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Abstract

Successful interaction with the external world requires choosing appropriate

actions in the context of available choices. Such decisions require the evaluation of the

reward magnitude, or value, associated with each potential action. Delineating the

neural circuits involved in this process remains an important goal in systems

neuroscience. However, little is known about the neural circuits that compute, or

represent, low level primary reward signals. We have combined quantitative

psychophysical measures of subjective reward magnitude elicited by rewarding

electrical brain stimulation, fMRI as a readout of whole-brain neural activity, and local

inactivation of brain structures, to identify the neural representation of subjective reward

magnitude. We find that multiple brain regions are activated by rewarding brain

stimulation, but only two brain regions, the nucleus accumbens and the central and

basolateral nucleus of the amygdala, exhibit patterns of activity levels that track the

reward magnitude measured psychophysically, suggesting a role in the neural

representation of reward magnitude. Furthermore, pharmacological silencing of the

ventral tegmental area (VTA) disrupts reward-tracking behavior and increases stimulus-

dependent activity in the nucleus accumbens and amygdala. Together these data

suggest that ascending and descending pathways combine to produce a signal that

ultimately guides behavior and is subject to modulation by VTA inputs.
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"Whatever course you decide upon, there is
always someone to tell you that you are wrong.
There are always difficulties arising which
tempt you to believe that your critics are right.
To map out a course of action and follow it to
an end requires courage."

~Ralph Waldo Emerson
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INTRODUCTION (CHAPTER 1)

Background

Decision-making is critical for successful interaction with the world

Effective interaction with the external environment requires a continuous stream

of decisions among choices for actions. Each such decision requires the assimilation of

a large number of factors, including innate drives, internal states (hunger, estrous etc),

previous experience (memories or associations), expectation of positive outcome

(reward), negative outcome, and likelihood of success. Each of these factors is

represented by specific brain systems, which thus need to be integrated before being

accessed by the neural circuits responsible for decision-making (Figure 1). Given the

complex nature of all of these factors in the natural world, a productive experimental

approach has been to examine the principles of decision making in highly reduced

experimental paradigms such as two-choice operant tasks. Research using two choice

tasks has uncovered a fundamental empirical rule of decision making, formalized by

Herrnstein: animals will make choices in direct proportion to the relative magnitude of

reward resulting from each choice (see below). Herrnstein and others have gone on to

show that this powerful rule generalizes to more complex and naturalistic environments,

and across all species, including humans (Herrnstein 1974). Rewards are often

complex to measure experimentally, and may be highly variable with internal state,

dependent on individual preferences and memories, etc. In order to isolate primary

rewards, in as pure a form as possible, we employed rewarding electrical brain

stimulation (BSR). Electrical stimulation of certain structures in the brain allows

experimenters to tap into the same reward circuits activated by natural rewards, in a



controlled and parametric fashion (Olds and Milner, 1954). Animals, including goldfish,

rats and humans, will work vigorously to induce rewarding electrical stimulation in

specific brain areas (Olds and Milner 1954; Boyd and Gardner 1962; Bishop, Elder et al.

1963).

A long history of experiments using rewarding brain stimulation (BSR) has

demonstrated panoply of brain regions that elicit reward (Olds and Milner 1954). The

location of many of these regions along the mesolimbic pathway has suggested that this

pathway may be a key component of the brain circuitry that represents reward. Further

studies showing that pharmacological manipulations of the dopamine neurotransmitter

system dramatically affect the rewarding aspects of brain stimulation of mesolimbic sites

have supported the notion that dopaminergic signaling plays a key role in reward

processing (Franklin 1978; Koob, Le et al. 1987). However, experiments which have

attempted to clarify the exact circuit, by lesioning various putative neuroanatomical

components have failed to isolate the necessary and sufficient components of the circuit

(Olds and Olds 1969; Boyd and Celso 1970; Waraczynski, Ton et al. 1990;

Waraczynski, Perkins et al. 1999; Zahm 1999).

Defining reward

Psychologists have long been aware of the influence reward and valuations have

on decision making processes. Yet arriving at a unified definition of what a "reward" is

has proven difficult. This is the case primarily due to the fact that a sensory system or

specific "receptor" type for rewarding stimuli has not been identified; instead, scientists

most commonly define a reward operationally as a stimulus that increases the



probability of a closely antecedent behavior occurring again. Defining reward on the

basis of an operational outcome has unavoidably tied the study of reward processes to

motivational states. Another often used definition of a reward is a stimulus that produces

pleasure. Defining reward on the basis of a subjective experience of a stimulus

highlights the difficulties faced by researchers who hope to elucidate the neurobiological

substrate of such a psychological construct. It is not surprising that key aspects of the

brain mechanisms that underlie the evaluation of costs and benefits of available options

are not understood. For the purposes of this thesis, we will use reward to refer to the

operational definition of reward as a reinforcer of behavior. We will use BSR, as it

represents a particularly direct and quantifiable rewarding stimulus.

Theories of dopamine function: pleasure, reward prediction, and

incentive salience

Rewards are usually associated with the subjective feeling of pleasure. Rewards

induce changes in observable behavior and serve as positive reinforcers by increasing

the frequency of the behavior that result in reward. A popular hypothesis known as the

anhedonia model states that dopamine is needed in order to experience pleasure

(Wise, Spindler et al. 1978). According to the anhedonia model, dopamine release is the

hedonic signal of the brain that represents the pleasure associated with a reward.

However, several subsequent experiments have challenged this theory. Experiments in

animals by Berridge and colleagues show that orofacial movements associated with

licking sucrose are not altered by dopaminergic lesions or dopamine antagonists (Wise

and Rompre 1989). Perhaps more telling are experiments using intracranial self-

stimulation (ICSS) during which animals repeatedly press a lever to electrically stimulate
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their own dopamine-releasing neurons. These studies show that the release of

dopamine is necessary for learning the association between lever-pressing and ICSS,

but dopamine release diminishes during ICSS (Garris, Kilpatrick et al. 1999). These

factors point to alternative roles of dopamine in reward.

A competing theory supported by Schultz and colleagues (Schultz 1999; Schultz

2002) suggests that reward magnitudes are computed elsewhere in the brain and

provide input into a reward prediction error signal encoded by neurons in the substantia

nigra (SN) and the VTA. This model suggests that animals learn to predict when future

rewards will occur via a prediction signal where dopaminergic neurons phasically fire

during the learning of a stimulus-response (S-R) association but are generally inactive

thereafter. Conversely, pharmacological inhibition and lesion studies show that

depleting dopamine signaling diminishes an animal's ability to motivate behaviors

towards attaining rewards even after S-R pairings are learned (Cheer, Aragona et al.

2007; Day, Roitman et al. 2007), supporting the anhedonia hypothesis. Both theories

implicate dopamine in reward anticipation and reward seeking behaviors.

Rewards are now recognized to act at least as importantly as hedonic incentives,

causing neural representations that elicit motivation and goal pursuit, rather than as

mere habit reinforcers. The incentive salience hypothesis proposed by Berridge and

Robinson states that changes in levels of dopamine release affects motivated behavior

but do not change the value of rewards themselves (Berridge and Robinson 1998).

They introduce the terms 'wanting' and 'liking' as a way to differentiate between

motivated behavior and reward values. Incentive salience is a motivational component

of reward that transforms sensory information about rewards into desired incentives. In



other words, incentive salience is the process through which dopamine transforms a

stimulus into an object of attraction that an animal will work to acquire. Incentive

salience or 'wanting', unlike 'liking', is influenced by dopamine transmission (Berridge

and Robinson 1998). Therefore, 'wanting' may depend on different neural substrates. A

number of experiments have demonstrated that activity of dorsolateral prefrontal cortex

neurons is predictive of an animal's decision in behavioral choice tasks (Quintana,

Yajeya et al. 1988). Recordings from neurons in the dorsolateral prefrontal cortex of

monkeys show that PFC neurons respond more when the monkey expected a larger

reward. It is reasonable to surmise that this modulation by the magnitude of an

expected reward is dopamine dependent given that the PFC receives projections from

VTA neurons.

BSR vs. Natural rewards

Previous work has shown that BSR mimics many of the properties of natural

reinforcers. When rodents are presented with forced choice tests which put sucrose

solutions and rewarding brain stimulation in competition, the strength of electrical

stimulation can be adjusted so that the rat prefers it more, less, or equally to sucrose

(Conover and Shizgal 1994). In further expanded experiments, Shizgal et al. found that

sucrose and brain stimulation presented in conjunction are chosen by animals in a

manner that suggests that the individual positive values attributed to each are

summated. Summation is only possible if both stimuli converge on the same neural

system that computes reward (Shizgal 1997). These studies indicate there is a common

neural mechanism for evaluating rewards provided by natural and artificial stimuli.

Therefore, BSR is a useful approach in the quest to isolate components of the neural
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circuit that compute and represent reward values which later guide behaviors in the lab

as well as in natural settings.

Counter Model of Reward Integration

Gallistel and colleagues have used matching behavior to characterize how the

intensity of BSR grows as a function of stimulation strength (Edmonds, Stellar et al.

1974). Herrnstein's matching law states that animals allocate time or responses in direct

proportion to the fraction of total rewards earned (in relation to alternative options)

(Gallistel, King et al. 2007). What they have shown is that as the stimulation frequency

is increased, an animal's rate of operant responding grows rapidly with increasing

stimulation, but eventually reaches a an asymptote (Gallistel and Leon 1991; Gallistel,

Leon et al. 1991; Simmons and Gallistel 1994). A careful series of experiments has

determined the asymptote cannot be explained by limitations of neural firing at

frequencies below 250Hz (Forgie and Shizgal 1993), suggesting that the saturation

arises due to neural circuit phenomena. The results of matching experiments have led

to the development of a model of how the utility of rewarding brain stimulation is

computed and translated into behavioral allocations. The model developed by these

behavioral neuroscientists describes a putative network of neurons that essentially

count the number action potentials caused by BSR over a time period. The counter then

translates the incoming spikes into an internal representation of the intensity of reward

which is later used to determine the allocation of behavioral choices (Shizgal 1997).

The counter model describes the circuitry responsible for reward value

computation (in the context of BSR) into two general components: the reward cable (the

fibers directly stimulated by BSR) and the reward integrator (some unknown neural
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substrate) (Gallistel 1978; Gallistel and Leon 1991). The reward cable consists of the

reward relevant axons directly stimulated through an implanted electrode. The reward

integrator refers to the neurophysiological processes downstream from the reward

cable. The counter model proposes that the integrator determines the magnitude of the

reward signal by summating the total number of action potentials produce in the reward

cable (Simmons and Gallistel, 1994). Experiments show how intensity of reinforcement

can be held constant by adjusting the current or frequency of stimulation in a

counterbalanced fashion. A high current, low frequency train can be adjusted so that it

is equally preferred to a low current, high frequency train. This trade-off can be

explained by assuming that the number of reward relevant axons fired by a pulse is

proportional to the current (increasing the current proportionally increases the number of

axons firing). Therefore the total number of action potentials generated on the reward

cable is the multiplication of the number of action potentials generated by a stimulus

train (frequency) and the number of axons firing (current) (Gallistel and Leon, 1991;

Leon and Gallistel, 1998; Simmons and Gallistel, 1994). In the case where the

behavioral responses saturate with an increase in current used in combination with

stimulation frequencies well within the range of the physiological responses of reward

relevant axons, there seems to be a limit on the maximum reward value the integrator

can represent (Gallistel et al., 1991; Simmons and Gallistel, 1994). At some point,

regardless of how many more action potentials are generated by the reward cable, the

output of the integrator is limited. Therefore, it is thought that there is a ceiling to the

amount of reward a rat can experience. Conversely, there can be a ceiling on the inputs

to the integrator. Electrophysiology experiments have shown that stimulation



frequencies greater than 250Hz cannot be followed by the reward axons stimulated by

BSR (Forgie and Shizgal, 1993). Knowing stimulation parameters that provide either

saturated input to the integrator or cause the integrator's output to reach a ceiling are

potentially useful tools for identifying the neural basis of a putative reward integrator.

Anatomical Substrates

One of the most striking effects of electrically stimulating the medial forebrain

bundle is how vigorously it fuels subsequent behavior aimed at acquiring additional

stimulation. We have previously mentioned evidence linking this rewarding effect to

those produced by natural stimuli such as sucrose and by drugs of abuse. Still,

identifying the neural substrate responsible for the rewarding effects of MFB stimulation

has proven difficult, in large part due to the anatomical complexity of the regions being

stimulated. Anatomical studies of the MFB reveal that it is comprised of up to 50

different types of projections and involves some 13 different neurotransmitters

(Nieuwenhuys, Geeraedts et al. 1982). The MFB is a diffuse fiber system that contains

ascending and descending projections with both myelinated and umyelinated axons. It

has a substantial projection from forebrain areas including the olfactory tubercle,

septum, lateral preoptic area that descend onto cells in the tegmentum. This projection

primarily consists of myelinated axons. There is also a very prominent ascending

projection consisting of unmyelinated axons with somata in VTA. These axons can

release dopamine, GABA, glutamate, and possibly other neurotransmitters.

The structure most often stimulated to produce BSR effects is the medial

forebrain bundle (MFB) at the level of the lateral hypothalamus (LH). The MFB is a

complex bundle of both ascending and descending axons that extends from basal
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olfactory regions through the lateral hypothalamus caudally to the ventromedial part of

the tegmentum mesencephali (Figure 2) (Nieuwenhuys et al., 1982). Although other

sites outside of the MFB including prefrontal cortex, cerebellum, hippocampus and locus

coeruleus can also sustain self-stimulation (Shizgal, 1997), the MFB is the preferred site

because it most robustly supports self-stimulation. Animals stimulated in the MFB have

high response rates and exhibit excited and agitated behavior. A great deal of effort has

gone into identifying the neurons directly stimulated by electrodes implanted in the MFB

and their targets. Several electrophysiological studies have concluded that the directly

stimulated fibers responsible for BSR have fine and myelinated axons (Gallistel, Shizgal

et al. 1981; Yeomans 1989). These axons have somata located rostral to the MFB with

synaptic targets in the ventral tegmental area. This is not consistent with the direct

stimulation of dopaminergic fibers which have unmyelinated, slow conducting axons

(Murray and Shizgal 1996). This finding has generated a hypothesis referred to as the

"descending path hypothesis" (Bielajew and Shizgal 1986).

Other groups aiming to elucidate the origins and targets of the reward relevant

neurons have challenged the idea of the "descending path hypothesis" based on lesion

studies. Lesions rostral to the MFB electrode in conjunction with 2-deoxy-glucose (2DG)

measurements were made to test the functional connectivity between the basal

forebrain and VTA. These studies show evidence that specific forebrain nuclei remain

structurally and functionally connected to the midbrain after MFB lesions, and they

surmise that the descending path hypothesis is not complete; there may well be other

fiber pathways involved as well (Gallistel, Leon et al. 1996; Simmons, Ackermann et al.

1998).



The role dopaminergic neurons play in BSR is still contested. Several studies

investigating the neurophysiological properties of dopamine neurons conclude that the

refractory periods of DA neurons are too long, and their conduction velocities are too

slow for them to support the stimuli used in BSR (Bielajew et al., 1982; Bielajew and

Shizgal, 1982). There is a substantial amount of evidence showing that dopaminergic

neurons are activated trans-synaptically by rewarding brain stimulation (Moisan and

Rompre, 1998). It is clear that techniques which provide a larger view of the anatomy

are necessary to better understand the structure of the neural substrate responsible for

reward.

A major target of the ascending umyelinated axons coursing through the MFB is

to the ipsilateral nucleus accumbens (NAc). The projection from VTA to the NAc has the

highest proportion of dopamine afferents, approximately 65% - 85% dopaminergic. It

has also been shown that VTA has other projections that are comprised of dopamine in

varying degrees: the lateral septal area (72%), amygdala (53%), entorhinal cortex

(46%), PFC (30%-40%), and hippocampus (6%-18%) (Fields, Hjelmstad et al. 2007).

What functional role does such a rich dopaminergic projection serve in the NAc is a

topic of substantial research. Several groups have shown that the release of dopamine

can both excitatory and inhibitory (Nicola and Malenka 1997; Nicola, Surmeier et al.

2000; Brady and O'Donnell 2004; Kita, Parker et al. 2007). Dopamine release can have

such varying effects on postsynaptic targets via two families of dopamine receptor

types. The D1-like family of receptors consists of D1 and D5 receptors, and the D2-like

family is composed of D2, D3, and D4 receptors. Both families are G-protein coupled

receptors, and they exert their effects by activating G-proteins which catalyze inhibitory



or excitatory signal transduction pathways (Nicola, Surmeier et al. 2000). Therefore,

similar to other G-protein coupled transmitter systems, dopamine functions as a

modulator of other incoming excitatory input that serve as the drivers of activity in the

NAc.

Virtually all the major neurotransmitters in the brain play some role in reward. A brain

area that has repeatedly been shown to be involved in reward related behaviors is

nucleus accumbens (NAc). The NAc is primarily composed (95% of neurons) of medium

spiny GABA-ergic neurons (Chang, Wilson et al. 1982), and it is thought to have a

special role in reward processing because it receives input from both limbic and motor

areas (O'Donnell, Greene et al. 1999). Studies have shown that glutamatergic

excitatory afferents converge onto NAc neurons from the hippocampus, amygdala, and

prefrontal cortex (Pennartz, Groenewegen et al. 1994; Floresco, Blaha et al. 2001).

Furthermore, anatomical tracer experiments demonstrate that a GABA-ergic as well as

a very rich dopaminergic projection originates from neurons in the VTA and synapse

onto medium spiny neurons in the NAc (Fallon and Moore 1978; Sesack and Pickel

1990). As such, the nucleus accumbens has been implicated in various motivational,

behavioral, and cognitive functions including instrumental learning, novel stimuli

salience, and locomotor activity (Delfs, Schreiber et al. 1990; Cousins, Sokolowski et al.

1993; Berns, Cohen et al. 1997).

Role of functional MRI for studying rodent behavior

The fMRI methods we are using will allow us to follow brain activity patterns

noninvasively at modest spatial resolution (hundreds of microns) and with temporal

resolution in the order of seconds (Jezzard, Matthews et al. 2001). As in other fMRI
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applications, brain activity is recorded indirectly, via changes in blood oxygenation,

volume and flow also referred to as the blood oxygenation level-dependent (BOLD)

effect (Ogawa, Lee et al. 1990). BOLD is a useful tool for mapping of neural population

dynamics, and for the studies performed here it offers the important advantage of whole

brain coverage. fMRI is most commonly used to relate signal changes in each volume

element (a voxel) to a specific stimulus. Activation maps are generated by considering

which voxels are correlated with stimulus presentation at an appropriate significance

level.

More traditional methods for activity mapping in small animals are 2-

deoxyglucose (2DG) autoradiography and immediate-early gene (IEG) histochemistry

(Sokoloff, Reivich et al. 1977; Sharp, Sagar et al. 1993; Guzowski, Timlin et al. 2005). In

2DG methods, a radioactive glucose analog is used to label cells in proportion to their

metabolic activity levels. Animals are sacrificed after a 2DG labeling period during which

animals perform a task or undergo stimulation (Esposito, Porrino et al. 1984; Porrino,

Esposito et al. 1984). 2DG distribution is determined by autoradiography of sectioned

brains and areas of differential activation are identified by comparing between test and

control groups. The IEG method relies on the induction of certain genes by increased

neural activity, as part of the process by which synaptic plasticity takes place. IEG

induction is measured after sacrifice and brain sectioning by in situ hybridization with

probes for IEG transcripts, or by detecting IEG proteins. IEG mapping is often preferred

to the 2DG method because it has true cellular resolution (Sharp, Sagar et al. 1993;

Guzowski, Timlin et al. 2005); although, IEG upregulation is not as tightly coupled to

neural activity as 2DG uptake. Compared with either of these methods, fMRI techniques



offer specific advantages: (1) in our experiments we can vary the intensity of a

rewarding stimulus and look for systematic changes in the BOLD response. (2)

experiments can be performed on the same animal across multiple sessions. (3) fMRI

results can be used to guide invasive experimental techniques. In combination, these

advantages allow fMRI to yield much more precise information about what conditions

influence the activity of neural populations, despite having considerably lower spatial

resolution than either 2DG or IEG.

Summary

A working model of the role of reward in decision making has slowly emerged

from the work described above, and is depicted in Figure 1. A wide array of naturally

occurring stimuli are known to be rewarding, including sexual pheromones, water,

gustatory cues, such as sodium, sugar, etc. Each of these are represented via distinct

processing pathways, and are modulated by internal states and learned associations

related to each modality. Signals along these pathways are ultimately converted to a

common reward currency. It is this transformation to a common currency which allows

comparisons of rewards of different modalities. Artificial rewards, such as BSR and

potentially some drugs of abuse interact with the system at this level. The common

reward signal is summated to generate a representation of the value of reward received.

It is at this stage that prediction error is calculated between the received reward, and the

expected reward. A large body of work has suggested that this prediction error signal is

represented by the activity levels of midbrain dopamine neurons in the VTA and SNR

(Schultz, Dayan et al. 1997; Bayer and Glimcher 2005; Pessiglione, Seymour et al.

2006). Finally, the value of the reward magnitude is accessed by decision-making
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circuits, which compute a probability of choice, according to Herrnstein's matching law.

An action is then chosen from this probability distribution. Our studies focus on

elucidating the processes responsible for computing and representing reward

magnitude. We use BSR to access the neural circuitry which transforms sensory inputs

into a common reward currency, and by manipulating the frequency of stimulation of the

BSR delivered, we can isolate brain regions that follow a psychometric response

function which we know from Herrnstein's Law to be a direct measure of subjective

reward magnitude.

Specific Aims

The goal of this thesis is to elucidate the neural circuitry underlying reward

integration and reward magnitude representation. Specifically, our aim is to identify

neuronal populations in the brain that encode reward values. Our approach is to use a

multidisciplinary approach, combining rewarding electrical brain stimulation,

psychometric assessment of reward magnitude, fMRI measurement of whole brain

activity, and visualized focal inactivation of specific neural structures.

We first measured the subjective reward magnitude in behaving rats using

established behavioral paradigms and quantitative psychometric measurements.

Subsequently, in the same rats, we attempted to strip away all of the complexities of the

awake behaving context and isolate the most elementary, first-order reward value

representation. We repeated the identical electrical stimulation protocol in the same

animals, under anesthesia, while measuring neural activity with BOLD fMRI. Thus, the

representation that we aimed to elucidate is equivalent to the representation of the

common reward currency (see Figure 1); it is independent of the context and modality-
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specific cues that would naturally activate it, and of the decision-making circuits that

would access it.

Identifying neural elements activated by rewarding electrical brain

stimulation of the medial forebrain bundle

Our first aim was to identify brain areas that are activated by BSR. Functional

MRI experiments were performed on anesthetized rats receiving rewarding electrical

brain stimulation to characterize brain regions that respond differentially to varying

degrees of rewarding electrical brain stimulation intensity. fMRI data were obtained from

rats implanted with medial forebrain bundle electrodes and that had previously been

trained to discriminate between stimuli varying in intensity of reward. These experiments

provide a framework of brain areas potentially involved in the representation of reward

magnitude.

Identifying structures that represent reward magnitude

Our next aim was to isolate neural populations that directly represent reward

value, and distinguish them from other activated areas that may play different roles in

reward processing. We measured psychometric reward value curves in behaving rats,

and subsequently imaged the activity due to the identical stimulus frequencies

presented during the behavioral task. We then analyzed the responses to identify brain

structures that specifically tracked the behavioral reward curves. This analysis provides

a whole-brain view of the distributed network of brain regions that represent subjective

reward magnitude.



Determining the role of the ventral tegmental area in the reward magnitude

representation

Our last aim was to test the role of descending fibers that terminate in VTA on

the whole brain reward representation. If the descending pathway hypothesis is correct,

inactivating VTA should have wide-ranging effects on rostral brain activation. Based on

our descriptive analysis of the reward representation, inactivation of VTA should alter

both the reward curve measured behaviorally, and the neural activity in downstream

brain regions. We investigated this idea using site-specific pharmacological

inactivation, in combination with MFB stimulation and fMRI. This experiment allows us

to go beyond the descriptive analysis, and specifically assign the nature of the role of

these brain regions in the representation.



Methods

Implantation of stimulation electrodes

Adult male Lewis rats (150-300 g) were implanted with stimulation electrodes in

the MFB at the level of the lateral hypothalamus, using stereotaxic coordinates.

Monopolar electrodes were fabricated with teflon-coated silver wire, 0.063 mm

diameter, cut to a length of approximately one centimeter. The electrode tip was formed

by the cut end of the wire, with additional stripping. Wire was threaded through

polyimide tubing for mechanical support and connected to a 2-pin interface. One pin

was attached to the electrode wire using silver paint, and the second pin was attached

to a stripped reference wire made of 0.125 mm diameter silver. Prior to surgery, each

animal was anesthetized with 1% isoflurane and positioned on a stereotaxic device

(Kopf). An incision was made along the midline of the skull, and the scalp was retracted

to expose a one centimeter width including the implantation site. A microdrill (Fine

Science Tools) was used to introduce a hole in the skull 2.0 mm posterior to bregma

and 1.7 mm left of the midline suture. The electrode tip was lowered through this hole,

to a depth of 8.6 mm below the skull surface at the level of the lateral hypothalamus. An

additional hole was drilled through the skull approximately above the cerebellum for

introduction of a conducting, MRI-compatible screw (BeCu; Antrin Enterprises); the

electrode reference wire was wound around this screw and attached with silver paint.

One other shallow hole for a nonconducting skull screw was drilled over the

contralateral cerebellum. Animals implanted with a 7.5 mm long guide cannula (Plastics

One, Inc) for the infusion of lidocaine into VTA (-5.2 posterior to bregma, 0.9 mm lateral

to bregma, 7.5 mm below the skull) had the stimulating electrode implanted in a slighted



altered located in order to accommodate both the electrode and guide cannula into the

window of the imaging surface coil. These animals had a stimulating electrode

implanted into the lateral hypothalamus at slightly more anterior location (-1.2 posterior

to bregma, 1.7 mm lateral, 8.7 below the skull surface). Dental cement was applied to

the entire skull surface area to hold the electrode rigidly in place. The animal was

allowed to recover from anesthesia under supervision. Buprenorphin (0.03 mg/kg) was

injected subcutaneously before surgery and twice daily for the two-day period following.

Electrode positions were confirmed using MRI data. All surgical and animal handling

procedures were approved by the MIT Committee on Animal Care.

Preparation for imaging anesthetized animals

Prior to imaging, rats which had been subjected to the behavioral shaping were

anesthetized with 3% isoflurane and tracheotomized. Each animal's neck was shaved

and an incision made roughly from the chin to the rib cage. Skin and muscle were

retracted and the trachea exposed. The trachea was opened with surgical scissors and

a luer-fitted teflon cannula (McMaster-Carr) was inserted, with the tip oriented towards

the lungs. The cannula was fixed in place using dental floss. Then the wound was

closed with biocompatible glue (Vetbond, 3M). Tracheotomized animals were paralyzed

with 1 mg/kg intraperitoneal pancuronium and mechanically ventilated using an Inspira

ventilator from Harvard Apparatus, operated at 70 beats per minute and 5 mL per

stroke. Heartbeat and blood oxygenation were continuously monitored using a

noninvasive infrared sensor and pulse oximeter (Nonin Instruments). Animals were

wrapped in a heated circulating water blanket (Gaymar). They were then transferred to

a plastic positioning device (Ekam Imaging) for imaging and placed into a 4.7-T Bruker



Avance scanner. We monitored heart rate continuously during the delivery of BSR using

a Nonin Medical 8600V pulse oximeter equipped with a nonmagnetic sensor. The

stimulating electrode was connected to a stimulator located outside of the scanner.

These animals were maintained on 1% isoflurane and 1 mg/kg/hr pancuronium for the

duration of the scanning session.

Histology

After imaging or behavioral session involving lidocaine inactivation, we placed

rats under terminal anesthesia with ketamine and xylazine and transcardially perfused

them with phosphate buffer containing heparin (Hospira) and then with 4%

paraformaldehyde (Electron Microscopy Sciences). We removed brains and obtained

coronal sections of 50 pm or 100 pm thickness at across a range extending -1 mm

anterior and posterior to the injection cannula insertion site. Sections were Nissl stained

to visualize the position of the electrode and infusion cannula relative to the boundaries

of brain structures.

Behavioral and stimulation apparatus

All behavioral experiments were performed in a plexiglass operant chamber (28 x

21 x 21 cm L x W x H; Lafayette Instruments), placed in a lighted sound-proof cabinet

(Med Associates). Two infrared nosepoke sensors (Med Associates) were positioned at

one end of the chamber; 5 cm from the floor, and a light emitting diode (LED) was

positioned near the top of the chamber above the sensors. Input from the nosepoke

sensors was monitored by a Macintosh G3 laptop computer via a digital input/output

interface (National Instruments). A computer program was developed in C (Metrowerks



Codewarrior) to time output stimuli dependent on the detected nosepokes. Output

pulses (5 ms) from the computer were used to trigger shorter cathodal stimulus pulses

(0.1-0.5 ms) delivered by a constant current isolated stimulator (World Precision

Instruments, Inc.). Poles of the stimulator were shorted to one another in between

stimulus pulses to prevent charge buildup on the electrodes, and pulses were visualized

on an oscilloscope to verify rectangular pulse shape.

Behavioral shaping

Behavioral experiments proceeded in several stages: In the first stage, electrode-

implanted rats were connected to the stimulator and released into the operant chamber

for unsupervised training (shaping). In a typical experiment, an animal would be

rewarded for each nosepoke with a one second 150 Hz sequence of 0.2 ms pulses, at

the maximum stimulus current (typically about 0.7 mA) at which no stimulus induced

motion was observed for 150 Hz stimulus frequency, and with a minimum interstimulus

spacing of 0.5 seconds. Shaping sessions lasted 30 minutes to one hour, once per day;

animals which failed to perform vigorous operant responding for brain stimulation where

considered for the high-frequency group (reference frequency of 300Hz). For

preliminary data presented here, animals subjected to training on a two-choice test were

imaged.

Reward titration curve measurement

Two-choice tests were used to determine reward titration curves and the

threshold for reward saturation; these curves provide a quantitative behavioral measure

of BSR value, for correlation with fMRI results. The titration procedure was based on

studies of Gallistel, Shizgal and others, who have shown that rats prefer rewards of
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increasing intensity (here BSR frequency) up to a saturation threshold beyond which

more intense stimulation is indistinguishable from the saturation threshold reward. In

the two-choice test we used to measure this phenomenon, a fixed current (maximized

without producing movement), pulsewidth (0.2 ms), train length (1 s), and minimum

intertrain interval (0.5 s), were applied with variable stimulation frequencies in order to

produce stimuli of varying intensities. Each of the two nosepokes was associated by the

computer program with a particular reward intensity/frequency. Within a given session,

one of the frequencies was fixed (the "reference" frequency) and the other was varied

over a factor of 1.2, evenly spaced in log units around the reference (the "comparison"

frequency). Training sessions consisted of 10 five-minute trials (with 30 s intertrial

intervals) in which different comparison stimuli were offered to the animal in parallel to

the reference frequency. One of the two nosepoke holes was randomly associated with

the reference frequency at the beginning of each trial, and the other was associated

with the comparison frequency; halfway through each trial, the correspondence was

switched. Nosepokes at each hole were automatically rewarded by the operant

scheduling program, and both input and output events were recorded.

Magnetic Resonance Imaging

A single-shot gradient echo planar imaging (EPI) sequence was used for

standard BOLD imaging in a 4.7T magnet. Image matrices of 64 x 48 pixels were

acquired using TE/TR 20/2000 ms, field of view 3.2 x 2.4 cm and slice thickness of

1mm. Imaging volumes consisted of 14-16 consecutive slices centered over the

somatosensory cortex. High resolution anatomical images of the forebrain, including



electrode implantation site, were acquired using a gradient echo FLASH sequence

(TE/TR 15/2000 ms, 256 x 256 matrix, 3 x 3 cm FOV, slice thickness 1 mm).

We acquired fast spin echo (FSE) MRI scans (TE/TR 14/277 ms, 8.9 s per scan,

0.3 x 0.3 x 1.0 mm resolution, 3.8 x 3.8 cm FOV, data matrix 128 x 128) before infusion

of the lidocaine/Gadolinium-DTPA (a complex of gadolinium with a chelating agent)

mixture and continuously during the bolus infusion (10 min) of the solution. Gd-DTPA is

a non-toxic T1 contrast agent that allows for the visualization of the lidocaine injection in

vivo. Lidocaine mixed with Gd-DTPA (1mM) was injected for 10 minutes at rate of 0.1 pl

/min prior to the commencement of the delivery of electrical brain stimulation. The

infusion of the lidocaine mixture was maintained at the same rate throughout the entire

BOLD imaging session during which BSR was administered.

Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) provides information about fiber tracks in the

brain. Diffusion of water in the direction of the fibers is faster than in the perpendicular

direction. This feature allows experimenters to map out the orientation in space of the

white matter tracks in the brain using a color scale. Structural information of white

matter connectivity is used to align brain images across rats in addition to aiding

localizing regions of interest for BOLD fMRI data analysis.

Data Analysis

MRI data were processed using custom routines running in Matlab (Mathworks).

Data from all experiments was Fourier transformed with a spatial smoothing kernel of

one voxel half-width. Activation maps (spatial distribution of voxels with signal intensity

significantly correlated with the stimulus, usually color-coded by correlation coefficient)
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were calculated using the AFNI software package (NIMH, Bethesda, MD). A least

squares volume registration algorithm running in AFNI was used for motion correction of

data, after masking out signal from outside the brain. Affine registration of data from

multiple animals, and alignment of functional maps with anatomical images was

performed using a landmark based least-squares fitting procedure implemented in

AFNI. Further processing, including extraction of region of interest (ROI) timecourses,

data averaging over stimulus cycles, and correlation with behavioral data was

performed in Matlab.

Differentiating Activity from Large Draining Veins

Because fMRI relies on changes in blood oxygenation as a means of inferring

neural activity, a potential contaminant in BOLD fMRI studies originates from signals in

macrovasculature, or large draining blood vessels. The most relevant cortical activity

detected with BOLD signals is within the microvasculature of gray matter; large draining

veins can produce changes in BOLD that are not co-localized to voxels with active

parenchyma. As a result, contributions of signal from the draining veins will result in a

loss of spatial resolution of the assignment of neural activity. Efforts must therefore be

made to minimize these contributions. One means to accomplish this is to take

advantage of the different time-courses of activation in micro- and macro-vasculature.

The BOLD signals in the large draining veins are delayed by several seconds relative to

the signals in cortical tissue. Changes in BOLD response in gray matter are delayed 4

- 8s from the onset of a stimulus, whereas signals in large vessels are shown to be

delayed by 8 - 14s (Lee, Glover et al. 1995). Taking this fact into account, we adapted



methods for excluding voxels with large vessel contamination to our stimulation protocol

(Menon 2002; Kim and Ugurbil 2003). We computed the response maps from the last

two of the eight stimulus trains in each cycle (Figure 4a). Due to the delay of the BOLD

effect in large draining vessels, these responses should contain a relatively large

contribution from them. We then calculated the same maps from the first two trains in

each cycle (Figure 4b). The difference between these maps (Figure 4c) was used to

create a mask of the voxels with a high contribution from large vessels (Figure 4d). By

visual inspection, we confirmed that the overall shape of the mask bore a strong

relationship to the location of large veins (Paxinos 2004). This mask was subsequently

applied to all the functional maps, in order to ensure that our BOLD measurements were

dominated by micro-vascular gray matter activation. We confirmed the effectiveness of

this procedure by comparing the time-course of the BOLD changes averaged over one

cycle of stimulation for voxels within the mask, and for an example ROI, the pre-optic

area (PO) (Figure 4e). We chose this area for comparison, because it is located in

close proximity to a large vein which was included in our mask. The large draining

component is clearly visible in the time-course of the response as a gradual rise in the

signal which is underlying the short-latency responses to each individual train of the

stimulus (the "spikes" in the graph). By contrast, the time-course in PO is dominated by

the short-latency individual responses. This comparison provides strong evidence that

our post-acquisition analysis procedure effectively removed the voxels with substantial

large vessel contamination.



RESULTS (CHAPTER 2)

Our first goal was to map the brain regions that are activated by rewarding

electrical brain stimulation (BSR) of the lateral hypothalamus. Rats were chronically

implanted with stimulating electrodes in the lateral hypothalamus and were trained in a

two-choice operant task. Rats which performed the task at a high level of responding

were included in the fMRI phase of the experiment. In the second phase, rats were

anaesthetized and received identical electrical stimulation trains while being imaged in a

4.7T magnet. BOLD (blood oxygen level dependent) signal changes were recorded as

a metabolic surrogate of neuronal activity. The spatial patterns of increases in BOLD

activity were used to map out the brain regions activated by the stimulation.

Global activation patterns resulting from rewarding brain

stimulation

A group of ten rats was imaged in this way, and combined in a group analysis.

Figure 3 shows the activity patterns resulting from BSR. We observed a distributed

pattern of activation throughout nearly the entire rostro-caudal extent of the brain.

Statistically significant activation occurs in a large portion of the brain (56% of voxels).

This is likely due to the widespread projections that course through the MFB.

Particularly strong "hotspots" of activation are seen in several regions, including the

ipsilateral ventral striatum and hypothalamus, contralateral thalamus and bilateral

midbrain. Several of these areas have been previously implicated in reward processing.

In order to specifically determine the anatomical brain areas that are highly activated,

we performed a region-of-interest (ROI) analysis. Using landmarks from co-registered



diffusion tensor imaging (DTI) and anatomical images, we assigned ROls to brain

regions defined by Paxinos and Watson (Figure 5). We then computed the amplitude of

the BOLD response in each of these brain regions. The most strongly activated areas

include the preoptic area, olfactory tubercle, lateral hypothalamus, substiantia nigra

(SN), and ventral tegmental area (VTA) (Figure 6a).

This analysis provides an overall picture of the brain regions that are activated by

the BSR. There is extensive overlap between the regions that we have identified as

most strongly activated, and those that have been identified using other methods,

including 2-DG and c-fos staining (Gallistel, Karreman et al. 1977; Arvanitogiannis,

Flores et al. 1996).

Reward magnitude tracking

In and of itself, the preceding analysis does not directly identify the brain

structures involved in the computation and representation of reward magnitude per se.

For example, a number of projections through the lateral hypothalamus are unrelated to

reward but nonetheless are likely directly activated by the electrical stimulation (Shizgal,

Bielajew et al. 1980). Additionally, there are a number of reasons why the amplitude of

BOLD activity is not a direct measure of the importance of a structure to reward

processing. For instance, mono-synaptically activated neural populations might

inherently exhibit larger BOLD responses, which may disguise the true importance in

reward processing that may take place in structures that are activated through poly-

synaptic connections.

With these considerations in mind, we sought to disambiguate brain regions with

direct roles in processing of reward magnitude from areas simply directly stimulated by
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the electrical stimulation. To do this, we made use of a behavioral paradigm that has

been shown to directly measure reward magnitude. This paradigm relies on

Herrnstein's matching law, which describes how animals distribute their choices based

on the magnitude of reward received at the available options. The matching law states

that animals will allocate behavioral response rates in direct proportion to the rate of

reward received at a particular option.

Behavioral frequency-response analysis

In this study rats were presented with a two-choice operant task where the two

choices (nose-pokes) trigger the delivery of a different magnitude of BSR. During each

trial, one of the nose-pokes delivers a fixed frequency of rewarding stimulation (the

reference; 150Hz), and the other nose-poke delivers a pseudo-randomly selected

comparison frequency of stimulation (Figure 7a). This task enables us to quantitatively

assess how rewarding each comparison frequency is perceived to be by measuring the

number of times it is chosen relative to the reference frequency. For example, if the

comparison frequency were equal in reward magnitude to the reference frequency, the

number of choices allocated to each nose-poke would be the same. By computing the

relative response rates to ten comparison frequencies, we are able to generate a

psychometric reward magnitude curve. As can be seen in Figure 7b, the subjective

reward magnitude does not scale linearly with the frequency of stimulation. This

saturating frequency-response curve has been observed under similar conditions by

several other groups, starting with Gallistel (Simmons and Gallistel 1994). Using this

unique psychometric response curve, we are able to better identify brain structures that

are directly involved in representing reward magnitude.
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Neural frequency-response analysis

Our approach is to identify neural populations that exhibit a similar neural

response profile to that seen in the behavioral curve, and therefore tease out the reward

circuit from non-reward related areas incidentally activated by the stimulation.

Performance of the task by the awake rat requires several brain circuits to work in

unison. In addition to the reward circuit itself, other factors such as motivational state,

memory recall, and action circuits are likely to be engaged. Our goal is to strip away the

influence of these other factors in order to isolate the mechanism through which the

brain is able to construct a representation of reward magnitude in order to guide

behavioral choices.

In an MRI scanner, we deliver the same frequencies of electrical stimulation

presented during the behavioral task in a block design (Figure 8a) while recording

BOLD responses from the entire brain. Figure 8a depicts our experimental design. The

top panel shows the timecourse of responses to the pseudo randomly presented BSR

from the lateral hypothalamus. Figure 8b shows the response in LH to one cycle of

BSR, where one cycle consists of eight one-second pulse trains. Figure 8c shows the

average response to each frequency sorted in ascending frequency order. From these

responses we then compute a frequency response curve for each voxel.

In order to identify brain structures involved in reward magnitude representation,

we first computed the average frequency-response curves for each ROI. Figure 9b

shows examples from two brain areas, VTA and the NAcs. The responses in the VTA

increased linearly across the entire range of stimulation frequencies tested. The NAcs

showed pronounced saturation of response as frequency increased above a threshold.



Thus, visual inspection of the curves suggests that some brain regions indeed track the

subjective reward magnitude. In order to confirm this observation, we developed a

quantitative model to differentiate linear from behavior-tracking curves.

Frequency vs. behavioral models

We then used a general linear model to test the contribution of these two

potential factors to the BOLD frequency-response curves. For this model, we made the

assumption that at the level of neural populations, activity evoked by the stimulation, but

unrelated to reward magnitude tracking would correspond to the frequency of

stimulation in a linear fashion. In contrast, activity related to the computation or

representation of reward magnitude would have a frequency-response profile that is

similar to the psychometric behavioral function. Our model therefore incorporated two

factors, a linear regressor, and a regressor that was an idealized version of the average

behavioral curve of the imaged rats (Figure 9a). We ran a regression to fit the curve

from each brain region, and compared the coefficient weights and statistical contribution

to the fit. The results of the regression are color coded such that red denotes that the

activity is best modeled by the behavioral regressor, green indicates that the linear

model best fits the activity, and yellow indicates that both factors contribute significantly.

These two examples demonstrate the first two possible outcomes of this analysis; the

curve for the NAcs is red, demonstrating that only the behavioral regressor made a

significant contribution (p<0.05, Bonferroni corrected) to the model fit to the curve and

the curve for the VTA is green, demonstrating that only the linear regressor made a

significant contribution to the model fit to the curve.



Using the model, we tested the contribution of these two factors at each voxel in

the brain, to generate maps which identify whether the response from a voxel is

modeled by either regressor in a statistically significant way (Figure 9c). This analysis

makes apparent that the majority of the significantly activated voxels linearly track the

stimulation frequency. This suggests that these areas likely do not contribute to the

computation or representation of the reward magnitude elicited by stimulation, per se.

The minority of voxels that appear red in the maps are of particular interest, because

they are likely to be directly related to reward magnitude. The reward tracking regions

are largely concentrated in a few particular brain structures: the ipsilateral nucleus

accumbens and amygdala, and the contralateral thalamus and caudate-putamen.

To more specifically address the brain regions involved in reward magnitude

processing, we performed the same analysis of the frequency-response curves at the

ROI level. In Figure 10, we show the average curves for each ROI, color-coded

according to the same color-code as in Figure 9, with red corresponding to significant

contribution from the behavioral regressor, green significant for the linear, yellow

significant contribution from both factors, and gray neither. The only area that is

significantly modeled by the behavioral factor under this criterion is the NAcs. This

suggests that the NAcs is the primary site of reward magnitude representation in the

brain.

However, it is apparent from Figure 9c that there are distinct clusters of voxels

within other brain regions (for instance the amygdala) that have a significant contribution

from the behavioral regressor. We made the ROls based solely on the anatomical

boundaries specified by the Paxinos et al atlas (Paxinos and Watson 2007). However,



many brain structures are known to have functional subdivisions within them, many of

which are too small to be confidently labeled on the basis of our ROI assignment

procedure alone. In fact, apparent functional segregation within some ROls can be seen

in the maps generated by the voxel-wise regression. Furthermore, at the neural level

there may well be heterogeneity of frequency-response profiles within a brain structure,

even in the absence of visually apparent spatial clustering. The activity of such a neural

subpopulation would be obscured by averaging the all the voxels within an ROL.

To address this possibility, we devised the following analysis. Within each ROI,

we tested whether there was a bi-modal or uni-modal distribution of voxels using

Hartingan's dip statistic (Hartigan 1985). In many cases, there were ROls that had bi-

modal distribution of linear and saturating voxels (Figure 11). We isolated the 33

percent of voxels with the largest beta weights for the linear and behavior-tracking

regressors, and analyzed their frequency-response curves independently. We modeled

the contributions of the two regressors as before to the average curves from these

subsets of voxels. Our goal was to determine for each brain region whether some

subset of neural activity could plausibly be involved in the reward magnitude

representation. As seen in Figure 12, for many brain regions, even the most behavior-

tracking voxels have a significant contribution from the linear regressor (e.g. the

hippocampus). However, a number of regions contain a clearly behavior-tracking

subset of voxels. Figure 13 shows the curves computed from the top 33% most

saturating and the top 33% most linear voxels in two such ROls, the NAcc and the

AmygAM. The clearly saturating portions of these ROls suggest that sub-populations of

those brain areas are involved in the representation of reward magnitude.



Behavior-tracking not explained by saturation of neuro-vascular

coupling

Since we are relying on BOLD activity as a surrogate for neural activity, one

potential confound is saturation of the neuro-vascular coupling mechanism - ie, that the

BOLD signal can no longer increase as the neural response continues to increase. If

that were the case, then the saturation of the frequency-response curve, which we are

attributing to the reward magnitude representation would be an artifact. To examine this

possibility, we performed a number of analyses. If BOLD saturation were responsible

for saturation of the curves, we would expect saturation to be most prominent in voxels

with the largest BOLD response magnitude. When we plotted the maximum BOLD

response (for any stimulus frequency) against the beta weight of the significant linear

and behavior regressor for each voxel (Figure 14), we saw the opposite trend. The

significantly linear voxels tended to have larger BOLD responses. This analysis

assumes that the transformation of neural activity to BOLD is uniform across all voxels.

To avoid depending on this assumption, and to be sure that BOLD saturation is not

confounding our interpretation, we independently compared the magnitude of BOLD

with the degree of reward curve saturation. To do this, we computed the average

maximal BOLD response across all voxels in each ROI which were significantly

saturated, significantly linear, both or neither. Across the all ROls, we again found the

same trend apparent in Figure 14; the most saturated voxels tended to have lower

response magnitude than the more linear voxels (Figure 15a). Within individual ROls,

there was higher variability in this relationship (Figure 15b). However, there was not an

apparent bias towards larger BOLD in the more saturated voxels within the ROls which



we have concluded to have reward saturation (the NAc and the amygdala). These

analyses, demonstrating that even the most strongly responsive voxels do not

necessarily saturate, strongly argues that neurovascular-coupling is not the source of

saturation in the frequency response curves.

High frequency analysis

The MFB is a complex fiber bundle, containing a large variety of axons with cell-

bodies of origin ranging across nearly the entire brain. Not all of the axons coursing

through the MFB are related to reward. However, electrical stimulation does not readily

discriminate among these fibers. It is therefore likely that some of the activation that we

observe is not related to reward in any way. This topic has received considerable

attention in the literature, and a number of efforts have been made to distinguish the

reward-relevant axons based on their biophysical properties (Gallistel, Shizgal et al.

1981; Yeomans 1989). In fact, the stimulation parameters that we have used in the

preceding experiments, were based on this literature, and were carefully chosen to

maximize the recruitment of the reward-relevant fibers. We next exploited this

knowledge to further tease apart the reward-relevant from reward-irrelevant activation.

As described in the section on the "counter model" (see Background), the

perceived subjective reward resulting from BSR is thought to be determined by a trade-

off between the number of reward relevant fibers stimulated, and the number of

impulses carried by each fiber within a certain integration window. As such, the reward

pathway should be subject to certain biophysical constraints. There is a limit to the

number of fibers that can be recruited by a stimulating electrode. There is also a limit to

the frequency-following capacity of the reward-relevant fibers themselves. Using a
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behavioral readout, careful biophysical studies, using collision tests and refractory

period analysis to determine the frequency-following limits of the relevant fibers have

demonstrated that the reward-relevant fibers are unable to faithfully follow frequencies

above -250Hz (Forgie and Shizgal 1993). This is not to say that other fibers within the

MFB cannot follow higher frequencies. We made use of this information to constrain

the brain regions that may be responsible for the representation of reward magnitude.

We trained a second group of rats using a different stimulation regime: lower

currents in combination with higher frequencies. The stimulation frequencies in this

case extended well above the frequency-following cutoff of the reward-carrying fibers.

As in the low-frequency regime, we were able to generate psychometric frequency-

response curves which exhibited a sigmoidal shape (Figure 16a). Note that the fact that

the curves continue to increase above the saturation frequency from the low-frequency

regime (-130Hz) adds additional evidence that the saturation in the low-frequency

regime was not due to an artifact from neural frequency-following or saturation of neuro-

vascular coupling.

We then analyzed the BOLD responses as a function of stimulation frequency in

these rats, using the same analysis methods used for the low frequency data (Figure

9c). Figure 16b shows the results of the linear vs. behavior regression obtained from

these data. Based on previous work described above, we assume that reward-relevant

axons do not increase their activity substantially above 250Hz. Thus, activity which

saturates at, or below, 250Hz has an ambiguous interpretation. The saturation may

result from the reward integration mechanism, or from the inability of stimulated axons

to follow the stimulation frequency. We can conclude that saturated brain regions could



plausibly be involved in reward magnitude representation. Conversely, activity that

increases linearly above 250Hz may be unrelated to reward processing of the BSR. We

observe that the contralateral thalamus, and the bilateral cingulate cortex are better

described by the linear model. This suggests that these regions are not directly

involved in the rewarding aspects of BSR. This additional test, in combination with our

previous analyses will help us narrow down the network of brain structures that are

involved in the representation of reward magnitude.

Influence of VTA on network activity

The analysis to this point has suggested a network of brain regions which are

involved in the computation and/or representation of subjective reward magnitude. Both

NAc and Amyg receive substantial input from VTA, the structure most commonly

associated with reward processing in mammals. An array of circumstantial evidence

points to a key role for VTA in reward processing. One particularly influential hypothesis

has been put forward for the circuit underlying the rewarding effects of BSR. In this

model, the directly stimulated reward-relevant fibers are the myelinated axons

originating in the basal forebrain, and descending to synapse on the dopaminergic

neurons in the VTA (Bielajew and Shizgal 1986; Yeomans 1989). Trans-synaptically

activated dopaminergic neurons subsequently project rostrally, and mediate the

rewarding effects on target areas such as the nucleus accumbens. This model was

proposed as an attempt to reconcile two observations: a) the reward relevant axons are

descending, and have refractory periods inconsistent with the biophysical properties of

the axons of dopaminergic fibers originating in the VTA (Bielajew and Shizgal 1986;

Yeomans 1989), and b) dopamine appears to be involved in reward processing, as
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implied by pharmacological and DA depletion studies (May and Wightman 1989;

Meredith, Ypma et al. 1995). Definitive evidence for this model is lacking, and it has

been sustained largely for lack of a more elegant explanation. Even more complicated

arrangements have also been proposed, including the possibility that the directly

stimulated descending fibers course through the VTA and terminate on cholinergic

neurons in the PPTg, which in turn synapse on DAergic neurons in the VTA, which in

turn ascend to the accumbens (Yeomans, Mathur et al. 1993). Based on the repeated

inability to definitively disrupt the rewarding effects of BSR by focal lesions of any

particular brain structure or fiber pathway, others have argued that the substrate for

BSR is in fact a diffuse "net-like" neural architecture (Simmons, Ackermann et al. 1998).

With this cloudy picture of the circuit architecture underlying BSR in mind, we

decided to test the effects of focally blocking activity in the VTA on the network

activation in response to BSR. If reward depends on the descending fibers to the VTA,

which are subsequently broadcast rostrally, we would expect that blocking activity in

VTA would interfere with normal reward signaling in rostral brain regions, such as the

NAc. We implanted rats with both a stimulating electrode in the MFB, and with a

cannula placed just dorsal to the VTA. After training these rats in the operant paradigm

and obtaining psychometric curves, we imaged the whole-brain activation in response to

BSR before and after pharmacological inactivation of the VTA. We infused a mixture of

lidocaine (sodium channel blocker) and gadolinium into VTA. Gadolium is a non-toxic

MRI contrast agent which allows us to visualize the spread of injection. We took images

during an injection period that lasted for ten minutes prior to re-initiating the stimulation

protocol, and display the injection spread overlaid on the structural image of a slice



through the VTA (Figure 17a). BOLD activity in the area of the injection spread,

including the VTA and the SN, is completely abolished by the injection (Figure 17b).

When we compare the activity in the brain before and after the infusion of

lidocaine, the most heavily silenced regions, other than VTA and SN, is the contralateral

hemisphere of the brain (Figure 17c). Areas including the contralateral thalamus,

caudate putamen, and sensory cortices are the most strongly affected. The only

contralateral brain region showing an increase in activity during VTA silencing is the

cingulate cortex. There is evidence that cells in SN and VTA have contralateral

projections to the caudate putamen and thalamus (Douglas, Kellaway et al. 1987) and

silencing these neurons may be partially responsible for the decrease in activity on the

contralateral hemisphere. Another possible contributor to the dampening in activity in

the opposite hemisphere is the presence of midbrain decussations near the site of

inactivation. These axonal fibers might themselves be directly silenced by lidocaine as

well.

On the other hand, a surprising effect resulting from VTA/SN inactivation is an

increase in activity in some brain regions located in the ipsilateral hemisphere. Two

notable areas that were previously found to track the behavioral reward magnitude

response curve are also areas that show an increase in BOLD responses as a result of

silencing VTA/SN. The strongest increases are in the amygdala, the shell of the nucleus

accumbens, portions of the hippocampus and the piriform cortex. The strong overlap of

these regions with the regions that were found to track reward magnitude (the NAc and

amygdala) is intriguing. It suggests that the VTA/SN have a specific relationship with

the distributed network that represents reward value. It does not appear that VTA itself



directly contains a representation of reward magnitude (see above). However,

inactivating VTA disrupts the representation of reward magnitude in other brain regions.

These results suggest that VTA plays a central role is coordinating reward magnitude

representation in a suppressive modulatory manner.

If in fact VTA inactivation interferes with the representation or computation of

reward magnitude in the brain, we should see alterations in the psychometric behavioral

response curve when VTA is inactivated in the awake and behaving rat. In order to test

the effects of silencing VTA/SN in the awake rat, we combined our already existing

operant behavior paradigm with the ability to infuse a lidocaine/gadolinium mixture as

used in the imaging sessions. We used a subset of three frequencies from the original

set of ten frequencies used in prior experiments. The three frequencies were

strategically chosen to capture the sigmoidal shape of the behavioral response curve

measured previously and to reduce the duration of each behavioral session. After

collecting response curves and observing that reward saturation occurred,

lidocaine/gadolinium was infused into VTA ipsilateral to the stimulating electrode. Rats

continued to nosepoke for BSR demonstrating that brain stimulation was still rewarding.

As a result of silencing VTA/SN, the reward response curve no longer saturates (Figure

18). Instead, the relative number of nosepokes made at each frequency increases

linearly with respect to frequency. In general, the percentage of choices made per

frequency increases in comparison to the control behavioral data. By disrupting activity

from VTA/SN, the ability to accurately attribute a reward value to a stimulus is

corrupted. These data support the idea that the role of VTA is to modulate activity in the

distributed network which represents reward magnitude value. Therefore, the



experience of reward per se is not critically dependent on VTA or SN afferents, but the

mechanism for computing reward magnitudes is strongly affected.
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FIGURES

Figure 1. Schematic of decision-making process. Studies suggest that
sensory and physiological input, as well as artificial rewarding electrical brain stimulation
interact with similar neural circuitry. At the first stage, rewarding stimuli of different modalities
are converted to a 'common reward currency', which serves as the primary input to following
stages. Subsequently, the reward input is transformed into a higher-order representation of the
value of different stimuli. A decision transformation (Herrnstein's matching law) maps this value
representation onto the probability of available behavioral responses. At the final stage, this
representation is reduced to a single behavioral choice. We propose that VTA, ventral tegmental
area, the midbrain origin of the dopaminergic neurons, contributes a modulatory signal in the
development of reward representation in this framework.
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Figure 2. Brain circuits for reward. A schematic of ascending and descending
connections of the dopamine mesolimbic pathway. VTA projections extended throughout the
neural axis via the medial forebrain bundle. A majority of afferents to the nucleus accumbens
(Nac) originate in VTA. Other areas in the basal forebrain and prefrontal cortices such as the
ventral pallidum and orbitofrontal cortex also receive rich dopamine inputs. VTA also receives
excitatory cholinergic inputs from areas in the brain stem (LDT/PPTg). Rewarding electrical
pulses were delivered to lateral hypothalamus (LH in blue)
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Figure 3. Rewarding stimulation-induced brain activity. Combined and co-
registered data from ten animals. Rewarding electrical brain stimulation (BSR) delivered to the
medial forebrain bundle at the level of LH induced BOLD responses in several brain areas (p <
0.05, Bonferroni corrected). Hotspots of activity are seen in regions ipsilateral to stimulation.
Areas in the contralateral hemisphere were also significantly activated. Shown are twelve
slices in the coronal plane at 1 mm intervals from 3.2 to -7.8 relative to bregma (indicated above
each slice). The background image is the anatomical T-2 weighted structural image. Overlaid
is a map of the magnitude of response of significantly activated voxels. Transparency of each
voxel is determined by the strength of activation, according to the colorbar.
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Figure 4. Removal of BOLD responses resulting from large draining
vessels. a. Map of response magnitude from an example slice, calculated from the first two
trains in the cycle. b. Maps of response magnitude, calculated from the last two trains in the
cycle. c. Map of the difference between the activity elicited by the first two trains and the
activity elicited by the last two trains. Note that areas with larger responses to the later trains
appear darker. d. Mask of the voxels with substantially larger response to the late trains than to
the early trains, indicative of contamination from large draining vessels. e. Time-course of
response to one stimulus cycle , taken from the voxels determined to be highly contaminated by
large draining vessel responses. Each stimulus cycle consisted of a sequence of eight stimulus
trains (denoted by the vertical red hash marks), each lasting one second, with four seconds
between. Note that the response increases incrementally with each train in the cycle). f. Time-
course of the response in the pre-optic area (PO). Note that each train elicits a discernable
increase in activity.
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Figure 5. ROls defined by DTI and anatomical scans. Regions of interests
(ROls) were defined with the aid of diffusion tensor imaging (DTI; right hemisphere), high
resolution anatomical images (left hemisphere), and the Paxinos brain atlas. DTI maps enabled
the visualization of axonal fiber tracts in the brain which provided valuable anatomical
landmarks. Twelve coronal brain slices, arranged as in Fig 3. Red indicates orientation of fiber
tracts left-to-right, green indicates up and down, and blue indicates in and out of the plane of the
image. Color-coded ROls are overlaid on the structural maps.
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Figure 6. ROI analysis of response magnitude. a. Mean BOLD response
within each ROI (all voxels) on the hemisphere ipsilateral to site of stimulation. The largest
responses are found in the ventral areas of the brain, many of which are along the mesolimbic
pathway. b. Mean normalized BOLD response in the hemisphere contralateral to site of
stimulation. In general, the responses are smaller contralaterally. The largest differences are
in ventral areas that receive direct projections from the MFB.
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Figure 7. Behavioral assessment of reward magnitude. a. Schematic of rat
training chamber. Rats are presented with a two-choice task (each option is represented by a
circle). Nosepoking triggers the computer to send rewarding brain stimulation of a frequency
depending on the option chosen. One nosepoke will always be a fixed frequency while the other
changes from trial to trial. b. Titration curves measured from ten animals trained to receive brain
stimulation rewards: Results from several sessions (described in the Methods) were averaged
to obtain the mean percentage of choices made at each comparison frequency. This percentage
reaches an asymptote of 50%, at comparison frequencies above 134Hz, indicating that higher
stimulation frequencies are no longer preferred to the reference (150Hz). Error bars denote
standard error of the mean.
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Figure 8. BOLD responses to the multiple frequency stimulus protocol
a. Time-course of BOLD activity changes in the lateral hypothalamus (LH) in response to the
sequence of stimulus frequencies, presented in pseudo-random order. Each of ten frequencies
was presented three times. Variable amplitudes of response are clearly visible. b. Averaged
response to one cycle of the stimulus. c. Averaged responses to each stimulation frequency,
rearranged in ascending order of frequency.
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Figure 9. Specific brain regions track reward magnitude. a. Plot of the
two factors used in the model of frequency-response curves. The red curve is the idealized
behavioral reward curve. The green curve represents a linear response to stimulation
frequency. These two regressors were used to distinguish reward-tracking voxels from linear
voxels. b. Average frequency-response curves from two brain regions, the nucleus accumbens
shell, and the ventral tegmental area (VTA) are shown by open circles. Error bars indicated
uncertainty estimated from a Jack-Knife analysis. The lines represent the best fit of the model
(linear combination of the two regressors in b). The color of the fitted curve denotes whether
the behavioral regressor was significant (red) or the linear regressor was significant (green). c.
Maps of the behavioral vs linear model comparison, as described in a-b. Voxels that were
significant for the behavioral regressor are shown in red, significant for the linear regressor in
green, and voxels with significant contributions from both are shown in yellow.
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Figure 10. Specific brain regions track reward magnitude. Average
frequency-response curves from each brain region are shown by open circles. Error bars
indicated uncertainty estimated from a Jack-Knife analysis. The lines represent the best fit of
the model (linear combination of the two regressors in Figure 12a. The color of the fitted curve
denotes whether the behavioral regressor (red), the linear regressor (green), both (gold) or
neither was significant.
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Figure 11. Some ROls have bimodal distribution of linear and
saturating voxels. Histograms of the distribution of the relative ratio of behavioral and
linear T-statistics for all the voxels in each ROl. Values approaching 1 indicate that the voxel is
highly significant for the linear regressor and poorly explained by the behavioral regressor.
Values approaching -1 indicate that the voxel is highly significant for the behavioral regressor,
and poorly explained by the linear regressor. The top 33% most linear voxels are shown in
green, and the top 33% most behavioral voxels are shown in red. The p-values of the Hartigan
Dip Test for bimodalty are shown above each plot. Some brain regions (e.g. the AmygAM) are
bimodal, whereas others (e.g. the Nacs and the Hippo) are unimodal. A bimodal distribution
within a brain region suggests that subregions may have functional differences in reward
magnitude representation.
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Figure 12. ROI curves of sub-regions of bimodal ROls. Average frequency-
response curves from sub-regions of each brain region are shown by open circles. Conventions
are identical to Figure 13. Significantly bimodal ROls were subdivided into the top 33% most
linear and top 33% most behavior-tracking, and curves were computed from these two sub-
populations independently. ROls that were not significantly bimodal were not subdivided.
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Figure 14. Response saturation of voxels does not result from
saturation of neurovascular coupling. Scatterplot of the maximal BOLD response
amplitude as a function of the weight of the Beta coefficient magnitude from the GLM fit.
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Figure 15. Response saturation of ROls does not result from
saturation of neurovascular coupling. Comparison of maximal BOLD response
amplitude for ROls that were significantly fit by behavioral or linear response curve regressors.
a. Bar graph of the average (+/- SEM) maximal BOLD response for all voxels, categorized by
the significant contribution of the two regressors according to the legend. b. Same analysis as
in a, calculated individually for the voxels in each ROl.
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Figure 16 BOLD saturation with high frequency stimulation. a. Average
(+/- SEM) behavioral response curve measured from two rats using a set of higher frequencies.
The curve saturates above -223Hz, likely due to faiure of axons to follow stimulation
frequencies faithfully. b, Maps of the results of the regression analysis from this high frequency
stimulation protocol. The curves from the majority of voxels were best modeled by the
behavioral regressor, indicated in red.
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Figure 17. Inactivation of VTA disrupts neural reward value
representation. a. Spread of the lidocaine injection, visualized by the spread of the co-
injected gadolinium. Background image is the structural image obtained from the FSE scan.
Note that the position of the injection cannula is visible. Overlaid is a pseudo-colored
representation of the change in image brightness between post-injection and pre-injection. The
apparent spread of the injection has a radius of -1mm, and includes the large majority of the
VTA. b. Stimulus-evoked amplitude maps from the pre- and post-lidocaine injection scans.
The approximate location of the injection cannula is indicated. Note that the activity in the
vicinity of VTA is completely abolished by the injection. c. Maps of the change in amplitude for
the response to the highest frequency, following lidocaine inactivation of the VTA.
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Figure 18. Inactivation of VTA disrupts normal behavioral reward
matching. Behavioral frequency-response curves (n = 3) taken before (red) and after (black)
lidocaine inactivation of the VTA.
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DISCUSSION (CHAPTER 3)

Overall conclusions

The psychological concept of reward is fundamental to an animal's ability to

make decisions, learn from their outcomes, and adaptively interact with the external

world. Psychological studies have thoroughly described many aspects of behavior that

are related to reward. However, the neural underpinnings of reward remain vaguely

understood. Due to the fundamental necessity of the reward system, the brain circuits

involved are built upon some of the evolutionarily oldest brain structures in the midbrain.

In part, the difficulty in disentangling the complex anatomical wiring of the reward circuit

derives from this fact. In part, the lack of understanding also arises from dearth of

appropriate methodological approaches to understanding the system. In this thesis, we

have addressed the representation of reward in the brain by combining the classic

approach of rewarding electrical brain stimulation with modern circuit dissection tools,

including high resolution measurements of BOLD activation, diffusion-tensor imaging

and a local pharmacological silencing in vivo. Using these tools, we have addressed

the following three specific aims.

Identifying neural elements activated by rewarding electrical brain

stimulation of the medial forebrain bundle

Our first aim was to delineate the brain regions that are activated by rewarding

electrical brain stimulation of the MFB. In other words, we wished to outline the neural

circuit that could plausibly be involved in the direct representation of reward value. Not

surprisingly, given the anatomical connectivity of the projections through the MFB, we



observed widespread activation along nearly the entire rostro-caudal axis of the brain.

Though many structures had significant activity, the pattern of response magnitude was

instructive. We found several distinct hot-spots of particularly large activity along the

ventral-medial aspect of the ipsilateral hemisphere, including the pre-optic area, the

substantia nigra, the VTA and the olfactory tubercle. However, there was significant

activation in many additional brain structures. There was also a surprising level of

activation in the contralateral hemisphere. The contralateral activity was generally

diffuse and devoid of distinct hot-spots.

These results confirm several of the findings from previous experiments using

other methods to identify brain regions activated by BSR, including c-fos labeling and 2-

deoxyglucose labeling. Similarly to experiments using c-fos and 2DG labeling, our data

show bilateral activation in several areas including the thalamus, nucleus accumbens,

lateral septum, and in sensory and motor cortices (Porrino, Esposito et al. 1984;

Arvanitogiannis, Flores et al. 1996). These studies report that some of the largest

differences in activity between areas ipsilateral to stimulation versus contralateral are

rostral-caudal targets of the MFB, for example the preoptic area as well as the

substiantia nigra and VTA. As is visible in Figure 3, a majority of activation hotspots are

ispilateral to stimulation and are localized in the preoptic area, lateral hypothalamus,

and the VTA/SN. Our mapping of the activity induced by rewarding stimulation is in

strong agreement with the existing literature. Yet, many of the papers aiming to

elucidate the neural substrates of rewarding brain stimulation provided inconclusive

results, mainly due to the limitations of their techniques. They rely on metabolic



markers that could only give them a measure of regions that were active during

stimulation whether or not those regions played a significant role in reward.

Identifying structures that represent reward magnitude

The reward system must have the ability to finely discriminate different

magnitudes of reward. Reward valuation has been well documented behaviorally, in the

context of a number of rewarding stimuli, including sucrose, addictive drugs, and

rewarding brain stimulation (Gallistel and Leon 1991; Di Chiara, Bassareo et al. 2004;

Roitman, Stuber et al. 2004). These studies have demonstrated that animals will

faithfully make choices based on the perceived reward value of the available options.

The relationship between the relative allocation of choices and the reward value of the

options has been formalized by Herrnstein, and found to apply universally across

environment, task and species (Herrnstein 1974). An important aspect of this behavior

is that animals do not maximize reward by always choosing the most rewarding option.

Instead, they allocate time and action proportionally, according to reward value. The

decision-making machinery responsible for this behavior must therefore have access to

a quantitative representation of the reward magnitude of each option.

Our second aim was therefore to identify brain structures with activity levels that

track the reward magnitude of varying frequencies of electrical brain stimulation, and

thus identify the neural representation of reward magnitude, or value. We first

confirmed previous results demonstrating that in a two-choice operant task rats will

allocate choices in a graded fashion relative to the frequency of electrical brain

stimulation (Waraczynski, Stellar et al. 1987; Simmons and Gallistel 1994). Based on

this behavioral measure, we can assign a reward value to each frequency by calculating



the proportion of choices for each frequency, and generate a curve of subjective reward

magnitude. An important aspect of the observed reward magnitude curves is that they

do not linearly follow stimulation frequency. Rather, reward has a saturating

relationship to stimulation frequency, with acceleration over low frequencies, and

plateaus at high frequencies. Based on models of reward integration, it has been

proposed that the saturation of the reward curve represents a practical limit to the

possible perceived reward magnitude, not a biophysical saturation of the neural

machinery (Shizgal 1997). Regardless of the mechanism, the reproducible reward

curve profile provided us with a unique signature of reward magnitude which we used to

distinguish brain activity related to the computation or representation of reward

magnitude from other activity related linearly to the stimulation frequency.

We found that the majority of the stimulation-evoked brain activity linearly tracked

the stimulation frequency. This is perhaps not surprising, given that neural activity can

track the stimulation frequencies used, and previous studies have found that BOLD

activation in the hippocampus linearly correlates with neural activity at least up to 50Hz

(Canals, Beyerlein et al. 2008). There are two principal interpretations for why a voxel

would have a linear response profile. One is that the voxel processing reward-related

activation of the BSR, but that it is not directly involved in the reward magnitude

representation. In the context of the reward integrator model of BSR (Shizgal 1997), it

is conceivable that the integrator is several synapses removed from the directly

stimulated fibers, and thus the BSR-evoked activity could propagate linearly through

several synapses before reaching the reward integrator, which would count the number

of spikes, and generate a sigmoidal reward curve. A second interpretation of linear



activity profiles is that some brain regions may be incidentally stimulated which are

completely unrelated to the reward system. The MFB is an exceedingly complex fiber

bundle, which contains many fibers with no role in reward. It is most likely that at least

some non-reward fibers are stimulated, and lead to activation of voxels in brain regions

with no role in reward. Unfortunately, we are not currently able to distinguish between

these possibilities with the present experiments. A clear dissociation of non-reward-

related activation will likely have to wait for more genetically and anatomically specific

means of stimulation, such as genetically targeted expression of optogenetic probes.

We did identify two brain structures with activity profiles that clearly tracked the

reward curve: the NAc and subregions of the amygdala. The extremely close

relationship between the activation curves in these areas and the psychometrically

derived reward curve make it extremely unlikely that the activity in these regions is

anything other than reward magnitude tracking. Thus, our main conclusion for this aim

is that the nucleus accumbens and the subregions of amygdala are the two major

components of a distributed representation of subjective reward magnitude.

Several additional brain regions contained activity that is suggestive of a role in

reward magnitude processing or representation. While large portions of the NAc and

sub-populations in the amygdala were reward tracking, and met all of our criteria for

significant tracking of the behavioral reward curve, several other brain regions (LSI,

DpMe, Tu, SCx) showed a lesser degree of reward-tracking behavior. Each of these

regions was found to have a bimodal distribution of linear vs. saturating voxels in the

model fits. However, they neither had obvious spatial clustering of the saturating

voxels, nor passed the stringent, Bonferroni-corrected test for a significant fit by the



saturating regressor within the sub-population that we extracted. While our criteria for

this determination (including the extraction of 1/3 voxels) seem reasonable, they are

somewhat arbitrary in functional terms. If a subregion smaller than one third of the

volume of the brain structure had a specific functional role, it might have been washed

out by our analysis. Similarly, if a fraction of neurons with a specific functional role were

distributed throughout the structure, our analysis would likely have missed them, due to

the limited spatial resolution of our method. Thus, we can tentatively say that these

brain regions may be involved in the reward magnitude representation, but their role is

not as central as those of the NAc and the amygdala.

Determining the role of the VTA in reward magnitude representation

Since early in the studies of the neural mechanisms of reward, there has been

special attention paid to the role of the neurotransmitter dopamine in reward. Several

pieces of circumstantial evidence have been accumulated to point to the role of

dopamine in reward, and it has even been suggested that dopamine release in the NAc

represent the reward signal itself (Yokel and Wise 1975; Wise 1982). The primary

source of dopaminergic projections to the structures that we have identified as reward-

tracking is the VTA. In fact, the VTA has widespread projections, and as such is well

suited to coordinate the distributed reward value representation that we have observed.

Our aim was to investigate the role of the VTA in the reward magnitude representation

by selectively inactivating it during the presentation of BSR.

In order to address this issue, we developed a novel means of visualized focal

inactivation. By mixing the MR contrast agent gadolimium (Gd-DTPA) with the nerve

blocker lidocaine, we were able to directly visualize the spread of drug in the brain in



real time. This enabled us to carefully titrate the infusion parameters to generate a

radius of inactivation that ensured complete inactivation of the VTA with only minimal

unnecessary effects on nearby structures. We found this to be an indispensable tool,

as we noticed unwanted spread (especially into the ventricles) in some pilot

experiments. We were also able to readily identify failures of injection, which

occasionally occurred due to minute leaks, or other technical failures. Presumably,

other similar experiments performed without the visualization would have missed these

issues, and have weakened, or non-specific effects.

We found that the inactivation of the VTA had widespread and varied effects on

the brain-wide response to BSR. Not surprisingly, there was widespread reduction of

BSR-induced activity, which was most prominent on the contralateral hemisphere.

There are two principal interpretations of this finding. The first is that the neurons in the

VTA send projections bilaterally. This would easily explain reduction in activity in the

contralateral hemisphere, however quantitatively, it fails to explain why the reduction in

the contralateral hemisphere was larger than in the ipsilateral hemisphere, given that

only 20 percent of VTA projections are contralateral (Swanson 1982). The explanation

that we favor is that two prominent decussations in the midbrain (the ventral tegmental

decussation and the supramammilary decussation) are found at the level of the VTA

(Douglas, Kellaway et al. 1987). Therefore, it is likely that the main gateways of

descending activity elicited by BSR to the contralateral hemisphere were blocked by the

inactivation of the VTA.

In the ipsilateral hemisphere, there was also a reduction in several brain areas,

including sensory cortices and the caudate- putamen. Surprisingly, there were also



increases in activity along the ventral half of the brain. The largest increases were

found in the amygdala, the NAc, the cingulate cortex and subregions of the lateral

entorhinal cortex. Some of these areas are most strongly involved in the reward

magnitude representation. This scenario suggests a striking conclusion: the brain

regions which are the core of the representation of reward magnitude are suppressed

by the VTA. Furthermore, it suggests that the VTA, while not directly involved in the

representation of reward magnitude, has the ability to modulate, or shape, the reward

value representation.

This conclusion led us to investigate the effects of inactivating the VTA on the

behavioral read-out of reward magnitude. We found that inactivating the VTA disrupted

the typical saturating reward profile, providing psychophysical confirmation that VTA

plays a role in coordinating, or regulating the reward value representation.

There is abundant evidence for a modulatory role for DA from the VTA on

glutamatergic and GABAergic inputs to the NAc (Nicola, Surmeier et al. 2000). It is

currently believed that the dopaminergic inputs from the VTA are not drivers of NAc

activity, but act strictly as modulators. The main excitatory drive to the NAc is thought to

be glutamatergic inputs from frontal cortices, the amygdala and the hippocampus (Yim

and Mogenson 1982; Yang and Mogenson 1984; Brady and O'Donnell 2004). In fact,

the modulatory role of DA in the NAc is quite complex. There have been

demonstrations that DAergic input can enhance or suppress NAc activity (Nicola and

Malenka 1997), dependent on the membrane potential state of the NAc neurons.



Caveats

The basis of most fMRI experiments is the blood oxygenation level dependent

(BOLD) effect. BOLD signals offer a useful but indirect readout of underlying neural

activity. Therefore understanding the relationship between the hemodynamic response

and the neural activity causing it is critical in order to interpret results accurately. Many

experimenters have characterized the relationship between BOLD and direct

measurements of neuronal activity such as local field potentials and multi-unit spiking

activity. They demonstrate that there is a linear relationship between both measures

given that the stimulus presented lasts for a short duration (Logothetis, Pauls et al.

2001; Hyder, Rothman et al. 2002). In addition, evidence shows that BOLD responses

are better correlated with local field potentials suggesting that activation in an area likely

reflects incoming input and local processing (Logothetis 2003). Therefore, based on the

current understanding in the field, the results described in this thesis, which are based

on changes in BOLD signals, are highly likely to reflect similar activation patterns due to

underlying neural activity.

Furthermore, there is evidence that specifically demonstrates that there is a

linear relationship between neural activity and BOLD activity during electrical brain

stimulation. Canals et al., demonstrated that BOLD activation linearly follows neural

activity during electrical brain stimulation of the hippocampus, over the range of

frequencies tested (4 - 50Hz) (Canals, Beyerlein et al. 2008). Beyond that, our own

data provide strong evidence in support of this conclusion. The simple fact that the

majority of voxels have a nearly linear relationship to stimulation frequency over the

entire range of stimulus frequencies used (up to 231 Hz) strongly implies that the BOLD



activation is linearly related to neural activity. The stimulated axons in the MFB can

readily follow frequencies up to -250Hz (Forgie and Shizgal 1993). When we used the

high-frequency regime, above the following-frequency of most MFB axons, we observed

saturation of the BOLD throughout most of the brain, which presumably reflects a ceiling

of the underlying neural activity. Taken together, we feel confident that the BOLD

activity we observe is a reasonable surrogate for neural activity in our paradigm.

Undoubtedly, subtle differences exist, but they are unlikely to influence the conclusions

that we have drawn from the BOLD measurements.

Working Model

Integrating these results with what we know from the literature, we can begin to

construct a hypothesis for the functional roles of different elements in the neural circuitry

involved in representing reward value in the brain. The core representation of reward

value is located in the ipsilateral NAc, and parts of the amygdala. This representation is

enabled by modulatory inputs from the VTA/SN, which shape the reward-magnitude

curve. The modulatory shaping is primarily due to suppression of responses to large

reward magnitudes. Thus, ascending midbrain modulatory afferents have a role not

only in learning reward associations, but also in modulating the reward value

representation. This circuit arrangement provides a means by which the representation

can be modified by other contextual factors that converge to influence the output of the

VTA/SN.
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