altogether clear what is driving the high consistency of fixation locations
when the same observer searches the same scene repeatedly. Although observers seem to
explicitly recognize having seen the repeated scenes (e.g. Brockmole & Henderson, 2006), it is
not clear whether observers have conscious access to which scene regions they have searched. In
general, individual's memory for specific fixations is thought to be poor (Irwin & Zelinsky,
2002). Our results, since they were found taking the first 3 fixation locations, suggest that the
bias from a person's search history is rapidly and unconsciously incorporated into fixation
selection mechanisms. What aspect(s) of the task, if any, were critical for eliciting self-
consistency in a person's scan patterns over repeated searches? One limitation of our
experimental paradigm is that all scenes contained a target. As such, it is not known whether a
similar pattern of results would be obtained when a familiar scene did not contain a target.

Performing a comparative map analysis of the following two experiments allowed us to
investigate two questions that the data from this experiment could not address: (1) Does within-
observer consistency depend on the presence of a target in the familiar scene? and (2) Does this
pattern of results change when the familiar scenes are viewed with and without a target (i.e. an
inconsistent response) ?

9 Length of delay duration varied: 640 ms scene presentation in Learning Phase; 200 ms scene presentation followed by 0-
1400 ms delay on gray screen in Testing Phase. All delays were enforced on a 2x2 degree fixation cross in the middle of the
screen.



Search Experiment 2

In this experiment (Hidalgo-Sotelo et al, 2005), the task was to look for a person in outdoor
urban scenes that became increasingly familiar as participants searched the scenes over many
repetitions. Unlike the book search study, this experiment presented scenes with and without a
target (person) and observers responded whether a target was present in the scene. Participants
learned scene specific location priors, like the previous study, because the target- when present-
was always in the same location for a given scene. As depicted in the examples in Figure 5, some
scenes were repeatedly presented without a target (e.g. Charles River scene), while different
scenes (e.g. neighborhood street scene) always contained a person in a single location. The
analyses we previously published addressed how scene specific location priors influenced the
overall improvement in reaction time and, specifically, how different stages of visual search (i.e.
search initiation, exploration stage, or decision stage) were affected by previous search
experience. Here, we use comparative map analysis to address a different question: what spatial
regularities exist in the locations fixated by individual observers and how do they compare with
the fixation patterns of novel viewers?

This experiment differs from the previous one in that, in this study, observers only searched
repeated scenes. In other words, the conditions for comparative map analysis were not met with
this experiment alone. Fortunately, a control study was run in parallel with this experiment in
which an independent set of observers searched the same scenes used in this repeated search
study (block 1) followed by many blocks of novel scenes. This eye movement data, first
introduced in Chapter 1, allowed us to (a) compare the behavioral results of Hidalgo-Sotelo et al
(2005) with a novel scene control, (b) model the human fixations with computational models of
search guidance (Chapter 1), and (c) satisfy the criteria of comparative map analysis by
providing a population of novel searcher's fixations from which to sample.

--- No.Ye
Is a person

in the scene

Figure 5. Schematic of the people search task of search experiment 2. Observers searched for a
person in the scene. Note that the target person is outlined in red in the figure (not in the
experiment).

METHOD

Participants. Twelve observers participated in this repeated search study (Hidalgo-Sotelo et al,
2005). Fourteen observers participated in the novel search study (Chapter 1). All observers were
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between the ages of 18-40, with normal acuity gave informed consent, passed an eyetracking
calibration test, and were paid $10 for their participation.

Materials. A total of 96 color photographs of outdoor scenes comprised the experimental stimuli
(primarily street and park scenes in the Boston area). The 96 unique images were collected with
the purpose of having 48 scene pairs, in which each photograph taken with a target-person in the
scene and without (as shown in Figure 5). All stimuli were presented on a 21" CRT monitor with
a resolution of 1024 x 768 px and refresh rate of 60 Hz. The original images were cropped and
resized to be presented at a resolution of 800 x 600 px, subtending 23.5 x 17.7 deg of visual
angle. Presentation of the stimuli was controlled with Matlab and Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997). Eye movements were collected using an ISCAN RK-464 video-
based eyetracker with a sampling rate of 240 Hz. Eye movement analysis was performed as
described in search experiment 1.

Procedure. Participants were instructed to detect the presence (or absence) of a person in a
scene and press a corresponding key as soon as a decision had been reached. This search was
performed over 20 successive blocks, each block was comprised of 48 scene stimuli (50% target
prevalence), and the scenes were presented in randomized order for each block. In the repeated
search study, the same 48 scenes were searched in each block; these scenes were presented in
block 1 of the novel search study, but different scenes were searched in the subsequent 19
blocks. As described in the Materials section above, the scene stimuli were originally collected
as scene pairs. These pairs were counterbalanced across observers such that an equal number of
participants searched the target present and absent versions, but in this experiment, different
participants searched target absent and target present versions of the scene. Framed alternately,
there was a 1-to-I mapping between a scene's identity and the response. Prior to the experiment,
participants were required to pass an eyetracking calibration test (as in experiment 1) and
performed 10 practice trials to become accustomed to the procedure. Following each search
block, the eye tracking calibration was checked with a visual assessment of tracking accuracy on
a five point calibration screen. Participants were required to take a small break after every 5
blocks. Each participant completed 960 search trials, resulting in an average experiment duration
of 45 minutes.

Comparative map analysis. This analysis is performed for each of 96 unique scenes (48 target
present, 48 target absent). The critical factor, again, is to have many examples of search patterns
generated by the same observer (over multiple searches) and across novel observers. Unlike the
previous study, the design of this experiment meant that the twelve observers who generated the
fixation populations for repeated search, were different than the fourteen observers who
generated the novel fixation populations during novel search. Due to stimuli counterbalancing,
each scene was searched by six repeated observers and seven novel observers. Notably, there
were substantially more blocks in this experiment than in the previous one, 20 blocks and 8
blocks respectively. The results below are derived from all blocks, excluding the first block, in
which observers made at least one search fixation. Performing the analysis using only blocks 2-7,
as in experiment 1, yields the same the pattern of results.

Recall the source of each population of search fixations: (1) Fself: one person's repeated
searches of a familiar scene, (2) Fgroup: other observers' repeated searches of the same familiar



scene, (3) Fovei: different observers' novel search of the same scene, (4) Fchar: random scenes
searched by the same observer as Fself, (5) Fscene: random scenes searched by random novel
observers.

RESULTS

The results of comparative map analysis are shown in Figure 6. Note that nine scenes in the
target-present condition were excluded from the analysis because they were too easy to require
an overt search, meaning that observers tended to saccade directly to the target person after
searching the same scene for a few repetitions. The criteria for scene inclusion was that all
observers had to have at least 5 search trials in which there was at least 1 search fixation prior to
the observer fixating the target (if present).

Target Absent Target Present

09 09Fself

07 0,- Fgroup

0 1369 0 1 Fnovel
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Figure 6. Results of comparative map analysis of the fixations from search experiment 2.

Role of the person
As in experiment 1, the Fself fixation distribution (a measure of within-observer consistency)

provided the most useful information for predicting fixation locations on a familiar scene: this
was true in target-absent scenes (mean AUC 0.965; Fself> Fgroup, t(47)=13.57,p < 0.001; Fself >
Fnovei, t(47)=6.79, p < 0.001) and target-present scenes (mean AUC 0.971; Fself> Fgroup,
t(38)=10.39,p < 0.001; Fself > Fnovei, t(38)=5.64,p < 0.001).

The steepness of the Fself ROC curves indicates that this population gave the most spatially
precise information (high detection rates at low false alarm thresholds). At a 10% threshold, for
example, the accuracy of the Fself fixation maps were significantly higher than either the Froup or
Fnovei maps (target-absent scenes: mean Hit rates of 0.89, 0.77, and 0.63). Table 2 contains a
summary of results for each fixation population by scene condition.

Interestingly, the Fself population was as accurate in predicting fixations on the target-absent
scenes (0.965 ± 0.013, mean and standard deviation) as in target-present scenes (0.971 ± 0.013).
In other words, within-observer consistency was roughly equal in familiar scenes, with or
without a target present.



Role of the past
The Fgroup distribution served as a control for the hypothesis that scene specific memory guides
search irrespective of a person's individual search experience. Replicating the pattern of results
from experiment 1, the Fgroup distribution was less accurate than Fself but was significantly more
accurate the Fnovei population: target-absent scenes (t(47)=6.79, p < 0.00 1) and target-present
scenes (t(38)=5.63, p < 0.001). There was not a significant difference between accuracy of the
Fgroup population on scenes with or without a target (t(84)=1.70).

Role of the place
The fixation distribution, Fnovei, represented how well category location priors (i.e. scene

context in the absence of scene specific experience) guided attention to particular scene regions
when searching for a person. As expected, the Fnovei population provided a significant source of
guidance relative to a random scene control: target-absent scenes (mean AUC 0.861; Fnovei >

Fscene, t(47)=6.57, p < 0.001) and target-present scenes (mean AUC 0.875; Fnovei > Fscene,

t(38)=9.26, p < 0.001). There was no significant difference between accuracy of the Fnovei

population on scenes with or without a target (t(84)=0.8 1).

Scene Independent Control Populations
Overall, results from the scene independent control populations were similar to those from

experiment 1. As evident from Figure 6, fixations from random scenes (green lines) predicted
search fixations on a specific scene with lower accuracy than the scene-dependent populations,
but higher than would be expected by chance (dotted black line). This was true for target-absent
scenes (mean AUCs 0.777 and 0.767, Fchar and Fscene) and target-present scenes (mean AUCs
0.741 and 0.729). Unlike experiment 1, there was a trend for an observer-specific guidance
effect, independent of scene content: in other words, the Fchar distribution was slightly more
accurate than the Fscene distribution on target-absent scenes (t(47)=2.10, p < 0.05), however the
trend did not reach significance on the target present scenes (t(38)=1.83). Although we expected
these distributions to overlap almost entirely, this trend is consistent with the idea of individual
differences in some eye movement parameters (e.g. Andrews & Coppola, 1999; Boot, Beic, &
Kramer, 2009); also, the effect is small when compared to the magnitude of guidance by scene
dependent information.

Two model distributions, central Gaussian and uniform, are useful as points of reference and
for comparing the accuracy of populations of empirical fixations. In both conditions, a central
Gaussian model (solid black line in Figure 6) was a better predictor of fixations than a uniform
model (dotted black line), but less accurate than the random scene controls (green lines).
Interestingly, the central Gaussian model predicted fixations on target-absent scenes, on the
whole, more effectively than it predicted fixations on target-present scenes (t(84)= 3.23, p <
0.002). This suggests that the population of target-absent fixations were, on the whole, more
centrally distributed than target-present fixations. Given that observers in this experiment never
saw a target in those scenes, it is understandable that observers learned, over time, that the target-
absent scenes never contained a target and that their fixations may have been more centrally
distributed as a result.



INTERPRETATION

The results of this people search experiment replicated the main findings of experiment 1 with
different scenes, different observers, and, importantly, an experimental paradigm that did not
involve a delay prior to making saccades. Performing comparative map analysis of the eye
movement data from novel searchers (Chapter 1) and repeated searchers (Hidalgo-Sotelo et al,
2005) allowed us to estimate the influence of each of the following sources on eye guidance
(least-to-most influential): oculomotor biases, category location priors, scene specific location
priors, and person specific, scene specific location priors. Our results showed that (1) pooling
across the scene specific experiences of many observers provided significant source of guidance
beyond that provided by the scene's context, and (2) a person's own scene specific search
experience also plays a unique role in eye guidance. This pattern of results was observed on
familiar scenes which always contained a target (consistent location across repetitions) and on
different but familiar scenes which never a target. What does this suggest about the underlying
basis of within-observer consistency of fixation locations?

First of all, our data further support the idea that these influences are exerted rapidly. The
difficulty of this people search task was easier than the previous book search experiment,
meaning that, over time, fewer search fixations were made before responding. Nevertheless,
these spatial regularities are evident within the first fixation(s) on the scene. Categorical scene
priors have been shown to influence the first search fixation on the scene (e.g. Eckstein et al,
2006; Torralba et al, 2006). These data suggest that even more specific memory representations
can be rapidly incorporated into fixation selection mechanisms.

Secondly, the magnitude of guidance by the "Person" (Fself) and the "Past" (Fgroup) was
approximately equal in familiar target-present and target-absent scenes. This suggests that the
conditions for eliciting consistency in a person's fixations (over repeated searches of a scene) did
not require the presence of a target. The identity of the scene itself apparently was sufficient to
retrieve memory-based information to help guide attention to the target. Thus far, however, the
scene's identity has been perfectly correlated with the response. All the scenes in experiment 1
contained a book-target and, in experiment 2, the familiar target-present scenes were always
different scenes that the familiar target-absent scenes. Will scene specific experience guide the
placement of fixations if observers learn that a given scene may or may not contain a target
(consistently-located within the scene)?

Experiment 3 enabled us to investigate whether our main finding (Role of Person > Role of
Past > Role of Place) would be replicated with an independent set of observers and, furthermore,
whether guidance by scene specific experience was still evident when the same observer
searched target-present and target-absent versions of a given scene (i.e. scene's identity
dissociated from a consistent response).



Search Experiment 3

In this experiment (Hidalgo-Sotelo et al, 2005), as in the previous one, the task was to look for
a person in outdoor urban scenes that became increasingly familiar as participants searched the
scenes over many repetitions. Critically, unlike the previous experiment, observers viewed the
same scene (e.g. Charles River scene) in versions that indicated an inconsistent response:
sometimes the target was present and sometimes it was absent (50% prevalence). This is
depicted schematically in Figure 6. Again, the target- when present- was always in the same
location for a given scene. Here, we use comparative map analysis to address a different
question: what spatial regularities exist in the locations fixated by individual observers and how
do they compare with the fixation patterns of novel viewers? As in experiment 2, the novel
scenes condition is taken the data in Chapter 1 and allowed us to satisfy the criteria of
comparative map analysis by providing a population of novel searcher's fixations from which to
sample.

Figure 7. Schematic of the people search task of search experiment 3.

METHOD

Participants. Twelve observers participated in this repeated search study (Hidalgo-Sotelo et al,
2005). None of the same observers participated in experiments 2 and 3. Again, fourteen
observers participated in the novel search study (Chapter 1). All observers were between the ages
of 18-40, with normal acuity gave informed consent, passed an eyetracking calibration test, and
were paid $10 for their participation.

Materials. Same as in experiment 2.

Procedure. The procedure was identical to that described in experiment 2, with the exception
that, in this experiment, the same participant searched both target absent and target present
versions of the scene. Each scene, therefore, was associated with both types of responses.

Comparative map analysis. Same as in experiment 2.
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RESULTS

The results of this people search experiment are shown in Table 2 along with the results from the
previous 2 experiments. Overall, the same pattern of results is replicated in this experiment.

Role of the person
The Fseif fixation distribution was again the most accurate map for predicting fixation locations

on a familiar target-absent scenes (mean AUC =0.953; Fself > Fgroup, t(47)=16.73, p < 0.001; Fseif

> Fnovei, t(47)=13.93, p < 0.001) and familiar target-present scenes (mean AUC =0.954; Fself >

Fgroup, t(38)=1 1.56, p < 0.001; Fself > Fnovei, t(38)=7.95, p < 0.001). In both conditions, this

distribution created the most spatially precise maps, as evident by the steeply rising Fself ROC
curves, implying high detection rates over a range of false alarm thresholds.

As in experiment 2, the accuracy of the Fself population in predicting fixations on the target-
absent scenes not significantly different than in target-present scenes Q(84)=0.23). Thus, within-
observer consistency was not evidently influenced by dissociating the scene's identity from the
response.

Role of the past
The Fgroup distribution was again less accurate than Fself but significantly more accurate the Fnovei
population: target-absent scenes (t(47)=6.66, p < 0.00 1) and target-present scenes (t(38)=2.50, p
< 0.05). There was no significant difference between accuracy of the Fgroup population on target-
absent and target-present scenes (t(84)=0.09).

Role of the place
The Fnovei population provided a significant source of guidance relative to a random scene

control: target-absent scenes (mean AUC 0.894; Fnovei > Fscene, t(47)=13.13, p < 0.001) and

target-present scenes (mean AUC 0.911; Fnovei > Fscene, t(38)=10.21, p < 0.001). There was no
significant difference between accuracy of the Fnovei population on target-absent and target-
present scenes (t(84)=1.83), however the trend was for the target-present Fnovei maps to be
slightly more predictive than the target-absent Fnovei maps.

Scene Independent Control Populations

Overall, the scene independent control populations gave very similar to those from experiment
2. Firstly, the random scene controls were less accurate than scene-dependent maps but higher
than would be expected by chance: target-absent scenes (mean AUCs 0.748 and 0.740, Fehar and
Fscene), target-present scenes (mean AUCs 0.777 and 0.75 1).

Secondly, we found a small trend for the random scene fixations from one person (Fchar) to be
slightly more accurate than pooling over many observers' random scene fixations (Fscene): on
target-absent scenes, the trend did not reach significance (t(47)=1.83), but was significant on
target-present scenes (t(38)=3.45, p < 0.001). Since this weak trend was observed in experiment
2 but not experiment 3, the effect of person (independent of scene) is likely small when
compared with guidance from scene-dependent information.

As expected, the central Gaussian model was a better predictor of fixations than a uniform
model, but less accurate than the random scene controls. In the previous search experiment, we
had found that target-absent fixations were more centrally distributed than fixations on target-
present scenes. In this experiment, however, the central Gaussian model was an equally good
predictor of fixations target-absent fixations or target-present scenes (t(84)=0.80). This finding is



entirely understandable given the nature of this task in this experiment, specifically that the same
observer searched target-present and target-absent versions of familiar scenes.

Table 2

Summary of Comparative Map Analysis Results

Experiment I

Target
Present

0.907

0.859

0.827

0.669

0.666

0.589

Experiment 2:

Target Target
Absent Present

0.965 0.971

0.933 0.941

Experiment 3:

Target Target
Absent Present

0.953 0.954

0.922 0.923

0.861 0.875 0.894 0.911

0.777 0.741 0.748 0.777

0.767 0.729 0.740 0.751

0.623 0.600 0.608 0.599

INTERPRETATION

This experimental paradigm, similar to experiment 2, did not enforce a delay before observers
moved their eyes to search. Nevertheless, the results replicated our main finding- namely that
gaze is guided by scene context, past experience with a specific scene, and person specific, scene
specific experience. The critical experimental manipulation was that participants searched both
target-present and target-absent versions of a scene, therefore a scene's identity did not predict
the trial's response. Consistent with the results of experiment 2, the Fself maps (person specific,
scene specific fixations) were as accurate for target-present scenes as the Fself maps for target-
absent scenes; the same was true for the Fgroup population (pooling observers' scene specific
fixations). This implies that mapping between a scene's identity and trial response was not the
underlying reason for the observed pattern of results.

Fself

Fgroup

Fnovel

Fchar

Fscene

Center



General Discussion

Spatial regularities in eye fixations were assessed using a novel approach, comparative map

analysis, which is based on comparing fixation distributions that reflect categorical and scene
specific location priors, across and within observers. Comparative map analysis produced a
highly consistent pattern of findings in three search experiments. Overall, these results are
interpreted as evidence that scene specific experience biases attentional selection during the first
3 search fixations in a scene.

In experiment 1, observers performed a difficult visual search for a book in novel and familiar
indoor scenes that always contained a target; notably, the target's location was consistent across
scene repetitions (e.g. Chun & Jiang, 1999). We showed that systematic individual differences
in fixation patterns persist across multiple searches of a scene. This finding was replicated and
extended in experiment 2, in which observers searched for a person in outdoor scenes with 50%
target prevalence: half of the repeated scenes always contained a target (directly comparable with
experiment 1) and the other half were different scenes that never contained a target. To exclude
the possibility that a consistent response mapping (between a scene and the response on all trials
with that scene) contributed to these results, in experiment 3 the same scene (near identical
versions of the same place) could be either target present or absent on different trials. Again,
systematic individual differences in fixation patterns were found in both target absent and target
present repeated scenes. Over all three experiments, comparative map analysis provides
converging evidence that (1) scene specific experience, pooled across individuals, affects gaze
deployment beyond what would be expected from the scene's context alone and, (2) a person's
own search experience influences where they look in familiar scenes.

This main idea of this chapter is that, in a specific sense, the past repeats itself: a person's
experience, as indexed by which scene locations were fixated, influences how they search
familiar scenes. Although the presence of idiosyncratic gaze patterns has previously been
reported (e.g. Noton & Stark, 1971), this is the first time that systematic individual differences in
fixation patterns have been shown in a naturalistic search task. What is the nature of the
information that underlies within-observer consistency? Is it behaviorally relevant or an
incidental consequence of scene exposure? In this general discussion, I address how this finding
contributes to a better understanding of the relationship between eye movements and memory.

In what respect did the task contribute to the pattern of results we observed? The fact that our
instructions gave observers a specific goal- to look for a book, for example- suggests a different
pattern of viewing may have been evoked if observers had been asked to memorize the scene or
to simply look around (Buswell, 1935; Yarbus, 1967; Castelhano, Mack, Henderson, 2009).
Visual search paradigms have made it possible to study and model attentional processes (e.g.

Wolfe, 1994) by providing a setting that controls for certain stimulus and goal driven factors.
Knowing the location of gaze reveals the information selected for foveal processing during
execution of the search task. Oculomotor responses arise from a variety of interacting factors,
however, many of which are not task dependent. The approach in this paper has been to compare
gaze patterns between populations of observers who vary in the degree of scene and memory
dependent information guiding eye movements. All three experiments in this chapter tested a



condition in which a scene's identity was wholly consistent with the location of the target (if
present). Comparative map analysis allowed us to evaluate how scene specific experience
influenced fixation selection, as compared to guidance by scene context information alone. Still,
it is not clear whether similar results would have been obtained outside of the context of a visual
search task.

Two lines of evidence suggest that one of the chapter's main findings- that a person's own
history with a scene biases attentional selection- is not directly driven by our task's demands.
The first argument appeals to the fact that the Fself and Fgroup fixation distributions were derived
from observers under precisely the same task and memory demands. Indeed, what distinguished
these distributions was that Fself represented only the fixations of a one observer in the group,
while Fgroup was sampled from all observers. No purely bottom-up or goal-driven account would
have predicted a systematic individual differences between observers viewing the same scene
and performing the same task. Yet in all three experiments, using a person's own search fixations
provided more spatially precise and accurate information than using fixations of the other
observers. The second argument is based on the target absent condition of experiment 2, in
which some scenes were repeatedly searched but never contained a target. This condition, more
reminiscent of a memory search (Wolfe, Klempen, & Dahlen, 2000) than a visual search, still
produced more within-observer regularities than would have been expected from task-matched
controls. To some extent, then, these observations suggest that similar findings might be obtained
using other tasks.

In the tradition of ecological psychology (e.g. Gibson, 1979), our findings raise questions about
the behavioral significance of self-similar fixation patterns over repeated scene exposures. One
possibility is that within-observer consistency may promote good search performance (e.g. fast
overall reaction time). A widely recognized feature of human memory is that reinstating the
encoding context is beneficial for retrieval (Jacoby & Craik, 1979; Tulving & Thomson, 1973).
Eye fixations, since they reflect which regions of the scene have been attended, may facilitate
memory retrieval when deployed to previously attended scene regions. Indeed, Noton and Stark
(1971) proposed a similar explanation for the self-consistent pattern and sequence of fixations
("scanpath") made by an observer when an image was viewed for the second (or third, etc) time.
The existence of idiosyncratic fixation patterns, they posited, was evidence that sensory and
oculomotor traces were encoded in the representation of a familiar image (Noton & Stark, 1971).
Modern embodied cognition accounts also suggest that a person's own movements play a unique
role in perceptual and cognitive performance (e.g. Knoblich & Flach, 2001). When imagining a
previously viewed stimulus, for example, observers tend to make reenact eye movements made
in the initial viewing (Brandt & Stark, 1997; Laeng & Teodorescu, 2002; Spivey & Geng, 2001).
But are the eye movements in fact playing an important role in long-term memory retrieval?

Recent findings from eyetracking of recognition memory experiments provide some clues
about the role of intra-observer fixation similarity on scene recognition. Holm & Mantyla (2007)
used a remember/know paradigm to evaluate whether recognition performance was associated
with how similarly observers re-fixated the same locations during study and test phases. Indeed,
they found that recollection ("remember" responses) were related to a high degree of study-test
consistency. Recently, Underwood and colleagues (2009) investigated the roles of domain
knowledge and visual saliency on fixation consistency in scene recognition. Students of



engineering and history performed a recognition memory test with pictures of machinery, civil
war artifacts, and neutral scenes. They confirmed that observers fixated similar places during
study and test phases and that, interestingly, the effect was stronger for individuals who were
experts in the domain related to the picture's content. Domain knowledge also had an interaction
on recognition accuracy (Underwood, Foulsham & Humphrey, 2009). In each of these cases,
however, the causal role between memory performance and study-test fixation similarity is
suggestive but not conclusive.

Using visual search to investigate the functional connection between gaze and long-term
memory has the advantage of allowing different types of memory to be tested. In the real world,
people learn location priors without being explicitly instructed to encode the context and without
knowing precisely how objects and contexts covary. These learning conditions may promote a
dissociation between how information is used and what information is available for conscious
report. Ryan, Althoff, Whitlow and Cohen (2000), for example, used the eye movements of
amnesic patients and controls to assess the memory for scenes and spatial relations. After an
initial scene presentation, participants viewed versions of the scenes that had been edited (objects
were added, removed, or switched location). Control participants fixated the manipulated scene
regions frequently, even when they were unable to explicitly report the change. Amnesic
patients, interestingly, did not show this effect. Classical contextual cuing also shows that
observers search repeated displays faster, despite being unable to recognize which displays had
been repeated (Chun & Jiang, 1998, 2003). With natural scenes as backgrounds, observers do
readily distinguish repeated from novel scenes (Brockmole & Henderson, 2006). Nevertheless,
the role of explicit recognition processes on eye guidance remains poorly understood.

This chapter has shown that a person's experience biases the spatial distribution of search
fixations. Our approach enabled us to probe long-term memory representations of specific scenes
as they might be accessed during a ecologically relevant task. In this way, it allowed us to
address issues related to how episodes of experience contribute to our behavior (e.g. visually
searching a familiar environment), specifically how our eye movements and attention move
around a scene. In the next chapter, I investigate temporal factors pertaining to the affect search
of familiar scenes.

Concluding Remarks
Comparative map analysis allowed us to evaluate how scene specific experience influenced

fixation selection, as compared to guidance by scene context information alone. The results of
these experiments support the idea that a familiar scene somehow triggers the retrieval of past
search experience and rapidly biases fixation selection. This effect can be considered to be
independent of the task, since all participants succeeded in the learning task (i.e. improved their
reaction time over repeated searches of the scene). Since the same pattern of results is evident
when predicting on the first search fixation, it is likely that this effect is implicitly activated by
searching a familiar environment.
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CHAPTER 4

Time Course of Guidance by Scene Specific Location Priors

In revision:
Hidalgo-Sotelo, B. & Oliva, A. Memory retrieval enhances eye guidance in specific real world
scenes. In Attention, Perception, & Psychophysics.



Introduction

Imagine walking along a street you believe you have never visited until, suddenly, you realize
that have been on that street before... the realization prompts a host of other knowledge, for
example remembering the location of a caf6 on the next block. In real environments, scene
context provides an associative basis for stitching together memories of past search experiences
(Bar, Aminoff & Schacter 2008). Compared to searching without assistance of memory, using
scene location priors can lead to a speedier outcome. Storing scene context information,
however, is practical only if it can be retrieved in a timely fashion and input to attentional
processes. How rapidly can specific scene context be retrieved and used to guide visual search?

The main topic of this chapter relates to memory based guidance over time, primarily studying
how experience-based search priors guide selective attention in the orienting stages of a visual
search. What cognitive processes are called into action when searching a familiar environment?
Chapter 1 showed how local visual features of the environment can attract attention, for example
fixating regions that are visually similar to the target. In searches with ecologically relevance,
long term memory is an important source of orienting information, specifically, memory of the
scene background or context.

Scene context provides an effective way of predicting where interesting or important events are
likely to occur. Empirical support for the view that memory plays an active role in orienting
attention comes mainly from visual search studies using the contextual cuing paradigm (Chun &
Jiang, 1998, 1999). Additionally, semantic associations between objects has also been shown to
influence the deployment of attention in speeded search tasks using real world objects (Moores,
Laiti, & Chelazzi, 2003). In the remainder of the introduction, I provide more detailed evidence
that memory can influence attentional mechanisms directly and then discuss issues related to
timing of memory based guidance.

With this background, I motivate my investigation of how the temporal profiles of scene
recognition and attentional guidance interact to guide attention in a familiar scene. I introduce an
experimental paradigm- the delayed-search approach- which is similar the response deadline
procedure (e.g. Reed, 1973) but adapted for oculomotor responses. The two experiments in this
chapter use this paradigm to test the hypothesis that scene specific memory becomes increasingly
available to guide search over time.

Spatial Orienting using Long Term Memory

Beyond our everyday intuitions that memory provides direction in our lives, evidence that
attentional mechanisms are directly influenced by memory comes from electrophysiological
measures and functional imaging studies, as well as from contextual cuing studies with eye
tracking. One interesting study from Summerfield and colleagues (2006) directly compared the
behavioral and neural profiles of memory-based attention guidance with traditional spatial-cue
based guidance. Memory based spatial cues were manipulated in their study, as in this chapter's
experiments, by repeatedly presenting complex scenes with target objects consistently located
across repeated presentations of the scenes. Event related fMRI results showed that both
memory-guided and visually-guided attentional orienting activated a common network of brain



areas (Summerfield, Lepsien, Gitelman, Mesulam, & Nobre, 2006), including the parietal-frontal
network which is consistently implicated in spatial orienting studies using perceptual cues
(Corbetta & Shulman, 2002; Kastner and Ungerleider, 2000; Yantis et al, 2002).

Chun and Jiang (1998, 1999) initially proposed that the contextual cuing phenomenon, in
which reaction times become reliably faster for targets in repeated versus novel displays after a
few repetitions, occurs because an association is implicitly learned between the target location
and surrounding context. When an incoming image matches one of the learned representations,
search time is decreased because memory helps allocate attention to the target location. More
recent experiments have shown that contextual cuing, in many ways, does not behave like typical
attentional guidance (Kunar, Michod, & Wolfe, 2005) and, in part, comes from facilitating
response selection (Kunar, Flusberg, Horowitz, & Wolfe, 2007). Current electrophysiological
evidence, however, suggests that the allocation of attention is indeed modulated by contextual
cuing. Johnson and colleagues recently recorded event-related potentials (ERPs) during
contextual cuing and showed that repeated displays were associated with an increased amplitude
beginning 175 ms after stimulus onset in the N2pc component (Johnson, Woodman, Braun, &
Luck, 2007), a well-validated electrophysiological marker of the focusing of attention (Luck,
Girelli, McDermott, & Ford, 1997). Furthermore, Chapter 2 of this dissertation showed that eye
movement patterns were influenced by a person's past history of deploying attention in the
scene. These results strongly suggest that long term memory for particular contexts can provide
spatial cues (scene-specific location priors) that effectively orient spatial attention.

Recognition and Attentional Guidance

Given the close ties between attention and memory, what is the nature of their interaction
during a particular episode of search? Visual search of a familiar environment involves two basic
processes: recognition, in which the current context is matched to a stored representation in
memory, and guidance, in which the remembered context is used to direct attention to particular
regions of the environment. As noted above, the question of how scene-specific context guides
attention is not well understood, but it does appear to act on brain regions involved in spatial
attention (Johnson et al, 2007; Summerfield et al, 2006). Intriguingly, the hippocampus and
adjacent medial temporal lobe (MTL) structures, known to be critical for encoding and retrieving
information from declarative memory (Eichenbaum, 2004; Squire, Knowlton, & Musen, 1993;
Squire & Zola-Morgan, 1991), are also the same regions implicated in scene processing and
spatial cognition (Aguirre, Detre, Alsop, & D'Esposito, 1996; Burgess, Maguire, & O'Keefe,
2002; Epstein & Kanwisher, 1999; Summerfield et al, 2006). Recollecting encounters with
scenes seems to require hippocampus-dependent processing (Tulving & Schacter, 1990;
Eichenbaum, 1997; Gabrieli, 1998). Individuals with MTL damage do not seem to develop
contextual cuing (Chun & Phelps, 1999) or show differences in differences in eye movements
between repeated and novel scenes (Ryan, Althoff, Whitlow, Cohen, 2000). Thus, even when
conscious awareness of the context is not required, using contextual information involves the
participation of memory-related brain structures.

Does memory of a specific context always guide attention? Studies have investigated how and
when searching memory might be a more efficient strategy than searching visually (Kunar,
Flusberg, Wolfe, 2008a; Oliva, Wolfe, & Arsenio, 2004; Wolfe, Klempen, Dahlen, 2000). One



key result suggests that memory guides attention when the context allows you to learn that
targets can appear in some locations but not others, thereby reducing the effective set size (Kunar
et al, 2008a). In contextual cuing, however, repeated displays do indeed cue a single location but
context does not immediately guide attention to the target, or at least not on every occasion. To
this effect, Chun and Jiang (1998, Experiment 4) report steep search slopes on repeated displays,
approximately 27 ms/item, even after extensive repetition (see also Kunar, Flusberg, & Wolfe,
2006; Kunar et al, 2007). What does this imply about the relationship between recognition and
guidance? Importantly, the contextual cuing effect reflects the average behavior across a block of
trials, making it difficult to know whether recognition occurs on every trial.

Eye movements provide one means of probing the strength and timing of recognition's effect
on guidance. Peterson and Kramer (2001) recorded eye movements while participants performed
a contextual cuing-style search for a small rotated T among distractor Ls, a task which has a
history of eliciting serial deployments of attention (Wolfe Cave, Franzel, 1989). Once a repeated
display is matched to a memory representation (recognition), the authors hypothesized, the eyes
then should be biased to move towards the target (guidance). The proximity of each fixation to
the target was taken as a measure of the precision of the guidance system. Interestingly,
recognition of the context was rarely immediate, given that participant's first search fixation
landed on the target on only 15% of trials in the last epoch of learning (repetitions 12-16). On the
remainder of trials, the first fixation was not biased towards the target yet still fewer fixations
were ultimately required to locate the target than for novel displays (Peterson & Kramer, 2001).
Indeed, if recognition of the repeated context generally occurred after search had begun, that
would account for at least part of why search slopes remain steep even after extensive training
(e.g. Chun & Jiang, 1998). These results are directly relevant to the proposal in this chapter, as
they support the idea that retrieving scene-specific information facilitates visual search but that
successful retrieval is more likely over longer time intervals.

To date, there is little direct evidence that time increases the likelihood that specific real world
scenes will be recognized and that those spatial cues will help guide attention to the target. This
is the hypothesis that I propose to investigate in this chapter. The experiments in this chapter use
eye tracking for two reasons: (1) as a dependent measure of the difference between repeated and
novel conditions, but also (2) to manipulate an independent variable, specifically, the time
elapsed before overt attention is deployed in a scene. By manipulating the time between the
scene context presentation and the oculomotor response, I propose to study the effect of
memory retrieval on the guidance of attention during search. Similar approaches have a
tradition of being used to investigate temporal properties of memory and attentional processing.

Studying the Time Course of Internal Processes

Decisions, whether of the laboratory variety ("Was the gabor tilted to the left or right?") or of
the everyday variety ("Do I know the person waving across the street?"), are accompanied by
requisite tradeoffs between speed and accuracy. The pressure to make speedier decisions often
causes a corresponding increase in error rates, which recovers as more time is allowed before
making a response. Speed and accuracy tradeoffs have long been studied in the memory
literature with a method called the response-signal, or response-deadline, procedure (Corbett &
Wickelgren, 1978; Dosher, 1976; Reed, 1973). This procedure involves presenting a test item to



participants, followed by a delay, and ending with a signal to make a recognition judgment (E.g.
Was this word previously studied?). The delay before the signal is manipulated to control the
amount of time available for retrieval (Reed, 1973).

One question has involved studying automatic versus controlled processes in recognition
memory (Toth, 1996). The argument is that, at the shorter response deadline, recognition will
depend mainly on faster, more automatic familiarity processes. With a longer response deadline,
the recognition judgment will depend more on slower, more effortful recollection processes. The
response-signal procedure is a way to separate the two components of recognition (Toth, 1996).
Similarly, this procedure has been used to study interference effects in memory retrieval
(Dosher, 1981), episodic versus semantic memory associations (Dosher, 1984), and models of
decision making (Ruthruff, 1996). Measuring the time-accuracy functions of visual search tasks
has also been useful for refining models of attentional processing (Carrasco & McElree, 2001;
Dosher, Han, Lu, 2004; McElree & Carassco, 1999).

Overview

What is the influence of memory retrieval on eye guidance during search of specific, familiar
environments? The experiments in this chapter study how overt visual attention is guided by
memory at different points in time by using a delayed-search approach. This procedure required
that participants hold their gaze at central fixation on scene (or a blank background) for a
variable amount of time before overtly localizing a target embedded in the scene. Using covert
attention to search during the delay period was not effective because the search targets were
small and peripherally located. Specifically, the role of memory retrieval in search was
investigated by manipulating (1) the familiarity of the scene, and (2) the duration of the interval
between presentation of the scene and initiation of overt search. The main proposal of this
chapter is that enhancing the retrieval of learned scene-target associations improves attentional
guidance in cluttered, real world scenes.

Experiment 1 begins to build the case that manipulating the time before an initial saccade can
be an effective way to control the retrieval of scene specific location priors. Since there have
been relatively few studies of how people learn where real world objects are located in scenes
(Hidalgo-Sotelo, Oliva, & Torralba, 2005; Summerfield et al, 2006), this experiment explored
how retrieval influences the acquisition (i.e. learning curve over repeated searches) and the
expression of acquired scene specific knowledge. Interestingly, steeper learning curves and
overall lower reaction times resulted when observers were delayed for an extended interval
before making an initial saccade. Experiment 2 investigated the time course of retrieving scene
specific knowledge in greater detail, focusing on how varying amounts of retrieval-time affected
search performance. The results again supported the idea that longer time intervals increased
the effectiveness of using memory to help guide attention to the target. Taken together, the
experiments in this chapter suggest that remembering scene specific associations requires some
time, but that doing so improves attentional guidance to a consistently-located object in familiar
scenes.



Experiment 1

The purpose of this experiment was to determine whether delaying overt search could
effectively control the degree to which scene specific location priors were retrieved. Participants
were instructed to find a pedestrian in novel and repeated outdoor scenes in which the location of
the target was consistent within a particular scene. The unique aspect of this task was that on
each trial, participants were required to fixate centrally on the scene until a signal was given that
eye movements could be initiated. Importantly, two delay durations were tested: a control group
fixated centrally for 300 ms prior to making a saccade- a duration selected to approximate the
typical central fixation duration in visual search tasks (Findlay, 1997); another group of
observers, the extended-delay group, fixated centrally for 1300 ms before initiating a saccade.

Typically, search performance improves on repeated scenes as observers learn the association
between a particular scene and the location of the target. This study investigated how the delay-
duration manipulation influenced the learning of this association and suggests that enhanced
memory retrieval was the key reason. Consistent with earlier findings (Kunar et al, 2008b;
Summerfield et al, 2006), observers who were delayed for a extended time interval demonstrated
better search guidance relative to a shorter time interval. In fact, the extended-delay group
seemed to learn the scene specific location priors more rapidly than the control group. Was the
performance of the control group due to poorer learning of the visual context or poorer search
guidance? In the final block of search, the delay durations of each group were switched.
Interestingly, we found evidence that the control group could eliminate a fixation and perform
more efficient paths when their delay duration was lengthened. We conclude that achieving
stronger context retrieval before initiating overt search may enhance the efficacy of attentional
guidance in very familiar environments.

Figure 1. Example of repeated scene stimuli in experiment 1 (top) with eye movements (bottom)
from one observer's search of each scene. Central and search fixations are shown in red; the
fixation on the target is green.

... .. ......



METHOD

Participants. Eighteen observers, age range 19-33, participated in the study. Observers were
randomly assigned to one of two groups (control group or extended-delay group). All
participants were tested for normal visual acuity (one individual required soft contact lens, others
did not require visual correction) and were paid $15 for their participation. Informed consent was
obtained for all participants.

Apparatus. Eye movements were recorded at 240 Hz using an ISCAN RK-464 video-based
eyetracker. Observers sat at 75 cm from the display monitor, 65 cm from the eyetracking camera,
with their head centered and stabilized in a headrest. The position of the right eye was tracked
and viewing conditions were binocular. Stimuli were presented on a 19" LCD monitor with a
resolution of 1280 by 1024 pixels and a refresh rate of 70 Hz. Presentation of the stimuli was
controlled with Matlab and Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

Stimuli. The stimuli were color photographs of outdoor urban environments (see Figure 1). The
images subtended visual angles of 22.7' (horizontal) by 17.0' (vertical) on the screen.

A total of 220 distinct images were shown to each observer. These images belonged to one of
three categories: norming scenes, novel scenes, and repeated scenes. Norming stimuli were 38
scenes presented in the initial search block to all observers, regardless of group, with an 800 ms
delay preceding search; the purpose of having this norming block was to assess whether the
observers comprising each group were comparable in their search performance. Novel stimuli
consisted of 144 scenes that were presented once for each observer and distributed randomly
across experimental blocks. Repeated stimuli consisted of 22 scenes that were presented a total
of 9 times for each observer. All observers viewed the same set of repeated scene stimuli. The
search target for all stimuli was a person in the scene and all scenes contained a target (100%
prevalence). Within a particular scene, the search target was always at the same location within
that scene.

Critically, the repeated scenes were chosen such that the targets were not detectable in the
periphery while observers were centrally fixating. If observers in the extended-delay group could
make greater use of peripheral cues than the control group, then covert search of the periphery
would contribute to faster search time for even the first exposure of the scene. In order to reduce
the utility of covert search, the target objects in the repeated scenes were small (mean size of 0.40
by 0.8'), camouflaged, and located at a average eccentricity of 8'. Under these conditions,
searching the perceptual information in the periphery would not favor either group regardless of
delay duration.

Procedure. First, the eyetracker was calibrated for each observer. Tracking accuracy was then
checked using a routine in which observers fixated a dot that appeared at each of 9 locations
evenly distributed across the screen at 100 of eccentricity from the center. In this routine,
observers pressed a key to indicate that their gaze was on the dot and eye position was recorded
for 0.5 sec. The estimated fixation position had to be within 0.75' of visual angle for all 9 points,
otherwise the experiment halted and the observer was re-calibrated. Observers performed this
testing routine every 50 trials (roughly every 6 min) throughout the experiment. Additionally,
two scheduled breaks were interspersed in the experiment in which observers were required to



take at least a 2 minute break. We found that this helped to alleviate eye fatigue and facilitated
tracking accuracy. The total experiment duration was approximately 60 minutes.

Observers performed a visual search task in which their goal was to move their eyes to the
person in the scene and, once found, to maintain fixation on the target-person. Experiment
instructions explicitly indicated that the observer's eye position would cue the beginning and end
of each trial. Figure 2 depicts the trial events. Observers fixated a central cross on a gray screen
to begin a trial (600 ms), followed by the onset of the search scene with a fixation cross overlaid
on the scene (size 20). This cross indicated that the observer was to hold central fixation (300 ms
for the control group; 1300 ms for the extended-delay group), until the cross turned red (100 ms)
and a simultaneous auditory cue signaled that the observer should begin an overt visual search.
The search scene remained on screen until the observer fixated the target or for a maximum of 10
seconds. Fixation on the target was determined to have occurred when the observer's gaze
fixated the target region for 800 ms.

Time
Search!

SetUnti eyes
move to

Ready... 1 2 3 4 5 6 7 88100 ms

. 300 ms
OR

1300 ms
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A B
Figure 2. (A) Trial sequence. Observers fixated a central cross on a gray screen to begin the trial
(600 ms). The search scene was presented with an overlaid fixation cross to indicate that the
observer was to hold central fixation (Control group: 300 ms; Extended-delay group: 1300 ms), until
the cross briefly turned red (100 ms) and a simultaneous auditory cue signaled that the observer
should begin overt visual search. The search scene remained on screen for a maximum of 10 s or
when the observer fixated the target for 800 ms. (B) Experiment structure. A total of 10 blocks of
search were completed. Norming block: a block with unique scenes searched by both groups with
800 ms delay enforced at central fixation. Leaming Phase: 8 blocks of search with a delay
determined by condition. Switch Phase: a block in which the delay duration was lengthened to 1300
ms for the control group, and shortened to 300 ms for the extended-delay group.

Each observer performed 10 blocks of search trials, with each block containing 38 trials. In the
initial, norming search block, all observers searched norming stimuli, presented in randomized
order and preceded by an enforced delay of 800 ms. Since the critical manipulation- central
fixation delay- assumed that observers were sampled randomly from the population, this

............... . ........ ........



norming block provided a baseline measure of observer's search performance before
experimental manipulation. The stimuli shown in this block were never repeated in the
experiment.

The Learning phase consisted of 8 blocks of search, each of which contained 22 repeated
scenes and 16 novel scenes randomly interleaved in each block. The Switch phase consisted of
one final block, in which the delay-time was either lengthened (1300 ms for the Short-delay
group) or shortened (300 ms for the Long-delay group). With this last manipulation, we probed
the robustness of the learned scene representations by varying the amount of scene exposure
(delay-time) between the Learning phase and the Switch phase.

Eye Movement Analysis. Eye position was recorded throughout each trial and was used as a
measure of search performance, as well as a way to manipulate the independent variable of
central fixation duration. Eye movement analyses were performed on smoothed eye position
data, averaging the raw data over a moving window of 8 data points (33 ins). The beginning and
end positions of saccades were detected using an algorithm implementing an acceleration
criterion (Araujo, Kowler, Pavel, 2001). Specifically, the velocity was calculated for two
overlapping 17 ms intervals; the onset of the second interval was 4.17 ms after the onset of the
first. The acceleration threshold was set at a velocity change of 6 O/s between the two intervals.
Saccade onset was defined as the time when acceleration exceeded the threshold, and saccade
termination was defined as the time when acceleration dropped below the threshold. Fixations
were defined as the periods between successive saccades.

RESULTS

One observer did not show the classical task improvement over the blocks of the experiment
(see slope analysis of search reaction time below). Since the proposed hypotheses address the
development and expression of memory in visual search performance, the analyses reported
below exclude this observer's data.

Accuracy. A search was scored as correct when an observer located the target-person in the
scene before the maximum search time, 10 sec, elapsed. Observers failed to find the target in
5.9% and 5.8% of trials for the control and extended-delay groups, respectively. Trials in which
a saccade was initiated before the delay duration elapsed or in which the eye movement signal
was lost for at least 5 successive data points were removed. These criteria resulted in the removal
of 6.7% and 8.1% of trials for the control and extended-delay groups, respectively. Overall, the
number of trials in the analysis below did not significantly differ across condition, t(15) = 0.09.

Data analyses are reported on the following measures: search reaction time, number of search
fixations, and scan path efficiency. Search reaction time, or search RT, is defined as the time
elapsed from the offset of the start-search cue until the beginning of the final fixation on the
target (fixed at 800 ms). This measure corresponds to the efficiency of the search phase of the
task. Search RT directly arises from the number of fixations made until the observer fixated the
target, and the duration of fixations and the interleaved saccades. Number ofsearch fixations was
defined by the number of discrete fixations on the scene up until, but not including, the final



fixation on the target. Scan path efficiency was defined as the ratio of the cumulative length of all
saccades made in a trial divided by the most direct path to the target from the center of the scene
(Henderson, Weeks, & Hollingworth, 1999). Consequently, obtaining an efficiency value of 1
would indicate that the observer's eyes saccaded directly to the target.

Norming Block Performance.

The norming block of scenes was measured for the purpose of assessing search performance
among observers randomly assigned to each group. The delay duration for all observers was 800
ms. Search performance did not significantly differ between groups in mean search reaction time
(M= 627 ms, 639 ms for the control and extended-delay groups respectively, t(15)= 0.22),
number of search fixations (M= 2.16, 2.21 fixations, t(15) = 0.33), cumulative saccade distance
(M= 18.80, 18.80, t(15)= 0.04), or scan path efficiency (M= 2.31, 2.33, t(15) = 0.17). This
result indicates that the observers were comparable in search performance before the
experimental manipulation.

Learning Phase Results

First, we consider search performance during the Learning phase (blocks 1-8): When scenes
become familiar over repetition, search performance improves as observers learn the location of
the target in each scene (e.g. Chun & Jiang, 1998). Can this improvement be modulated by the
strength of memory retrieval, modeled by a delay at central fixation before initiating eye
movements?

Search Reaction Time.
On the first block of search, mean search RT did not differ between groups (See Figure 3; t( 15)

= 0.11), indicating that the manipulation of delay duration did not provide one group with an
initial advantage in search speed. Mean search RT decreased significantly across search blocks
for both groups: one-way repeated measures ANOVA for the control group, F(7,56) = 16.1, p <
0.0001 and for the extended-delay group F(7,49) = 34.9, p < 0.0001. There was also a significant
interaction between group (control or extended-delay) across search blocks, with observers in the
extended-delay group improving search RT significantly more than the control group: F(7,105)
2.26, p <0.05. Table 1 shows a summary of search performance measures for each group, early
and late in the learning process.

A linear regression was used to estimate the search improvement of each observer during the
Learning phase: search block (1-8) was used as the regressor for mean RT on repeated scenes.
As described above, one observer was excluded from this analysis because no evidence of
learning was observed over the duration of the experiment; this observer's slope estimate was
more than two standard deviations outside of the mean of all observers and the mean of the
condition assigned (extended-delay group). For the rest of observers, an independent t-test
between group slope averages showed that learning occurred more quickly (i.e. steeper slope) in
the extended-delay group than the controls (t(l 5) = 1.96, p < 0.05).



80

Search Reaction Time over Learning Figure 3. Search Reaction Time.
Improvement in search reaction time over

IA learning blocks on repeated scenes. Mean
search RT was initially similar between the
groups. After 5 blocks of repetition, the
groups diverge: faster search RTs were
made by the Extended-delay group
relative to the Control group on blocks 6
through 8. On the switch block, however,
both groups converged and searched with
similar speed. Asterisks represent level of
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Figure 4. Eye movement measures.
A) Number of fixations on each trial, from the beginning of search until (and excluding) the final

fixation on the target. Under this definition, the optimal number of fixations on a trial is 1, where the
only fixation is at central fixation and the subsequent fixation falls on the target. On blocks 6 through
8 of the Learning Phase, the Control group made significantly more fixations per trial than the
Extended-delay group. On the Switch Block, however, the Control group was given an additional
1000 ms of delay time and made significantly fewer fixations. In contrast, a reduction of 1000 ms of
delay time did not significantly change search performance for the "Extended-delay" group.

B) Scan path efficiency was computed from the sum of saccade lengths normalized by the most
direct path-to-target. Under this definition, the most efficient scan path has a value of 1, indicating
that the total saccadic distance was equivalent to the optimal path to the target. Results showed a
pattern in which, again, both groups initially performed search with similar scan path efficiency, but in
late learning blocks (blocks 6 and 7) the Extended-delay group exhibited more efficient scan paths
than the Control group. Asterisks represent level of significance: * p<0.05, ** p<0.01, *** p<0.001.
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Number of Search Fixations.
The average number of search fixations is shown in Figure 4a. Search fixations include those

occurring after the signal to begin overt search but excluding the final target fixation. The
pattern of results is very similar to the results of search RT.

In the first block, the number of search fixations did not significantly differ between the control
and extended-delay groups (t(1 5) = 0.11, see Figure 4a). Again, this suggests that the additional
delay time (1000 ms) between the extended and control groups did not allow covert search
mechanisms to locate the target with fewer fixations. The mean number of search fixations
decreased significantly across search blocks for both groups: F(7,56) = 14.6, p < 0.0001 for
controls and F(7,49) = 34.9, p < 0.0001 for the extended-delay group. Additionally, the
interaction of group X search blocks was significant, with the extended-delay group exhibiting a
greater decrease in search fixations over the Learning phase (F(7,105)= 2.23, p < 0.05).

Efficiency of Scan Path.
This measure reflects how directly gaze was deployed towards the target in a search trial. The

efficiency of the scan path is computed from the sum of saccade lengths normalized by the
shortest distance between the target and central fixation. Thus, the most direct scan path has an
efficiency value of 1. Similar to the pattern of results above, the mean scan path efficiency was
not significantly different between groups on the first block (t(15) = 0.41, see Figure 4b). Scan
paths became significantly more efficient across blocks: F(7,56) = 16.6, p < 0.0001 for the
control group and F(7,49) = 30.1, p < 0.0001 for the extended-delay group. However, the
interaction between group by block was not significant: F(7,105) = 1.51.

Novel Scene Results
Comparing search performance with the novel scenes is informative for addressing the

possibility that a generalized improvement over time, rather than scene-specific memory, could
underlie part of the decrease in search RT over blocks. Indeed, the delay-manipulation was not
predicted to have any significant effect on novel search: without scene specific location priors,
the duration of the delay was not predicted to have a differential impact on search RT.

There was no evidence that the two groups performed search of novel scenes differently: mean
search RT for novel scenes by control group was 389 ms and the extended-delay group was 377
ms, with no significant difference between the two groups (t(15) = 0.11). There was a significant
overall main effect of scene familiarity condition- novel vs familiar- F(1,32) = 168, p < 0.0001.
Unfortunately, this shows that the novel scenes were overall searched faster than the repeated
scenes, and indicates a possible floor effect in search performances. To pursue the question
further, a subset of 27 novel scenes were extracted (from total of 144 novel scenes) to compare
with the repeated condition, on the selection basis of having 2 search fixations or more, on
average, before the target was found. These 27 scenes were selected without regard to whether
the scenes were searched by the control or extended-delay group, and were presented an
approximately equal number of times in the earlier search blocks (1-3) as in the later ones
(blocks 6-8).



Search RTs (M=747 ms) and number of search fixations (M=2.71) were comparable to
repeated scenes on these 27 novel scenes. One key question was whether these difficult novel
scenes tended to be searched more efficiently at the end of the experiment (blocks 6-8) relative to
the beginning (blocks 1-3). This was not the case, as the results did not show a difference in
search RT between the early vs late search blocks, analyzed by each group alone (control group:
t(26)=0.06, extended-delay group: t(26)=0.07) or by both groups combined (t(26)=0.35).
Likewise, the number of fixations and scan path efficiency was similar in early and late search
blocks in the control and extended-delay group. Table 2 shows a summary of search performance
on the 27 difficult novel scenes, in early (1-3) and late (6-8) search blocks.

Summary
In the first block of the learning phase, both controls and the extended-delay group exhibited

equivalent search performance. As observers learned the predictive relationship between a
specific scene and target location (scene specific location priors), both groups located the target
with fewer fixations and more efficient scan paths. This showed that our experimental paradigm
of introducing a delay between scene presentation and gaze deployment did not hinder the classic
effect of context improving search RT. More importantly, the length of the delay- 300 ms or
1300 ms- modulated the magnitude of overall improvement in search RT and corresponding eye
movement measures. In late blocks of learning, the extended-delay group performed markedly
more efficient searches of the familiar scenes relative to the control group: scene learning
occurred at a faster rate and converged to an overall lower search RT.

A main effect of scene type (repeated versus novel) did not allow a comprehensive comparison
between delay-duration and scene familiarity. However, a subset of the novel scenes were
analyzed to address the possibility that the extended-delay group learned a more general strategy
that allowed them to search novel as well as repeated scenes more efficiently. Comparing trials
in which novel scenes were presented early versus late in the experiment did not show a
difference in search performance for either group. Overall, these results suggest that searching
familiar scenes was more efficient when observers were given a longer time interval before
deploying eye movements.

Switch Phase Results

Next, we address the Switch phase (block 9): How did search performance respond to changing
the time interval preceding overt search? For the control group, does an additional 1000 ms of
delay (from 300 ms to 1300 ms) facilitate a more efficient visual search through the familiar
scenes? Likewise, for the extended-delay group, does reducing the delay by 1000 ms (from 1300
ms to 300 ms) impair the ability to perform an efficient search of familiar scenes? The results of
the switch phase are shown in the last block of Figures 3 and 4, as well as in Figure 5.

Search Reaction Time
A measure of learning transfer was calculated from the difference in search RT on the familiar

scenes between the end of the Learning phase (block 8) and the Switch phase (block 9); results
are shown in Figure 3b. When the delay was lengthened for the control group, search RT
dropped significantly (M= 782 ms, 543 ms on blocks 8 and 9, A-Transfer: t(8)= 2 .26, p < 0.05).
In contrast, search RT was not significantly different when the delay was reduced for the



extended-delay group (M= 487 ms, 450 ms on blocks 8 and 9, A-Transfer: t(7)= 0.53). Table 2
summarizes search eye movement measures at key points in the Learning and Switch phases.

Figure 5. Effect of switching delay duration.
1000 0 End of Learning Phase changing the delay duration between the
900 n N Transfer Phase end of the Learning Phase (Block 8) and the

0,, Switch Phase (Block 9). The effect depended
on the delay-duration during the learning
phase: For the control group, enforcing an

S400 additional 1000 ms of delay time (from 300
300 ms to 1300 ms) resulted in a significantly
200 faster mean search RT on the Switch block.
100 For the extended-delay group, a reduction of

1000 ms of delay time (from 1300 ms to
Control Extended-delay 300ms) did not significantly affect search
Group Group performance.

Number of Search Fixations
Comparing performance between the end of the Learning phase and the Switch phases showed

that increasing the delay duration for the control group (from 300 ms to 1300 ms) had the effect
of significantly reducing the number of search fixations (M= 2.73, 1.72 fixations on blocks 8
and 9, t(8) = 3.94,p < 0.01). In contrast, decreasing the delay by 1000 ms for the extended-delay
group had no significant effect of on the number of search fixations (M= 1.79, 1.79 fixations on
blocks 8 and 9, t(7)= 0.03).

Efficiency of Scan Path
The control group showed a dramatic improvement in scan path efficiency between the end of

the Learning phase and Switch phase (M= 2.58, 1.83 on blocks 8 and 9, t(8) = 4.54, p < 0.001).
On the other hand, the scan path efficiency of the extended-delay group was not impaired by
reducing the delay by 1000 ins (M= 1.97, 1.99 on blocks 8 and 9, t(7)= 0.15).

Summarv
Critically, the switch block showed that lengthening the delay by 1000 ms allowed observers in

the control group to find targets in familiar scenes as quickly as the extended-delay group. A
significant improvement in all eye movement measures was found between the end of the
Learning phase and the Switch phase for the control group. This result suggests that the duration
of the time interval prior to deploying eye movements was important for allowing observers
retrieve scene specific location priors and deploy gaze most effectively. Interestingly, the
extended-delay group was not significantly impaired in search performance when the delay was
shortened to 300 ms. Potential reasons for this asymmetry in the results are discussed further
below.



Table 1

Summary of search eye movement measures on Repeated Scenes at key points in
the Learning and Switch phases

Search RT (ms)

M
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M
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Scan Path Efficiency

M
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Control Extended Delay
Group Group

1300 ms 300 ms

543
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1.74
0.12

1.83
0.12

450
51

1.79
0.14

1.99
0.15

Table 2

Summary of search performance on difficult novel scenes (n=27)
Search RT (ms) N Fixations Scan Path Efficiency

Earix Late Eardy Late Ealy Lat
Both Groups 776 748 2.78 2.63 2.48 2.50

controls Only 710 715 2.72 2.60 2.37 2.44
Extended-delay Only 821 811 2.83 2.77 2.60 2.57

INTERPRETATION

The present study showed that memory retrieval improved attentional guidance toward a target
location in familiar, real world scenes and suggests that time played a key role in controlling how
recognition guided attention. The pattern of RT improvement depended on the duration of an
enforced delay prior to the initial saccade, either a typical (300 ms) or extended (1300 ms)
central fixation on the scene before the initial saccade. Although both groups searched with
similar mean RTs in the early blocks of learning, the extended-delay group exhibited
significantly faster search times in later search blocks and overall steeper slopes (RT X block).
Observers in the extended-delay group made, on average, fewer fixations en route to the target
and overall more efficient scan paths in familiar scenes than controls. Did the difference in
performance arise from a more robust acquisition or more efficient expression of the learned
association by the extended-delay group?



On a final block, the delay duration was switched between groups: observers in the control
group were forced to fixate centrally for 1300 ms instead of 300 ms, and observers in the
extended-delay group were likewise cued to search a second earlier than before. Suddenly, the
control group searched as quickly as the extended-delay group's faster search performance,
making fewer fixations and more efficient scan paths than when those same observers had been
cued with a shorter delay (i.e. block 8). This supports the idea that a longer time interval is a
critical factor allow promoting better expression of learned associations. Interestingly, however,
the "extended-delay" group was relatively unaffected by shortening the duration of the central
fixation: few search fixations and efficient scan paths were executed by these observers when
given only 300 ms before making a saccade. This result, not consistent with slow- time course
account of memory-based guidance, suggests that this group also benefited from a more robust
acquisition of the scene-target association during the learning phase.

One possible explanation for why the extended-delay group acquired the learned association
more robustly than controls is related to the steeper slopes in the learning phase. After 5 blocks,
the average search time of the extended-delay group matched thefastest search time of the
control group. What aspects of the delay manipulation could explain the difference in search
slope? For both groups, repetition reinforced a single location in which the target was
consistently located across multiple searches of a given scene. But the "extended-delay"
introduced time- 1 sec difference between a typical and "extended" delay- in which observers
could retrieve information, such as relevant locations associated with that scene. It is possible
that retrieval over this time interval may represent an upper bound on the ability of familiar scene
recognition to guide attention.

It should be noted again that response selection did not contribute to the observed pattern of
results in this experiment. Not only did search performance differences only emerge in late
learning blocks, the main dependent measure, search RT, includes the search time until but
excluding the final target fixation. Furthermore, a longer time interval was associated with better
retrieval but, in this experiment, the procedure involved keeping the scene present during the
course of the delay. How critical was the presence of the visual scene during the delay interval
for retrieving location priors and biasing attention toward the cued location? Since the
experiment did not adequately control for search difficulty across familiarity conditions- the
overall novel search RT regrettably approached floor performance- it would be a stronger test of
the hypothesis if the same, identical scenes were searched in both conditions. An even stronger
test would be to use within-subject measures for the amount of search facilitation from memory
over different time intervals. Experiment 2 was designed to address these concerns and further
investigate the time course of memory retrieval and search guidance.



Search Experiment 2

The purpose of this experiment was to further investigate how long-term memory influences
visual search as a function of the amount of time to retrieve scene-specific location priors.
Observers were given the task of finding a book in indoor scenes (e.g. kitchens, bedrooms) that
were either searched once (Novel condition) or searched repeatedly (Familiar condition). As in
experiment 1, the target book's location was unchanged in repeated presentations of the same
scene, allowing observers to learn an association between a specific scene and the location of a
book in that scene. In accord with previous findings (Kunar et al, 2008b; Peterson & Kramer,
2001; Summerfield et al, 2006), the results of experiment 1 showed that extending the time
interval longer than a typical central fixation duration (approx. 300 ms, Henderson &
Hollingworth, 1998) made it more likely that scene specific associations were retrieved and used
to the eyes to the target on a given trial.

The present experiment provided a stronger test of this idea by using a within-observer
manipulation of the critical condition, retrieval time (SOA manipulation). Furthermore, search
difficulty was matched across the other critical condition, scenefamiliarity (novel vs familiar
scenes), by counterbalancing scenes across observers. Finally, the delayed-search procedure in
this experiment enforced the variable time-interval on a blank gray screen, after a 200 ms scene
preview, which further points to memory retrieval as the key factor being influenced by time.
Whereas experiment 1 was concerned with the leaming process, this experiment focuses on the
role of time on previously established scene-target associations. The procedure is therefore
divided into a Learning phase, in which specific scene location priors were learned, and a Test
phase, in which the main hypotheses were tested.' 0

The purpose of an initial Learning phase was for observers to learn scene specific location
priors for the repeated scenes. A subsequent Test phase then presented each scene briefly (200
ms) followed by a variable SOA (ranging from 0 to 1.4 seconds). In both parts of the experiment,
observers were instructed to visually search the scenes and fixate the book in each scene. The
main difference was that, after a 200 ms scene preview, in the Test phase each trial was followed
by a variable delay on a gray-screen before the scene was visible again. The main hypothesis,
positing a direct relationship between memory-based guidance and time, predicted an interaction
between the influence of SOA and scene familiarity on overt search. Longer delays, it was
hypothesized, would predict better search performance on familiar, but not novel, scenes.

METHOD

Participants. Twenty observers, ages 18-34, with normal acuity gave informed consent, passed
an eyetracking calibration test, and were paid $15/hr for their participation.

Apparatus. Eye movements were collected using an ISCAN RK-464 video-based eyetracker
with a sampling rate of 240 Hz. The stimuli were high resolution color photographs presented on

10 Note that this experiment has been described in Chapter 2, Search Experiment 1. Comparative map analysis was performed
on the eye movement data that was collected from the learning and test phases, collapsing across SOA manipulation. Here, I
report the results of the time manipulation on search performance (as opposed to fixation location, per se).



a 15" LCD monitor with a resolution of 1280 x 1024 px and refresh rate of 60 Hz. Presentation
of the stimuli was controlled with Matlab and Psychophysics Toolbox (Brainard, 1997; Pelli,
1997).

Stimuli. The stimuli were high resolution color photographs of indoor environments- kitchens,
living rooms, bedrooms, dining rooms- obtained by digitizing interior design books, and
downloading from LabelMe and Flickr@R databases. The original images contained a target-book
in the scene and were cropped and resized to be presented at a resolution of 1280 x 1024 px,
subtending visual angles of 22.7' (horizontal) by 17.0' (vertical) on the screen. The target
prevalence in the stimuli set was 100%: all scenes contained a target and, importantly, the target
location never changed in a particular scene. To make the task challenging, book targets were
small (from 1 to 2') and spatially distributed across the image periphery.

A total of 48 critical scenes were searched by observers in the Test phase, with scene
familiarity counterbalanced across equal numbers of observers. In the Learning phase, other
novel scenes were used as "filler" images interspersed with the repeated scenes and were viewed
by all participants; these novel scenes were not directly relevant to the questions of interest.

Design. The experiment consisted of a Learning phase followed by a Test phase. In each phase,
observers performed 4 search blocks and trials of repeated scenes (n=24) and novel scenes (n=8)
were intermixed within each block (32 scenes). The main hypothesis proposes a relationship
between the following variables: scene familiarity (familiar or novel), and delay-duration (0-
1400 ms SOA), both of which are manipulated in the Test phase. This experiment, unlike
experiment 1, used a within-subject comparison of delay durations. Scene familiarity was
counterbalanced across subjects: a total of 48 critical scenes were searched by were searched by
equal numbers of participants: observers in group A searched scenes 1-24 repeatedly and
searched scenes 25-48 only once, while the observers in group B searched scenes 25-48
repeatedly and scenes 1-24 once. In each block of the Test phase, 8 scenes (6 repeated, 2 novel)
were tested at each delay-duration (0, 200, 600, 1400 ms).

Procedure. Observers were instructed, at the beginning of each phase, to find the book in each
scene as quickly as possible. The purpose of the Learning phase was for participants to learn the
location of a book in scenes that became familiar because they were searched once in each block.
The purpose of the Test phase was to manipulate the amount of time between the scene onset
(observers fixating centrally) and the initial searchfixation on each scene; participants searched
following a variable SOA (200, 400, 800, or 1600 ms) on a novel or familiar scene. Each phase
was comprised of 4 search blocks: 24 repeated scenes and 8 novel scenes were randomly
intermixed in each block (32 trials per block). Scenes were counterbalanced across observers
with respect to the novel or repeated conditions.

The trial sequence was designed to be similar in Learning and Test phases, in order to habituate
participants to the procedure of holding their gaze on a fixation cross. As shown in Figure 5,
participants fixated a central fixation cross for 500 ms to begin the trial (gaze contingent). Next,
the scene was presented with a blue fixation cross superimposed and participants were required
to fixate the central cross for the duration of this interval (600 ms or 200 ms, Learning and Test
phase respectively) without making a saccade, otherwise trial terminated. In the Learning phase,
the fixation cross then briefly turned red (40 ms) and disappeared, signaling participants to



actively explored the scene to find the book. In the Test phase, the initial scene presentation (200
ms) was followed by a variable delay on a gray screen, giving an overall SOA (delay plus the
initial presentation time) of 200 ms, 400 ms, 800 ms, or 1600 ms; the same scene was then
presented again and participants moved their eyes to find the target. Participants had a maximum
of 8 s to respond via key press (Learning phase) or by fixating the target for 750 ms (Test phase).
Feedback was given after each trial (reaction time displayed for 750 ms) to encourage observers
to search speedily throughout the experiment. Short mandatory breaks were enforced in order to
avoid eye fatigue. The entire experiment lasted approximately 50 min. Eyetracker calibration and
assessment was as described in experiment 1.

Figure 5. Trial sequence for each phase of Experiment 2. In the Learning Phase, participants
learned the location of books in the repeated scenes. In the Test Phase, a scene (novel or repeated)
was briefly shown, followed by a variable SOA, then participants searched until the target was
fixated. The size of the fixation cross is exaggerated below for illustration: all fixation crosses were 2
x 2 degrees of visual angle.
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RESULTS

There are many measures of search performance that could be reported with these eye
movement data, many of which are highly correlated (e.g. reaction time and number of
fixations). Here, we report a set of measures that represent information about the time course of
early and middle search processes, and a coarse spatial analysis of early eye movements. These
measures include: Reaction time, defined as the entire time during which the scene was visible,
from the offset of the variable-duration red fixation cross until the end of the trial; Initial saccade
latency, which represents the duration of the initial, central fixation on the scene before making
the first eye movement; Averagefixation duration, which represents the average duration of
search fixations in the scene- i.e. all fixations except the initial, central fixation and the fixations
on the target; Number ofsearch fixations; and Firstfixation error, the distance from the first

search fixation to the center of a bounding-box around the target (in degrees of visual angle). We
also report the proportion of trials (per condition) in which the following search behavior occurs:
initial saccade toward same-side as target, initial saccade lands on the target, second fixation

lands on the target, and the thirdfixation lands on the target. Our main hypothesis predicted that

that longer delay-durations (SOAs) would enhance search performance in familiar scenes, owing
to more effective retrieval of scene specific location priors, relative to searching novel scenes.

............... ...............



Accuracy. A search was scored as correct when an observer located the target-book in the scene
before the maximum search time, 10 sec, elapsed. Observers failed to find the target in 4.6% of
trials in the learning phase and 3.6% of trials in test phase. Trials in which a saccade was
initiated before the delay duration elapsed or in which the eye movement signal was lost for at
least 5 successive data points were removed. These criteria resulted in the removal of 2.1% and
1.8% of trials for the learning and test phases, respectively. Finally, trials in which the observer
initiated a saccade before the entire SOA had elapsed were removed; this removed 8.8% and
4.2% of trials in the learning and test phases, respectively. Since the proposed hypotheses
address the effect of SOA, the number of removed trials from each duration was compared
(range: 3.4-5.1% of trials), and it was found that the number of trials did not significantly differ
across level of SOA, F(3,84)= 0.36.

Learning Phase Results

The learning phase consisted of the first four search blocks, during which observers searched
scenes in the repeated condition in each block, with the intent of training an association between
specific scenes and the target's location in those scenes. The main hypothesis did not make
predictions about the nature or speed of the learning process over the course of the learning
blocks, only that learning would occur. To show a trajectory of improvement, therefore, the
learning phase data are presented as a comparison between the average of blocks 1-2 ("early")
and blocks 3-4 ("later") for each measure.

Reaction times on repeated scenes fell from 2222 ms to 1611 ms in early and late blocks,
respectively (t(21)=8.6, p < 0.000 1) and, correspondingly, the number of search fixations
decreased from 4.5 to 3.1 fixations per trial (t(21)=7.3, p < 0.0001) over the learning phase. The
initial saccade latency decreased from 276 ms to 226 ms (t(2 1)=5.1, p < 0.0001) and the average
fixation duration fell from 214 ms to 188 ms (t(21)=5.4, p < 0.0001), but there was no difference
in the first fixation error between early and late blocks (early M, 11.04 deg, late M 11.07 deg,
t(21)=0. 16).

Reaction times on novel "filler" scenes were faster overall (owing to less difficult stimuli) than
repeated scenes and fell from 1501 to 1196 ms (t(2 1)=6.6, p < 0.0001), along with fewer search
fixations (t(21)=4.4, p < 0.00 1). The initial fixation duration decreased from 253 ms to 210 ms
(t(21)=4.2, p < 0.001), but the average fixation decrease remained unchanged (t(21)=0.22) across
early and late search blocks. These novel scenes do not have direct relevance to the experimental
hypothesis, as delay duration was not manipulated in this phase, but the results are reported here
and may serve as a potential point of comparison against results in the Test phase.

Test Phase Results

The test phase consisted of the last four search blocks, during which observers saw a brief
preview of the scene and, critically, were delayed for a variable time interval (meanwhile
fixating a blank gray screen). The main hypothesis, following up on the results of experiment 1,
predicts that the longer delays will be associated with better search performance. Specifically,
the delay-duration (SOA manipulation) was expected to have a disproportionate impact on
search trials with repeated scenes than novel scenes, indicating the retrieval of specific scene
associations.

Reaction Time



Our first main result, the mean reaction time (RT) as a function of SOA, is shown in Figure 6
below. As expected, there was a large main effect of scene familiarity (F(1,42) = 8.5, p <
0.0001), with novel scenes being searched considerably slower than familiar scenes. For familiar
scenes, a one-way repeated measures ANOVA showed a significant effect of SOA, F(3,63) =
8.5, p < 0.0001, but not for the novel scenes (F(3,63) = 0.70). A mixed design ANOVA of the
RTs from both conditions showed no significant interaction between the two variables (F(3,126)
= 0.10). The trend in both conditions was for search to be speedier when it was preceded by a
longer delay. Eye movement data allow us to isolate different contributions to the overall RT,
making it possible to determine which SOA-driven effects were common to both familiar and
novel scenes, and which were unique to each condition.

Overall reaction time reflects the entire time that the scene was visible and, behaviorally,
includes the initial saccade duration, scan time (search fixations + saccades), and the gaze
duration on the target. Since gaze duration in the Test phase was pre-determined by the
procedure (gaze contingent trial termination by fixating the target for 750 ms), this measure is
largely uninteresting, and the remainder of the results focus on the influence of scene familiarity
and SOA on early and overt search processes.

Figure 6. Reaction time as a function of delay (SOA). Error bars represent within-observer standard
error.
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The relationship between SOA and initial saccade latency is shown in Figure 7 (left). There
was a significant main effect of SOA (F(3,63) = 74.2, p < 0.0001), and small effect of familiarity
(F(1,42) = 2.2x10 5, p < 0.0001), likely driven by the value at 600 ms SOA. There was no
interaction (F(3,126)= 0.10). Overall, longer SOAs in both novel and familiar scenes were
associated with faster initial saccade latencies, pointing to a common basis underlying the RT
results.

Average Fixation Duration



The average duration of fixations in a trial (excluding initial saccade latency and gaze duration
on the target), is shown in Figure 7 (right). There was a main effect of scene familiarity (F(1,42)
= 2.1x10 6, p < 0.0001), with fixations on novel scenes being about 30 ms slower than on familiar
scenes. For novel scenes, there was a significant effect of SOA, F(3,63) = 3.2 , p < 0.03, but not
for the familiar scenes (F(3,63) = 1.0). A significant interaction between the two variables
(F(3,126) = 2.7, p < 0.05) suggests that SOA duration influenced the conditions differently: in
novel scenes, longer SOAs were associated with faster fixations, but not in familiar scenes,
potentially due to a floor effect (M 180 ms).
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Figure 7. Influence of SOA on fixation durations. Error bars represent within-observer standard error

Number of search fixations

Although there is a slight trend for the number of search fixations to decrease in familiar
scenes- from 2.21 (0 ms SOA) to 2.05 (1400 ms SOA)- there was not a significant effect of SOA
for familiar (F(3,63) = 1.3), or for novel scenes (F(3,63) = 0.51), and no significant interaction
(F(3,126) = 0.47).

Proportion of Trials with Different Search Outcomes

On any given trial in which the target was found (>96% of trials in Test phase), the outcome
will be one of the following: the initial saccade could land on the target, the 2nd fixation could
land on the target, the 3rd fixation could land on the target, etc (the maximum number of search
fixations in a trial was 18). Table 4 shows the proportion of trials in each condition exhibiting
these search outcomes: target localization on the first, second, or third fixation of the trial. The
main hypothesis predicted that longer SOAs would facilitate retrieval of scene location priors,
increasing the likelihood of directing attention to the target. This was assessed by evaluating how
often the initial saccade was directed to the target (e.g. Peterson & Kramer, 2001), shown in
Figure 8.

There was a significant main effect of scene familiarity (F(1,42) = 26.5, p < 0.0001), a main
effect of SOA for familiar scenes (F(3,63) = 9.6, p < 0.0001) but not novel scenes (F(3,63) =
0.98). Importantly, there was a significant interaction between the two conditions (F(3,126) =



3.6, p < 0.01). Longer time intervals seem to make it more likely that the first saccade in a
familiar scene will land on the target region.

Initial Saccade Directed to Target
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Figure 8. Proportion of trials in which the first fixation landed on the target

When the target was not localized on the initial fixation, what proportion of the time was the
target localized on the subsequent (second) fixation? On average, this was a more common
outcome when the scenes were familiar (39%) versus novel (14%), collapsed across SOAs. The
effect of scene familiarity was significant (F(1,42) = 38.1, p < 0.0001), however there was no
effect of SOA in familiar scenes (F(3,63) = 0.46) or in novel scenes (F(3,63) = 0.14), and no
interaction (F(3,126) = 0.46).

Furthermore, when the target was not localized on the first or second fixations, what proportion
of the time was the target localized on the third fixation? Again, this outcome was more common
when the scenes were familiar (36%) versus novel (20%), averaged across SOAs. The effect of
scene familiarity was significant (F(1,42) =- 27.8, p < 0.000 1), but there was no effect of SOA
duration (familiar: F(3,63) = 0.06; novel: F(3,63) = 1.2), and no interaction (F(3,126) = 0.52).

Spatial Characteristics of First Search Fixation

Since none of the previous measures have addressed how SOA influences the placement of
search fixations, we report two measures that evaluate spatial characteristics of the initial eye
movement away from the center of the screen: first fixation error (in degrees of visual angle) and
the proportion of trials in which the initial saccade is toward the same-side as the target.

Excluding trials in which the initial saccade landed on the target (see Table 4), the first fixation
error was not significantly influenced by SOA in familiar scenes (F(3,63) = 0.93) or novel
scenes (F(3,63) = 1.1). We also found that the error was smaller for familiar scenes than novel
scenes (F(1,42)= 2.5x10 6, p < 0.0001). Values are reported below in Table 3.

Since scene familiarity seemed to influence the placement of the first fixation, though not in an
SOA-dependent manner, we analyzed a more spatially coarse measure of early search guidance:
the proportion of trials with an initial saccade toward the same side as the target, regardless of
whether the fixation landed on the target. Interestingly, these results indicated that longer SOAs
increased the likelihood of making a saccade toward the target-side on familiar scenes (F(3,63)=
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3.7, p < 0.01) but not novel scenes (F(3,63) = 1.3), and the interaction was marginally significant

(F(3,126)= 2.4, p = 0.07). Values are reported below in Table 4.

Table 3

Summary of eye movement measures

Reaction Time (ms)
M

Num. Seach Fixations

M

Init. Sac. Latency (ms)
M

Fixation Duration (ms)
M

First Fixation Error

M

Familiar Condition

0 200 600 1400 Time
ms ms ms ms Difference

1732 1652 1573 1556 175 ms

0.16
2.21 2.11 1.99 2.05 fixations

376 303 262 239 137 ms

177 170 183 178 -1 ms

10.80 10.80 10.70 10.40 0.40

2487 2458 2385 2320

4.37 4.88 4.51 4.43

383 299 295 242

233 206 204 207

11.70 11.80 11.60 11.40

Table 4

Spatial Characteristics of Search Behavior for different delay durations

Initial Fixation on Target
(n search fix. = 0)

2nd Fixation on Target
(n search fix. = 1)

3 rd Fixation on Target
(n search fix. = 2)

SUM

Proportion of Trials:
Familiar Scenes

0 200 600 1400
ms ms ms ms

0.23 0.27 0.35 0.34

0.27 0.27 0.21 0.24

0.17 0.14 0.15 0.13

0.67 0.68 0.71 0.71

Proportion of Trials:
Novel Scenes

0 200 600 1400
ms ms ms ms

0.08 0.14 0.08 0.09

0.12 0.11 0.14 0.13

0.19 0.12 0.17 0.13

0.39 0.37 0.39 0.35

Initial Saccade goes to 0.68 0.73 0.71 0.77 0.56 0.59 0.49 0.51
same-side as Target

Novel Condition

0 200 600 1400 Time
ms ms ms ms Difference

167 ms

0.04
fixations

142 ms

26 ms

0.30



SUMMARY

The results, overall, were consistent with the notion that longer SOAs improve search
performance by enhancing retrieval of scene specific location priors. We also observed some
surprising results which potentially arose from the unique experimental paradigm. Four main
results were reported:

(1) Reaction time in both familiar and novel conditions decreased as a function of SOA.
While familiar scenes were searched much more quickly than novel ones, the magnitude
of decrease was approximately the same in each condition (Figure 6, Table 3).

(2) The decrease in RT was, in part, based on a common trend for the initial saccade latency
to decrease with longer SOAs in novel and familiar scenes; scene familiarity had no
effect on the speed of launching the initial saccade. Surprisingly, scene familiarity had a
significant effect on average fixation duration; in familiar scenes, fixation dwell-time
was fast (about 180 ms) and unaffected by SOA, whereas in novel scenes, fixations were
slower but became faster with longer SOAs (Figure 7, Table 3).

(3) The probability of making a saccade directly to the target increased as a function of
longer SOA durations when the scene was familiar but not in novel scenes. This serves
as the primary support for the experimental hypothesis (Figure 8, Table 4).

(4) A spatial characterization of the first search fixation suggested that scene familiarity
exerts, at most, a coarse influence in early saccade guidance. When the initial saccade
failed to land on the target, there was no evidence that guidance was more accurate with
longer SOAs (Table 3). When looking at all trials, however, there is evidence that longer
SOAs on familiar scenes were associated with greater probability of directing the initial
saccade to the same-side as the target, relative to novel scenes (Table 4).

INTERPRETATION
The main hypothesis predicted that search performance would be systematically facilitated by

longer delay durations when searching familiar scenes. Critically, comparing search behavior
between the novel and familiar conditions allowed us to assess the influence of the variable delay
(SOA manipulation) independently from the influence of familiarity. Reaction time, as expected,
became faster with longer SOAs, although the reasons underlying the decrease were not
expected. Most of the RT decrease resulted from an unexpected impact of SOA on initial saccade
latency, regardless of scene familiarity; in retrospect, it is not surprising that observers would be
faster at initiating an eye movement after holding central fixation on a blank gray screen for a
longer time. Given this clear impact of the SOA manipulation, however, it is perhaps surprising
that scene familiarity had such little effect. In contrast, search fixations in familiar scenes were
consistently of shorter duration than novel scenes. This pattern of results- fewer, consistently fast
fixations in familiar scenes, along with a greater number of fixations in novel scenes that became
faster with longer SOAs- accounts for the pattern of RT results.

Interestingly, our study largely replicates the findings of the Peterson and Kramer study (2001)
that also investigated recognition and guidance in contextual cuing (letter array stimuli). We
found a significant interaction between delay and scene familiarity on the proportion of trials in
which the initial saccade landed on the target. This is interpreted as evidence that longer time



intervals increase the likelihood of retrieving specific scene priors from long term memory. If the
initial saccade was not directed to the target, however, there was no tendency for the first
fixation to be more accurate after longer delays. Unlike Peterson and Kramer (2001), the first
fixation error was slightly smaller on familiar scenes than novel ones. This is perhaps not
surprising, given the nature of our real world scene stimuli in which attentional guidance can
exploit a rich variety of visual and semantic scene features.

General Discussion

Using scene specific search priors involves a combination of recognition and attentional
guidance processes (Peterson & Kramer, 2001). The experiments in this chapter investigated
temporal characteristics of how these learned priors guide search in familiar real world scenes.
Whereas the contextual cuing phenomenon seems to be based on predominantly implicit
recognition processes, it less clear (1) how long-term memory representations of real world
contexts support attentional guidance and (2) how conscious awareness is involved. To the first
issue, if observers' search speed was indeed improved by retrieving learned scene-target
associations, what was the mechanism used to improve guidance?

This question has been investigated in the repeated search experiments of Wolfe and
colleagues (Wolfe et al, 2000) and their classic finding that attentional guidance does not
improve after hundreds of searches through the same, unchanging display. Despite observer's
clear memory of the search array, it is interesting that novel displays were searched as efficiently
as the well-rehearsed displays. At face value, this seems to suggest that visual attention may not
recruit information from long-term memory. Kunar, Flusberg, and Wolfe (2008a) recently
studied this issue in more detail by matching response-types in the memory and visual search
conditions. Critically, the search was also modified such that targets only appeared in a subset of
the possible locations (experiments 5, 6). Under these conditions, observers indeed learned to
guide attention to specific locations and away from irrelevant items in the display. Within the
relevant subset of locations, however, search remained inefficient (Kunar et al, 2008a). Memory
improved search performance, the authors conclude, by reducing the effective set size rather than
changing the nature of the search. Our experiments, similarly, allowed observers to learn that a
scene's identity predicted a single target location and that other scene regions could effectively
be ignored. Correspondingly, participants located targets in familiar scenes with faster reaction
times and fewer fixations than novel scenes (experiments 1, 2). In this respect, our findings are
consistent with the proposal that learning improved search efficiency by guiding attention to a
subset of the scene.

This still leaves open the question: how do the recognition processes triggered by a familiar
context ultimately bias attention toward a subset of informative scene regions? This chapter
showed that longer time intervals between scene presentation and the initial saccade were
associated with more direct scan paths (experiment 1) and a higher probability of making
saccades directly to the target or the same-side of the scene as the target (experiment 2). These
results are consistent with a recent study from Kunar, Flusberg, and Wolfe (2008b) in which the
authors used two approaches to lengthen the time before a response in a contextual cuing task. In
one approach, increasing the display complexity resulted in a greater effect of context-based



guidance (Kunar et al, 2006b, experiment 1); notably, the average RTs for the difficult
conditions in that study were between 1-1.5 seconds, which are comparable to the search times in
this chapter's experiments. A second approach was to introduce a delay between the onset of an
initial display and the final search stimulus; with or without place-holders visible during the
delay (where items would later appear). Results again showed that the additional time allowed
participants to implement memory-based guidance, provided that there was something in the
place-holder locations to guide attention to (Kunar et al, 2006b, experiment 2). In a behavioral
study that accompanied the fMRI experiment, Summerfield and colleagues (2006) manipulated
SOA (100 ms, 500 ins, or 900 ms) along with memory versus visual orienting. Similarly, they
found a strong effect of SOA- the fastest response times occurred after a 900 ms SOA and
slowest response times after a 100 ms SOA- however there was little evidence that the delay was
more effective in the memory-guided condition than the visually-guided condition (Summerfield
et al, 2006). Overall, this work suggests that the conditions in which specific contexts guide
attention tend to involve prolonging the time before a response.

Potentially, the time needed for memory to guide attention arises from the time course of
recognition processes. Memory retrieval may be considered a bottleneck limiting what
information from long-term memory gets passed along to attentional guidance mechanisms. In
fact, converging cognitive neuroscience evidence (for reviews see Buckner & Wheeler, 2001;
Rugg & Yonelinas, 2003; Yonelinas, Otten, Shaw, Rugg, 2005) points to at least two temporally
distinct components operating in recognition memory: a rapidly available familiarity process and
a slower recollective process (Mandler, 1980). Subjectively, these two processes can be
experienced, for example, when seeing a photograph from a past vacation and having an
immediate sense offamiliarity before fully recollecting the exact identity of the place and its
contextual associations. Recordings of event-related brain potentials (ERPs) during memory
tasks find temporally, topographically, and functionally distinct correlates of familiarity and
recall during retrieval (Rugg & Henson, 2002). Although the term "familiar condition" has been
used throughout this chapter, this was not intended to imply that scene specific priors rely
primarily on "familiarity" as opposed to "recollective" processes. In fact, it seems reasonable
that scene specific location priors, being a type of contextual association, would involve a slow
time course mediating this form of retrieval.

A key caveat to the above proposal was illustrated by the results in the final block of
experiment 1. Observers in the extended-delay group performed 8 search blocks with a 1300 ms
delay at central fixation; on the final switch block, the delay was shortened to only 300 ms before
starting overt search. Surprisingly, these observers had fast search RTs and made equally
efficient scan paths, despite the shorter time interval. What does this imply about the retrieval-
time account of memory based search guidance? This finding does not preclude the idea that the
time course of retrieval processes often limits the extent of attentional guidance in familiar
contexts. However, it does point to the existence of multiple types of learning and memory
mechanisms, some of which vary in the degree of transfer across temporal and spatial
transformations. Automaticity is one classic example, in which a specific, overlearned situation
rapidly triggers a well rehearsed motor plan with low-demands on cognitive resources but little
flexibility (Logan, 1992). An interesting distinction in the attentional cuing literature is that
unconscious cues can drive extremely rapid attentional shifts (Posner, 1980; Yantis & Jonides,



1984) while volitional shifts of attention are considerably slower (Muller, Teder-Salejarvi,
Hillyard, 1998; Wolfe, Alvarez, & Horowitz, 2000).

To be fair, it is likely that both rapidly and slowly developing contributions from memory
factor into the results of the current studies. The bulk of evidence nonetheless indicates that
scene specific location priors require longer time intervals to influence attentional mechanisms.
In the results of experiment 2, for example, we observed that the earliest available measure of
search performance- the initial saccade latency- was indistinguishable between scene familiarity
conditions; only slightly later in the trial, search fixations tended to be approximately 30 ms
shorter in familiar scenes. More importantly, delay duration was positively correlated with the
proportion of initial eye movements directed to the target in familiar, but not novel, scenes.
These data, along with recent ERP (Johnson et al, 2007) and eye tracking (Peterson & Kramer,
2001) results, suggest that long-term memory retrieval helps search performance by increasing
the likelihood that one of the first few shifts of attention will be to the target.

This mechanism describes how scene specific location priors, as studied in contextual cuing
work and the present chapter's experiments, in effect bias visual processing on any given trial.
This is supported by the eye movement data of Peterson & Kramer (2001), in which recognition
of the repeated contexts sometimes occurred immediately- indicated by an initial saccade
directed to the target- but, more often, occurred after an overt search had begun. The main result
of chapter 2, furthermore, demonstrated that person-specific, scene specific search experience
systematically influenced fixation locations on a given (repeated) search trial.
Electrophysiological measures can provide reliable information about the timing associated with
particular types of cognitive processing, such as attentional selection. However since waveforms
are averaged across many trials, they do not generally inform about individual trials. A recent
ERP study of contextual cuing found that brain responses on repeated displays gave a higher
amplitude in the early portion of the N2pc waveform, and a greater proportion of fast RTs,
relative to novel displays (Johnson et al, 2007). The authors argue that the increased amplitude in
the early part of the waveform resulted from averaging over more trials in which attention was
quickly shifted to the target, similar to increasing the early portion of the RT probability
distribution (Johnson et al, 2007). If so, this would support the idea that searching a familiar
context increases the likelihood that early shifts of attention land on the target. The experiments
in this chapter extend this argument by showing that memory for specific scenes effectively
orients visual attention and, furthermore, that retrieval becomes increasingly more likely to guide
search over time.

At present, the nature of recognition processes in visual search of cluttered, real world scenes
are not sufficiently understood to characterize memory influences as wholly implicit or explicit,
or based on exclusively one type of retrieval. One possibility is that a degree of explicit memory
encoding and retrieval comes "for free" when the search display is a real world scene. When real
world scenes were used as backgrounds in contextual cuing (Brockmole, Castelhano, &
Henderson, 2006; Brockmole & Henderson, 2006a, 2006b), observers explicitly recognized
repeated scenes from novel ones (Brockmole & Henderson, 2006a). More importantly, when
observers searched upright real world scenes, the scene-target associations were learned twice as
rapidly as when the same scenes were inverted. Consistent with this finding, a semantically
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meaningful scene may serve as a richly informative basis upon which specific associations are
readily learned (e.g. scene location priors).

Concluding Remarks
Given the ubiquitous contextual associations in daily life, it is prudent to study how memory

retrieval and visual attention interact in familiar environments. The main idea of this chapter is
that time increases the likelihood that specific real world scenes will be recognized and that
those spatial cues will help guide attention to the target. We introduced a delayed-search
paradigm to manipulate the interval between scene context presentation and oculomotor
responses. Overall measures of search performance indicated that longer delays were associated
with more rapid attentional deployment to the target. Scene specific search priors, specifically,
influenced the duration and placement of early attentional shifts in familiar scenes. In summary,
this work is interpreted as evidence for temporally graded memory retrieval that governs use of
context-based guidance.
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CHAPTER 5

Conclusion

The work presented in this thesis provides one approach toward investigating how eye
guidance in familiar scenes is distinct from general contextual guidance. Intuitively, it seems
reasonable that repeatedly searching an environment will produce an attentional bias toward
regions that have been informative in the past. However, studying the influence of scene specific
experience is complicated by the fact that, on one hand, fixation selection varies significantly
across observers but, on the other hand, even novel real world scenes often constrain which
scene regions are likely to contain a target. Three chapters investigated the role of memory-based
eye guidance when observers look for an object (e.g. pedestrian, book) in novel and familiar real
world scenes.

The behavioral experiment presented in Chapter 2 was important because, firstly, it provided a
benchmark of inter-observer fixation agreement that was used to evaluate model performance.
Secondly, the eye movements collected in this study comprised the Foovei population in
comparative map analysis (Chapter 3, experiments 2 and 3). One of the main results of Chapter 2
indicated that a computational model of general contextual location priors (Torralba, Oliva,
Castelhano, & Henderson, 2006) outperformed models of target-features (Dalal & Triggs, 2005)
and visual salience. It is important to point out that this result was dependent on the nature of the
search task and stimuli: all 456 target-present scenes contained a person in the original
photograph, therefore targets were overwhelmingly located in context-consistent regions (e.g. on
sidewalks). Consequently, even on target absent images, observers fixated scene regions where a
pedestrian would typically be located. If the experiment had included a proportion of scenes with
a target-person in unexpected locations (e.g. on rooftops), other sources of guidance such
salience or target features may have emerged as a better predictor of eye movement than scene
context.

Combining all three sources of guidance provided the most accurate model-based
predictions of eye movements in Chapter 2. Still, using other observer's fixations to build a
prediction map generated the most spatially precise predictions. The signal detection metric used
to evaluate prediction accuracy, the ROC area (Green & Swets, 1966), is becoming an
increasingly popular approach for comparing model predictions against human eye movement
data (e.g. Renninger, Verghese, & Coughlan, 2007; Tatler, Baddeley, & Gilchrist, 2005). Rather
than choosing a particular threshold (e.g. 10% of image area), the the ROC area summarizes
performance across all possible thresholds (0-100%). For this reason, Chapter 3 also used the
ROC area to evaluate how well a familiar observer's eye movements were predicted by fixations
representing guidance by the same person, the same past history, or the same scene.

These spatial patterns in eye movements were investigated in Chapter 3 using comparative map
analysis. Conceptually, this approach is similar to the cross-image control (Chapter 1), in which
empirical fixations sampled from random scenes were used as a baseline for comparing inter-
observer agreement. Tatler and Vincent (2009) also applied a similar logic in their recent study
of oculomotor biases and whether they predict fixation selection independently of a scene's
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content. Extending this logic further, comparative map analysis identifies several populations of
fixations that share underlying information. The most specific information, Fself, represents the
regions that were fixated by a single person's repeated searches of one specific scene. Other
scene dependent fixation populations include Fgroup (from other observer's repeated search of the
scene) and F.,ve, (from observers who searched the scene only once). This chapter described the
logic and implementation of comparative map analysis and, critically, demonstrated that the
analysis of three experiments produced a similar pattern of results.

Comparative map analysis revealed, surprisingly, that fixation selection was systematically
influenced by person-specific, scene-specific experience, beyond the guidance provided by
(general) scene context alone. In three different search experiments, an observer's own fixations
on a familiar scene provided significantly more accurate predictions of fixation locations than
same-group and same-scene controls. This is interesting because it raises questions about
whether oculomotor guidance from a person's specific experience in a scene has any behavioral
significance. Does gaze deployment in familiar scenes boost memory by reinstating the
''context' (fixation locations) of a previous search? Or does this effect arise as an incidental
consequence of repeatedly viewing the same scene? If this was true, it might imply that repeated
scene viewings with a different task (e.g. free viewing) would provide as much information for
predicting scene fixations as we observed in these visual search experiments.

In 1971, Noton and Stark reported a similar finding in their study of pattern perception and
memory: upon repeated exposure, an observer's first few eye movements reinstated a sequential
"scanpath" specific to that person's viewing of a particular pattern. Controversially, they posited
that this was indicative of how people remember and recognize patterns universally. Subsequent
studies, however, failed to find a strong connection between sequential reinstatement of eye
movements and memory. The authors themselves noted that people did not generate scan paths
obligatorily when presented with a familiar pattern, despite the fact that participants easily
recognized the familiar patterns (Noton & Stark, 1971). Correspondingly, chapter 3's finding of
systematic individual differences in fixation selection may not, in fact, be indicative of a
functional relationship between memory and eye movements.

To have a better understanding of this phenomenon, it would be helpful to examine patterns
across observers and scenes. Are certain places searched more consistently than others? Scenes
vary in the quantity of surfaces likely to contain the target and the spatial distribution of those
surfaces. Looking for a book in an office, for example, is likely to require searching a greater
proportion of the scene than searching a bathroom. Do constraints of general scene context affect
how strongly observers are biased by their history of fixation selection in the scene? Scenes with
less-constrained search area (i.e. more office-like than bathroom-like), in the least, may promote
more variability in the number of different regions fixated by different observers. Under these
conditions, comparative map analysis is more likely to reveal a difference between the Fgroup and
Fself populations. This consideration should be taken into account when selecting scene stimuli
for future experiments. On the whole, identifying properties of the scene and task that promote
within-observer consistency in fixation selection remains an open question.

Finally, chapter 4 investigated the time course of using scene specific location priors to guide
search in real world scenes. Recent work has suggested that with additional time, observers may
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be able to effectively reduce the set size in a familiar scene by directing attention to regions that
have been informative in the past (Kunar, Flusberg, & Wolfe, 2008). In our experiments, we
used eye tracking to accomplish three things: (1) experimentally manipulate the duration of
scene exposure before initiating overt search, (2) serve as a way for observers to respond when
they located the object (trials terminated with a prolonged target fixation), and (3) provide a
dependent measure which scene locations were foveated during the exploration phase of search.
Overall, the two experiments in this chapter provide evidence that scene specific location priors
were used more effectively when observers had more time for retrieval before making eye
movements in familiar scenes. A greater proportion of initial saccades landed directly on the
target when observers were given a longer delay on a familiar scene (experiment 2).

Altogether, the experimental results described in this thesis describe a unique role of scene
specific search experience on the deployment of eye movements. There are numerous reasons to
be cautious, however, about how broadly to interpret these results. One limitation of this work is
that it does not explore the case in which a specific scene is associated with multiple locations in
which targets are likely to appear. Learning that a single location is likely to contain a target- as
was the case in the experiments in this thesis- is applicable only within a limited number of
settings. In the real world, observers learn that objects can be in one of several places within a
familiar environment. How does spatial uncertainty about a target's location influence how scene
specific location priors are used? If a particular scene is associated with two locations, would we
still find evidence for scene-specific guidance over repeated searches? Would retrieval time
influence how attention was deployed to multiple informative locations?

As addressed earlier in the conclusion, these studied tested learning in which an object was
located in contextually-consistent locations within a scene. Objects in the world, however, are
sometimes found in unexpected locations. It would be interesting to know how general scene
context interacts with scene specific learning. Potentially, objects in contextually-inconsistent
location may be treated as distinctive in memory. If so, we might expect that scene specific
location priors would be learned more quickly for scenes in which targets were located in
unusual places than when targets were in contextually appropriate places. Furthermore, how
would the distinctiveness of this association influence the amount of retrieval time needed to use
memory to guide attention in the scene?

In this body of work, I have demonstrated a few approaches to studying how memory for
specific, familiar scenes can influence the deployment of attention in visual search. Future work
is needed to explore how real world conditions influence the spatial and temporal characteristics
that have been proposed here. The value in pursuing such efforts is that we stand to enhance our
understanding of how familiar environments promote (or discourage) efficient deployments of
visual attention.
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