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Abstract

The field of neuroscience has the potential to address profound questions including
explaining how neural activity enables complex behaviors and conscious experience.
However, currently the field is a long way from understanding these issues, and progress
has been slow. One of the main problems holding back the pace of discovery is that it is
still unclear how to interpret neural activity once it has been recorded. This lack of
understanding has led to many different data analysis methods, which makes it difficult to
evaluate the validity and importance of many reported results. If a clearer understanding
of how to interpret neural data existed, it should be much easier to answer other questions
about how the brain functions.

In this thesis I describe how to use a data analysis method called 'neural population
decoding' to analyze data in a way that is potentially more relevant for understanding
neural information processing. By applying this method in novel ways to data from
several vision experiments, I am able to make several new discoveries, including the fact
that abstract category information is coded in the inferior temporal cortex (ITC) and
prefrontal cortex (PFC) by dynamic patterns of neural activity, and that when a monkey
attends to an object in a cluttered display, the pattern of ITC activity returns to a state that
is similar to when the attended object is presented alone. These findings are not only
interesting for insights that they give into the content and coding of information in high
level visual areas, but they also demonstrate the benefits of using neural population
decoding to analyze data. Thus, the methods developed in this thesis should enable more
rapid progress toward an algorithmic level understanding of vision and information
processing in other neural systems.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor
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Chapter 1: Introduction

While many significant discoveries have been made in the field of neuroscience, we are

still a long way from understanding the neural processing that enables complex

behaviors. One key reason why the field does not have a better understanding of neural

information processing is due to the fact that most analyses of neural data use a

'hypothesis testing' approach that is designed to demonstrate that particular effects are

present in the activity of single neurons, rather than focusing on how the brain works as a

computational system designed to solve particular tasks. Consequentially, the field of

neuroscience seems to be overrun by facts, while lacking a real understanding of how the

brain functions.

In this thesis, I discuss how to apply a data analysis method called 'population decoding'

to reveal a deeper understanding of neural information processing. Population decoding

works by modeling the relationship between the activity of a population of neurons and

particular experimental conditions (see chapter 2 for more details). Once this relationship

has been learned, predictions can be made about which experimental condition are

present in new data, which allows one to assess how reliability of the relationship

between neural activity and particular experimental conditions. The level of accuracy of

these predictions can then be used in several ways to give insight into what computations

a brain area is most involved in, and also how a given brain region is representing and

processing information. For example, one can use the activity of a population of neurons

to make predictions about several different types of variables that are behaviorally

relevant, and then evaluate how much information there is about each of these variables

in order to understand the key functions that a given brain region is involved in.

Conversely, one can make predictions about one particular variable using different

representations (or types) of neural activity, in order to gain insight into how information

is coded in neural activity. One can also compare these predictions accuracies to the

performance of humans, animals and computer algorithms on similar tasks, in order to

relate the amount of information in neural activity to other systems that are trying to



solve the same task. Population decoding also has several other advantages over more

conventional data analysis methods (see Chapter 6), including the ability to more clearly

identify particular states the brain is in by combing the noise signals that each individual

neuron has into a better picture of how a brain region is functioning as a whole. Thus,
this method offers a lot of promise in terms of gaining a more computational

understanding of neural processing.

The work in this thesis focuses on understanding high level visual processing by

analyzing data from the inferior temporal cortex (IT) and other closely connected brain

regions that are involved in the later stages of processing visual information (and possibly

object recognition). Neural population decoding analyses have been applied to several

other brain regions (they have been most widely used to analyze neural activity in the

motor cortex of macaques, and hippocampus of rats), and decoding methods are widely

used to analyze data from functional magnetic resonance imaging studies of visual

processing in humans. However, apart from a few notable studies (Gochin et al., 1994;

Hung et al., 2005), prior to the work in this thesis, population decoding has not been

widely used to analyze data from macaque high level visual areas. Thus, applying

population decoding to neural data from high level visual areas is an interesting problem

because it requires new techniques to be developed, and because of the greater potential

to make significant discoveries. Also, because of large amount of work being done in

computer vision, findings from neuroscience in this area could lead to practical

applications by giving insight into how to build better computer vision systems, and

conversely, insights from the field of computer vision could help shed light into how to

interpret the population decoding results, which makes it an attractive problem to

research in terms of gaining a computational understanding of neural processing.

The majority of the content of this thesis concerns analyzing neural data using population

decoding in order to make new discoveries. The reason why this work focuses on

analyzing data rather than on developing methods, is because I felt that if population

decoding did not give any additional insight compared to other methods, then proving

mathematical properties about the method would not be very useful for advancing our
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understanding of how the brain functions'. In the process of analyzing data, however, I

did end up creating several methods that allow one to evaluate the significance of the

results. I also spent a large amount of time making sure that the decoding results are

robust. For example, before I began doing these decoding analyses, it was unclear

whether the decoding results would be affected by the choice of classifier, the way the

data is normalized, or a number of factors. If the decoding results varied drastically

depending on these choices, then the method would not be very useful for making general

statements about how the brain functioned. Consequentially, I spent a large amount of

time exploring how different parameter choices could affect the decoding results, and

fortunately, the empirical results have shown that decoding is remarkably robust to most

parameter choices. Finally, I spent a considerable amount of time developing code to do

these decoding analyses. I hope to release this code soon to allow other researchers to

easily apply the decoding analyses to their data in order to help increase the pace of

discovery.

1 Chapters 3-5 clearly show that many additional insights about high level visual processing can be made
using this method.



Organization of this thesis

The remainder of Chapter 1 gives background on the what is known about interior

temporal cortex (which is the brain region where most of the data analyzed in this thesis

comes from) and background on other data analysis methods that are relevant for

studying processing of high level visual information.

Chapter 2 describes how population decoding works, and how to apply these methods to

neural data in order to get useful results. The main goal of this chapter is to provide a

guidance to help researchers, who have not had much experience with machine learning,

successfully apply these methods to data from new experiments.

Chapters 3-5 describes findings from applying population decoding to neural data from

high level visual areas. Chapter 3, shows that the both the inferior temporal and

prefrontal cortex contain 'abstract' category information in the activity of a small subset

of neurons that change over the course of a trial. Chapter 4 compares neural decoding

results to results from computational models and psychophysics experiments, and shows

that while it was possible to decode whether animal is in a complex natural scene image

using neural data, this information is also present in simple low level visual features

found in earlier visual areas. Finally, chapter 5 shows that attention affects neural

representation of objects in IT primarily by restoring the pattern of activity to a state this

is similar to when an attended object is shown in isolation.

Chapter 6 concludes the thesis by highlighting some common themes that span the

chapter in the thesis, listing some of the advantages that neural population decoding has

over other methods by taking examples from the results in the thesis, and discusses some

interesting questions that can be addressed using this method in the future.



Background: The inferior temporal cortex

The data analyzed in this thesis comes from recordings made in the anterior inferior

temporal cortex (IT) and a few connected brain regions (namely, the prefrontal cortex and

V4). Below is a literature review of the inferior temporal cortex, which helps put the

findings of this thesis in the context of what is currently known about this brain region.

Visual information enters the cortex of primates through a pathway that starts with the

retina in the eye, passes through the lateral geniculate nucleus in the thalamus, and then

enters cortex in a posterior region (occipital cortex) in a region known as primary visual

cortex (Vi) (Bear et al., 2006). After V1, visual information is thought to travel along

two distinct pathways, known as the dorsal stream and the ventral stream (Mishkin and

Ungerleider, 1982; Goodale and Milner, 1992). The dorsal stream is thought to be more

involved in the processing of vision for action (it is often called the 'where' or 'how'

stream), while the ventral stream is thought to be more involved visual object recognition

(it is often called the 'what' stream). The feedforward connections of the ventral stream

proceed from Vi to visual areas V2, V4 and then on to the inferior temporal cortex (IT),

which lies in the temporal lobe, and contains the mid and late stages of the ventral visual

pathway (Mishkin et al., 1983; Felleman and Van Essen, 1991). The major project sites

for the outputs of IT are the medial temporal lobe which is thought to be involved in

memory, and to ventral prefrontal cortex, which is thought to be involved in planning and

decision making (Miyashita, 1993).

IT contains multiple subdivisions that have slightly different properties (Baylis et al.,

1987; Felleman and Van Essen, 1991; Logothetis and Sheinberg, 1996), although IT is

most often discussed in terms of two regions, posterior/central IT (PIT/CIT, or the closely

related TEO), and anterior IT (AIT, or the closely related TE) (von Bonin and Bailey,

1948; Felleman and Van Essen, 1991). Overall neurons in IT have longer latencies

(Nowak and Bullier, 1998), larger/bilateral receptive fields and respond to more complex

stimuli than regions than earlier vision area (Logothetis and Sheinberg, 1996; Fujita,



2002). The complexity of features and the size of receptive fields also continues increase

from PIT to AIT (Tanaka et al., 1991).

IT has traditionally been thought of as a brain region that is necessary for visual object

recognition (Mishkin, 1982; Gross, 1994), although recent studies have raised questions

about its role (Kirchner and Thorpe, 2006; Girard et al., 2008; Matsumoto et al., 2010).

Below, I describe research in IT in terms of several different conceptual approaches that

have been used to guide research questions about the function of this brain region. More

detailed literature reviews of IT cortex and object recognition in primates can be found in

(Miyashita, 1993; Gross, 1994; Logothetis and Sheinberg, 1996; Tanaka, 1996;

Ashbridge and Perrett, 1998; Fujita, 2002).

Examining IT neurons' responses to visual features

One widely studied question in IT concerns trying to find the set of 'visual features' that

individual neurons respond to. This approach has its origin in seminal early work on

understanding properties of early visual stages of processing in the retina (Hartline, 1938;

Lettvin et al., 1959) and primary visual cortex (Hubel and Wiesel, 1959) where simple

visual features such as orientation, and spatial frequency can be used to predict a large

degree of the responses of these cells. Several studies using this conceptual approach

have found that many neurons in AIT and the superior temporal sulcus (STS), respond

much more strongly to images of faces and other complex objects (Gross et al., 1972;

Bruce et al., 1981; Perrett et al., 1982; Desimone, 1991). Numerous other studies have

tried to characterize the visual response properties of non-face selective IT neurons by

using parameterized stimulus sets, including Fourier descriptors (Schwartz et al., 1983),
radial frequency components (Op de Beeck et al., 2001), Walsh patterns (Richmond et

al., 1987), contour elements (Brincat and Connor, 2004), and other intuitive axes such as

elongation and curvature (Kayaert et al., 2005). While these studies have elucidated

several interesting facts about IT, such as neurons often have the highest firing rates to

the parameters extreme elements in their stimulus set (Brincat and Connor, 2004) and

perceptual ordering of similarity matches neural response similarity (Op de Beeck et al.,
14



2001), a clear set of parameters around which IT neurons are tuned has yet to be found.

Another method to analyze which features IT is tuned to consists of a 'stimulus

reduction' method in which a neuron is shown a series complex images (usually of

isolated objects or shapes), and then the image that initially gave a large response is

reduced in its complexity to try to find the simplest set of visual features that still

maximally excite the neuron (Desimone et al., 1984; Tanaka et al., 1991; Kobatake and

Tanaka, 1994; Tanaka, 1996, 2004). Such approaches have found most AIT neurons

respond selectively to a particular feature that is usually of "moderate" complexity

(Tanaka, 1996) yet again, no simple description of IT neuron tuning has emerged from

these studies. While having a clear understanding of what visual features neurons in IT

are tuned to would be a very significant breakthrough, it is unclear whether one should

expect single neurons in IT to be tuned to along any easily interpretable dimensions

(Serre et al., 2005). It is also possible that even if IT does represent visual properties

along easily parameterized dimensions, that if the information is coded in a distributed

manner, then examining the firing rates of individual neurons might not clearly reveal

what these dimensions are.

Visual feature topology in IT

A related question to which visual features are neurons in IT tuned to, is the question of

whether there is any topographic organization in IT. It is known that AIT does not have

the retinotopic organization that characterizes many of the early visual areas from VI to

V4 and PIT (Tanaka, 1996, 1997). However, there is a significant amount of evidence

that AIT neurons are grouped together based on their selectivity to visual image

properties (even though the exact properties that these neurons respond to is unknown). A

recent study has shown that faces selective neurons in IT and STS are grouped into

several discrete patches that are interconnected (Moeller et al., 2008), which suggests that

there are dedicated regions of cortex devoted to processing faces. Beyond face selective

IT neurons, functional magnetic resonance imaging studies in macaques have shown

consistent patterns of activation to images of objects with different shape properties that

were not influenced by experience with the images, behavioral task, and the exact retinal
15



position of the objects, indicating that there is a large scale topographic map in IT based

on the visual properties of images (Op de Beeck et al., 2008). On a finer scale,
electrophysiological and optical imaging studies have reported "columns" in AIT in

which all neurons along a vertical penetration seem to have similar selectivity, and

neurons within a 400-500 micron wide region have similar selectivity, but beyond these

regions selectivity of neurons changes sharply (Fujita et al., 1992; Tanaka, 1996; Wang et

al., 1998; Tsunoda et al., 2001). While there has been speculation on the functional role

of this topographic organization (Tanaka, 2003) the reason for this organization is still

unknown.

Memory and learning in IT

Other studies have investigated visual learning and memory effects in IT (Mishkin 1982).

One widely reported memory related effect, seen in a significant number of neurons

(~30%), is a decrease in response when the same stimulus is repeatedly shown two or

more times (Miller et al., 1991; Li et al., 1993; Miller and Desimone, 1994; Sawamura et

al., 2006). This suppression in response occurs even if the repeated stimulus is not

behaviorally relevant (Miller and Desimone, 1994), and also when the repeated stimulus

is shown at a different size or position (Lueschow et al., 1994). Interestingly, when a

monkey engages in a delayed match-to-sample (DMS) task, the decrease in response

occurs from the "sample" to the "match" stimulus, but, there is a rebound/resetting of

response on the next trial, such that the sample response is high again (i.e., significantly

higher than the response to the previous match, even when the match and sample stimuli

are shown in successive order) (Miller et al., 1993; Li et al., 1993). Additionally, the

neurons that show a decreasing response to repetitions within a trial also show a longer

lasting, more gradual decrease in response to both the sample and the match stimulus

(particularly in neurons in ventral AIT and the perirhinal cortex), such that the more a

particular stimulus is seen, the lower the response is to that stimulus. Thus these neurons

have been suggested to be involved in representing stimulus "familiarity" (Li et al.,
1993). A second memory effect seen in IT is an enhancement in neuronal response to the

repetition of a stimulus only when the stimulus is behaviorally relevant, e.g, if a stimulus
16



is the "match" in a DMS task, and not just a repetition of a non-match stimulus (Miller

and Desimone, 1994). Almost no neurons that show an enhanced response for

behaviorally relevant stimuli show the decrease in response effects, which suggests that

there are two separate networks in IT what underlie these different memory related

responses (Miller and Desimone, 1994).

In addition to studying changes in a neuron's mean responses due to stimuli that have

been presented in the past, other studies have examined short-term memory in IT in

relation to a neuron's sustained temporal profile of response after the offset of a particular

stimulus. Studies using a DMS task have found neurons with stimulus specific

modulation (including constant high levels of sustained activity) to colors and to

particular shapes over delay periods that are up to 20 seconds in length (Fuster and

Jervey, 1982; Miyashita and Chang, 1988). Other DMS studies, though, have questioned

whether these sustained responses are memory signals since intervening stimuli disrupt

the stimulus specific modulation even though they do not interfere with the monkey's

ability to complete the task (Baylis and Rolls, 1987; Miller et al., 1993). However, a

recent study using a population decoding analysis has shown that the disruption caused

by subsequent stimuli is not complete (Woloszyn and Sheinberg, 2009), and that residual

information does persist over intervening stimuli2.

Many studies have also examined longer lasting "learning effects" in IT in which neurons

appear to change their stimulus selectivity as a result of extensive experience with a

particular stimulus set or task. Studies have shown that if a monkey passively views a

series of images that are in a fixed order numerous times, neurons in AIT will tend to

respond similarly to images that are adjacent to each other in the learned sequence, even

2 The first version of this literature review was written for my thesis proposal, and was completed before
the study by (Woloszyn and Sheinberg, 2009) had been published. In that version of this literature review,
I speculated that a memory signal that persisted over intervening stimuli might be found in IT if it a more
sensitive analysis based population decoding analyses was conducted. The reason I thought one might find
such a memory trace was based on the fact that a similar memory trace had been found in the locust
olfactory bulb when a population decoding analysis was done by Broome et al., (2006). Thus I found it
very interesting to see that this speculation was confirmed by the results of Woloszyn and Sheinberg,
(2009).



when the images are presented later in a random order (Miyashita, 1988; Erickson and

Desimone, 1999). Additional studies have also shown that many neurons become more

selective for stimuli that are frequently seen (Logothetis et al., 1995; Kobatake et al.,
1998; Baker et al., 2002; Freedman et al., 2006), although most studies have found that

individual neurons still respond to multiple stimuli rather than being tuned exclusively to

one stimulus (Kobatake et al., 1998; Baker et al., 2002; Freedman et al., 2006). The

increased selectivity of neurons seen in several of these studies (Baker et al., 2002;

Freedman and Assad, 2006) is due to decrease in firing to non-preferred stimuli rather

than increase in response to the preferred stimuli, and thus could be related to the

familiarity effects described by Li et al. (1993).

Other research has looked at changes in neuronal responses that could be a result of

monkeys participating in an active task. Several studies had monkeys engage in a paired-

associate (PA) task, where monkeys needed to learn to associate pairs of stimuli together,

such that when the first cue stimulus was shown, the monkeys needed to correctly select a

particular second stimulus from two alternative choices. Results from these studies found

two effects: first, that many neurons respond at a higher firing rate to both images in the

pair (acting as if they associated both stimuli together) (Sakai and Miyashita, 1991;

Messinger et al., 2001) and second, many other neurons that responded particular

strongly to a particular image, would respond with an increasing firing rate during a delay

period when the paired image was used as a cue, thus acting as if the neuron was

anticipating the onset of the pair image (Sakai and Miyashita, 1991). However, further

work has suggested that such paired-associate effects are stronger in adjacent perirhinal

cortex than in IT proper, and that paired associations in IT are large due to feedback

connections from this area (Higuchi and Miyashita, 1996; Naya et al., 2001). Other

studies have shown that when a monkey must discriminate between two visually distinct

classes of items, more neurons are found that respond to visual features that can

differentiate between the two image classes than to features that cannot differentiate

between the classes (Sigala and Logothetis, 2002). Additionally, the reward structure

associated with particular stimuli and behavioral responses can influence response

properties of neurons in AIT (Mogami and Tanaka, 2006; De Baene et al., 2008),
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providing further evidence that active engagement in a task is an important factor shaping

neuronal activity.

Invariant object representations in IT

Another framework for studying IT is to examine which transformations of a given

stimulus are neurons invariant/tolerant to (Ashbridge and Perrett, 1998; Rolls, 2000).

The logic behind this approach is that primates need to be able to recognize objects under

a variety of different viewing conditions such as changes to the object's size, position,

ambient illumination and surrounding clutter, all of which give rise to very different

retinal images of an object; thus, if IT is critical for robust object recognition, there

should be neurons in this brain region that respond similarly despite changes in such

parameters. Several single neuron analyses examining this issue have found neurons in

anterior IT that respond similarly to images of particular objects even when the object is

shown at different sizes and positions (Schwartz et al., 1983; Miyashita and Chang, 1988;

Lueschow et al., 1994; Ito et al., 1995), although the majority of neurons in IT do seem to

respond best to a particular size/position3 (Lueschow et al., 1994; Ito et al., 1995;

Ashbridge and Perrett, 1998; DiCarlo and Maunsell, 2003). Other studies that have

looked at more complex transformation of stimuli, including shape defined by texture and

motion (Sary et al., 1993), mirror reversals of shapes (Rollenhagen and Olson, 2000;

Baylis and Driver, 2001), contrast changes/reversal (Baylis and Driver, 2001; Zoccolan et

al., 2007), and rotation of familiar 3D shapes (Logothetis et al., 1995; Booth and Rolls,

1998), have also found that there are neurons in IT that respond similarly despite these

changes in stimulus properties, although again, many neurons are more tuned to

particular ranges of parameters and there seems to be a tradeoff between how selectively

a neuron respond to particular stimuli and how tolerant it is to different transformations

(Zoccolan et al., 2007)).

3 However even when neurons do respond more to a particular size/location, the ordinal order of stimulus
selective for almost all neurons seems to remain the same at the preferred and non-preferred locations -
thus the changes at a preferred size/location can best be explained in terms of a change in gain in the
neuron's response (Lueschow et al., 1994; Ito et al., 1995; DiCarlo and Maunsell, 2003).
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Learning mechanisms have also been proposed that can explain how neurons in IT could

obtain such invariant properties, which ties together the learning effects seen in IT with

IT cortex's involvement in shape discrimination. In such theories, the fact that there is

often temporal contiguity to the transformations that images of objects undergo in the

world is combined with an associative learning so that neurons become invariant to

particular object transformations (F6ldiik, 1991; Wallis and Rolls, 1997; Wiskott and

Sejnowski, 2002). For example, since objects are often seen at slightly different sizes in

a precise temporal sequence as one approaches an object, a Hebbian learning rule could

cause a downstream neuron to pool together the responses of two upstream neurons that

each respond only to one image of a particular size, due to the upstream neurons firing in

close temporal proximity; thus after such learning, the downstream neuron would respond

similarly to a particular object regardless of the object's size. Similar mechanisms could

explain the position, illumination and view tolerant neuron responses found in IT.

Psychophysical evidence has shown that humans indeed experience perceptual learning

for temporally contiguous images, such that images that occurred in a temporal sequence

are subsequently perceived as being more similar (Wallis and Biilthoff, 2001; Cox et al.,
2005) and computational models have been build around this principle (F61diik, 1991;

Wiskott and Sejnowski, 2002). Also, recent neurophysiological experiments have shown

that temporal binding can indeed change neuron's selectivity and create 'false

invariances', which is strong support for this theory (Li and DiCarlo, 2008).

However, despite the great appeal of this theory, it is difficult to explain how all of the

response properties of IT neurons could arise from such learning mechanisms. For

example, a recent study has suggested that IT neuronal response properties might be

organized by whether a stimulus is an image of a living or non-living item (Kiani et al.

2007), which is hard to explain in terms of associative learning rules. Thus IT is most

likely involved in more than just creating invariant object representations.



Neural Coding

Apart from the issue of what information is in IT and other high level visual areas, is the

issue of how is information coded in the neural activity in these areas. While it is clear

that much of the information in neural spiking activity is present in the 'firing rate' of the

neuron4 , many questions about whether additional information is contained in other

aspects of neural activity have not been definitively answered (Dayan and Abbott, 2001).

Questions related to information coding in single neurons include: 1) For a single

neuron, is the information contained in each spike independent from the information

contained in all other spikes, so that a inhomogeneous Poisson process is a full

characterization of the information content of the neuron (an independent spike code), or

is there additional information in the relationship between spike times (a temporal

correlation code); 2) Is information contained in precise spike/rate modulations that are

not purely due to the dynamics of the stimuli (temporal encoding), or does the mean

number of spikes within a particular time interval contain all the relevant information

(spike-count code)? and 3) over what temporal time scales do neurons carry

information5?

Work in the primate visual system that has tried to address these questions includes a

study by Victor and Purpura, (1996) who used a 'metric-space' analysis to examine data

from VI, V2 and V3, and found that there indeed appears to be additional information in

the precise times of spikes beyond what could be accounted for by an inhomogeneous

Poisson process (with additional information ranging on time scales from 10-100ms

4 For the purpose of this review, we use the term 'firing rate' to refer to either the 'spike-count rate' which
is defined as the number of spikes within a particular time interval within a single trial, or the 'firing rate'
which is defined as the number of spikes within a particular (perhaps smaller) time interval that is
calculated by averaging over repeated trials of the same type. Both of these firing-rates measures are
known to contain significant amounts of information about stimuli and other behaviorally relevant
variables, although from a theoretical view point, they are significantly different from each other, and can
potentially lead to very different view points about how the brain processes information (Dayan and
Abbott, 2001).
5 This question is often referred to as the temporal vs. rate coding debate, however as pointed out by several
researchers (Theunissen and Miller, 1995; Dayan and Abbott, 2001; Gerstner and Kistler, 2002), the
distinction between a rate code and a temporal code (as it is most commonly defined) is just a matter of
degree rather than any concrete coding strategy difference, thus I will avoid using this terminology.
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depending on the stimulus attribute). However, work by Heller et al., (1995) using an

information theoretic approach based on decoding failed to find additional information

beyond what was present in the mean spike counts over time windows of 25ms in V1 and

50ms in IT. Additionally, a series of studies by Optican and Richmond (Optican and

Richmond, 1987; Richmond and Optican, 1987; Richmond et al., 1987) that used

information theoretic approach applied to temporal principal components of binned spike

trains from IT showed what appeared to be additional information in the temporal

modulation of neural activity beyond modulations to the mean firing rate, suggesting that

there was temporal encoding of information in IT. However, later work by (Tovee et al.,

1993), found that the analyses of Optican and Richmond could largely be accounted for

the fact that Optican and Richmond did not correct for a systematic limited sampling bias

in their information estimates, and that indeed most of the information in IT could be

accounted for based on a the temporal modulation of the mean firing rate and the initial

onset latency of the IT responses.

Apart from questions about neural coding on the single neuron level, there are also many

open questions related to how information is coded in populations of neurons, including:

1) Within a population of neurons, given a particular stimulus, is the coding of

information within each neuron independent of the activity of all the other neurons (an

'independent-neuron' or 'population' code), or does the correlated activity (i.e., 'noise

correlations') between neurons contain additional information (i.e, an 'ensemble code')

(Latham and Nirenberg, 2005). 2) Is the information carried by different neurons highly

redundant so that many neurons contain the same information about a particular

stimulus/condition (redundant code) or does each neuron contain unique information or

potentially more information than what is contained in the neurons individually

(synergistic code)?6 3) Is the spiking activity of neurons sparse, or are many neurons

6 As pointed out by (Latham and Nirenberg, 2005), whether neurons are statistically independent from one
another given the stimuli, is a slightly different questions than whether neurons code information
redundantly or synergistically. To measure statistical independence, Latham and Nirenberg, (2005), use the

formula p(ri, r2,..., rN I s) # I p(ri I s). If the joint distribution is not equal to the product of the

marginal distributions, then there is significant information in the 'noise correlations' in the data. To
measure redundancy/synergism the formula of Schneidman et al., (2003) is used which is:
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activity at the same time? 4) Is information highly distributed across many neurons or is

their a small compact subset of neurons that contains all the information at any given

point in time? and 5) Is the population code stationary such that one pattern of activity

represents a particular stimulus at all points in time, or are there multiple patterns of

neural activity that represent a given stimulus?

Research in the visual system that addresses these population coding issues includes: 1)

Several studies have claimed to show that neurons largely act as independent encoders of

information. For example, studies as of pairs of neurons in the retina (Nirenberg et at.,

2001) and V1 (Golledge et al., 2003) showed at least 90% can be extracted by ignoring

correlated activity and using only mean firing rates, while studies in IT (Aggelopoulos et

al., 2005; Anderson et al., 2007) found that 94-100% of the information was in the spike

count alone, and only 0-4% of information was in the correlated activity in pairs of

neurons. Other researcher however have claimed that additional information can be

found in the correlated activity of neurons including work by (Dan et al., 1998) who

found that there is on average an additional 20% increase in information when treating

correlated activity in strongly correlated pairs as an additional information channel, and

work by (Pillow et al., 2008) who used recordings from parasol retinal ganglion cells to

show that modeling the full coupling of all neurons in the retina leads to a 20% increase

in the amount of information that can be decoded. 2) Studies by Gawne and colleagues

of redundancy in the information carried by neurons within a population have shown that

for both V1 and IT approximately 20% of the information carried by pairs of neurons is

redundant (Gawne and Richmond, 1993; Gawne et al., 1996). 3) Work by Vinje and

Gallant, (2000) has shown that showing monkeys natural images leads to sparse activity

in Vl, while work by Rolls and Tovee, (1995) has found that IT neurons respond to a

large fraction of images shown, indicating that neurons in IT do not have sparse activity.

4) Work by Meyers et al., (2008) used a decoding based approach to show that in IT and

Asynergy = I(s; r) - I(s; ri), where I(s; r) is the mutual information, r is the population response, and

ri is the response of the i* neuron. Asynergy is a measure of how much more information is gained by the
observing more neurons.



PFC at any point in time there is a small compact subset of neurons that contain all the

information that the larger population has. 5) Several studies from the PFC, IT, VI, MT

and other areas and in other animals (Nieder et al., 2002; Laurent, 2002; Baeg et al.,

2003; Zaksas and Pasternak, 2006; Meyers et al., 2008) have shown that information is

contained in dynamic patterns activity such that different patterns of activity are elicited

by the same stimulus at different latencies relative to stimulus onset.

Background: Data analysis methods

Many different methods have been used to analyze neural data. Below I will discuss a

three methods that are particularly relevant for the work discussed in this thesis. The

first method is based on applying standard statistical tests to measurements derived from

firing rates of neurons is probably the most widely used data method for analyzing what

information is in particular visual areas. The second method is based on mutual

information measurements, and has been widely used to examine questions of neural

coding in the visual system. Finally, the third method discussed is neural population

decoding analyses which have been used to widely in the study of the rat hippocampus

and the primate motor system, and is used in this thesis to analyze data from the macaque

visual system (more details about how to apply this method to neural data from visual

experiments is discussed in chapter 2). For more general reviews of statistical methods

in neuroscience see Brown et al. (2004) and Kass et al. (2005).

Hypothesis testing using standard statistical tests (and ad hoc indices)

One of the most widely used methods to determine presence of an effect in neural data is

to apply conventional statistical tests (e.g., t-tests, ANOVAs, etc.) to the firing rate of a

neuron in particular conditions. Some commonly used hypothesis tests in study of neural

responses in primate vision include: 1) determining whether a neuron is 'visually

responsive' by applying a t-test between the firing rates of the neuron in a baseline period

before the onset of a stimulus and to the firing rates of the same neuron after a stimulus

has been shown, and 2) determining whether a neuron is 'visually selective' by applying



a one-way ANOVA to the neural data using the different stimuli that were shown as

conditions. If the p-value for these test is below a particular alpha level (usually set at .05

or .01) then the neuron is considered visually selective/responsive. Also, it is common

practice to calculate ad hoc 'tuning/selectivity index values' for each neuron in a given

brain region, which usually consists of subtracting firing rates from different conditions

and then normalizing the results. Significant differences between different brain regions

or conditions are often later calculated by applying another conventional statistical test to

the number of selective neurons (or to the distributions of index values) from each brain

area/condition.

While these methods can be useful, there are two potential pitfalls with conclusions

drawn from these types of analyses. The first problem is that such analyses examine the

properties of each neuron individually, and do not take into account information that is

available in the joint activity of many neurons, which is contrary to the widely believed

theory that information is coded in distributed patterns of activity across many neurons.

The second problem in these analyses is that it is often assumed that all neurons from a

given brain region are homogenous in nature (i.e., randomly distributed from the same

underlying distribution), rather than coming from a diverse population. Consequently,

these analyses assume that the number of selective neurons in a given brain region is a

good indicator of how involved that brain region is in a particular task, which is

questionable assumption to make and could potentially lead to wrong conclusions if the

assumption is wrong. For example, it is possible that if the neurons in a brain region A

are more specialized for particular tasks than a region B (i.e., the representation in A is

less distributed and more explicit than the representation in B), then A might have a much

lower percentage of neurons involved in any given task than B, however to conclude that

B is more involved in each task than A would be a mistake. Furthermore, looking at the

mean value of particular indexes (or calculating statistics over the whole population

between A and B) could be misleading in such cases (although looking at the highly

selective outliers could be informative).



Mutual information measures

Another widely used method to analyze data (particular in relation to answering questions

about neural coding, is to calculate the mutual information between a stimulus, or other

relevant condition, and a neuron's response. Mutual information was originally devised

to address issues involved with 'channel coding' (i.e., it was used to evaluate how much

of the capacity of a communication channel is used when a particular code is chosen to

describe a particular set of data (Shannon, 1948), however it can be more broadly

interpreted as a measure of the amount of information that can be obtained about one

variable when observing the value of another variable.

There are several conceptual ways to view mutual information between two random

variables X and Y. One common way is to view mutual information (denoted I(X; Y)),
as the Kullback-Leibler divergence between the full joint probability distribution P(X,
Y), and product of the two marginal distributions, P(X) and P(Y). The equation for

mutual information in this case is:

P(x, y)I(X; Y) = Dn(P(X, Y), P(X)P(Y)) = P(x, y) log 2 ( ' . This formulation
P(x)P(y)

makes explicit the fact that the mutual information is measuring how independent the

random variables X, and Y, and it also makes it readily apparent that mutual information

is symmetric in its arguments (i.e., I(X; Y) = I(Y; X)). If X and Y are independent, then

P(X, Y) = P(X) P(Y) and so log[P(X, Y)/P(X)P(Y)] = 0, and hence there is no mutual

information between these variables.

Another common and mathematically equivalent way to view mutual information is as

the difference in entropy between the marginal distribution P(X) and the entropy of the

conditional distribution P(XIY). The entropy of a distribution (denoted H[P(X)]) is a

functional that gives a measure of the 'uncertainty' in a distribution (e.g., if the values in a

probably distribution are all equally likely then there will be high uncertainty for the

outcome of a particular random experiment and hence high entropy, while if all the mass

in probability density function is centered on one value then the outcome is certain to be



that particular value, and hence there is no entropy). The mathematical formula for

entropy is H[P(X)]= - P(x) log 2 P(x), and the hence the formula for mutual
x

information can be written as I(X; Y) = H([(X)] - H[P(XIY]). The interpretation of this

formulation is that if P(X) has a high value, many different signals will be present, and

hence a lot of information can potentially be communicated. However, if in the process

of trying to communicate this information to a receiver who receives the message Y, the

information becomes highly corrupt (and hence there is much uncertainty about X after

we see the value of Y), then the amount of information that can be communicated is

substantially reduced. Thus this formulation stresses the difference between the possible

messages X that can be sent, and how much uncertainty remains about X after the

transmitted message Y = y is received (or equivalently, if we know the transmitted signal

X = x, then how much uncertainty is there about what the received message will be).

To relate these two formulations to neural data, the first formulation based on the KL-

divergence can be thought of as how independent is the neural response from the

stimulus. If the neural response is completely independent of the stimuli (P(R, S) =

P(R)(P(S)), then it contains no mutual information about the stimuli, and it can be

interpreted that this neuron is not involved in the coding/processing of these stimuli (or

equivalently, one cannot use the stimulus to predict what the neural response will be).

Conversely, if there strong degree of dependence between the stimuli and the neural

responses, then the neural response contains a large amount of information about the

stimuli, and hence it is more likely that these neurons are involved in processing these

particular stimuli.

The second formulation, based on the difference between the marginal and conditional

entropies, can be related to neural responses by relating the neurons to communication

channels. If we view the entropy of the stimulus set H[P(S)] as how likely all possible

signals are to come from the world (and hence the total amount of possible information),

then we can view then H[P(S)] minus the conditional entropy of the stimulus given the

neural response (H[P(SIR)]), as how much information remains about the world after it

has been transmitted through the neural response (here H[P(SIR)] can be interpreted as
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the amount of uncertain about S left after the response R has been seen, and is sometimes

referred to as the 'noise-entropy' since it measure how much entropy remains due to a

neuron's/channel's variable responses to the same stimulus). Since mutual information is

symmetric in its arguments, one can also use the equivalent formula I(R; S) = H[P(R)] -
H[P(R|S)]. This lead to interpretation of H[P(R)] telling us the total possible amount of

information that a given neuron can transmit based on distribution of responses the

neuron can generate, and H[P(RIS)] as informing us about how uncertain we still are

about what the neural response is, given we know what the stimulus is.

In practice, applying mutual information to neural data has run into difficulties due to the

fact that if the data has been under sampled, then estimates of mutual information can

have a systematic upward limited sample biased 7. The reason that this limited sampling

bias occurs is that with smaller sample sizes both the unconditional entropy H[P(R)] and

the conditional entropy H[P(RIS)] are biased downward, because P(R) and P(RIS) do not

take on their full range of values due to the limited sample. However since H[P(R)] has

been estimated for all the data, while H[P(RIS)] is estimated separately for each stimulus,
the downward bias is larger for H[P(RIS)] and consequently when the conditional entropy

is subtracted from the response entropy the mutual information is biased upward (Panzeri

et al., 2007). (Similar results occur for H[P(S)] and H[P(SIR)], where H[P(S)] has no

bias while H[P(SIR)] is biased downward leading to the same upward bias in mutual

information). The bias is also systematic in the sense that the for a constant sample size

of N, the larger the potential information the system has (i.e., the larger the marginal

entropy P(X)), the larger the bias will generally (Panzeri et al., 2007). Thus if different

neural signal representations are being compared on the same dataset, and bias correction

is not employed, then the representation that has more potential responses will generally

have a higher mutual information value due to bias, even if both representations actually

carry the same amount of information. An example of this occurring in the literature can

be seen in Optican and Richmond (1987), which claims that there is temporal encoding of

information based on that fact that they calculate a higher amount of mutual information

7 A 'limited sample bias' is defined as the difference between the expected value of the probability
functional computed from the probability distributions estimated with N samples, and its value computed
from the true probability distributions.



between a stimulus and the neural response when the neural response is characterized

using more principal components; however this results is an artifact of a bias in mutual

information due to the fact that there is a larger entropy in marginal distribution when a

higher dimensional neural representation is used. Also it should be noted that obviously

as the sample size N increases, the bias tends to decrease. Thus the crucial parameter for

how much bias will be present is the ratio of the number of samples per stimulus (denoted

Ns) to the number of potentially different responses (denoted Nr). If N, / Nr is large, then

the bias should be small (Panzeri et al., 2007).

Many methods have been devised to deal with this limited sample bias, which can largely

be divided into two strategies. In the first strategy, researchers try to overcome the

limited sampling bias by assuming particular properties of the neural response in order to

effectively reduce the number of potential neural response, which directly reduces the

amount of bias for a fixed sample size. An example of this method is to decode the

neural response R into a predicted response for what the stimulus is (denoted S'), and

then use I(S; S') as a surrogate for I(S; R). Since S' will likely have a smaller range of

possible values than the number of potential neural responses R, this estimate should

potentially reduce the bias (Samengo, 2002). Other methods to calculate mutual

information that generally fall under this strategy are described in Borst and Theunissen,

(1999) and in Victor (2006). The second strategy in dealing with the limited sampling

bias is to directly estimate this bias, and then subtract it from the estimate of mutual

information, or to compute mutual information using a method that attempts to directly

correct for the bias . Several, often sophisticated methods have been devised that follow

this strategy (Panzeri and Treves, 1996; Paninski, 2003; Nemenman et al., 2004),

however in a detailed empirical analyses of these methods (Panzeri et al., 2007) found

that the most effective bias correction method simply consisted of calculating the mutual

information from randomly shuffling the relationship between stimuli and the responses,

and then subtracting this shuffled bias estimate from the mutual information calculated

from the real stimulus response data.

While mutual information can indeed offer much insight into questions of neural coding,

there are a few potential issues with the method both in terms of practically applying the
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procedure and in terms of the philosophical justification for using it. In terms of

practically applying the method, one of the downsides is that estimating mutual

information generally does not work well for analyzing large populations of neurons

since the number of potential neural responses increases exponentially with the number

of neurons used, making most estimation methods too biased to be useful. Additionally,
the amount of information (i.e., bits of information) calculated using mutual information

is highly dependent on the stimulus set used. While this criticism could apply to most

data analyses methods, many researchers using mutual information would like to use the

number of bits calculated to compare results between experiments; however due to the

dependency on the stimulus ensemble used, such comparisons are questionable.

Criticisms have also been raised on the philosophical underpinnings for justifying the use

of mutual information. In particular, it is questionable whether one should view neurons

as being analogous to information channels since information channels are merely

passive mechanisms which data can flow through while neurons presumable are involved

in neural computations. Indeed, by the information processing inequality, all the

information that the whole brain contains must be present in the peripheral nervous

system, and how much information is being retained as information is passed through a

neuron seems to be of less interest in terms of generating a deep understanding of neural

processing. Rather, what appears to be important is an understanding of how information

is being lost in an intelligent manner in order to build complex and invariant

representations that potentially allow an organism to thrive in the world, and mutual

information analyses do not seem to readily lend themselves to assessing how invariant a

neural representation is.

Neural decoding

In decoding based analyses of neural data, recordings of neural activity are used to

predict the whether stimuli or other behaviorally relevant variables are present in the

world. The rational behind this analysis is that it takes 'the organism's point of view'

(Bialek et al., 1991; Rieke et al., 1999) in the sense that using a decoding algorithm to
'readout out' information from a brain area is similar to the task that a downstream

neuron engages in when pooling information from an upstream area; thus the information
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extracted from a population of neurons P by a decoding algorithm should theoretically be

similar to the information available to a downstream neuron that has synaptic connections

to this population P.

Many different decoding algorithms have been used for the classification and

reconstruction/(regression) of stimuli (and other conditions presented to an animal).

While there are several different ways to group these methods, one way they can be

divided is along the lines of generative (probabilistic/Bayesian) and discriminative

algorithms. Within the discriminative methods, many 'linear' algorithms have been used

including: 1) linear filtering of a temporal spike train of the HI visual neuron of the

blowfly to predict a visual stimulus (Rieke et al., 1999); 2) linear combinations of cells'

preferred movement directions in macaque motor cortex to create a 'population-vector'

that can predict arm movements (Georgopoulos et al., 1986); 3) 'optimal linear filters'

that minimize a squared loss function between any real valued stimulus and a

reconstructed stimulus (Salinas and Abbott, 1994); 5) maximum correlation methods that

categorize a stimulus based on the maximum correlation between a given neural response

vector and the mean response vector from each condition to decode information about a

rat's position from hippocampal place cells (Wilson and McNaughton, 1993); 6) nearest

neighbor methods to categorize attention and intended movement directions from

macaque motor cortex (Quiroga et al., 2006); and 7) linear support vector machines that

minimize a hinge-loss function subject to regularization constraints that have been used

to discriminate between visual images using data from IT (Hung et al., 2005). Also non-

linear discriminative methods have been used including neuronal networks to decode

motor movements from macaque motor cortex (Wessberg et al., 2000). A few

generative/probabilistic/Bayesian methods that have been used include: 1) Possion

Naive Bayes classifiers (with and without additional continuity prior distributions) used

to decoding a rat's position based on the firing rates of neurons in the hippocampus

(Zhang et al., 1998) and 2) more sophisticated state space Bayesian/Kalman filtering

algorithms that additionally model the dynamics of the decoding variances and include

models of neuron's encoding properties to produce probability estimates of a rat's

position or the movement of an monkeys arm (Brown et al., 1998; Wu et al., 2006).
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Several papers compare the performance of different classifiers (Salinas and Abbott,

1994; Zhang et al., 1998; Brown et al., 1998; Schwartz et al., 2001), and point out

reasons to prefer one type of decoding algorithm over another. Some advantages of using

many of the discriminative methods are that the algorithms are generally simpler which

often means that they run faster and that it is easier to apply them to many different types

of data without having to substantially modify the algorithm. Also, it is often easier to

interpret the results of a classifier in terms of how it could potentially relate to the

functioning of downstream biological neurons (Additional supplemental material 2.1).

Some advantages of using generative/Bayesian algorithms are that it is possible to

incorporate prior information into the decoding procedure which often leads to higher

decoding accuracies8 . Also, many generative methods have a stronger mathematical

foundation which makes it easier to assess how errors are related to the quality of the fit

of a model, and it also often allows for computation of confidence intervals and other

measures to assess the certainty one should have in the decoding results.

Overall, regardless of the decoding algorithm used, neural decoding (and neural

population decoding in particular) have several advantages as a general method of

analyzing neural data9 . Some of these advantages are: 1) decoding allows a potentially

biologically plausible way to evaluate the amount of information in a population (Zhang

et al., 1998), as opposed to conventional statistics that often treat neurons as being

identical samples from an underlying probability distribution; 2) population decoding can

examine all the information in a population simultaneously often sidestepping some

selection biases and combinatorial explosion effects that influence conventional statistics

and mutual information measure respectively; 3) by training and testing a decoding

algorithm under different conditions, decoding methods allow one to assess how abstract

or invariant a neural representation is to particular changes in the stimulus or other

8 While incorporating prior information is very useful for practical decoding tasks (particular when used in
a brain machine interface that controls prosthetic devices based on neural activity), one needs to be careful
that one is not relying too heavily on such models when inferring the function of a brain area, since the
prior information in purely an invention of the creator of the decoding algorithm and thus the algorithm is
not really assessing what information is directly available from the neural activity.
9 Also see chapter 6 which illustrates some of these advantages using examples taken from this thesis.
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behavioral conditions; 4) by exploring different representations of neural data (such as

using different bin sizes or different neural signals), one can use decoding to assess how

much information different types of signals contain and thus get an idea of how neurons

code information; and 5) neural decoding methods can also be used to test for the

reactivation of neural patterns that were evoked when particular stimuli were present,

which could give insight into memory or other stimulus related processing that is

occurring even when the stimuli are not present, such as during sleeping states (Wilson

and McNaughton, 1993). Some disadvantages of decoding include: 1) the fact that the

results could depend on the specific decoding algorithm, loss function, or data

representation used, and that using a different decoding algorithms, loss functions or data

representation could potentially yield different results 0 (Schneidman et al., 2003); and 2)

the information that is being decoding might be used in a different way, or not at all, by

the animal, and so it is possible that decoding results could be misleading.
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Chapter 2: Decoding neural data from high-level
vision experiments: From Experimental Design to
Interpreting Decoding Results

The following material is currently being published as a book chapter:

Meyers, E., and Kreiman, G. "From Neural Recordings to Interpreting Decoding
Accuracy". In: Understanding visual population codes. Kreigeskorte, N., and Kreiman,
G. (eds.), 2010, MIT Press.

Abstract

In this chapter we outline a procedure to decode information from multivariate neural
data. We assume that neural recordings have been made from a number of trials in which
different conditions were present, and our procedure produces and estimate of how
accurately we can predict the labels of these conditions in a new set of data. We call this
estimate of future prediction the 'decoding/readout accuracy,' and based on this measure
we can make inferences about what information is present in the population of neurons
and also on how this information is coded. The steps we cover to obtain a measure of
decoding accuracy include: 1) designing an experiment, 2) formatting the neural data, 3)
selecting a classifier to use, 4) applying cross-validation to random splits of the data, 5)
evaluating decoding performance through different measures, and 6) testing the integrity
of the decoding procedure and significance of the results. We also discuss additional
topics including how to examine questions about neural coding and how to evaluate
whether the population is representing stimuli in an invariant/abstract way.



Introduction

In this chapter we describe a procedure to decode information from multivariate neural

data. The procedure is derived from cross-validation methods that are commonly used by

researchers in machine learning (ML) to compare the performance of different

classification algorithms. However, instead of comparing different ML algorithms, here

we assess how accurately a particular algorithm can extract information about different

experimental conditions in order to better understand how the brain processes

information. These procedures and algorithms are extensively used to quantitatively

examine the responses of populations of neurons at the neurophysiological level.

Our motivation for using the procedure described in this chapter is based on a simple

intuition for what we believe is an important computational function that the brain must

perform - namely, to reliably distinguish between different behaviorally relevant

conditions that are present in the world in single trials. Cross-validation is an excellent

measure for assessing such reliability. If we can build a model (classifier) for how

neurons can distinguish between different conditions using only part of the data, and

show that the same model works for distinguishing between these same conditions in a

new set of data, then this gives us a significant degree of confidence that the current

neural activity can reliably distinguish between these conditions, and that our model is

capturing the reliability in the data. Additionally, we can compare different models, and if

one model is able to extract a more reliable signal from the neural data than another

model, this can give us insight into how information is coded in the data. Finally, by

building a model to distinguish between one set of conditions and then seeing that the

same model can generalize to a different but related set of conditions, we can infer that

the brain contains information in a way that is invariant to the exact conditions that were

used to build the model. Since all information entering the brain is already present in the

sensory nerves and early processing areas, assessing how the brain selectively loses

information in order to create behaviorally-relevant invariant representations is important

for understanding the functional role of higher level brain regions.



To put things in the terminology used by the machine learning and computational

neuroscience communities, we call the processes of building a model on a subset of data

'training the classifier' or 'learning', and we call the process of assessing if the model

(classifier) still works on a new set of data 'testing the classifier'. The 'decoding

accuracy' (also referred to as 'classification accuracy' or 'readout accuracy') is a measure

of how well the classifier performs on the new 'test set' of data used to test the

classifier's performance. As mentioned above, a high degree of decoding accuracy

indicates that the model is capturing reliable differences between different conditions.

The following chapter is a nuts-and-bolts description of how to implement a cross-

validation classification scheme that we have found works well for the analysis of

multivariate neural data. The methods have been developed by analyzing real neural data

and assessing what empirically works the best. While we have had experience analyzing

several different datasets, there is still much more work to be done to fully characterize

the best methods to use. Thus the chapter below constitutes work in progress explaining

the best methods we have found so far.

Experimental design

Our discussion centers on a hypothetical experiment where a subject (human or animal)

is presented with different images while the investigators record the activity of multiple

neurons from implanted electrodes (e.g., see Figure 2. lA). The images belong to different

"conditions". These conditions could refer to different object identities, different object

categories, different object positions or viewpoints, same objects under different

experimental manipulations (e.g. attention / no attention), etc. In order for population

decoding methods to work properly, it is important that the experimental design follows a

few basic guidelines. First, multiple trials of each condition type must be presented to the

subject. For example, if the investigator is interested in decoding which particular

stimulus was shown to the subject, then each stimulus must be presented multiple times.

While in general the more data the better, there are often experimental restrictions (e.g. it

45



may be difficult to hold a stable recording for prolonged periods of time). We have found

that in certain cases as few as five repetitions of each experimental condition are enough

to give interpretable results (Meyers et al., 2008), although higher decoding accuracies

are usually obtained with more repetitions.

Second, it is important that the stimuli are presented in random order. If the stimuli are

not presented in random order (e.g., if all trials of condition 1 are presented before all

trials of condition 2, etc.), then even if there is no reliable information about the stimuli in

the data, above chance decoding accuracies could still be spuriously obtained due to

nonstationarities in the recording or experimental procedure (e.g. due to electrode drift,
varying attentional engagement in the task, adaptation, etc.; see the section on "testing the

integrity of decoding" below for more details).

Finally, we note that it is not strictly necessary that the recordings from the population are

made simultaneously. If the same experiment is repeated multiple times with single

neurons being recorded each time, a 'pseudo-population' of responses can be constructed

from piecing together the same trial type from multiple sessions (see the section on

"formatting the neural data" for information on how to create pseudo-populations). Due

to the experimental challenges in simultaneously recording from multiple electrodes, this

approach is common in the neurophysiology community. The pseudo-population

approach, by construction, assumes that the activity of the different neurons is

independent, that is, time-varying correlations among neurons are ignored. While results

from such pseudo-populations could potentially distort the estimate of amount of

information decoding from the population (Averbeck et al., 2006; Averbeck and Lee,
2006), we have seen that much insight can still be gained from this type of analysis (for

example see Hung et al., 2005; Meyers et al., 2008). Additionally, using pseudo-

populations allows for population decoding to be applied to many experiments where it is

currently not easy to record from populations of neurons (such as from deep brain

structures like ventral macaque IT), and it allows for a population decoding reanalysis of

older experiments in which simultaneous recordings were not made but for which the



same experiment was run for each neuron that was recorded (e.g., see Meyers et al.,

2008).
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Figure 2.1 Basic steps involved in training and testing a classifier. A: An illustration of an
experiment in which an image of a cat and an image of a fish were shown in random order to a
subject while simultaneous recordings were made from five neurons/channels. The grayscale
level denotes the activity of each neuron/channel. B: Data points and the corresponding labels are
randomly selected to be in either the training set or in the test set. C: The training data points and
the training labels are passed to an untrained classifier that 'learns' which neural activity is useful
at predicting which image was shown - thus becoming a 'trained' classifier. D: The test data are
passed to the trained classifier which produces predictions of which labels correspond to each
unlabled test data point. These predicted labels are then compared to the real test labels (i.e., the
real labels that were presented when the test data were recorded) and the percent of correct
predictions is calculated to give the total classification accuracy.



Formatting neural data

Analyzing neural spiking data

The first step in applying population decoding to neural spiking data is to make single

unit (SU) or multi-unit (MU) extra-cellular recordings. In some cases, investigators

record multi-unit activity and they are interested in considering the single units that

constitute those MU. There are several spike sorting algorithms for this purpose (e.g. (Fee

et al., 1996; Lewicki, 1998; Wehr et al., 1999; Harris et al., 2000; Quiroga et al., 2004).

Here we assume that spike extraction (and spike sorting) have already been performed in

the data and we consider a binary sequence of O's and l's, with the l's indicating the

occurrence of spikes. The algorithms apply equally to a series of spikes from SU or MU.

It is useful to look at the average firing rate on each trial as a function of trial number for

each neuron/site separately. If different conditions have been presented randomly to the

animal, then there should not be any obvious temporal trend in firing rate as a function of

trial number. However, there are many types of non-stationarities that could lead to

trends over time (including changes in the quality of the recordings, subject fatigue,
attentional changes over times, neuronal adaptation or plasticity over the course of the

recordings, etc). These time-dependent trends could subsequently be confounded with the

questions of interest in the absence of good trial randomization. Eliminating neurons that

appear to have non-stationary responses can lead to improvements in decoding accuracy

(although in practice so far we have found the improvements due to eliminating neurons

with trends to be small). An automatic method that we have used to eliminate neurons

that have temporal trends is to compute the average variance found in sliding blocks of

20 trials, and compare it to the overall variance among all trials. We typically eliminate

all neurons for which the variance over all trials is twice as large as the average variance

in 20-trial blocks.

Once neurons with trends have been removed, the next step we usually take is to bin the

data. While decoding algorithms exist that use exact spike times without binning the data
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(Truccolo et al., 2005), most of the common machine learning algorithms we use achieve

a higher decoding accuracy when using firing rates computed over time intervals of tens

to hundreds of milliseconds. The best bin size to use depends on several factors related to

the types of questions of interest. For example, the degree of temporal precision in the

neural code can be quantitatively evaluated by using small bins that obviously give more

precise temporal accuracy, at the potential cost of having more noisy results. Conversely,

if the condition that one is trying to decode seems weak, then we have found binning over

larger intervals often reduces noise and leads to more robust results (see Meyers et al

2008, Hung et al 2005).

Apart from bin size, it is also of interest to consider the type of filter used to bin the data.

In our work we typically have used square (boxcar) filters. The advantage of using these

filters is that they provide exact boundaries in terms of the latencies of spikes that

contribute to the results, and thus which time bin results are independent from other time

bins". Other researchers (Nikolic et al., 2007) have used exponential filters with short

(20ms) time constants, in order to mimic what is believed to be the synaptic integration

time of neurons, thus creating a potentially more biologically realistic model of the

information available to downstream neurons.

Pseudo-populations

In many situations it is not currently practical or possible to record simultaneously from

many neurons (for example, it is currently difficult to implant multi-electrode arrays in

deep brain structures such as macaque inferior temporal cortex). Additionally, one might

want to reanalyze older data that were not recorded simultaneously using population

decoding, without having to redo the entire experiment using simultaneous recordings. In

such cases, applying population decoding to 'pseudo-populations' of neurons can give

some insight into population coding questions.

" We found this to be particularly useful when exploring how the neural code changes with time
(i.e.,(Meyers et al., 2008), since there it was important to know which time periods were independent from
each other.



We define a 'pseudo-population' of neurons as a population of neurons that was not

recorded simultaneously but is treated as if it were12 . To create pseudo-populations, one

concatenates together responses from different neurons that were recorded when the same

condition (stimulus) was presented into a 'population' response - although in fact these

neurons were recorded from different experimental sessions (see Figure 2.2). We usually

create these pseudo-population response vectors inside of a cross-validation procedure,
and recalculate them each time we divide the cross-validation data into blocks (see

section on cross-validation for more details). It should be noted that when creating

pseudo-populations, all 'noise-correlations' within the data are destroyed, and the overall

estimate of the amount of information in a population could be over or under estimated

(Averbeck et al., 2006; Averbeck and Lee, 2006). However, at the moment it remains

unclear whether such noise-correlations are important for information transmission1 3 (and

there is evidence that in many cases they do not matter, e.g., (Panzeri et al., 2003;

Averbeck and Lee, 2004; Aggelopoulos et al., 2005; Anderson et al., 2007). Additionally,

at least in principle, we might expect that in many circumstances this bias should affect

all conditions equally, which would leave most conclusions drawn from experiments on

pseudo-populations unchanged. Still, until more evidence is accumulated about the

influence of noise-correlations, it is important to keep in mind that it is possible that

population decoding results based on pseudo-populations could differ from results

obtained using simultaneously recorded neurons.

12 'Pseudo-populations' have been used by several different researchers to analyze their data including
Georgopoulos et al., 1983; Gochin et al., 1994; Rolls et al., 1997; Hung et al., 2005; Meyers et al., 2008
and these 'populations' are often referred to by different names including 'pseudoresponse vectors'
(Gochin et al., 1994), and 'pseudosimultaneous population response vectors' (Rolls et al., 1997).
Additionally, the process of recording over separate sessions to create pseudo-populations has been referred
to as 'the sequential method' and the process of recording many neurons at once for the purposes of
population decoding has been called the 'simultaenous method' (Tanila and Shaprio, 1998).

13 If noise-correlations do not matter (i.e., if the activity of each neuron is statistically independent of the
activity of other neurons given the current stimulus or behavioral event being represented), then a brain
region is said to use a 'population code' (see Chapter 3). If interactions between neurons do code additional
information then a brain region is said to use an 'ensemble code' (Hatsopoulos et al., 1998). Whether
population codes or ensemble codes are used by the brain still remains and open question in neuroscience.
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Figure 2.2 Creating pseudo-populations from data that was not recorded simultaneously. The
above figure illustrates a set of experiments in which in each session the responses from a single
neuron were recorded (the responses of each neuron is in each row with the darkness indicating
the firing rate on particular trials). After recordings have been made from N neurons, a pseudo-
population vector can be created by randomly choosing neuron responses from trials in which the
same image was shown (circled neuron responses) and concatenating them together to create
vector. This pseudo-population vector will be treated as if all the responses had been recorded
simultaneously in subsequent population decoding analyses.

Selecting a classifier

A classifier is an algorithm that 'learns' a model from a 'training set' of data (that

consists of a list of population neural responses and the experimental conditions that

elicited these responses) and then makes predictions as to what experimental conditions a



new 'test' data was recorded under based on the model that was learned.14 For example,

the training data could represent neural populations responses to different images and a

list of the image names that elicited these population responses, and the test data could

consist of population responses to a different set of trials in which the same images were

shown. The classifier would then have to predict the names of the images for each of the

neural population responses in the test set. The model that was learned in this example

could be a list of which neurons had high firing rates to particular images, and the

classifier would make its predictions by combining the information in this list with the

actual firing rates observed in the test set (see Figure 2.1).

Many different classifiers exist, although we have found that unlike in the analysis of

fMRI data where using regularized classifiers greatly improves decoding performance,

decoding results based on neural spiking data seems to be less sensitive to which exact

classifier one uses. Empirically, we have found that we almost always achieve

approximately the same level of performance using linear and non-linear support vector

machines (SVMs), linear and non-linear regularized least squares (RLS), Possion Naive

Bayes classifiers (PNB), Gaussian Naive Bayes classifiers (GNB), and a simple classifier

based on taking the maximum correlation between the mean of training points for each

class (MCC), (see Figure 2.3). The only classifier that consistently yielded worse results

was the Nearest Neighbor classifier (NN). Since the MCC classifier has the fastest run

time, and is the simplest to implement and understand, we recommend using this

classifier when initially running experiments. However, since we do not have a deep

14 To be slightly more formal, a training set consists of a pair of values (X, y), where X is an ordered set of
neural population response vectors, and y is an ordered set of labels indicating the conditions that the
neural responses were recorded under (with Xi being the neural population response to the ith training trial,
and y indicating which conditions/stimulus was shown on that trial). 'Learning' consists of applying a

function f(X, y) - M that takes the training neural data and the training labels and returns a set of model

parameters M. This model can then be used by another 'inference' function g (X, M) -> f, that takes a new

set of test data X , and produces a prediction f of which labels/conditions correspond to each test point X.
The predicted f can be compared to the real test labels y to evaluate decoding accuracy. Typically, the
function g is called the 'classifier', although the learning algorithm f could also be considered part of the
classifier as well. Also, it is common to write the learning function f as returning the inference algorithm

g (that is, f (X, y) -> g.



theoretical reason why all these classifiers seem to be working equally well 5 , we also

recommend testing on a few different classifiers, since it is possible that better

performance could be achieved on certain datasets, particularly if there are many training

examples available.

Time (ms)

Figure 2.3 A comparison of different classifiers. The classifiers used are: a maximum correlation
coefficient classifier (MCC), a Gaussian Naive Bayes classifier (GNB), a linear support vector
machines (SVM), a Possion Naive Bayes classifiers (PNB), a linear regularized least squares
(RLS), and a Nearest Neighbor classifier (NN). While the best results here were achieved with
the MCC, GNB, and SVM, the over ordinal increases and decreases in decoding accuracy is
similar across classifiers - thus similar conclusions would be drawn regardless of which classifier
was used (although the power to distinguish between subtle differences in conditions is enhanced
when better classifiers are used). The results in this figure are based on decoding which of 77
objects was shown to a macaque monkey using mean firing rates in 25ms successive bins (see
Hung et al., 2005).

15 It should be noted that in general on most classification tasks (such as on fMRI data, and on computer
vision features), more complex classifiers such as SVMs and RLS tend to work better than simple ones
such as the MCC. The fact that such simple classifiers work well suggests that there is something
particular about neural spiking data that is well fit by this simple model.
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Cross-validation

Cross-validation is the process of selecting a subset of data to train a classifier on and

then using a different subset of data to test the classifier, and it forms one of the most

significant components of offline neural population decoding schemes. Typically, cross-

validation involves splitting the data into k parts, with each part consisting of j data

points. Training of the classifier is done on k - 1 sections of the data, and testing is done

on the remaining section. The process is usually repeated k times, each time leaving out a

different subset of data and testing on the remaining pieces. Classification accuracy is

typically reported as the average percent correct over all k splits of the data.

When implementing a cross-validation scheme, it is critically important that there is no

overlapping data between the training set and the test set, and that the condition labels

that belong to the test set are only used to verify the decoding performance, and that they

are not used at any other point in the data processing stream. Any violation of these

conditions can lead to spurious results. Thus we recommend doing several sanity checks

to insure that the cross-validation scheme has been implemented correctly (see the section

on testing the integrity of the decoding procedure for more details).

When applying a cross-validation scheme to neural data, we typically use the following

procedure. First, if the experimental data from different (stimulus) conditions have been

repeated different numbers of times, we first calculate the number of repetitions present

for the condition that has the fewest number of repeated trials;' 6 for the purpose of this

16 In most properly designed decoding experiments, different conditions are presented in a random order,
and since the ability to record from a neuron often ends at a random point in time within an experimental
session, it is fairly common to have a different number of stimulus presentations for different conditions
(particularly when doing decoding on pseudo-populations). Since having different numbers of training
examples for different conditions can bias certain types of classifiers into choosing the condition with the
most training examples, we make sure that there is an equal number of training examples in each condition.
Of course if there is reason to believe that in the there would be more of one condition in the world than
another condition, then it could be reasonable to have this bias in the classifier (i.e., this bias could be a
reasonable approximation for the a priori distribution of the conditions/stimuli in the world). Chance
performance in this unbalanced training case then becomes the proportion of training points in the class
with the most training points (i.e., the chance level is the expected proportion of correct responses if the
classifier always selected the class with the highest a priori probability mass).
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discussion, let q be a number that is equal to or less than the number of trial repetitions

for the condition that has minimum number of repetitions, and let k be a number that is

divides q evenly (i.e., q = k * j, where q, k and j are all integers). We then randomly

select (pseudo-) population responses for q trials for each condition, and put these q

repetitions into k groups, with each group havingj population responses to each of the

condition (if pseudo-populations are being used, then it is at this step that these pseudo-

populations are created; see Figure 2.4A). Next we do cross-validation using a 'leave-

one-group-out' paradigm, which involves training on k - 1 groups and testing on the last

group (see Figure 2.4B). We then repeat this procedure k times leaving out a different

group each time. Finally, we repeat the whole procedure (usually around 50 times) each

time selecting a different random q trials for each condition, and putting these conditions

together in a different random set of k groups. This final step of repeating the whole

procedure multiple times and avering the results gives a smoother estimate of the

classification accuracy and is similar to bootstrap smoothing described by (Efron and

Tibshirani, 1997). See Algorithm 1 for an outline of the complete decoding procedure.
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Figure 2.4 An example of cross-validation. A: An experiment in which images of a fish and an
image of a cat are each shown six times in random order (q = 6). Three cross-validation splits of
the data (k = 3) are created by randomly choosing data (without replacement) from two cat trials
and two dog trials (j = 2) for each cross-validation split. B: A classifier is then trained on data
from two of the splits and then testing on data from the third remaining split. This procedure is
repeated three times (k-3), leaving out a different test split each time.



For 50 to 100 'bootstrap-like' trials

Create a new set of cross-validation splits (if the data

were not recorded simultaneously, pseudo-population

responses are created here).

For each cross-validation split i

1. (Optional) Estimate feature normalization and/or

feature selection parameters using only the training

data. Apply these normalization and selection

parameters to both the training and test data.

2. Train the classifier using all data that is not

in split i. Test the classifier using the data on

split i. Record classification accuracy.

end

Algorithm 1 The bootstrap cross-validation decoding procedure.

Feature selection and data normalization

Because different neurons often have very different ranges of firing rates, normalizing the

data so that each neuron has a similar range of firing rates is often beneficial in order to

ensure that all neurons are contributing to the decoding (and not just the neurons with the

highest overall firing rates). Also, for some decoding analyses examining questions

related to neural coding, is useful to apply feature selection methods in which only a

subset of the neurons are used for training and testing the classifier (e.g., see (Meyers et

al., 2008). When applying either data normalization or feature selection, it is critically

important to apply these methods separately to the training and test data, since applying
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any information from test set to the training set can create spurious results (see section on

testing the integrity of the decoding procedure for more information). Thus, since

splitting the training and test data occur within the cross-validation procedure, the

normalization and feature-selection process must occur within the cross-validation

procedure as well.

An example of how data normalization can be applied using a z-score normalization

procedure (in which each neuron's mean firing rate is set to 0, and standard deviation is

set to one) is as follows. Within each cross-validation repetition, take the k - 1 groups

used for training, and calculate each neuron's mean firing rate and standard deviation

across all the training trials, regardless of which conditions were shown. Then normalize

the training data by subtracting these training set means from each neuron, and dividing

by these training set standard deviations. Finally, normalize the test set data by

subtracting the training set mean and dividing by the training set standard deviations for

each neuron. In practice we have found that applying z-score normalization to each

neuron usually marginally improves decoding accuracies, although overall we have found

the results with and without such normalization to be qualitatively very similar.

A similar method can be applied when doing feature selection. In feature selection, a

smaller number of neurons/features (s) that are highly selective are chosen from the

larger population of all neurons. These s neurons are found using only data from the

training set. Once the a smaller subset of neurons/features has been selected, a classifier

is trained and tested using only data from these neurons/features '. For both the data

normalization, and for the feature selection (and for all data preprocessing in general), the

key notion is that the preprocessing is applied separately first to the training set without

using the test set, and then it is applied to the test set separately. This insures that the test

set is treated like a random sample that was selected after all parameters from training set

have been fixed, and thus insures that one is rigorously testing the reliability in the data.

17 For example, if one is trying to decode what exact images were shown to a monkey based on firing rates
of individual neurons, one could use a simple feature selective method by applying a one-way ANOVA to
firing rates in the training set (with the ANOVA groups consisting of the firing rates to particular images),
and then training and testing the classifier using only neurons that had highly selective p-values..
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Evaluating decoding performance

As mentioned above, the output of a classifier is usually a list of predictions for the

conditions under which each test data point was recorded. The simplest way to evaluate

the classification performance is to compare the predictions that the classifier has made to

the actual conditions that the test data were really recorded under, and report the percent

of times the classifier's predictions are correct. This method of classification evaluation is

called using a 0-1 loss function, and gives reasonably interpretable results, particularly

for easy classification tasks. Another method that exists for evaluating classifier

performance is to use a 'rank' measure of performance (Mitchell et al., 2004). When

using a rank measure of performance, the classifier must return an ordinal list that ranks

how likely each test data point is to have come from each of the conditions. The rank

measure then assesses how far from the bottom of the list the actual correct condition

label is. The rank measure can also be normalized by the number of classes to give a

'normalized rank' measure in which a value of 1 corresponds to perfect classification,

and a value of 0.5 corresponds to chance which makes the results easy to interpret. This

measure also has the advantage of being more sensitive because there is not a hard limit

placed on getting the actually condition exactly correct, and thus we find that this method

generally works better on more difficult classification tasks.

Finally, it is also instructive to create a confusion matrix out of the classification results.

If there are c conditions being decoded, a confusion matrix is a c x c sized matrix in

which the columns correspond to the real condition labels of the test set, and the rows

correspond to the number of times a condition labels was predicted by the classifier. The

advantage of the confusion matrix is that it allows one to easily evaluate what conditions

the classifier is making mistakes on, and thus what conditions elicit neural population

responses that are similar. Additionally, one can convert a confusion matrix into a lower

bound on the amount of mutual information (MI) between the neural population response

and the conditional labels, which gives a way to compare decoding results to information

theoretic measures of neural data (Samengo, 2002). Mutual information calculated from

the confusion matrix can potentially be more informative than just looking at 0-1 loss
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results since MI takes into account the pattern of classification errors that was made

(Quian Quiroga and Panzeri, 2009). Converting a confusion matrix into a mutual

information measure can be done by normalizing the confusion matrix to sum to one, and

then treating the normalized matrix as a joint probability distribution between actual and

predicted conditions. Applying the standard formula for mutual information18 to this

'probability distribution' gives a lower bound estimate of mutual information.

Testing the integrity of the decoding procedure and significance

of the results

Once the decoding procedure has been run, it is useful to do a few tests to ensure that any

decoding accuracies that are above the expected chance level of performance are not due

to artifacts in the decoding procedure. One simple test is to apply the decoding procedure

to data recorded in a baseline period that occurred prior to the presentation of the

condition/stimulus that has been decoded. If the decoding results are above the expected

chance level during this baseline period then there is a confounding factor in the decoding

procedure or in the experimental design. From our past data analyses, we have found that

above-chance decoding results during baseline period are often due to changes in the

average firing rate of neurons over the course of a trial combined with an experimental

design or decoding procedure that is not fully randomized.

Apart from examining baseline periods, there are a few other tests that can easily be

applied to check the integrity of the decoding procedure. Randomly permuting the

18 The standard formulation being I = EEP(s' ,s)log 2 [P(s',s)/(P(s')P(s)) where s' are the
S S

predicted labels on the test set, s are the real labels on the test set, and P(s', s') is the joint probability
distribution obtained from normalizing the confusion matrix, and the marginal distributions P(s) and P(s')

can be derived from the joint distribution with the formulas P(s') = EP(s', s) and
S

P(s)= P(s',s).
S



condition labels (or randomly shuffling the data itself) are other simple tests which

should result in chance levels of accuracies at all time points since the relationship

between the data and the condition labels is destroyed.

Randomly permuting which labels correspond to which data points also gives a way to

assess when decoding accuracies are above chance. To perform this test, a null

distribution is defined by the expected readout decoding accuracies if there was no

relationship between the neural data and the condition labels. This null distribution can be

created by permuting the relationship between the condition labels and the data, running

the full decoding procedure on this label permuted data to obtain decoding results, and

then repeating this permuting and decoding process multiple times. P-values can then be

estimated from this null distribution by assessing how many of the values in the null

distribution are less than the value obtained from decoding based on using the real labels.

For example, upon performing 1000 permutations, it is possible to test if decoding

accuracy with the real labels is above chance by comparing against the actual decoding

accuracy with the distribution in the 1000 permutations. For an alpha level of .01, less

than 10 of the 1000 decoding accuracies in the null distribution should be greater than the

decoding accuracy found using the real condition label-data correspondence.

It has also been suggested that the significance of decoding results can be obtained by

comparing the number of correct responses produced by a classifier to the number of

correct responses one would expect by chance using a binomial distribution (Quian

Quiroga and Panzeri, 2009). The method works by creating the binomial distribution

P(k) =jjPk (1 _ ~)nk with n being the number of test points, and p being the

proportion correct one would expect by chance (e.g., 1/(number of classes)). A p-value

can then be estimated as p - value = Z P(k) where j is the number of correct predictions
k=j

produced by the classifier. This procedure has the large advantage of being much more

computationally efficient than the permutation method described above. However, there

are several pitfalls of using this method that one must be aware of. In particular, for this



method to be used correctly, one should estimate the p-value for each cross-validation

split separately, since using the total number of correct responses over all cross-validation

splits (and/or over all 'bootstrap' repetitions) violates the assumption of data point

independence that this test relies on (and hence can lead to spuriously low p-values and

type 1 errors). However, estimating this p-value separately for each cross-validation split

greatly reduces the sensitivity of the test leading to spuriously high p-values and potential

type 2 errors. Thus unless one has a large amount of test data, it is tough to get insightful

results using this method.

More advanced topics

The above sections have focused on how to run simple decoding experiments in which

we are primarily interested in decoding the exact conditions/stimuli that were present

when an experiment was run. However, perhaps the greatest advantage of using

population decoding is that it can give insight into more complex questions about how

information is coded in the brain. In the last two sections we discuss how to use neural

decoding to assess how information is coded in the activity of neurons and how to assess

if the information is represented in an abstract/invariant way (which is a particularly

meaningful question when decoding data recorded from the highest echelons of visual

cortex and pre-frontal cortex).

Examining neural coding

Despite a significant amount of research, many questions about how information is coded

in the activity of neurons still have not been answered in an unambiguous way. These

questions include: 1) are precise spike times important or are firing rates over longer time

intervals all that matters 2) is more information present in the synchronous activity of

neurons, and 3) is information at any point in time widely distributed across most of the



population of neurons, or is there a compact subset of neurons that contains all the

information at any one point in time1 9. While population decoding cannot completely

resolve the debate surrounding these issues, it can give some important insights into these

questions. Below we describe how one can use population coding to address these issues

and also some caveats one must keep in mind when interpreting the results from such

analyses.

In order to address the question of how temporally precise the neural code is, it is of

interest to perform population decoding using different binning schemes and to quantify

how much information is lost for different representations. This can be done by simply

using different bin sizes for decoding and describing which bin size gives rise to highest

decoding accuracies (Meyers et al., 2009). More complex schemes can be used in which

an instantaneous rate function is estimated using precise spike timing (Truccolo et al.,

2005) and then this representation is used for decoding. When doing such analyses a few

important caveats should be kept in mind such as the fact that the temporal precision of

the recordings and a limited sampling of data could potentially influence the results.

To examine whether synchronous activity is important, or alternatively, if neurons act

independently given the particular trial conditions, one can decode the activity of a

population of neurons that was recorded simultaneously and compare the results to

training a classifier using pseudo-populations created from the same dataset (Latham and

Nirenberg, 2005). Since pseudo-populations keep the stimulus-induced aspect of the

neural population code intact but destroy the correlations between neurons that occurred

on any given trial (noise-correlations), this gives a measure of how much extra

information is present when the exact synchronous pattern of activity on a single trial

basis is preserved. Of course one must use a sufficiently powerful classifier that can

exploit correlations in the data. Also, one must be careful when interpreting the results

since rises or decreases in the firing rates of all neurons could potentially occur due to

19 We use the term 'compact' subset here rather than 'sparse' subset since sparse activity usually refers to
when only a few neurons are active at the same time, while here many neurons could be active, however
only a small subset of them might contain information about the condition that is being decoded.
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artifacts in the recording procedure. Still population decoding can begin to give an idea of

how much potential additional synchronous activity could have. Additional

methodological challenges when addressing these questions include the difficulties in

finding neuronal combinations that could be synchronized given the large number of

neurons in cortex, the potential dependencies of synchrony with distance, the potential

dependencies on neuronal subtypes and others. These issues are not specific to the

population decoding approach described here but they also affect other methods used to

examine correlations between neurons.

Finally, feature selection can be used to examine whether information is widely

distributed across most neurons or whether, at any point in time, there is a compact subset

of neurons that contains all the information that the larger population has. As described in

the section on cross-validation, feature selection can be used to find the most selective

neurons on the training set and then use only these neurons when both training and

testing the classifier. If using a reduced subset of neurons leads to decoding accuracy that

is just as good as that seen in the larger population, then this indicates that indeed most of

the information is contained in a small compact subset of neurons. One important caveat

in this analysis is that if only one time period is examined, it is possible that some of the

neurons might be non-selective due to problems with the recordings. However, if one can

show that different small compact set of neurons contain the information at different

points in time in the experiment (as shown in Meyers et al., 2008), this rules out problems

with the recording electrode as an explanation.

Evaluating invariant/abstract representations

Since all information about the world is potentially available in early sensory organs

(such as the retina for vision and the cochlea for audition), one of the more important

questions about studying the brain is how information is lost in an intelligent way along

the processing steps in cortex in order to create more useful invariant/abstract

representations of the world. For example, many neurons in IT appear to be largely
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tolerant to visual object position, since they respond similarly to particular objects

regardless of the exact retinal position that an image is shown (within certain limits, see

Li et al., 2009). Such an invariant representation is obviously not present in lower level

areas that are retinotopic, and having this type of intelligent information loss could be

behaviorally useful when an animal needs to detect the presence of an object regardless

of the object's exact location on the retina.

Testing whether information is contained in an invariant/abstract way can readily be done

using neural decoding. To do such a test, one can simple train a classifier on data that

were recorded in one condition and then test the classifier on a different related condition.

If the classifier can still perform well on the related condition then this indicates that the

information is represented in an invariant or abstract way. Taking the example of position

invariance again, one can train a classifier with data recorded at one retinal location and

then test with data recorded at a different location, as is done in Figure 2.2 (also see Hung

et al., 2005). As can be seen in Figure 2.5, neurons in IT do have information that is

highly invariant/tolerant to changes in the exact retinal position. A similar type of

analyses can also be done to test if different brain regions contain information in an

'abstract' format. For example, Meyers et al. (2008) used data from a task in which

monkeys needed to indicate whether an image of a cat or dog was shown regardless of

which exact image of a dogs and cats was shown. By training a classifier with data that

was collected from a subset of images of dogs and cats and then testing the classifier

when a different set of images of dogs and cats were shown, Meyers et al. (2008) could

see that indeed there seemed to be information about the more abstract behaviorally

relevant categories apart from the information that was due to the exact visual images of

particular dogs and cats. An analogous method of training a classifier with data from one

time period and testing with data from a different time period was also used by Meyers et

al. (2008) to show that the neural code of an image does not appear to be stationary but

instead seems to change systematically over the course of a trial - which illustrates again

how training and testing with different but related data is an effective way to answer a

range of different questions.
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Figure 2.5 Assessing position invariance in anterior inferior temporal cortex. A: An illustration
of an experiment conducted by (Hung et al., 2005) in which images of 77 objects were displayed
at three different eccentricities. B: An illustration of a classifier being trained on data from
different eccentricities, yielding three different models. These three models were then tested with
data from either the same eccentricity that the classifier was trained on (using data from different
trials), or with data at a different eccentricity. C: Results from this procedure show that the best
performance was always achieved when the training and testing was done at the same eccentricity
(gray bars), however performance is well above chance (black bars) at all eccentricities,
indicating the population of IT is very position tolerant. Also, when the classifier is trained using
data from all eccentricities (dotted bars), the results are even better than when training and testing
is done at the same eccentricity, indicating that the best performance can be achieved when the
classifier learns to rely mostly heavily on the neurons that have the most position invariance.
Decoding results are based on multi-unit recordings from 70 neurons made by (Hung et al.,
2005), using the mean firing rate in a 200ms bin that started 100ms after stimulus onset and a
MCC classifier.
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Conclusions

In this chapter we described how to implement a population decoding procedure,

highlighted the analysis methods that we have found work best, and pointed out caveats

to be aware of when interpreting results. Neural population decoding holds a great

amount of potential as a method to gain deeper insight into how the brain functions,

particularly with regard to answering questions related to neural coding and to how

invariant and abstract representations are created in different brain regions.
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Additional material: Ways to view decoding results

As described in this chapter, decoding analyses measure how well one can predict which

stimulus (or other behaviorally relevant variable) was present on a given trial, based on

the activity of a population of neurons. Below I briefly discuss a couple of interpretations

for relating decoding results to neural processing.

As the information available to downstream neurons

One popular way to relate population decoding results to neural information processing is

to propose that the decoding accuracy is measure of the amount of information that is

available to a downstream neuron (Hung et al., 2005; Li et al., 2009). When a linear

classifier is used, the weights of the classifier can be viewed as being analogous to

synaptic strengths between the upstream population and a downstream neuron (see

Additional supplemental material 2.1). While such an interpretation is appealing, one

must obviously be careful not to take this interpretation too literally because: 1) it is very

unlikely that there actually is a downstream neuron that has connections with a large

percentage of the recorded population, and even if there was such a neuron, the chance

that the weights inferred by the classifier actually reflected the real synaptic strengths

seems improbable, and 2) given that one is assuming that information in the upstream

area is coded by a population of neurons, inferring that all this information would be

extracted into a single downstream neuron implies a strange assumption in which a

distributed code is converted in a highly spare/compact code, which again seems

unlikely. Thus, while one can loosely say that population decoding estimates the amount

of information available to a downstream neuron, stronger interpretations should be

avoided.
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Additional supplemental material 2.1 Illustration of a possible correspondence between
neuronal processing elements and classification algorithms.

As estimating the state of a computational system

A second interpretation of the decoding procedure is that it is trying to estimate the

reliability that a population of neurons enters into a particular computational state. In

such an interpretation, one can view the neural activity as being analogous to the activity

of a set of transistors/bits in a central processing unit or in the memory of a digital

computer. The decoding procedure is then estimating the state that a computational

system is in, and relating this state to known stimuli, behavioral variables, or other neural

states. This interpretation has the advantage of being more agnostic about the role of the

decoding algorithm, and allows one to relate the decoding of neural spiking activity to

decoding results from fMRI activity and recordings of other types of data.

..... .... ...... ...... ...... .............. ..........
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Chapter 3: Dynamic Population Coding of Category
Information in Inferior Temporal and Prefrontal Cortex

The material presented in this chapter was published as a paper in the Journal of
Neurophysiology, and has been reprinted with permission from The American
Physiological Society. The reference for the original paper is:

Meyers, E., Freedman, D., Kreiman, G., Miller, E., Poggio T. Dynamic Population
Coding of Category Information in Inferior Temporal and Prefrontal Cortex. Journal of
Neurophysiology, 100:1407-1419, 2008. DOI: 10.1 152/jn.90248.2008

Abstract
Most electrophysiology studies analyze the activity of each neuron separately. While
such studies have given much insight into properties of the visual system, they have also
potentially overlooked important aspects of information coded in changing patterns of
activity that are distributed over larger populations of neurons. In this work, we apply a
population decoding method, to better estimate what information is available in neuronal
ensembles, and how this information is coded in dynamic patterns of neural activity in
data recorded from inferior temporal cortex (ITC) and prefrontal cortex (PFC) as
macaque monkeys engaged in a delayed match-to-category task (Freedman et al. 2003).
Analyses of activity patterns in ITC and PFC revealed that both areas contain 'abstract'
category information (i.e., category information that is not directly correlated with
properties of the stimuli); however, in general, PFC has more task-relevant information,
and ITC has more detailed visual information. Analyses examining how information
coded in these areas show that almost all category information is available in a small
fraction of the neurons in the population. Most remarkably, our results also show that
category information is coded by a non-stationary pattern of activity that changes over
the course of a trial, with individual neurons containing information on much shorter time
scales than the population as a whole.



Introduction

The concept of population coding, in which information is represented in the brain by

distributed patterns of firing rates across a large number of neurons, arguably dates back

at least two hundred years (McIlwain 2001). Yet despite this long conceptual history, and

an extensive amount of theoretical work on the topic (Rumelhart et al. 1986; Seung and

Sompolinsky 1993; Zemel et al. 1998), most electrophysiological studies still examine

the coding properties of each neuron individually.

While much insight has been gained from studies analyzing the activity of individual

neurons, these studies can potentially overlook or misinterpret important aspects of the

information contained in the joint influence of neurons at the population level. For

example, many analyses make inferences about what information is coded in a given

brain region based on the number of neurons that respond to particular stimuli or aspects

of the task, or based on the strength of an index value averaged over many individual

neurons. However, much theoretical and experimental work (Olshausen and Field 1997;

Rolls and Tovee 1995) has indicated that information can be coded in sparse patterns of

activity. Under a sparse representation, a brain region that contains fewer responsive

neurons during a particular task might actually be more involved in the use of that

information, and averaging over many neurons might dilute the strength of index values,

which could give rise to a misinterpretation of the data.

Another shortcoming of most single neuron analyses is that they do not give much insight

into how information is coded in a given brain region. Several theoretical efforts have

examined how information is stored in ensembles of units including attractor networks,

synfire chains (Abeles 1991) and probabilistic population codes (Zemel et al. 1998)

among others. However, because of the paucity of population analyses of real neural data,

there is currently little empirical evidence upon which to judge the relative validity of

these models.



In order to better understand the content and nature of information coding in ensemble

activity, we used population decoding tools (Duda et al. 2001; Hung et al. 2005; Quiroga

et al. 2006; Stanley et al. 1999) to analyze the responses of multiple individual neurons in

inferior temporal cortex (ITC) and pre-frontal cortex (PFC) recorded while monkeys

engaged in a delayed match-to-category task (DMC) (Freedman et al 2003). Previous

individual neuron analyses of these data had suggested that ITC is more involved in the

processing of currently viewed image properties while PFC is more involved in signaling

the category and behavioral relevance of the stimuli, and in storing such information in

working memory (Freedman et al. 2003). Here, by pooling the activity from many

neurons, we are able to achieve a finer temporal description of the information flow, and

we can better quantify how much of the category information in these areas is due to

visual properties of the stimuli versus being more abstract in nature. Additionally, by

looking at the activity in a population over time, we find that the selectivity of those

neurons that contain abstract category information changes rapidly. Information is being

continually passed from one small subset of neurons to another subset over the course of

a trial. This work not only clarifies the roles of ITC and PFC in visual categorization but

it also helps to constrain theoretical models on the nature of neural coding in these

structures (Riesenhuber and Poggio 2000; Serre et al. 2005).

Materials and Methods

Behavioral task and recordings. We used the data recorded in the study of Freedman et

al. (2003). Briefly, responses of 443 ITC and 525 PFC neurons were recorded from two

Rhesus Macaque monkeys as the monkeys engaged in a delayed match-to-category task

(DMC). Each DMC trial consisted of a sequence of 4 periods: a fixation period (500ms

duration), a sample period in which a stimulus was shown (600ms duration), a delay

period (10OOms), and a decision period in which a second stimulus was shown and the

monkey needed to make a behavioral decision (Figure 3.1A). The stimuli used in the

task were morphed images generated from 3 prototype images of cats and 3 prototype



images of dogs (Figure 3.1B-C). A morph stimulus was labeled a 'cat' or 'dog'

depending on the category of the prototype that contributed more than 50% to its morph.

During the sample period of the task, a set of 42 images (Supplemental figure 3.1) were

used that consisted of the 6 prototype images, and morphs that were taken at four even

intervals between each dog and cat prototype. The stimuli shown in the decision period

consisted of random morphs that were at least 20% away from the cat/dog category

boundary, so that the category that these stimuli belonged to was unambiguous. The

monkeys needed to release a lever if the sample-stimulus matched the category of the

decision-stimulus in order to receive a juice reward (or to continue to hold the lever and

release it for a second decision-stimulus in the non-match trials). Performance on the task

was -90% correct. Figure 3.1 illustrates the time course of an experimental trial, one

morph line used in the experiment, and the 6 prototype dog and cat images. The

experimental design and recordings were previously reported by Freedman et al. (2001;

2003), and more details about the stimuli, the task, and the recordings can be found in

those publications.
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Figure 3.1 Organization of the stimuli and behavioral task. A, time course of the delayed
match to category experiment. B, an example of one of the nine morph lines of the stimuli from
the cat I prototype to the dog 1 prototype (the actual stimuli used in the experiment were colored
orange, see Freedman et al. 2002). C, the six prototype images used in the experiment. All the
stimuli used in the experiment were either the prototype images, or morphs between the cat (C)
and dog (D) prototypes.

Data analysis. To estimate the information conveyed by a neuronal ensemble about a

particular stimulus or behavioral variable, we used a decoding based approach (Hung et

al. 2005; Quiroga et al. 2006). We trained a pattern classifier on the firing rates from a
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population of m neurons recorded across k trials (i.e., we have k training points in Rm,

where R' is an m-dimensional vector space). For each trial, one of c different conditions

is present, and the classifier 'learns' which pattern of activity across the m neurons is

indicative that condition ci was present. We assessed how much information is present in

the population of neurons by using a 'test data set' (firing rates from the same m neurons,

but from a different set of h trials) and quantifying how accurately the classifier could

predict which condition ci was present in these new trials. Classifier performance was

evaluated and reported throughout the text as the percentage of test trials correctly

labeled. In the text we use the terms 'decoding accuracy' and 'information'

interchangeably since there is an injective monotonic mapping between these two

measures (Gochin et al. 1994; Samengo 2002). Variables (i.e., different groups of

conditions) we decoded include (1) which of the 42 stimuli was shown during the sample

period (c=42), (2) the category of the stimulus shown during the sample period (c=2), (3)

the category of the stimulus shown during the decision period (c=2), and (4) whether a

trial was a match or non-match (c=2). Occasionally, in the text we are informal and we

say we trained a classifier on a given set of 'images' X, by which we mean we trained the

classifier on neural data that was recorded when images in set X were shown.

Because most of the neurons used in these analyses were recorded in separate sessions, it

was necessary to create pseudo-populations that could substitute for simultaneous

recordings. Although creating these pseudo-populations ignores correlated activity

between neurons that could potentially change estimates of the absolute level of

information in the population (Averbeck et al. 2006), having simultaneous recordings

would most likely not change the conclusions drawn from this work because we are

mainly interested in relative comparisons over time and between brain regions.

To create this pseudo-population for the decoding of 'identity information' (i.e, which of

the 42 stimuli were shown during the sample period) the following procedure was used.

First we eliminated all neurons that had non-stationary trends (those whose average firing

rate variance in 20 consecutive trials was greater than twice the variance over the whole

session). Because the stimuli were presented in random order, the average variance in 20
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trials should be roughly equivalent to the variance over the whole session (only 42 ITC

and 34 PFC neurons met the trend criterion, and the decoding results were not

significantly different when these neurons were included). Next, we found all neurons

that had recordings from at least 5 trials for each of the 42 stimuli shown in the sample

period. 283 ITC neurons and 332 PFC neurons were selected for further consideration

after applying the constraints indicated above. From the pools of either ITC neurons or

PFC neurons we applied the procedure below separately for each time period.

First, 256 neurons were randomly selected from the pool of all available neurons. This

allowed a fair comparison of ITC to PFC even though there were more neurons available

in the PFC pool. Second, for each neuron, we randomly selected the firing rates from 5

trials for each of the 42 stimuli. Third, The firing rates of the 256 neurons from each of

the 5 trials were concatenated together to create 210 data points (5 repetitions x 42

stimuli) in R56 space. Fourth a cross-validation procedure was repeated 5 times. In each

repetition, 4 data points from each of the 42 classes were used as training data and 1 data

point from each class was used for testing the classifier (i.e., each data point was only

used once for testing and 4 times for training). Prior to training and testing the classifier,

a normalization step was applied by subtracting the mean and dividing by the standard

deviation for each neuron (the mean and standard deviation were calculated using only

the data in the training set). This z-score normalization helped ensure that the decoding

algorithm could be influenced by all neurons rather than just those with high firing rates.

Similar results were obtained when this normalization was omitted. Fifth, the whole

procedure from steps 1-4 was repeated 50 times to give a smoothed bootstrap-like

estimate of the classification accuracy. The main statistic shown in Figures 3.2-3.7 is the

classification accuracy averaged over the all the bootstrap and cross-validation trials.

A similar procedure was used to create pseudo-population vectors for decoding of

sample-stimulus category, decision-stimulus category and match-nonmatch information

as shown in Figure 3.2, except that 50 data points for each class were used in each of the

5 cross-validation splits (i.e., there were 400 training points and 100 test points), and the

trial condition labels were changed to reflect the information that we were trying to
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decode. For the decoding of 'abstract category' information in Figures 3.3-3.7, the

procedure was used exactly as described above except that the 42 identity labels were

remapped to their respective 'dog' and 'cat' categories.

Unless otherwise noted, all figures that show smooth estimates of classification accuracy

as a function of time are based on using firing rates in 150ms bins sampled at 50ms

intervals with data from each time bin being classified independently. Because the

sampling interval we used is shorter than the bin size (50ms sampling interval, 150ms

time bin), the mean firing rates of adjacent points were calculated using some of the same

spikes, leading to a slight temporal smoothing of the results.

In the body of the text we also report classification accuracy statistics. Unless otherwise

stated, classification accuracy results from the sample periods are reported for bins

centered at 225ms after sample stimulus onset, results from the delay period are reported

for 525ms after sample stimulus offset, and results from the decision period are reported

for 225ms after decision stimulus offset (this corresponds to 725ms, 1625ms, and 2325ms

after the start of a trial, with each bin width being 150ms). The results reported for

'basic' decoding accuracies are the mean and one standard deviation of the decoding

accuracies over all the bootstrap trials and cross-validation splits (we refer to these results

as 'basic decoding results'). The results reported for decoding 'abstract category'

information are the average and one standard deviation of basic decoding results taken

over the 9 combinations of training and test splits (see the section on decoding abstract

category information for more details). Also because there are two stimuli presented in

each trial, in order to avoid confusion when reporting basic decoding results, we denote

the first stimulus shown as the SAMPLE-STIMULUS and the second stimulus shown as the

DECISION-STIMULUS with capitalized letters used to avoid confusion with the sample,

delay and decision periods (which are time periods where properties of these stimuli can

be decoded). It should be noted that in this paper, we refer to the time period after the

second stimulus is shown as the 'decision period' rather than the 'test period' as used by

Freedman et al. (2003), in order to avoid confusion with the 'test set' that is used to

evaluate the trained classifier.



All results reported in this paper use a correlation coefficient-based classifier. Training

of this classifier consists of creating c 'classification vectors' (where c is the number of

classes/conditions used in the analysis) and each classification vector is simply the mean

of all the training data from that class (thus, each classification vector is a point in R",

where m is the number of neurons). To asses to which class a test point belongs, the

Pearson's correlation coefficient is calculated between the test point and each

classification vector; a test data point is classified as belonging to the class ci, if the

correlation coefficient between the test point and the classification vector of class ci is

greater than the correlation coefficient between the test point and the classification vector

of any other class. The classification accuracy reported is the percentage of correctly

classified test trials.

There are several reasons why we use a correlation coefficient-based classifier. First,

because this is a linear classifier, applying the classifier is analogous to the integration of

presynaptic activity through synaptic weights; thus, decoding accuracy can be thought of

as indicative of the information available to the post-synaptic targets of the neurons being

analyzed. Second, computation with this classifier is fast, and it has empirically given

classification accuracies that are comparable to more sophisticated classifiers such as

regularized least squares, support vector machines and Poisson naive Bayes classifiers,

which we have tested on this and other data sets (see Supplemental figure 3.2). Third,

this classifier is invariant to scalar addition and multiplication of the data, which might be

useful for comparing data across different time periods in which the mean firing rate of

the population might have changed. And finally, this classifier has no free adjustable

parameters (that are not determined by the data) which simplifies the training procedure.

For several analyses we trained a classifier on one condition and tested the classifier on a

different related condition. These analyses test how invariant the responses from a

population of neurons are to certain transformations, and they help to determine whether

a population of neurons contains information beyond what is directly present in the

stimulus itself. We also performed analyses in which a classifier is trained with data



from one time period and tested with data from a different time period, which allowed us

to assess whether a pattern of activity that codes for a variable at one time period is the

same pattern of activity that codes for the variable at a later time period. It is important

to emphasize that for all analyses, training and test data come from different trials.

Finally, for several analyses, we calculated the classification accuracy using only small

subsets of neurons, ranked based on how category-selective these neurons were. The

rank order was based on a t-test applied to all 'cat' trials vs. all 'dog' trials on the training

dataset, and the k neurons with the smallest p-values were used for training and testing.

This 'greedy' method of feature selection is not guaranteed to return the smallest subset

that will achieve the best performance, so the readout accuracies obtained with this

feature selection method might be an under-estimate of what could be obtained with an

equivalent number of neurons from the same population if an ideal feature selection

algorithm was applied.

Finally, for one set of analyses (Figure 3.8), we estimated the amount of mutual

information (MI) between the category of the stimuli s and individual neurons' firing

rates r, using the average firing rates in 100ms bins sampled at lOms intervals. To

compute the mutual information, we assumed the prior probability of each stimulus

category was equal, and we used the standard formula, I = Y, P[r s] log2 (P[r, s]/P[r]

P[s]) (Dayan and Abbott 2001). The conditional probability distribution between

stimulus and response, P[rs], was estimated from the empirical distribution using all

trials. While there exists potentially more accurate methods for estimating mutual

information (Paninski 2003; Shlens et al. 2007), because our results do not depend

critically on the exact MI values, we preferred the simplicity of this method.



Results

Decoding information content in ITC and PFC

Basic results

We used a statistical classifier to decode information from neuronal populations that were

recorded as monkeys engaged in a delayed match-to-category task (Figure 3.1 A)

(Freedman et al. 2003). Figure 3.2 shows the accuracy levels obtained when decoding

four different types of information. The decoding of identity information (i.e., which of

the 42 stimuli was shown during the sample period) is shown in Figure 3.2A, and

provides an indication of how much detailed visual information is retained despite the

variability in spike counts that occur from trial to trial. Given the high physical similarity

among the images along a given morph line (Figure 3.1 B), this is a very challenging task.

There was a significant amount of information only during the sample period when the

stimulus was visible, and there was much more information in ITC than in PFC (17.5% ±

5.5% versus 5.9% ± 3.5% respectively, chance = 1/42 = 2.4%). Because information

about the details of the visual stimuli was not relevant for the task in which the monkey

was engaged, these results are consistent with the notion that ITC is involved in the

detailed analysis of the visual information that is currently visible, while PFC activity

only contains the information necessary for completing the task (Freedman et al. 2001;

Riesenhuber and Poggio 2000)

Next we examined decoding the category of the SAMPLE-STIMULUS (i.e., whether the

stimulus shown at the beginning of the sample period was a cat or a dog, Figure 3.2B).

When the SAMPLE-STIMULUS was first presented, ITC had a slightly higher accuracy

level than PFC (92.0% ± 2.8% versus 81.3% ± 4.3%, at t=225ms, chance = 50%).

However, by the middle of the sample period (t=425 ms after stimulus onset), the

information in these two areas was approximately equal (82.1% ± 4.0% versus 82.0% ±

4.2%). During the delay and decision periods, PFC had more category information about

the SAMPLE-STIMULUS than ITC (delay: 66.7% ± 4.1% (PFC) versus 56.6% ± 4.8%



(ITC); decision: 88.4% ±4.3% (PFC) versus 77.9% ± 4.4% (ITC), respectively; chance =

50%). Because category information is behaviorally relevant to the monkey in this task,

these results support the role of the PFC in storing task-relevant information in memory

during the delay period (Miller and Cohen 2001). That ITC initially had more

information about the category of the SAMPLE-STIMULUS is largely due to ITC having

more information related to visual properties of the stimuli, and this visual information is

being used by the classifier to decode the category of the stimuli (see section on decoding

abstract category information below).

Figure 3.2C shows accuracy levels from decoding the category of the DECISION-

STIMULUS (i.e., the stimulus that is presented in the beginning of the decision period).

ITC had slightly more information about the category of the DECISION-STIMULUS than

PFC during the decision period (93.9% ± 2.7% versus 81.1% ± 4.3%). This is probably

due to the combination of visual and abstract category information by the classifier, and

because there is more visual information in ITC the performance level is higher there. In

contrast, PFC showed higher accuracy levels when decoding whether a trial was a match

or non-match trial during the decision period (92.3% ± 2.7% versus 60.5% ± 4.8% Figure

3.2D), which is again consistent with PFC containing more task-relevant information

than ITC.

In addition to comparing ITC to PFC, it is also instructive to directly compare different

types of information within each of these areas. Figures 2E and 2F compare the decoding

accuracies for three different variables: 1) whether a trial is a match/non-match trial

(brown), 2) the category of the DECISION-STIMULUS (green) 3) the category of the

SAMPLE-STIMULUS (purple) (we start the comparison in the middle of the delay period

because there is no information about trial status and DECISION-STIMULUS category until

the decision period). Results from ITC (Figure 3.2E) reveal that during the decision

period, there is much more information about the category of the DECISION-STIMULUS

(green line) than about the category of the SAMPLE-STIMULUS (purple line) or about

whether a trial is a match or non-match trial (brown). Also, the match/non-match trial

information showed the longest latency. This pattern shows that the variable that ITC has
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the most information about (of the three variables listed above) is the most recently

viewed visual stimulus and that there is less information about task-related variables. The

pattern in PFC is quite different (Fig. 2F), with the most information being about task-

related variables; i.e., whether a trial is a match or non-match trial. Also, the latency of

the match/non-match status of a trial in PFC is the same as the latency of information

about the category of the DECISION-STIMULUS (and shorter than the ITC latency in the

same task). It is also interesting to note that for both PFC and for ITC, the information

about the category of SAMPLE-STIMULUS seems to increase just prior to the onset of the

DECISION-STIMULUS presentation. This anticipatory increase of information might

subserve the quick reaction times seen in the experiment.
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Abstract category information

From a cognitive science perspective, a category often refers to a grouping of objects

based on their behavioral significance, and objects within such a group do not necessarily

share any common physical characteristics (Tanaka 2004). In Figure 3.2B, however, the

decoding accuracy level for the category of the sample-stimulus is influenced not only by

the 'abstract' behaviorally-relevant category of the stimulus, but also by physical visual

properties of the image that are also predictive of the category that the stimulus belongs

to (see Supplemental figure 3.3 for more details). In order to better assess how much

abstract category information is in ITC and PFC that is related to the behavioral grouping

of the stimuli (and that not due to physical properties of the stimuli), we trained a

classifier on images derived from two dog prototypes and two cat prototypes and then

tested the classifier's decoding accuracy on images derived from the remaining dog and

cat prototypes (by 'derived from a prototype', we mean the images that contain greater

than 60% of their morph from a given prototype). The logic beyond this analysis is that

if the within-category prototype images were just as visually similar to each other as they

are to the between-category prototype images, then using different prototypes for training

and testing should eliminate the ability of visual feature information to be predictive of

which class a stimulus belongs to (since there would be as many visual features shared

between the training and test sets within the same category, as there are between the two

different categories; see Supplemental figure 3.3). Thus, above chance classification

performance in this analysis would imply that a brain region had much more abstract

category information. While determining the visual similarity between two images is

currently an ill-defined problem, we note that the prototype images used in this

experiment did vary greatly in their visual appearance (Figure 3.1 C and Supplemental

figure 3.1). Therefore, this decoding method should greatly reduce the influence of visual

features (see Discussion section for more details on image similarity). In fact, because

many of the images used to test the classifier were morphs that were blended with

prototype images from the opposite category, images from opposite categories were more

similar in terms of the morph coefficients than images from the same category (similar



results were obtained when we did not use images that were morphs between the training

and test set prototypes; see Supplemental figure 3.4B).

Figure 3A shows the decoding results of this more 'abstract' category information for

ITC (blue) and PFC (red) averaged over all 9 training/test permutations (e.g., train on [ci,

c2 vs. dl d2] test on [c3 d3]; training on [c1, c2 vs. dl, d3], etc.). Supplemental figure

3.4A shows the results for the 9 individual runs for both PFC and ITC; all individual

results are the average of 50 bootstrap-like trials. During the sample period when the

stimuli are first shown, PFC has as much abstract category information as ITC. During

the delay and decision periods, PFC has more category information than ITC. This

strongly suggests that the larger amount of category information in ITC during the

sample period seen in Figure 3.2B is due to the classifier combining category information

in a visually based format, with information in a more abstract format.

Figure 3.3B compares the visual plus abstract category information (blue trace) that was

shown in Figure 3.2B with the abstract category information (green trace) that was shown

in Figure 3.3A, for ITC (left) and PFC (right). For ITC, most of the category information

during the sample period is visual; however, during the delay and decision periods,

almost all the category information is abstract. PFC shows a similar pattern; however,

there is more abstract category information (and less visual category information) during

the sample period than for ITC. Thus, both ITC and PFC have category information in a

visual format while the stimulus is visible, and both represent information in an abstract,

task-relevant format during the delay and decision period. However, the overall ratio of

abstract category information relative to total category information is greater in PFC than

in ITC during the sample period.
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Coding of information in ITC and PFC

Compact and redundant information

In addition to assessing what information is contained in ITC and PFC, the decoding

analysis also allows us to examine how information is coded across a population of

neurons. One important question of neural coding concerns whether information is

contained in a widely distributed manner such that all neurons are necessary to represent

a stimulus, or if at a particular point in time, there is a smaller 'compact' subset of

neurons that contains all the information that the larger population has (Field 1994). In

order to asses the if there is a smaller compact subset of neurons ITC and PFC conveying

as much information as the larger population using population decoding,, we first

selected the 'best' k neurons using the training data (where k < 256), and then trained and

tested our classifier using only these neurons (Figure 3.4). The best k neurons were

defined as those neurons with the smallest p-values based on a t-test applied to all cat

trials vs. all dog-trials on the training data set (see Materials and Methods). The selection

process was done separately for each time bin. Using the 16 best neurons, we were able

to extract almost all the information that was available using 256 neurons, at almost all

time points for both PFC and ITC. The level of compactness of information was

particularly strong in PFC during the decision period where, strikingly, 8 neurons

contained nearly all the information (decoding accuracy = 78.2% ± 1.2%) that was

available in the whole population (79.4% ± 1.7%). It should also be noted that, because

our algorithm for selecting the best neurons works in a 'greedy' fashion, the top k

neurons selected might not be the best k neurons available in combination. Therefore, all

the information present in the entire population could potentially be contained in even

fewer neurons. We also examined if there is a smaller subset of neurons that contains all

the identity information (Supplemental figure 3.5), and found that for ITC, identity

information seems to be less compact, with the decoding accuracy not saturating until

around 64 neurons. We speculate that this might be related to the fact that it takes more

bits of information to code 42 stimuli than to code the binary category variable, and also

perhaps because identity information is not relevant for the task the monkey is engaged

in.
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Redundancy allows a system to be robust to degradation of individual neurons or

synapses. This robustness constitutes a key feature of biological systems. In order to

asses if there is redundant information present in the population of neurons, we again

selected the k best neurons from the training set, but this time we excluded these neurons

from training and testing and used the remaining 256 - k neurons for our analyses. We

note that this analysis aims to assess whether there is redundant information (as opposed

to estimating how much redundant information there is in the Shannon sense of
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redundancy). Figure 3.5 compares the classifier's performance using the best 64 neurons

to its performance excluding the best 64 neurons. The best 64 neurons contain as much

information as the whole population (magenta line). However ,even when these best 64

neurons are excluded, and the remaining 192 neurons are used instead, classification

performance is above chance at almost all time points (green line). Since the best 64

neurons contain as much information as the whole population, the fact the excluding

these neurons does not lead to chance classification performance implies that these

remaining 192 neurons contain a non-negligible amount of redundant information with

the best 64 neurons. In fact, even when half the neurons are removed, decoding accuracy

is still above chance at almost all time points (Supplemental figure 3.6).
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Figure 3.5 Illustration of redundant information in ITC (A), and PFC (B). The purple line
indicates the readout performance when the top 64 neurons were used, and the green line
indicates when the top 64 neurons were excluded and the remaining 192 neurons were used. As
can be seen, the top 64 neurons achieve a performance level that is as good as using the whole
population of 256 neurons. However, even when these neurons are excluded, readout is above
chance, indicating that there is redundant information in these populations.
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Time dependent coding of information

Another interesting question in neural coding is whether a given variable is coded by a

single pattern of neural activity in a population, as in a point attractor network (Hopfield

1982), or whether there are several patterns that each code for the same piece of

information (Laurent 2002; Perez-Orive et al. 2002). To address this question, we trained

a classifier with data from one time bin relative to stimulus onset, and tested the classifier

on data from different time bins (in all the results reported above, training and testing

were done using the same time period relative to stimulus onset). If, at all time periods,

the same pattern of activity is predictive of a particular variable, then the decoding

accuracy should always be highest (or at least should decrease) when training a classifier

with data from time periods that have the maximum decoding accuracy levels, because

the data from these time periods presumably have the least noise and would therefore

lead to the creation of the best possible classifier. Alternatively, if the pattern of activity

that is indicative of a relevant variable changes with time (and is time-locked to the onset

of a stimulus/trial), then high decoding accuracies would only be achieved when using

training and testing data from the same time period.

Figure 3.6A-B, shows accuracy levels for decoding abstract category information when

training a classifier with data from one time period (indicated by the y-axis), and testing

with data from a different time period (indicated on the x-axis). As can be seen for both

ITC and PFC, the highest decoding accuracies for each time bin occur along the diagonal

of the figure, indicating that the best performance is achieved when training and testing is

done using data from the same time bin relative to stimulus/trial onset. Additionally, for

ITC, the decoding performance is also high when training using data from the sample

period and testing using data from the decision period and vice-versa, whereas for PFC,

there seems to be little transfer between any different time periods. The pattern of

transfer between the sample and the decision periods in ITC might indicate that there is

indeed one pattern of activity in ITC that codes for the abstract category of the stimulus

regardless of time; alternatively, this result might be due to visual information that is

similar in the sample and decision stimuli, as the decision stimuli were created from



random morphs between the prototype images. Figure 3.6C-D compares the decoding

accuracies from training on three of these 'fixed' time points (colored lines) to training

and testing a classifier using data from the same time period (black lines) in a format that

is similar to Figure 3.2 and 3.3 (i.e., these are plots of three rows of Figure 3.6A and B, at

time points during the sample, delay, and decision periods and compares them to the

results in Figure 3.3A). These plots again show that the highest decoding accuracy

occurs when training and testing using data from the same time period, which implies

that indeed the pattern of activity that codes for a particular piece of information changes

with time.
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Figure 3.6 Evaluating whether the same code is used at different times for abstract
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with time as indicated by the fact that the only high decoding accuracies are obtained along the
diagonal of the plot. C-D, examples of decoding accuracies using three fixed training times from
the sample, delay and decision periods (colored lines) compared decoding accuracies obtained
when training and testing using the sample time period (black line), for ITC (C) and PFC (D);
(each of these plots corresponds to one row from the from figures A or B and the black line
corresponds to the diagonal of this figure, and is the same line as shown in Fig 3A). These
figures again illustrate that the highest performance is always obtained when training and testing
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coding of abstract category information is time-locked to stimulus/trial onset.

.................... ........ .. ...... .. .... ..



Next we tested whether this changing pattern of activity was only due to neural

adaptation in a fixed set of neurons, or whether indeed different neurons were carrying

the relevant information at different points in time. To address this question, we

conducted analyses in which we eliminated the 'best' 64 neurons (out of 256 random

neurons selected on each bootstrap trial) at one 150ms time period (indicated on the y-

axis in Figure 3.7) and training and test data were taken from a different 150ms time

period (indicated on the x-axis). If the same small subset of neurons codes for abstract

category information at all time periods, then eliminating these neurons from one time

period should result in poor decoding accuracy at all time periods. Alternatively if

different small subsets of neurons contain the abstract category information at different

time periods, then there should only be a decrease in performance in the time period

where the best neurons were removed. Results for both ITC and PFC show a clear

pattern of lower decoding accuracies along the diagonal but largely unchanged decoding

accuracies almost everywhere else, which indicates that different neurons contain the

category information at different time points in a trial. Figure 3.7 also clearly shows that

the neural code is changing faster than changes in the stimuli as illustrated by the fact that

there is also a decrease only along the diagonal during the sample, delay and decision

periods, even though the stimulus is not changing during these times. Additionally,

Supplemental figure 3.7 shows that the neurons which code for identity information also

change through the course of a trial, although the changes in code seem to be much less

dramatic than is seen for the changes in code for abstract category information.
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To further examine the duration of selectivity for individual neurons, we calculated an

estimate of the mutual information (MI) between the category of the stimulus, and the

average firing rate of neurons in 50ms bins (see Materials and Methods). Figure 3.8,

shows the MI as a function of time for the four neurons that had highest MI at four

different time bins. As can be seen for both PFC and ITC, individual neurons have short

time windows of selectivity, as expected from the results showing changing patterns of

coding at the population level. It is also interesting to compare neuron 1 and neuron 4 in

Figure 3.8A, where we can see two ITC neurons that are selective at slightly different

times during the sample period, even though the stimulus is constant during this time.

This further supports the point that individual neuron's selectivity are occurring on a

faster time scale than the changes in the stimuli.
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Figure 3.8 Illustration showing that many individual neurons have short periods of
selectivity for ITC (A), and PFC (B). The figure plots the four neurons for ITC and PFC that
had the highest the mutual information between the category of the sample-stimulus and neuron's
firing rate (firing rates were calculated using 1OOms bin periods sampled every lOims). As can be
seen, most neurons show high MI values for only short time periods, which is what is expected
for a population code that changes with time. It is also interesting to compare neuron 1 and
neuron 4 in ITC (A), because it shows that individual neurons have different peak selectivity
times even when the stimulus being shown is constant. Thus the changing of the neural code is
not just due to changes in the stimulus.
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Discussion

We applied population decoding methods to neuronal spiking data recorded in PFC and

ITC in order to gain more insight into what types of information are contained in these

regions, as well as how information is represented in these regions. By pooling

information from hundreds of neurons, we were able to observe the time course of the

flow of information in these areas with a fine timescale. Results from basic decoding

analyses (Figure 3.2) showed that ITC contained more information related to the

currently viewed stimulus than PFC, while PFC contained more task-relevant information

than ITC, which is largely consistent with the results originally reported by Freedman et

al. (2003). The finer temporal precision in our analyses also revealed an 'anticipatory

response' in both ITC and PFC, in which information about the category of the sample

stimulus reemerged just prior to the onset of the decision stimulus, which seems similar

to the increase in firing rate seen just prior to the onset of the decision period reported by

Rainer et al. (Rainer and Miller 2002; Rainer et al. 1999) in macaque delayed match-to-

sample experiments. We speculate that this anticipatory reemergence of category

information might be involved in preparing the network for processing the imminent

decision stimuli as soon as they are shown, which could account for the monkeys' fast

reaction times.

The ability to train a pattern classifier on data of one type and test how well the classifier

generalizes to data recoded under different conditions is very useful for obtaining more

compelling answers to several questions. By training a classifier on data from a subset of

images from one category and then testing on data recorded when a different disjoint

subset of images was shown, we were able to get a better estimate of how much 'abstract

category' information is contained in both ITC and PFC (for more information about

PFC's role in other categorization tasks see (Nieder et al. 2002) and (Shima et al. 2007)).

Results from our analysis of abstract category information revealed that there is initially

as much abstract category information in ITC as PFC, which was not seen in the original

analyses by Freedman et al. (2003) due to the long length of the time periods used in their
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analyses, as well as potential biases introduced by only using 'selective' neurons when

creating category-selective indices (see Introduction).

The fact that there initially appears to be as much 'abstract category' information in ITC

as PFC (Figure 3.3) raises several questions about ITC's role in categorization. One of

the simplest explanations for the presence of abstract category information in ITC is that

despite the morph paradigm used, the prototype images from the same category are more

visually similar to each other than they are to the images from the other category (i.e., the

3 cat prototype images are more similar to each other than they are to the dog prototype

images). If this were the case, then the classifier would be able to generalize across

images from different prototypes from the same category based purely on visual

information, which could explain the results (Sigala and Logothetis 2002). Analyses

using a computational model of object recognition described in Serre et al. (2007) indeed

suggest that prototype images are slightly more similar to each other than to prototypes

from the opposite category. However, the level of similarity seems to be weaker than

what is observed in the neural data. A direct test of whether visual image properties is

giving rise to our findings could be done by running the same DMC experiment but using

a different category boundary as was previously done for PFC (Freedman et al. 2001).

If indeed there is abstract category information in ITC that is not due to visual cues, this

suggests that there is a 'supervised' learning signal in ITC that is causing neurons in ITC

to respond similarly to stimuli from the same category. One possible source of this

supervised learning signal is that, during the course of the sample presentation, PFC

extracts category information from the signals arising in ITC and feeds this category

information back to ITC (Tomita et al. 1999). However, with the resolution of our

analyses, we could not detect any clear latency differences between the category

information arising in PFC and ITC (see Supplemental figure 3.9). Given that there could

be a single synapse between neurons in these two brain areas, the latency differences

could be too small to detect (Ungerleider et al. 1989). Alternatively, ITC could have

acquired abstract category information during the course of the monkey being trained in

the task. In this scenario, which is similar to the model proposed by Risenhuber and
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Poggio (2000), the activity of 'lower level' neurons that are selective to individual visual

features present in particular stimuli are pooled together by 'higher level' neurons

through a supervised learning signal enabling these 'higher level' neurons to respond

similarly to all members of a given category irrespective of the visual similarity of

individual members of the category. It should be noted that more recent models (e.g.,

Serre et al. 2007) propose a supervised learning signal is only present in PFC, while the

presence of abstract category information in ITC suggests this supervised learning signal

might be organizing the response properties of neurons earlier in the visual hierarchy

(Mogami and Tanaka 2006); however these models could be easily modified to

incorporate a supervised learning signal in stages before PFC. Because these monkeys

have had an extensive amount of experience with these stimuli, it is also possible that a

consolidation process has occurred when the monkey learned the task. For category

grouping behavior that occurs on shorter time scales, it is possible that category signals

would only be found in PFC.

By analyzing data over long time intervals, most physiological studies assume tacitly or

explicitly that the neural code remains relatively static as long as the stimulus remains

unchanged. We examined how stationary the neural code is by training the classifier

using data from one time period and then testing with data from a different time period

(Figure 3.6). These analyses suggest that the pattern of activity coding for a particular

stimulus or behaviorally relevant variable changes with time. Such results are consistent

with the findings of Gochin et al. (1994), in which a paired-associate task was used to

show that the pattern of activity in macaque IT that is indicative of a particular stimulus

during a sample period is different from the pattern of activity that is indicative of the

same stimulus during a second stimulus presentation period. Also, Nikolic et al. (2007)

reported dynamic changes in the weights of separating hyperplanes for discriminating

between visual letters using data from macaque V1. These observations suggest that the

coding of particular variables through changing patterns of activity might be a general

property of neural coding throughout the visual system. However, because adaptation or

other non-linear scaling of firing rates could potentially explain these results as an artifact

of the decoding procedure in these studies, we further tested how stationary the neural
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code is by eliminating the best neurons from one time period and testing the classifier on

data from another time period (Figure 3.7). Results from this analysis show that there is

only a temporally localized drop in classification accuracy, which indicates that different

neurons carry information about the same variable at different time periods.

Additionally, analyses of mutual information showed that most individual neurons are

only selective for short time windows. These observations are consistent with the

findings of Zaksis et al. (Zaksas and Pasternak 2006) who used an ROC analysis to show

that many neurons in PFC and MT only have short time periods of selectivity. Baeg et al.

(2002) also showed that past and future actions of rats can be decoded based on PFC

activity during a delay period even when neurons with sustained activity are excluded

from the analysis which again agrees with our observations showing that the pattern of

neural activity that codes information changes with time. While previous studies have

concluded that neurons with short periods of selectivity play an important role in memory

of stimuli, we also speculate that these dynamic patterns of activity might be important

for the coding of a sequence of images so that the processing of new stimuli do not

interfere with those just previously seen, and could underlie the ability of primates to

keep track of the relative timing of events.

An ongoing debate concerning the neural code is whether information is transmitted

using a 'rate code' in which all information is carried in the mean firing rate of a neuron

within a particular time window, or whether a 'temporal code' is used in which

information is carried in by the precise timing of individual spikes (deCharms and Zador

2000). While the results in this paper can not conclusively answer which coding scheme

is correct, they do give some insight into this debate. First, because we decode mean

firing rates over 150ms bins (and shorter time bins tended to achieve lower decoding

accuracies), our findings suggest that a large amount of information is still present even

when the precise time of each spike is ignored (also see Hung et al. 2005). While it is

possible that superior decoding performance could be achieved by using an algorithm that

took exact spike times into account, considering the high performance level at certain

time periods in the experiment (e.g., decoding of match vs. non-match trial information is

over 90% in PFC during the decision period, which is comparable to the 90% correct
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animals' performance), often there is not much more information left to extract. Second,

because our results show that the pattern of neural activity that is predictive of a

particular variable changes with time, and that this change occurs on a faster time scale

then changes in the stimulus, these findings argue against a strict rate based coding

scheme in which all information about a stimulus is coded by the firing rate alone. Thus,

our findings suggest that neurons in ITC and PFC maintain information in their mean

firing rates over time windows on the order of a few hundred milliseconds and that these

periods of selectivity are time-locked to particular task events (with different neurons

having different time lags), giving rise to a dynamic coding of information at the

population level.

Applying feature selection methods prior to using pattern classifiers allowed us to

characterize the compactness and redundancy of information in ITC and PFC. Results

from these analyses revealed that at any one point in time, all the abstract category

information available is contained in a small subset of neurons. However there still is a

substantial amount of redundant information between this small highly subset informative

subset of neurons and the rest of the more weakly selective neurons in the rest of the

population. While other studies have examined sparse spiking activity in several different

neural systems (Hahnloser et al. 2002; Perez-Orive et al. 2002; Quiroga et al. 2005; Rolls

and Tovee 1995), and theoretical models have been proposed that analyze the implication

of this sparse activity (Olshausen and Field 1997), our notion of compactness of

information differs from these measures because we are not focused on whether neurons

are firing, but rather we are focused on the information content that is carried by this

spiking activity. It should also be noted that our notion of compactness of information

differs the notion compactness described by Field (1994), because Field's notion of

compactness implies that all neurons are involved in the coding for a stimulus, while our

results suggest that only a small subset of a larger population of neurons contain the

relevant information and that this subset of neurons changes in time (thus our notion of

compactness could be equally well characterized as sparseness of information, however

given the strong association in the literature between the term 'sparseness' and firing rate,

we found using this terminology to be confusing). Thus our measure adds a new and
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potentially useful statistic for understanding how information is coded in a given cortical

region.

The neuronal responses studied here were not recorded simultaneously, and the creation

of pseudo-populations can alter estimates of the absolute amount of information that a

population contains because of correlated noise (Averbeck et al. 2006; Averbeck and Lee

2006). However, we were interested in relative information comparisons between

different time periods or between different brain regions, so our conclusions would not be

substantially altered by having data from simultaneous recordings. Furthermore,

empirical evidence suggests that decoding using pseudo-populations returns roughly the

same results as when using simultaneously recorded neurons (Aggelopoulos et al. 2005;

Anderson et al. 2007; Baeg et al. 2003; Gochin et al. 1994; Nikolic et al. 2007; Panzeri et

al. 2003). Our estimates of the absolute amount of information in the population could

also be affected by the amount of data we have, the quality of the learning algorithms

(however, see Supplemental figure 3.2, which suggests this is not an issue), and the

features used for decoding. However, because in principle these issues affect all time

points and brain areas equally, relative comparisons should be largely unaffected by

them.

The ability to decode information from a population of neurons does not necessarily

mean that a given brain region is using this information or that downstream neurons

actually decode the information in the same way that our classifiers do. Our results using

analyses in which the classifier is trained with one type of stimuli, and must generalize to

a different but related type of stimuli, supports the notion that the animal is using this

information, since such generalization implies a representation that is distinct from

properties that are directly correlated with the stimuli, and having such an abstract

representation coincidentally would be highly unlikely. For this reason, most of the

analyses in this paper have focused on 'abstract category' information (Figs. 3.2-3.7)

because this information meets our criteria of being abstracted from the exact stimuli that

are shown, and hence is most likely utilized by the animal.
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Using population decoding to interpret neural data is important because it examines data

in a way that is more consistent with the notion that information is actually contained in

patterns of activity across many neurons. By computing statistics on random samples of

neurons, most analyses of individual neurons implicitly assume that each neuron is

independent of all others, and that neural populations are largely homogenous. However

such implicit assumptions are contrary to the prevailing belief that brain regions contain

circuits of heterogeneous cells that have different functions, and is inconsistent with

empirical evidence (compact coding of information and activity) seen in this and other

studies. The methods discussed in this paper can help align a distributed coding

theoretical framework with analysis of actual empirical data, which should give deeper

insights into the ultimate goal of understanding the algorithms and computations used by

the brain that enable complex animals, such as humans and other primates, to make sense

of our surroundings and to plan and execute successful goal-directed behaviors.
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Supplemental Material

Supplemental figure 3.1 All 42 stimuli that were shown during the experiment. The images
in the cat category are in the rows listed C1, C2, C3, and the images in the dog category are
in the rows listed as D1, D2, D3. As can be seen, all the images look very similar, and it is not
clear if the images in the cat category look more visually similar to each other than they look to
images in the dog category (and vice versa for the dog category).
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Supplemental figure 3.2 Comparison of decoding accuracy levels for three different
classifiers for basic sample-stimulus category information, for ITC (A), and PFC (B). The
magenta line is the classification accuracy obtained using correlation coefficient classifier, the
orange line is the classification accuracy obtained using support vector machine (SVM) and the
green line is the classification accuracy obtained using a Poisson Naive Bayes classifier. As can
be seen, while the mean accuracy level varies depending on which classifier is used, the trends
over time remain the same, which gives us confidence that the conclusions we draw in this paper
are not dependent on the classifier used since always compare results using the same classifier
through the paper. It should be noted that the regularization parameter was not optimized for the
SVM which could account for its overall lower accuracy level.
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Supplemental figure 3.3 Illustration of how visual based stimulus information can lead to
categorization decoding accuracy even when there is no abstract category information in
the population of neurons. A, an illustration of 4 hypothetical neurons' responses to two images
of dogs and two images of cats. Each neuron fires action potentials at a high rate to just one of
images; thus each neuron can be thought of as being visually selective but not selective to the
abstract categories. B, if training is done using trials from all when all 4 cat and dog images are
shown, then one can obtain perfect cat/dog classification accuracy, even though these
hypothetical neurons are only selective to visual features of the stimuli (and even though neural
responses are noisy). C, if the training is done using responses from just one cat and one dog
image, and the testing is done using responses to the other cat and dog images, then if the neurons
are only respond to visual properties of the stimuli, classification performance will be at chance.
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Supplemental figure 3.4 Supplementary data for the decoding of abstract category
information. A, the 9 individual traces for decoding abstract category information with different
permutations of training and test images; the mean of these 9 traces is what is shown in figure
3.3A. B, decoding of abstract category information excluding the morph images between the
training and test prototypes. The results are very similar to those seen in figure 3.3A.
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Supplemental figure 3.5 Readout of 'identity information' using the best 2, 4, 8, 16, 32, 64,
or 128, compared to readout using all 256 neurons, for ITC (A) and PFC (B). As can be seen
in A, identity information is less compact in ITC than abstract category information is (Figure
3.4), while for PFC the best 16 neurons seem to contain all the information in the population of
256 neurons for both abstract category information and the amount of identity information. As in
Figure 3.4, the 'best' neurons were determined based on an ANOVA between cats and dogs using
the training data. Due to the greedy manner the neurons were selected in, and the non-optimality
of the selection method, the information represented in the subsets of neurons is an underestimate
of how much information be present if the 'real' best n neurons were selected.
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Supplemental figure 3.6 Readout results of abstract category information after excluding
the "best" 1, 2, 4, 8, 16, 32, 64, and 128 neurons compared to decoding using all 256 neurons
for ITC (A), and PFC (B). As can be seen, there is still information left in the population at
most time periods for both IT and PFC even when the half of the best neurons have been
removed.
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Supplemental figure 3.7 Identity information is also coding by changing patterns of neural
activity; although the code changes much less for identity information than for abstract
category information (Figs. 3.4-3.5) A, B, decoding of identity information for ITC and PFC
respectively, when training and testing using data from different time periods relative to stimulus
onset (i.e., these plots are the same as Figure 3.6 except they show the decoding of identity
information). Similar to figure 3.6, the results show that the best performance is along the
diagonal, indicating a changing neural code with time. However during the sample period, the
code for identity information ITC changes less than seen in the abstract category information case
(Fig. 3.6A), as indicated by the green square area around the diagonal. C, D, decoding accuracies
for identity information when eliminating the 'best' 64 neurons available at time period t1 (y-
axis), and training and testing using all other neurons at time period t2 (x-axis), for ITC and PFC
respectively (i.e., the same as Fig. 3.7, but for identity information). The 'best' 64 identity-
selective neurons were determined by applying an ANOVA on the training set. As can be seen,
there is some change in the 'best' identity neurons, however overall the neurons that contain
identity information change much less with time than the neurons that contain the abstract
category information (Figure 3.7).
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Supplemental figure 3.8 Dynamic population activity for basic category information for
ITC (left) and PFC (right). The same paradigm of training and testing at different times that
was used in Figure 3.6 is used here. As can be seen, there the best performance is achieved when
training and testing at the same time, however for ITC, there is some transfer of performance
when training during the STIMULUS-PERIOD, to testing during both the STIMULUS- and the
DECISION- PERIODS.

120



45'
500

ITC
PFC

550 600 650 700 750 800 850

Time (ms)

Supplemental figure 3.9 Finer time course of abstract category information in ITC (blue),
and PFC (red). Results were obtain by decoding the abstract category information using a 50ms
time bins, sampled at 5ms intervals, starting 25ms after sample-stimulus onset (525ms from the
start of the trial). Between category morphs from the training and the test set were excluded for
this analysis, because this extra visual information tended to make the results from ITC more
variable (thus the results shown here are the same as the results shown in S4B, except with finer
temporal resolution). As in figure 3.3 and in supplemental figure 3.4B, the results are the average
over the 9 permutations of training and test sets, and the shaded regions are the standard
deviations over the 9 permutations. Results from this figure show no clear latency difference
between ITC and PFC for the presence of abstract category information.
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Additional Supplemental Material

In addition to the results that was published in the 2008 Journal of Neurophysiology

paper, I conducted several more decoding analyses on ITC and PFC responses during

categorization tasks, that give further insight in the abstract category information, neural

coding, and the robustness of population decoding methods. The results, which are

shown below, are from: 1) additional web material that went with the original Journal of

Neurophsyiology paper, 2) a 2009 Cosyne poster, and 3) figures based on analyzing

additional data collected in the Miller lab by Jefferson Roy in a related study.

Additional 'web material' from Meyers et al., 2008, Journal of Neurophysiology paper

This additional 'web material' was put online at:

http://cbcl.mit.edu/people/emeyers/jneurophys2008/supplementary material/index.html,

at the same time that the Journal of Neurophysiology paper was published. These results

1) highlight the robustness of the decoding method to choices of classifier and data

normalization methods, and to drifts in firing rates, 2) give additional methods to

examine abstract category information, 3) compare the abstract decoding results to

computational vision features to show that the abstract category information is not likely

to be due to properties of the visual stimuli, and 4) compare the decoding results to the

'category selective index' that was previously used to analyze data in Freedman et al.,
2003 (which helps explan why the decoding methods found roughly the same amount of

category information in ITC as in PFC early in the trial, while previous found more

category information in PFC early in the trial).
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Methods illustrating the robustness ofpopulation decoding
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Additional supplemental material 3.1 Comparison of the decoding accuracy of 'abstract'
category information using different classifiers. The results below show a comparison of
decoding accuracies for five different classifier: correlation coefficient classifier (CorrCoef,
blue), regularized least squares (RLS, green), nearest neighbor (NN, red), Gaussian Naive
Bayes (NBG, cyan), and Poisson Naive Bayes (NBP, purple) for ITC (upper figure) and PFC
(lower figure). These results are similar to those shown in Supplemental figure 3.2 except that
here we are comparing more classifiers and we are decoding 'abstract' category information (as
was done in Figure 3.3). As can be seen, the best performance is achieved with the CorrCoef,
NBG, and NBP classifiers, RLS achieves slightly lower results and NN is by far the worst.
However, for both areas and all the classifiers (apart from NN which had very poor performance

overall), the general patterns of results is the same, which gives us confidence that the classifier
choice is not affecting the conclusions drawn in this study.
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Additional supplemental material 3.2 Comparison of different data normalizations. The
results below show a comparison of decoding accuracies when the data has been not been
normalized (green line), when each feature has been z-score normalized (blue line), and when
each data point has been z-score normalized (magenta line), for ITC (upper figure) and PFC
(lower figure); by z-score normalization we mean that the data (i.e., feature or data point) has a
mean of zero and a standard deviation of one. As can be seen, slightly higher results are achieved
when each feature has been normalized (blue line); consequently this normalization was for all
figures in the paper. The fact that z-score normalization of features increases decoding
performance show that the best results are achieved when each neuron is contributing equally,
since z-score normalizing of features makes all the firing rate of all neurons (averaged over all
stimuli) the same; this reduces the impact of neurons that have high baseline firing rates, and
increases the influence of lower firing rates neurons. All results are based on decoding basic
sample-stimulus category information (the same type of information shown in Figure 3.2B).
Data normalization parameters for the feature normalization (i.e,. mean and standard deviation)
were gathered on the training set, and then applied to both the training and test data.
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Additional supplemental material 3.3 Decoding including and excluding neurons that have
temporal trends over trials. One of the preprocessing stages in the readout analysis was to
remove all neurons that showed temporal trends over trials. Neurons with nonstationary trends
were defined as those neurons that had an average firing rate variance in 20 consecutive trials that
was less than half the trial firing rate variance over the whole session. Because the stimuli were
presented in random order, the average variance in 20 tirals should be roughtly equal to the
variance over the whole session (and deviations from this suggest that there could be artificats in
the firing rate due such factors are movement in the recoding electrode). 42 ITC and 34 PFC
neurons met this trend criterion, and were excluded from the decoding analyses in the paper.
Below shows the results for decoding identity and category informatoin from ITC and PFC when

these trends neurons were both included and excluded. As can be seen, the decoding accuracies
are usually slighly lower when the neurons with trends are included, however overall the pattern
of results is very similar. Also shown below are 4 random ITC and 4 random PFC neurons that
were considered 'trend neurons' as defined by the criterion listed above (in order for the reader to
get a sense of what the trends in the firing rates looked like).
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Another method to examine 'Abstract' Category information

ITC results comparing within category accuracy vs. mixed category for the 9 permutations
of the prototypes

cl c3d d2 c1 c3 1 d3

c2 c3 d1 d2

c1 3 d2 d3

c2 3 d1 3 C2 3 d2 d3

The (ms)

PFC results comparing within category accuracy vs. mixed category for the 9 permutations
of the prototypes

c c2 d2 d3

C2 C3 d1 d2 C2 C3 d2 d3

500 1000 1500 2000 2500
Thm (ms)

S0o 100 1500 2000 2500
Tlm (ms)
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Average of within category accuracy minus the mixed category decoding accuracies
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Additional supplemental material 3.4 An alternative 'abstract' category readout: within
category minus mixed category accuracy. In order to further evaluate whether there is any
'abstract' category information that is possibly separate from visual properties of the stimulus, we
designed an analysis in which we trained and tested a classifier using two dog and two cat
prototypes, and compared the results from the within category readout (e.g., [cl c2] vs. [dl d2]),
to the decoding accuracies obtained in the two 'mixed' category readout conditions (e.g., [cl dl]
vs. [dl d2], and [cl d2] vs. [c2 dl]). Results from all of the 9 permutations comparing the same
vs. the two mixed conditions for ITC and PFC are shown below. For PFC, in all 9 permutations,
the within category accuracy (magenta trace) is much higher than the mixed category accuracies
(green and cyan traces), while in ITC the within category information is either higher or
equivalent to the mixed category accuracies when the stimulus is visual, and the within category
accuracy is always higher in the response period. Given the large amount of visual information in
ITC, it is not surprising that for some of the conditions while the visual stimulus is being shown,
the within category accuracy is equivalent to the mixed category information because for certain
prototypes the stimuli in the opposite category are probably more visual similar than the stimuli
within the category. However the fact that within category accuracy is never lower than the mixed
category information is likely a result of additional 'abstract' category information contained in
the firing rates of these neurons. For ITC during the delay period (and PFC at all time points),
visual information is not present in these areas, and thus only the influence of 'abstract' category
information is seen in the decoding accuracies.

We have also created an image that summarizes the amount of 'abstract' category information in
these areas using the above measure. To do this we took each of the 9 permutations of the within
category decoding accuracies and subtracted from them the average of the two mixed category
decoding accuracies. We then averaged over these 9 permutation and plotting the mean and
standard deviation from this averaging. The results are also shown below, and examining them
we see that initially ITC has about the same amount (or possibly slightly less) abstract category
information as PFC, however later in the trial PFC has more abstract information than ITC, which
largely confirms the results shown in Figure 3.3A of the paper.
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Additional supplemental material 3.5 Identity decoding for images within the same
category vs. mixed categories. The figures below show the results from decoding the identity of
images using images derived from three prototypes at a time (as proposed by one of the
anonymous reviewers of the paper). A comparison is made between the average of this decoding
for the within category prototypes ([Cl, C2, C3] and [Dl, D2, D3]) (green line) to the average of
the 18 other mixed category permutations ([Cl C2, D1], [Cl C2 D2], ..., [C3 D2 D3]) (magenta
line). Since the readout is for the identity of the 21 images, chance is 1/21. As can be seen in the
figures, for both PFC and ITC there is a significant amount of visual information present, and the
potential presence of 'abstract' category information in the within-category condition does not
seem to significantly degrade the ability of the classifier to decode the 'visually based' identity
information.
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Comparing abstract category decoding using neural vs. computational model unit data

c3 c2b
Model unit type

all units real data

Additional supplemental material 3.6 Decoding category information from the Model units
of Serre et al., (2007). To test if the 'abstract' category information described in Figure 3.3 could
be accounting for by visual image properties of the images, we applied the decoding methods to
simulated neural responses created from the Model units described in Serre et al., 2007.
Decoding results from training on images derived from 2 dog and 2 cat prototypes and testing on

the remaking cat and dog prototype (as was done in Figure 3.3) are shown below for several
different Model types. The blue x's are the results from the 9 permutations of training and test
prototype splits, the green boxes are the mean from these 9 runs, and the error bars are the
standard deviations. The right most column contains results from decoding the ITC neural data
using one 150ms bin staring 100ms after stimulus onset (i.e., 600-750ms into the trial, where
stimulus onset is at 500ms). As can be seen, the neural data achieves a higher decoding
performance than all the Model units types, and perhaps more significantly, results from the
decoding the neural data are always above chance for all 9 permutations of the data. These
results suggest that the results reported in Figure 3.3 are due to ITC having more 'abstract'
category information that is not directly inherent in the visual properties of the stimuli.
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A further examination of'Category Selective Index' analyses

sample period
0.5 -

0

-0.5 -
0

1 1

delay period

250 0 20 40
Neuron Rank Sorted by CSI value

0 10 20 30
Neuron Rank Sorted by CSI value

Additional supplemental material 3.7 Is there category information in ITC during the
sample period? A comparison of decoding analyses and the Category Selective Index
analysis of Freedman et al. 2003. In the original paper of by Freedman et al. (2003) analyses of
the data suggest that there is no category information in ITC during the sample period, and that
category information does not appear in ITC until the delay period. However in our new
decoding based analyses, we find that there seems to be a significant amount of 'abstract' category
information in ITC early in the sample period. In order to understand the different conclusion
obtained by these different analyses, we reexamined the category selective index (CSI) used by
Freedman et al. (2003) in more detail. The first difference between the original CSI analysis and
the decoding analysis, is that in the CSI analysis, the firing rates were taken over much longer
time periods; i.e., the sample period in the original analysis used firing rates averaged over 600ms
starting 100ms after stimulus onset and ending 100ms after stimulus onset, compared to the
decoding analysis in which firing rates in 150ms sliding bins were used. From examining the
decoding results (Figure 3.3), it is clear that while early in the sample period decoding accuracies
for abstract category information PFC and ITC approximately the same, later in the sample period
(and for the rest of the trial), PFC has a larger amount of abstract category information than ITC.
Thus by using large time windows of analysis, the fact that ITC and PFC initially have the about

same amount of abstract category information could not be seen in the original CSI analysis.
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A second factor that contributed to this discrepancy in results is that in the original CSI analysis
an ANOVA was first run to determine which neurons were visually selective, and then the CSI
values from only these visually selective neurons were used in the subsequent statistical analyses.
However since ITC has many more visually selective neurons that are not category selective
(particularly during the sample period when the stimuli were being shown), the results were
biased by including a larger number of neurons in ITC in these analyses. Above is a plot of the
CSI values for ITC and PFC using exactly the same parameters that were used in the original
Freedman et al. paper (i.e., using only visually selective neurons as determined by and ANOVA,
and longer time bins), but we have sorted the CSI values and then plotting them as a function of
their rank order of their category selectivity as determined by the CSI value. As can be seen from
the plot for the sample period, the neurons that have the highest CSI scores have approximately
the same values for ITC and PFC. However for ITC, there is a long tail of neurons that have CSI
values that are close to zero (which are due to the large number of visually selective neurons that
are not category selective). Thus when statistics are done using all visually selective ITC
neurons, the long tail of non-category selective neurons biases the results towards zero, making it
seem like the population as a whole seem non-category selective. This should be contrasted with
the results from the delay and response periods in which the highest CSI values are larger for PFC
than for ITC, and during these time periods the decoding analysis agrees with the CSI values in
stating that there is more abstract category information in PFC than ITC. It should also be noted
that the decoding analyses that used feature selection (see section title 'compact and redundant
information' and Figure 3.4), show that most of the abstract category information is contained in a
small subset of neurons, thus calculating statistics based on larger populations can lead to
incorrect conclusions. Finally, if a t-test is run between the CSI values in ITC and PFC using all
the neurons (not just the ANOVA visually selective neurons) during the sample period (and even
using the same larger time bins used in the original paper by Freedman et al.), the p-value is .058,
which fails to meet the typical alpha level of .05 (and this value would probably be even larger
only the first half of the sample period was used in which the decoding analysis indicates there is
no difference in the amount of category information between ITC and PFC)
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Analyses from Meyers et al., Cosyne 2009

The following results are taken from a 2009 Cosyne poster:

Meyers, E., Freedman, D., Kreiman, G., Miller, E., Poggio T. Decoding dynamic
patterns of neural activity using a 'biologically plausible' fixed set of weights.
Computational Systems Neuroscience, 2009

The purpose of the poster was to examine possible ways that downstream neurons could

decode information from an upstream area if information in the upstream area is

contained in population activity that is changing dynamically. The conclusion of the

poster was that approximately 75-80% of the information that can be extracted using a

more complex coding scheme that has dynamically changing weights, can be extracted

with using a simplier, more 'biologically plausible', fixed set of weights (that was

determined by training a classifier using the average firing rate over the whole course of a

trial); thus even though the populations of ITC and PFC neurons contained abstract

information in a dynamic manner, it still was possibly for a downstream area to extract

the majority of information using a simple decoding scheme. In retrospect, however, we

view the fact that certain types of information are coded dynamically might be an

indicator that more complex processing is occurring, and to only examine how this

information could be extracted is most likely glossing over some potentially interesting

insights about how information is processed in the brain. Regardless of the

interpretation, several of the findings related to the Cosyne poster were quite interesting,

so they have been included them below.

Biologically implausibility of systematically changing synaptic weights

If the weights learned by a classifier are interpreted as synaptic strengths (as is commonly

assumed in neural network interpretations of decoding algorithms, (see Additional

supplemental material 2.1) then changing the weights of a classifier dynamically creates a

biologically unlikely model whereby the synaptic strengths between neurons change

within the time-course of a single trial (consistently across trials of a given type), in a

way that is time locked to the onset of the stimulus. Below we examine how the brain

could exploit the information that is contained in a dynamic population code.
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Examining firing rate interval lengths that contain maximal information

Before assessing how effective different decoding schemes are at extracting information

from dynamic populations of neurons, we examined the neurons' firing rate bin size and

latency that contained the largest amount of information for discriminating between dog

and cat stimuli using an ROC analysis (see Additional supplemental material 3.8).

Results show that there is a large variation across the population of neurons for both the

duration and the latency of selectivity (see Additional supplemental material 3.9).
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Additional supplemental material 3.8 Finding the bin size and latency that contains
maximal discrimination between categories using an ROC analysis for four example
neurons. The area above or below the ROC curve was calculated using firing rates calculated
over different bin sizes (y-axis), and at different latencies (x-axis). For each neuron, we measured
this ROC value every 5ms using bin sizes that ranged from 50ms to 10OOms. We then calculated
the maximum ROC value for each neuron, the latency when this maximum ROC value occurred
and the bin width at which the maximum ROC value occurred.
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Additional supplemental material 3.9 Distribution of ROC area bin width sizes (left), and
ROC areas as a function of latency (right). Population statistics derived from these ROC
values show that there is a wide range of optimal bin widths for different neurons, although
overall there are more neurons with small bin widths than with large bin widths (left plots). Also,
there was no consistent relationship between the magnitude of the ROC values and neurons'
optimal bin widths (right plots).

Population decoding using different bin sizes

Given that the optimal bin width varies widely between different neurons, we examined

how bin size affects decoding accuracy when a population of neurons is used. Results

from this analysis revealed that the highest decoding accuracies occurred when bin sizes

of 350ms or larger are used (Additional supplemental material 3.10). The reason larger

bin sizes lead to higher decoding accuracies is most likely due to more neurons with short

time windows of selectivity being included within these larger integration windows.
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Additional supplemental material 3.10 Decoding accuracies in ITC and PFC using different
bin sizes. Training and testing was done at the same time, at 50ms intervals, using the firing rates
in different bin sizes centered at the time shown above in the figures. Best decoding accuracies
were obtained for bin sizes greater than 350ms.
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Weighting sub-bins within a 600ms sliding time window

Next we examined whether a higher decoding accuracy could be achieved by having

separate weights on smaller sub-bins which are then combined within a larger integration

window. To do this we used a 600ms integration window, and we compared the results

from using twelve 50ms bins, six 100ms bins, four 150ms bins, two 300ms bins or one

600ms bin. Overall the results showed that using separate weights for smaller sub-bins

did not lead to a large increase in decoding accuracy (see Additional supplemental

material 3.11). We believe the reason that having more weights on smaller sub-bins did

not lead to a large improvement in accuracy is due to the fact that spiking activity outside

neurons' windows of selectivity does not drastically interfere with the selectivity

established within neurons' windows of selectivity.
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Additional supplemental material 3.11 Decoding accuracies using different sub-bin sizes
within a 600ms integration window. Results show that allowing different weights for sub-bins
within a larger 600ms window did not improve decoding accuracy, despite the fact that the
population code was dynamically changing in time. We interpret this finding as due to the fact
that activity outside a neuron's maximal discrimination window did not dramatically interfere
with the selectivity established within a neuron's maximal discrimination window (it should also
be noted that having more training data could potentially change these results, although given
there were 50 points per class, this does not seem too likely).
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Decoding dynamic patterns using a fixed set ofweights

We also compared the decoding accuracy using dynamic weights based on 150ms sliding

bins, to using a fixed more 'biologically plausible' set of weights based on training the

classifier using a 2000ms bin starting at stimulus, onset (see Additional supplemental

material 3.12). As can be seen, the fixed set of weights led to a decrease in performance

at most time periods. However, overall from stimulus onset to the end of the trial, the

classifier based on a fixed set of weights still did 80% as well the dynamic weight

classifier in ITC, and 76% as well as the dynamic weight classifier in PFC. Thus while

clearly dynamic weights are capable of extracting more information, the fixed set of

weights is still capable of achieving a high level of decoding accuracy.
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Additional supplemental material 3.12 Comparison of training a classifier using dynamic
weights (black trace), to training using one fixed set of weights for all time points (green
trace) for category information decoding. The results from the dynamic weights are based on
a 150ms sliding bin training paradigm (as as was used for Figure 3.2). The results for the fixed
set of weights are based on training a classifier on 2000ms of data that start at the time of
stimulus onset. The results show that decoding accuracy is higher when dynamically changing
weights are used, but that good performance is still achieved using a fixed set of weights.
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Decoding the time since stimulus onset

Finally, we examined if we could decode the time since the start of a trial using a

regularized least squares regression algorithm. The results show that it is indeed possible

to decoded the latency from stimulus onset in ITC and PFC at above change levels of

accuracy (Additional supplemental material 3.13).
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Additional supplemental material 3.13 Decoding the time since the start of a trial using data
from ITC (blue trace) and PFC (red trace). Results are based on using a regularized least
squares regression algorithm to predict the time since the start of a trial. The fact that both the
curves for ITC and PFC slope upward indicate that it was possible to decode the time since the
start of a trial at level above chance (regardless of which type of stimulus was shown).
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Additional analyses of abstract category information using data from Roy et al., 2010

One of the main concerns about the analysis in Figure 3.3, is that the results are not due

to populations of ITC and PFC neuron's grouping the stimuli into abstract categories, but

rather it is an artifact of visual properties of the stimuli. In particular, if the three cat

prototypes are more visually similar to each other than they are to the three dog

prototypes (and conversely, if the three dog prototypes are more visually similar to each

other than they are to any of the cat prototype images), then the decoding analysis would

indicate that there is indeed abstract category information, even if there was not any

present. While the analyses examining computational model units suggests this is not the

case (see Additional supplemental material 3.6), having further verification using actual

neural data would lead to much more confidence in the interpretation of these findings.

Fortunately, data collected in recent study by Roy et al. (2010), has the potential to

address this issue.

The study of Roy et al. (2010) was very similar to the Freedman et al. (2003) study (both

studies were conducted in Earl Miller's lab at MIT). Monkeys were trained to

discriminate between morphs from 2 cat and 2 dog prototypes, using an almost identical

experimental design as Freedman et al. (2003). The one critical difference, however, was

that in Roy et al. (2010), the category boundary that indicated which stimuli should be

grouped together changed from trial to trial, based on a cue that was given at the start of

the trial (i.e., one type of cue indicated that catl prototype derived images should be

grouped with cat2 prototype derived images, while the other cue indicated that catl

prototype derived images should be grouped with dog1 prototype derived images).

Because of this changing category boundary, it was now possible to redo the decoding

analyses for abstract category information separately for each category boundary and

compare the results. If higher decoding accuracies are obtained for the task-relevant

category grouping for both category boundaries, then this would indicate that indeed ITC

and PFC have abstract category information (since if it were the case that a higher

measure of abstract category information was obtained due to the visual similarity in the
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prototype images, this would lead to a lower classification accuracy for the other category

boundary).

Before conducting the abstract category analyses on this data, we first replicated some of

the other findings of Meyers et al. (2008). Additional supplemental material 3.14 shows

a replication of Figure 3.2 using the data from Roy et al. (2010). As can be seen the

results between the two studies look very similar (although the decoding accuracies from

Roy et al. (2010) as slightly lower due to the fact that fewer neurons were used in these

decoding analyses). We also directly compared the decoding accuracies from the two

studies on the same plot using the same number of training and test points in both studies

(see Additional supplemental material 3.15), which again show that the results are very

similar. Finally, Additional supplemental material 3.16 replicates the dynamic

population coding results of Figure 3.6 by training and testing the classifier at different

type periods (Additional supplemental material 3.16 shows the dynamics for basic

category information rather than abstract category information).
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Additional supplemental material 3.14 Replication of Figure 3.2 using data from Roy et al.
(2010). A, Decoding identity information. 100 neurons, and a 4-fold cross-validation paradigm
was used (this study had 28 unique stimuli, leading to 3 x 28 = 84 training points, and 28 test
points per CV split). B, Decoding category of the SAMPLE-STIMJLUS. 128 neurons were
used in a 5-fold cross-validation paradigm that had 10 repetitions of trials in each category in
each cross-validation split (thus a total of 4 x 10 x 2 = 80 training points, and 20 test points were
used per CV split). This analysis was run separately and then averaged over data from the two
different category boundaries. C, Decoding the category of the DECISION-STIMULUS. The
same parameters/paradigm that were used in subplot B were used here. D, Decoding the
match/non-match status of a trial. 128 neurons and a 5-fold cross-validation paradigm was used
with 30 repetiation of each trial type (240 training points, 60 test points, per CV split). E-F
comparing different types of information in for ITC and PFC respectively.
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Additional supplemental material 3.15 Comparison of the different types of information
using the fixed boundary data of Freedman et al. 2003 (blue and red traces) to the changing
category boundary data of Roy et al. 2010 (cyan and magenta traces), for ITC (upper blue
and cyan plots) and PFC (lower red and magenta plots). The same parameters were used for
both analyses in order to make a fair comparison.
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al . (2010) experiment. The classifier was trained using data from the time indicated on the y-
axis, and was tested using data from the time indicated on the x-axis (300ms bins were used
sliding at 50ms intervals). Upper plots show results for boundary 1, and lower plots show the
results for boundary 2. Data on the left is from ITC while data on the right is from PFC. 50
bootstrap neurons were used on each iteration. The same dynmanic population code is seen here
as was seen for the Freedman et al. (2003) data (the results are slightly weaker for ITC on
boundary 2, although they still seem present). Results are based on a 5-fold cross-validation
paradigm (one example of each class was used in each cross-validation split).
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Additional supplemental material 3.17 Training at time 1 and testing at time 2 for
decoding the identity of the 28 stimuli, for ITC (left) and PFC (right). The results show that
there seems to be higher decoding accuracies when training and testing at the same time, but that
there is some spread to other times periods as well. Given that the decoding accuracy is low,
these results should be interpreted cautiously since category information could be contributing to
the decoding accuracy of this identity information.

Since it was possible to replicate the basic results, we went on and applied decoding

analysis to evaluate how much abstract category information was in ITC and PFC. To do

this analysis, the classifier was trained to discriminate between data from two of the

prototypes, and then tested on data from the other two prototypes (similar to the analysis

in Figure 3.3), and the analysis was run separately for training to the classifier to group

the stimuli along boundary 1, and training to group the stimuli along boundary 2. The

key comparison was to evaluate the decoding accuracy in the 'congruent' case, where the

category boundary the category boundary used by the classifier matched the category

boundary used by the monkey, to the 'incongruent' case, where the category used by the

classifier did not match the category boundary used by the monkey. For example, we

could train the classifier to discriminate between cl and c2, and then test the classifier on

dl and d2 data (i.e. train the classifier along category boundary) and then compare the

congruent trial decoding, where the category boundary the monkey was using grouped c 1

and dl together, to the incongruent case, where the category boundary the monkey was
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using grouped cI and c2 together20 . If abstract category information was really present,

then there should be a higher decoding accuracy for the congruent trials than for the

incongruent trials, indicating that the similarity structure in the neural data matched the

similarity structure used by the monkey. It should be noted that whether the classifier

was above or below 'chance' level is based on the similarity of the stimuli, so we should

expect that for one of the boundaries classification decoding accuracy might be above

chance, while for the other boundary it might be below chance. However what is

important is whether the accuracy for the congruent decoding case is higher than the

decoding accuracy for the incongruent case, which indicates a warping of the visual

similarities based on the behavioral significance of the stimuli.

The results from this analysis are shown in Additional supplemental material 3.18. As

can be seen, after the onset of the stimuli (first vertical line before 1500ms), the decoding

accuracy for the congruent grouping was higher than the decoding accuracy for the

incongruent grouping for both training boundaries, and for both ITC and PFC, indicating

that the behaviorally relevant grouping of stimuli was influencing the neural similarity of

the stimuli in these areas (unfortunately the results are a bit noisy due to the fact that the

analysis is based on only 36 bootstrap neurons, since there were only 40 neurons in ITC

that had enough repetitions of all the stimuli). Additional supplemental material 3.19 left

figures, show the results averaged over the two training-testing category boundaries for

the congruent and incongruent cases, and Additional supplemental material 3.19 right

figures, show the average incongruent results subtracted from the congruent results, both

of which indicate that there is abstract category information in both ITC and PFC.

20 It should be noted that all four permutations of training and testing of the prototypes for a given training-

testing boundary were run, and the results were averaged over these permutations; e.g., for training on cI -

dl vs. c2-d2 boundary, the classifier was run on: train on cl vs. c2, test dl vs. d2; trained on cl vs. d2, test

c2 vs. d2, etc..
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Additional supplemental material 3.18 Plots showing that there is abstract category
information in ITC and PFC in the changing category boundary experiment of Roy et al.,
(2010). For this analysis the classifier was training to discriminate between category boundary 1
(left plots) or category boundary 2 (right plots), and the results were compared when the category
boundary the monkey was were congruent with the category boundary used to train the classifier
(blue traces) or were incongruent with the category boundary used to train the classifier (red
traces). As can be seen, after the stimulus onset (black vertical line around 1500ms) the decoding
accuracy is generally higher for the congruent trials compared to the incongruent trials for both
ITC and PFC, indicating that there is abstract category information in both these areas. The
results in this figure are based on using 36 bootstrap neurons, and a 500ms sliding bin sampled at
50ms intervals.
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Additional supplemental material 3.19 Abstract category decoding results for the changing
boundary experiment combined over the two category boundaries. The figures on the left
show the results from Additional supplemental material 3.18 averaged over the two training
category boundaries. As can be seen, the fact that the congruent category decoding accuracy
(blue trace) is higher than the incongruent decoding accuracy (red trace) gives support to the idea
that there is abstract category information in both ITC and PFC. The figures on the left show the
results of subtracting the incongruent category accuracy from the congruent category decoding
accuracy (i.e., subtracting the red trace from the blue traces on the left plots). The above chance
decoding accuracies again indicate that there is abstract category in ITC and PFC.
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Chapter 4: Examining high level neural
representations of cluttered scenes

The material in this chapter has been published as a CBCL/AI memo:

Meyers, E., Embark, H., Freiwald, W., Serre, T., Kreiman, G., and Poggio T. Examining
high level neural representations of cluttered scenes. MIT-CSAIL-TR-2010-
034/CBCL289, Massachusetts Institute of Technology, Cambridge, MA, July 29, 2010

Abstract

Humans and other primates can rapidly categorize objects even when they are embedded
in complex visual scenes (Thorpe et al., 1996; Fabre-Thorpe et al., 1998). Studies by
Serre et al., 2007 have shown that the ability of humans to detect animals in brief
presentations of natural images decreases as the size of the target animal decreases and
the amount of clutter increases, and additionally, that a feedforward computational model
of the ventral visual system, originally developed to account for physiological properties
of neurons, shows a similar pattern of performance. Motivated by these studies, we
recorded single and multi unit neural spiking activity from macaque superior temporal
sulcus (STS) and anterior inferior temporal cortex (AIT), as a monkey passively viewed
images of natural scenes. The stimuli consisted of 600 images of animals in natural
scenes, and 600 images of natural scenes without animals in them, captured at four
different viewing distances, and were the same images used by Serre et al. to allow for a
direct comparison between human psychophysics, computational models, and neural
data. To analyze the data, we applied population 'readout' techniques (Hung et al., 2005;
Meyers et al., 2008) to decode from the neural activity whether an image contained an
animal or not. The decoding results showed a similar pattern of degraded decoding
performance with increasing clutter as was seen in the human psychophysics and
computational model results. However, overall the decoding accuracies from the neural
data lower were than that seen in the computational model, and the latencies of
information in IT were long (-125ms) relative to behavioral measures obtained from
primates in other studies. Additional tests also showed that the responses of the model
units were not capturing several properties of the neural responses, and that detecting
animals in cluttered scenes using simple model units based on V1 cells worked almost as
well as using more complex model units that were designed to model the responses of IT
neurons. While these results suggest AIT might not be the primary brain region involved
in this form of rapid categorization, additional studies are needed before drawing strong
conclusions.
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Introduction

Human and other non-human primates are able to rapidly extract information from

complex visual scenes. Psychophysics studies have shown that humans can make

reliable manual responses indicating whether an animal is present in a visual scene as

early as 220ms after stimulus onset (Thorpe et al., 1996; Rousselet et al., 2002; Delorme

et al., 2004), and when shown an animal and a non-animal image simultaneously (one in

the left and right visual field), humans can reliably initiate saccades to the animal image

with latencies as fast as 120ms after stimulus onset (Kirchner and Thorpe, 2006).

Additional studies in humans have also shown that this rapid categorization behavior can

occur in the absence of attention (Li et al., 2002), that performance is just as accurate

when engaging in the task simultaneously in both left and right visual fields (Rousselet et

al., 2002), and that categorization accuracy decreases as the amount of clutter in an image

increases (and the size of the target decreases) (Serre et al., 2007). Similar studies using

macaques have shown similar results although monkeys have even faster reactions times,

with manual reaction times as quick as 180-230ms and saccade reaction times as fast as

100ms after stimulus onset (Fabre-Thorpe et al., 1998; Delorme et al., 2000; Mace et al.,

2005; Girard et al., 2008). Thus humans and macaques have the ability to rapidly

categorize complex and diverse images, potentially in parallel, and seemingly without the

need to deploy attention.

A few studies have also examined the neural mechanisms that underlie this rapid

categorization behavior. Electroencephalography (EEG) studies in humans on animal

detection tasks have shown differences in event-related potentials (ERPs) around 150-

170ms after stimulus onset between target present and target absent trials (Thorpe et al.,

1996; Rousselet et al., 2002; Delorme et al., 2004). Functional magnetic resonance

imaging (fMRI) studies in humans have also shown that when subjects need to detect a

particular category of object in a scene, patterns of activity BOLD activity in lateral

occipital complex (LOC) are similar to the patterns seen when an isolated image of an

object from the same category is shown (Peelen et al., 2009).
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Electrophysiological studies in macaques have also examined the effects that cluttered

images have on neural responses and have shown that neurons' selectivity is not changed

when a monkey fixates (and notices) a preferred object in the context of a cluttered scene

(Sheinberg and Logothetis, 2001; Rolls et al., 2003). Additionally, studies on the neural

basis of categorization have shown a diverse set of areas including the inferior temporal

cortex (IT) (Sigala and Logothetis, 2002; Freedman et al., 2003; Kiani et al., 2007;

Meyers et al., 2008), the prefrontal cortex (PFC) (Freedman et al., 2000, 2001; Shima et

al., 2007), and lateral intraparietal cortex (LIP) (Freedman and Assad, 2006) are

involved in different types of categorization behavior. However, these studies have

generally used simpler stimuli of isolated objects, and a direct examination of the neural

processing that underlies the rapid categorization behavior in complex cluttered images

has not been undertaken.

In this study we begin to examine the neural activity that could be directly relevant for

rapid categorization in macaques. In particular, we are interested in relating neural

activity to a class of hierarchical feed-forward computational models of the ventral visual

pathway (Serre et al., 2005, 2007) in order to assess whether this class of models is a

good description of the neural processing underlying rapid categorization. Recent work

Serre et al., (2007), showed that such computational models could match several aspects

of human performance on rapid categorization tasks. In the study of Serre et al., (2007),

a stimulus set was used that consisted of images of animals and natural scenes that were

taken at four different distances from a camera (see Figure 4.1A). These images were

then used in a psychophysics task in which each image was briefly presented to human

subjects who had to press one button if an animal was in the image and a different button

if the image did not contain an animal. Results from this study showed that humans

achieved the highest accuracy when the full body of the animal was in an image, and that

detection accuracy was lower for close-up images of animals' heads, and also for images

in which the animal appeared further from the camera (see Figure 4. 1B). A similar

pattern of detection accuracy was also seen when using the output of model

computational units to classify the presence/absence of an animal was in the same
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images. Additionally, there was a high correlation between the mistakes that humans

made and the mistakes that were made by the model (r = -0.70), which suggests that the

model was using similar visual information as humans. While these correlations suggest

that humans and the computational model might be processing information in a similar

way, directly testing whether neural responses match the outputs of the computational

model would give much stronger evidence as to whether the computational model is a

good description of the visual processing involved in this rapid categorization task. Thus,

the purpose of this study was to test the plausibility of the computational model more

directly by comparing the computational model output to the responses of neurons in

areas that have thought to be involved in rapid categorization tasks.

In order to compare the computational model to neural data, we recorded from neurons in

the ventral visual pathway as macaque monkeys viewed the same images used by Serre et

al., (2007). We then analyzed the data using a decoding procedure (Hung et al., 2005;

Meyers et al., 2008) that tried to predict whether an image contained an animal based on

using either the neural recordings or the computational model output. Results from our

analyses show that indeed several aspects of the neural activity matched both the

computational model and the psychophysics including the relationship between

classification accuracy and the size of the animal in the scene. However surprisingly,

overall the classification accuracy from using the neural data was lower than the accuracy

seen than when using computational model units and the correlation between the pattern

of mistakes made by the classifier using the neural data and the computational model

units, while highly significant, was still much lower than the correlation of mistakes

previously seen between humans and the computational model. Additionally, the latency

of information in inferior temporal cortex (IT) was relatively long (100-150ms) relative

to the fastest saccade times previously reported (which were on the order of 100ms),

which suggest that perhaps IT is not the critical area involved in rapid categorization

when saccades are involved. In the discussion section of the paper we review several

factors could have contributed to these discrepancies in the results between the model and

the neural data that could potentially explain our results, however further

electrophysiological studies are needed to make more conclusive statements.
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Methods

Subjects and surgery

Two male adult rhesus macaque monkeys (referred to as Monkey A and Monkey B) were

used in this study. All procedures conformed to local and NIH guidelines, including the

NIH Guide for Care and Use of Laboratory Animals as well as regulations for the welfare

of experimental animals issued by the German Federal Government. Prior to recording,

the monkeys were implanted with ultem headposts (for further details see Wegener et al.,

2004) and trained via standard operant conditioning techniques to maintain fixation on a

small spot for a juice reward.

Recordings and eye-position monitoring

Single-unit recording & Eye-position monitoring. We recorded extracellularly with

electropolished Tungsten electrodes coated with vinyl lacquer (FHC, Bowdoinham, ME).

Extracellular signals were amplified, bandpass filtered (500Hz-2 kHz), fed into a dual-

window discriminator (Plexon, Dallas TX) and sorted online. Spike trains were recorded

at 1 ms resolution. Quality of unit isolation was monitored by separation of spike

waveforms and inter spike interval histograms (ISHs). A total of 116 well isolated single

units were recorded from dorsal anterior inferior temporal cortex (AITd) from monkey A,
and 256 well isolated single units were recorded from AITd from monkey B.

Additionally for monkey A, 444 well isolated units were recorded from dorsal posterior

inferior temporal cortex (PITd), and 99 well isolated units were recorded from ventral

posterior inferior temporal cortex (PITV). Eye position was monitored with an infrared

eye tracking system (ISCAN, Burlington MA) at 60 Hz with an angular resolution of

0.250, calibrated before and after each recording session by having the monkey fixate

dots at the centre and four corners of the monitor.
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Ophthalmic examination

Monkey A's eyes were inspected by one of the experimenters and a trained

ophthalmologist with two different ophthalmoscopes. These measurements, performed in

the awake and the ketamine anesthetized monkey, revealed myopia on the left (-3

dioptries) and right (-9 dioptries) eyes. In addition signs of astigmatism and possible

retinal deficiancies were observed.

Stimuli and task

Two sets of stimuli were used in two different experiments. In the 'animal-scenes'

experiment, the stimuli consisted of 600 images of animals in natural scenes, and 600

images of scenes without animals (see Figure 4. 1A for examples of these stimuli). The

animal and scene images were captured at four different distances from a camera, which

we will refer to as 'head', 'close-body', 'medium-body' and 'far-body' images, which

describes how the animals appeared in the different types of images, as determined by a

set of human ratings (see Serre et al., 2007 for details). The images used in our

experiments are same images as Serre et al., (2007) which allows us to directly compare

results from the neural data to previous human psychophysics and computational

modeling results. In the second 'isolated objects' experiment, the stimuli consisted of 77

images of objects from 8 different categories (food, toys, cars/airplanes, human faces,

monkey faces, cats/dogs, boxes, and hands). These stimuli were previously used in a

study by Hung et al., (2005), and allowed us to compare our neural data to previous

recordings made from anterior IT (see Figure 4.1C for examples of these stimuli). More

details about the stimulus sets can be found in Serre et al., (2007) and in Hung et al.,

(2005).

For both experiments, the stimuli were presented in a rapid sequence, with each stimulus

being presented for 100ms, followed by 100ms inter-stimulus-interval in which a gray

screen was shown (see Figure 4.1 D). During the presentation of the stimuli, the monkey

sat in a dark box with its head rigidly fixed, and was given a juice reward for keeping
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fixation for 2-5 seconds within a 1.1 degree fixation box (when fixation was not kept, the

image sequence during which fixation was not maintained, was repeated). Visual stimuli

were presented using custom software (written in Microsoft Visual C/C++), and

presented at a 60 Hz monitor refresh rate and 640 x 480 resolution on a 21" CRT

monitor. The monitor was positioned 54 cm in front of the monkey's eyes, and the images

subtended a 6.40 x 6.40 region of the visual field. For the isolated-objects experiment, all

images were presented in random order until 10 presentations of each of the 77 objects

had been shown. For the animal-scene experiment, the 1200 images were divided into

blocks of 120 images, with each block consisting of 15 animal and 15 scene images from

each of the four camera distances. The experiment consisted of running 5 presentations

of each image within a block before going on to present the next block. For every

experimental session, the blocks were presented in the same order, but the images within

each block were fully randomized.
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Figure 4.1 Example stimuli and the experimental design. A. Example images from the
animal-scenes experiment in which 600 images of animals and 600 images of scenes that did not
contain animals were shown to two monkeys. The images in the experiment come from four
different camera distances (titled 'head', 'close-body', 'medium-body' and 'far-body'). The top
row shows animal images examples, and the middle row shows 'natural' scene images and the
bottom row shows 'artificial' scene images (the data set consisted of 300 natural and 300 artificial
scene images). B. Results from (Serre et al., 2007) showing human psychophysics and
computational modeling results. As can be seen, the ability of people to detect animals in these
images is best for the 'close-body' condition and decreases in the medium-body and far-body
conditions where the target animal becomes smaller and the amount of clutter increases (blue
trace). Also, similar results were seen when training a classifier on computational model units
that are based on the known properties of neurons in the ventral visual pathway (red trace). C.
Example images from isolated objects experiment. D. The experimental design used for both
experiments, in which images are shown for lOOms followed by a lOOms ISI in a rapid sequence.

155

...... ..... .. . .....



Data analysis

Decoding analyses. The main analysis method used in this paper is neural population

decoding which has previously been described in Hung et al., (2005) and Meyers et al.,

(2008). Briefly, this method works by creating pseudo-populations of neural data that

consist of firing rates from a few hundred neurons that were recording independently but

are treated as if they had been recorded simultaneously. A pattern classifier is first

trained on several examples of these pseudo-population responses for each stimulus type,

and then the classifier is used to make predictions about which stimulus type is present in

a new set of pseudo-population responses that come from a different set of trials. The

classification accuracy is calculated as the percentage of correct predictions made on the

test dataset. For decoding which exact image was shown (Supplemental figure 4.1) the

decoding procedure is used in a cross-validation paradigm in which the pseudo-

population responses are divided into k sections; k-i sections of data are used from

training the classifier and the last section is used for testing, and the procedure is repeated

k times each time using a different section of the data for testing (for supplemental

figures 1, there were k=10 splits of the data, with each split consisting of pseudo-

population responses from each of the 77 isolated objects). For all analyses, a bootstrap

procedure is also applied in which different pseudo-populations are created from the data,

and then whole cross-validation procedure is run. In this paper, the bootstrap procedure

is run either 50 times for the isolated object analysis, or 250 times for the animal/non-

animal analyses, and the final decoding results consist of the average decoding accuracy

over all these different bootstrap-like (and cross-validation) runs. The error bars that are

plotting are the standard deviation of the classification accuracy statistics calculated over

all bootstrap-like runs.

Most decoding results in this paper are based on using a maximum correlation coefficient

(MCC) classifier (this classifier has also been called a correlation coefficient classifier

(Meyers et al., 2008), the maximum correlation classifier (Wilson and McNaughton,

1993) and the dot product algorithm (Rolls et al., 1997) and is described in those papers).

We also make use of support vector machines (SVMs), and regularized least squares
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(RLS) classifiers (Vapnik, 1995; Chang and Lin, 2001; Rifkin and Lippert, 2007). It

should be noted that the MCC classifier does not have any 'free-parameters' that are not

completely fixed by the data, while the SVM and the RLS classifiers have a single free-

parameter (called the error penalty parameter and denoted by the letter C)2 1 that

determines the tradeoff between how well the classifier should fit the training data, versus

how complex of a function should the classifier use. Larger values of the error penalty

parameter C will cause the classifier to use more complex functions that better fit the

data, however using a function that is too complex will often hurt the ability to correctly

classify new points that are not in the training set (i.e., the classifier will overfit the

training data). Conversely, if the value of C is too small, then the classifier will choose a

function that is too simple that will not fit the training data very well which will also

cause the classifier to generalize poorly to new data. For the RLS classifier, there is an

efficient way to find the optimal value of C using only the training data which we always

used (for this reason we generally prefer to use an RLS classifier over a SVM; see Rifkin

and Lippert, 2007). For other analyses we are interested in comparing our work to

previous work that used SVMs, thus we explicitly vary the value of C and see how

changes in this parameter affect the cross-validation results (see Figure 4.6C). It should

be noted that in order to make the problem of finding a good value for C computationally

tractable when using an SVM, our analyses look at the cross-validation results from

changing C rather than optimizing C using only the training data and then applying cross-

validation (as is done for the RLS results); thus the classification accuracies from these

analyses could be slightly biased upward due to over-fitting.

Before the data is passed to the classifier we calculate the mean and standard deviation

for each neuron/model-unit using only the training data, and then we z-score normalize

the training and test data using these means and standard deviations. The reason for

normalizing the data is that the range of firing rates can vary drastically between different

neurons, and such normalization helps prevent neurons with high firing rates from

21 It is also common for researchers in machine learning to talk about a 'regularization constant' parameter

(denoted X) rather than the error penalty parameter C. The error penalty constant is related to the

regularization constant by the formula C = 1/(k *k), where k is the number of training examples.
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dominating the population analysis (although in practice we have found that results are

largely unaffected by such normalization).

Results from these decoding analyses are reported in two different ways. The first ways

is to simply report the 'classification accuracy', which is the percentage of the test data

points that are correctly classified. The second way we report the results is in terms of

the d-prime score. For the animal/no-animal decoding experiment, the d-prime decoding

accuracy is calculated as the z-transform of proportion of animal images correctly

classified as containing animals minus the z-transform of the proportion of images falsely

classified as containing animals. We use this d-prime score in order to be able to easily

compared our results to Serre et al., (2007) which also reported their results using this

measure.

Our main decoding analyses address the question of whether we could use neural data to

classify whether an image of a natural scene contains an animal (Figure 4.2). To do this

analysis we use data from 50% of the images for training and data from the remaining

50% of the images for testing, making sure that the data from exactly half the images in

both the training and test sets contain animals. Since each unique image was repeated 5

times when shown to the monkey, the data from all five trials for a specific stimulus went

into the training set while the test set consisted of a single pseudo-population response

from each image - thus the training set consisted of 3000 points and the test set consisted

of 600 points22 (using data from only a single trial of each image type for the training set

did not change the results, see Supplemental figure 4.10). Additionally, for each

bootstrap-like run, the images in both the training and test sets were divided evenly

among the four camera distance image classes (i.e., 25% head, 25% close-body, 25%

medium-body and 25% far-body in both the training and test sets), to keep all decoded

conditions balanced. When training the classifier, all data from different camera

distances was treated the same and a single decision boundary was learned for classifying

22 In retrospect it might have been better to use all 5 repetitions of the test points as well, which could have
possibly led to slightly smoother results and smaller errorbars, although the results overall would be very
similar.
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images that contained animals versus images that did not, exactly replicating the type of

analysis done by Serre et at., (2007)). When testing the classifier, the decoding results

for the four camera distances are typically reported separately (e.g., Figure 4.2A, Figure

4.2B etc.), and for some analyses, the results were further separated into accuracy for the

animal images vs. the accuracy for the scene images (e.g., Figure 4.3). For all analysis,

the decoding procedure was repeated 250 times using different images of animals/scenes

in the training and test set each time.

In order to calculate the latency of information in AITd, we used a permutation test to

assess when the decoding accuracies exceeded a level that would be expected by chance

(Golland and Fischl, 2003). For each 25ms time bin that was used in Figure 4.2C, we

randomly shuffled the image labels, and applied the full cross-validation decoding

procedure using 50 bootstrap-like iterations 23. This whole procedure was repeated 250

times to give a null distribution which indicates the range of expected decoding values

obtained if there was no real relationship between the images shown and the data

collected. P-values were calculated as the proportion of samples in the null distribution

that were greater than or equal to the decoding accuracy from the real data-label pairing.

The latency of information was then assigned to the first 25ms bin in which the p-values

were below p = 0.05 level.

Comparison to computational model units and human psychophysics results. In some of

the analyses we compare results from decoding neural activity to the results obtained

from decoding the outputs of computational model units of Serre et al., (2007) that were

run on the same animal/scene images. Briefly, the model of Serre et al., (2007) consists

of a sequence of processing stages that alternate between template matching operations

(which give rise to S units) and maximum operations (which give rise to C units), and

works as follows: On the first level (the SI level) images are convolved with a set of

23 Ideally we would have run 250 bootstrap trials for each sample in the null-distribution to match the 250
bootstrap runs used to create the real decoding results, however this was computationally too expensive.
Using only 50 bootstraps for each null sample will make each sample point in the null distribution slightly
more variable, which will lead to a slightly larger standard deviation in the null distribution and
consequently to more conservative p-values (i.e., more likely to make type II errors than type I error).
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Gabor filters at four different orientations and 16 different spatial scales at locations

distributed evenly across the image to create a larger vector of responses (these responses

are analogous to the output of VI simple cells). Next, for each Si orientation, the

maximum Si response value within a small spatial neighborhood and over adjacent

scales is taken to create a C1 vector of responses (these responses are analogous to the

output of VI complex cells). On the next level (the S2 level), for each local

neighborhood, C1 unit response are compared to a number of 'templates' vectors (these

template vectors were previously extracted from running the C1 model on a random

subset of natural images that were not used in these experiments); the S2 response vector

then consists of the correlation between each template vector and each CI neighborhood

response. For each template vector, the maximum value of S2 unit within a larger

neighborhood is then taken to create the C2 responses (these C2 responses have been

previously compared to the responses of V4 units by (Cadieu et al., 2007). Likewise S3

responses are created by comparing C2 responses to another set of templates, and C3

responses are created by pooling over even larger neighborhoods of S3 units. For more

details on the model see Serre et al., (2007). Analysis of the outputs of the

computational model units was done by applying the exact same decoding procedure that

was used to decode the neural data except the neural responses were replaced by the

responses of computational units. Unless otherwise specified in the text, the exact same

number of computational model units and of neural responses were always compared in

order to make the comparison of results are closely matched as possible.

Human psychophysics experiments were also previously run (Serre et al., 2007) using the

same images that were used in the electrophysiological experiments reported in this

paper. In those experiments, images were flashed for 20ms on a screen followed by a

30ms black screen inter-stimulus interval which was then followed by an 80ms mask, and

humans needed to report whether an animal was present in the images. For several

analyses in the paper, we compare the accuracy that humans could detect animals in

specific images to the accuracy that a classifier achieved in detecting an animal in a

specific image based on either neural data or data from computational model units.
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Comparing the computational model units to the neural data was done in several ways.

The simplest way to do this comparison was to plot the classification accuracies from the

computational model units next to the classification accuracies from the neural data

(Figure 4.2 and Figure 4.3). In order to do more detailed comparisons, two other

methods were used. In the first method, we compared neural population activity to

populations of computational model units by examining which images were consistently

classified as animals (regardless of whether the classification was correct) using either

neural data or computation model data as input to the classifier. To do this analysis we

ran the decoding procedure 250 times, and calculated how often each of the 1200 images

was classified as an animal. This yielded a 1200 dimensional 'animal-prediction' vector

for both the neural and computational model data. We then correlated the animal-

prediction vector derived from the neural data to the animal-prediction vector derived

from computational model unit predictions to get an estimate of whether the neural data

and the model units were making the same pattern of predictions (this again is similar to

an analysis done by Serre et al., (2007) in order to compare human psychophysics

performance on an animal detection task to the performance of computational model

units). Additionally, we calculated the correlation between the animal-prediction vectors

from each monkey, to get a baseline to compare the computational model animal

predictions to. We also compare animal-prediction results from Serre et al., (2007) based

on mistakes humans made on an animal detection psychophysics task and based on a

'full' computational model consisting of 6000 model units that was used in that work.

Results are reported using both Pearson's correlation coefficient and Spearman's

correlation coefficient.

In order to assess whether any of the correlations between these animal-prediction vectors

could have occurred by chance, we conducted a permutation test. This test was done by

randomly permuting the values each 1200 element animal-prediction vector and then

calculating the correlation values in these permuted vectors. The permutation procedure

was repeated 1000 times to create null-distributions for each correlation pair, and the p-

value was assessed as the proportion of values in the null distribution that were greater

than the correlation values from the real unperturbed animal-prediction vectors. For all
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comparisons made in Table 1, all the real correlation values were greater than any value

in the null distribution, indicating that each correlation was beyond what would be

expected by chance. Approximate 95 percent confidence intervals were also calculated

for the Pearson and Spearman correlation values on this null distribution by taking the

25th lowest and 976th highest values for all pairs of conditions that were correlated, and

then choosing the pair that had the minimum value for the lower bound and the pair that

had the maximum value as upper bound yielding a conservative estimate for the 95%

confidence interval for all pairs (in practice the 95% confidence interval was in fact quite

similar between all pairs).

We also compared the computational model units decoding results to the decoding results

obtained from other simpler visual features. These features were: SI model units (which

are just Gabor filters created at four different orientations and 16 different scales),

randomly chosen pixels, and the mean values of pixels in small image patches. To create

the Si units, we used the parameters previously described by (Serre et al., 2007), and

then selected randomly 1600 units for each of the four orientations of Gabor filters,

yielding a pool of 6400 features for each image (the same filters were chosen for all the

images, thus making the decoding possible). To create the pixel representation, 1600

randomly selected pixels were chosen from each image (again, the position of each

randomly selected pixel was the same in all of the images). To create the mean patch

representation, we used a similar process that was used to create the SI units, except that

we convolved the image with averaging filters at 16 different patch sizes rather than

Gabor functions, and there was only a total of 1600 features used, since mean filters are

not oriented. When decoding whether an image contained an animal in it using these

features, we applied the same decoding procedure that was used for model units and

neural data; namely, on each bootstrap-like iteration, we randomly selected 100 features

from the larger pool, and then repeated this bootstrap-like procedure 250 times using a

different selection of 100 random features each time.
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Results

Decoding whether an animal is in a natural scene image

To try to gain a better understanding of the brain regions and neural processing that

underlies rapid object recognition, we used a population decoding approach to assess if

we can predict whether an animal was present in a complex natural scene image that was

shown to a monkey based on neural data recorded from the ventral visual stream. If it is

possible to decode whether an animal is in a complex natural scene image from neural

data from AIT recorded <100ms after stimulus onset, then this suggests that AIT could

potentially be an important brain region in rapid categorization behavior. Alternatively,

if it is not possible to decode whether an animal is in a natural scene image within a

behaviorally relevant time period, this gives some support to the theory that other brain

regions might be the critical areas involved in rapid categorization (Kirchner and Thorpe,

2006; Girard et al., 2008).

In order to do an animal/non-animal decoding analysis, we trained a classifier using data

that was collected from half of the animal and scene images, and we tested the classifier

using data that was recorded when the other half the images had been shown (i.e., the

training and test sets each had data from 600 images). The training and test sets were

balanced in terms of the distance that images were from the camera (i.e., balanced in

terms of head, close-body, medium-body, and far-body images) and in terms of having

50% of the images containing animals in both sets. The whole decoding procedure was

repeated 250 times using data from different randomly chosen image in the training and

test sets in order to get a smoother estimate of the information contained in the neural

data (see methods for more details).

Figure 4.2A shows the decoding results separately for the head, close-body, medium-

body, and far-body conditions, based on using a MCC classifier and the neural firing

rates from AITd in a 200ms time bin that started at 100ms after stimulus onset for both

monkeys (red and blue lines) (Supplemental figure 4.4 plots these same results in terms
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of percent correct rather than d' values). As can be seen, for both monkeys, the head,
close-body, and medium-body conditions are decoded at an accuracy that occurred above

chance performance, indicating that it is possible to tell whether an animal is present in a

cluttered natural scene based on the neural activity from 100 neurons, provided that the

image of the animal is not too small relative to the amount of surrounding clutter. For

monkey A, we also recorded data from dorsal and ventral posterior inferior temporal

cortex (PIT). Decoding results from these areas show an even lower accuracy than the

results from AIT (Figure 4.2B), although the dorsal PIT results appear to have the same

trend of decoding accuracy as a function of camera distance that is seen in AIT and the

computational model units.

In order to assess the latency of information in AIT, we applied the same decoding

paradigm (i.e., 50% of the images used for training and 50% of the images used for

testing) to neural data using the firing rate in 25ms bins, sliding at 25ms intervals (see

Figure 4.2C). The results from conducting a permutation test on this data (see methods)

suggest that a latency between 125-150ms for the head, close-body, and medium-body

conditions in both monkeys (the far-body condition was never consistently above chance,

so it was not possible to assess the latency for this condition).
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Figure 4.2. Results from decoding whether an animal is in a natural scene image using
data. A. A comparison of decoding results using neural data from AITd from the two monkeys
(red and blue traces), to results obtained from two different types of computational model units
(cyan and green traces). As can be seen, decoding results based on the neural data and the
computational model units show the same general trend as a function of camera distance.
However, overall the decoding accuracies from the computational model units are better than the
results from the neural data. B. A comparison of results from three different brain regions from
monkey A. The results again show similar trends as a function of camera distance, but the AITd
results are better than the more posterior regions. C. Decoding accuracies from both monkeys as
a function of time. The colored lines below the plot show time when the results were
significantly above chance (p < 0.05 light trances, p < 0.01 dark traces, permutation test). For
both monkeys, for the head, close-body and medium-body distance, a significant amount of
information was in AITd starting 125-150ms after stimulus onset.
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Finally, we plotted the classification accuracies separately for the images that contained

animals and the images that did not contain animals (Figure 4.3, upper two plots). As can

be seen, decoding results based on neural data from both monkeys show a similar general

trend in which the classification accuracy for images without animals increases from

head to far-body conditions, and the classification accuracy for images with animals

decreases from head to far-body conditions. This perhaps is not surprising since the far-

body animal images consist mostly of background clutter that is perhaps be more

'similar' to the visual attributes in cluttered images that do not contain animals than to

close-up images of animals heads (the fact that the far-body animal images are below

chance also shows that these images were indeed seen by the classifier as more similar to

images that do not contain animals than to the other animal images). When the classifier

was trained and tested separately on data from the four different distances (Supplemental

figure 4.6) again the decoding results showed the same pattern, but none of the results

were below chance levels, confirming the fact that the far-body animal images generally

were more similar in their neural responses to images from all distances that did not

contain animals, than to images from all distances that did contain animals.
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Figure 4.3 Decoding accuracies using neural and model unit data plotted separately for the
animal images (solid lines) and non-animal images (dashed-lines). As can be seen, the results
for the neural data from both monkeys (upper two plots) and for the C3 and C2b computational
model units (lower two plots) show similar trends with an increase in decoding accuracy for the
non-animal images at further camera distances, and a decrease in decoding accuracy for animal
images at further camera distances. This pattern of results is due to the fact that the when the
animal is far from the camera the background clutter dominates the image causing the
computational and neural representations to be more similar to images that do not contain
animals.
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Comparing computational model units to neural AIT data

In addition to assessing whether the neural data contains sufficient information about

whether an animal is present in a cluttered scene in a time frame that is fast enough to

underlie behavior, we were also interested in assessing whether the computational model

proposed by Serre et al., (2007) could potentially provide a satisfactory description of the

neural processing that is occurring in IT. In order to investigate this question, we did

several analyses to assess whether decoding results based on computational model units

appeared similar to decoding results based on the neural data. For a first analysis, we

applied the same decoding procedure used on the neural data in Figure 4.2A to the C2b

and C3 computational model units of Serre et al., (2007), (see methods section for more

details). The results are plotting on Figure 4.2A in the green and cyan lines. As can be

seen in the figure, a similar trend in decoding accuracy appeared in both monkeys an in

the computational model, with the best performance occurring in the close-body

condition, and the results becoming worse for images in which the animal appeared

further from the camera (i.e., the far-body condition), which is the same trend reported by

Serre et al., (2007) in human psychophysics and computational modeling experiments.

The results also clearly show that computational model units have an overall higher level

of performance than the decoding results based on the neural data (and these differences

are even larger when a regularized classifier is used, see Figure 4.5). We also compared

the classification accuracies separately for the images that contained animals and the

images that did not contain animals using the computational model units (Figure 4.3,

lower two plots), and again observed the same pattern seen in the neural data, namely,

that the classification accuracy for images without animals increases from head to far-

body conditions, and the classification accuracy for images with animals decreases from

head to far-body conditions.

While the fact that the computational model units and the neural data showed similar

trends in performance as a function of image distance suggests that the neural data and

the computational model units could be operating in a similar manner, a more detailed
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analysis is needed to draw stronger conclusions. In order to better assess the similarity in

performance between the model units and the neural activity we undertook two analyses,

one of which focused on the information contained at the population level and the other

focused more on the correspondence between individual neurons and model units.

To compare the neural population activity to populations of computational model units,

we examined which images were consistently classified as animals (regardless of whether

the classification was correct) using either neural data or computation model data as input

to the classifier. To do this analysis we created 'animal-prediction' vectors that were

based on how often each image of the 1200 images were classified as an animal

(regardless of whether the image actually contained an animal) based on using either the

neural data or computational model data as input to the classifier. We then correlated

these animal-prediction vectors using either Pearson or Spearman's correlation

coefficient. We also correlated the neural/model results to animal-prediction vectors that

were based on psychophysics performance of how often humans reported an animal in an

image in a rapid animal detection task, and to a previous implementation of a 'full'

computational model results that was used by Serre et al., (2007) which were obtained by

applying an SVM to 1500 units from Cl, C2, C2b and C3 levels of the model (for a total

of 6000 units).

Table 1 shows the results from this analysis using Pearson's correlation coefficient (upper

triangular part of the matrix) or Spearman's correlation coefficient (lower triangular part

of the matrix) (correlations with additional features are shown in supplemental table 4).

Based on a permutation test (see methods section), an approximate 95% confidence

interval on the Pearson's (Spearman's) correlation from the null distribution is [-0.062

0.062] ([-0.061 0.061]) for all conditions, indicating that all the correlation between

animal-predictions for all conditions are well above what would be expected by chance.

24 To put the values in Table 1 in perspective, we also calculated two measures of reliability of the neural
data by comparing half the data from one monkey to the other half of the data from the same monkey. The
first measure of within monkey reliability examined reliability across trials. To do this analysis we
randomly divided the neural data from the 5 repeated trials of each stimulus into disjoint two sets, with
each set having data from 2 of the trials for each stimulus. We then applied the full decoding procedure to
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Thus the decoding results based on neural data, the computational model and the results

of human psychophysics detections are all making similar patterns of mistakes on many

images. However, the correlation level between the model units and the neural data is

lower than the correlation level between the neural data from the two monkeys25 , which

suggests that there is additional structure in the neural data that the computation model

units are not capturing. Additionally, the correlation between the results obtained from

the full computational model of Serre et al., (2007) and the results from using a subset of

100 model units from the higher levels of the computational model (C2b and C3) only

have an agreement at a correlation level between .45 and .61. In the section below titled

'A closer examination of the computational model results' we examine reasons for this

seemingly low correlation.

each set of two trials separately, and correlated the animal prediction vectors from the first set with the
animal prediction vectors obtained from the second set. Finally this procedure was repeated 50 times. The
average Pearson's (Spearman's) correlation value for Monkey A from this procedure was .71 (.70) and the
average Pearson's (Spearman's) correlation values from Monkey B were .65 (.62). The second measure of
within monkey reliability examined the reliability across neurons. For this analysis we randomly divided
the neurons from one monkey into two disjoint sets of 50 neurons each, and then applied the full decoding
procedure two each set separately and then correlated the animal prediction vectors. This procedure was
also repeated 50 times. The average Pearson (Spearman) correlation value for this procedure for Monkey
A was .66 (.62) and for Monkey B was .36 (.35). Thus relative to the comparisons between monkeys and
between monkey and computational units, the within monkey reliability was typically high.

25 A 95% confidence interval on the Pearson's correlation between the two monkeys is [.38 .47], while the
95% confidence intervals between Monkey A and the C2b and C3 units are [.21 .31] and [.15 .26]
respectively, and the 95% confidence intervals between Monkey B and the C2b and C3 units are [.29 .39]
and [.21 .32] respectively. Thus, the confidence intervals on the Pearson's correlation coefficient between
the two monkeys only overlaps with the confidence interval between Monkey B and the C2b, which
suggests that the agreement between Monkey A and the computational model units, and the agreement
between Monkey B and the C3 units, are not as high as the agreement between Monkey A and Monkey B.
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Monkey A Monkey B C2b C3 Human Serre full model

Monkey A 0.43 0.26 0.21 0.38 0.36

Monkey B 0.45 0.34 0.27 0.50 0.44

C2b 0.28 0.36 0.91 0.50 0.56

C3 0.21 0.29 0.93 0.40 0.45

Human 0.37 0.48 0.50 0.42 0.72

Serre full model 0.36 0.44 0.61 0.50 0.71

Table 4.1. Correlation coefficient values between how often each of the 1200 images were
predicted as containing an animal based on using human psychophysics results,
classification accuracies from neural or computational model units. Upper triangular results

are based on Pearson's correlation coefficient and lower triangular results are based on
Spearman's correlation coefficient. While all the correlation values are larger than would be
predicted by chance, higher correlation levels occur between the two monkeys than between the
monkeys and computational model units, indicating that the computational model units are not
capturing all the possible variance found in the neural data.

A closer examination of the computational model results

As mentioned above, in the process of comparing the neural data to the computational

model units we noticed that the correlation between results based on using a smaller

subset of C2b or C3 units and the previous computational model units results using the

'full' model obtained by Serre et al., (2007) was not that high (correlation values between

.45 and .63), and the overall classification accuracy using this smaller subset of

computational units was lower (compare Figure 4.1B to Figure 4.2A). Since the major

differences between the 'full' model of Serre et al., (2007) and the model used here were

1) the number of units used, and 2) the types of units used, and 3) the classifier used, we

decided to look in more detail at how these factors influenced the decoding results.

To analyze how the type of classifier affected the results (Figure 4.4A), we recreated the

analyses in Figure 4.2A, but this time we used a regularized least squares classifier (RLS)

instead of a maximum correlation coefficient classifier (MCC). Regularized classifiers

such as RLS and SVMs have been shown to yield very good performance in a range of

machine learning problems, but there is little evidence showing that they improve the

171



performance when used to decode neural data see supplemental material from Meyers et

al., (2008). Figure 4.4 shows that indeed the computational model unit performance

greatly increases when using a regularized classifier (overall increase in d' values of

0.463, and 0.633 for C2b and C3 respectively), while the performance remained largely

the same for the neural data (overall change in d' of -0.0457 and 0.001 for Monkey A,
and Monkey B respectively). Since this same number of neurons and computational

model units were used in this analysis, this again points to a difference in how the

computational model units and real neural data are representing information about the

images. Additionally, it should be noted that the correlation between the RLS C2b or C3

units and the previous computational model units results using the 'full' model obtained

by Serre et al., (2007) was in the range of -. 75 to .78 (see table 2) indicating the type of

classifier was a significant factor influencing the difference between our current results

and the previous results of Serre et al., (2007). Finally, it should be pointed out that when

using an RLS classifier, the Spearman's correlation between Monkey B and the

computational model units is actually higher than the correlation between Monkey A and

Monkey B, indicating that model units are capturing as much of the variation in the

neural data of Monkey B as should be expected. However the results based on Pearson's

correlation and the correlation between the model units and Monkey B, are still lower

than the correlation between the two monkeys indicating that the model units are still not

explaining all potential neural variation.
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Figure 4.4 Decoding accuracies for whether an animal is in a cluttered scene image using a
regularized least squares (RLS) classifier. A: Results plotted in the same format as Figure
4.2A, except that a RLS classifier is used instead of an MCC classifier. B: The change in d'
classification accuracy when using a RLS classifier compared to when using an MCC classifier
(values calculated by subtracting the MCC decoding accuracies in Figure 4.2A from the RLS
classification accuracies shown in Figure 4.4A). As can be seen, using a regularized classifier
greatly improves the classification performance of the computational model units, while leaving
the neural decoding results largely unchanged.
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Monkey A Monkey B Model C2b Model C3 Human Serre full model
Monkey A 0.49 0.36 0.36 0.41 0.39
Monkey B 0.47 0.44 0.45 0.51 0.44
C2b 0.37 0.46 0.95 0.66 0.77
C3 0.36 0.47 0.93 0.66 0.75
Human 0.39 0.49 0.66 0.65 0.72
Serre full model 0.38 0.45 0.77 0.76 0.71

Table 4.2 Correlation coefficient values between how often each of the 1200 images were
predicted as containing animals based on using human psychophysics results, classification
accuracies from neural or computational model units when an RLS classifier was used.
Upper triangular results are based on Pearson's correlation coefficient and lower triangular results
are based on Spearman's correlation coefficient. For Pearson's correlation, the agreement
between the two monkeys is still higher than the agreement between the model units and data
from either monkey. However, when Spearman's correlation is used, the neural decoding results
from monkey B seem to be better explained by the computational model units than by matching
the results to the other monkey (as can be seen by comparing the value in column 1 row 2, with
the values in column 2).

To analyze how the number and type of computational model units affected the decoding

accuracy, we trained a MCC and a RLS classifier on C1, C2, C2b, C3, and a random

combination of all unit types, using either 100 or 1500 units. The results are shown in

Figure 4.5. As can be seen again, results from the RLS classifier are significantly higher

than the results from the MCC classifier. There is also an increase in decoding accuracy

with more units when an RLS classifier is used, but this increase is somewhat small.

More surprisingly, there does not appear to be a clear advantage to using the more

sophisticated C2b and C3 features that are supposed to model the responses of IT

neurons, compared to the results based on using simple C1 features which are modeled

after V1 complex cells (the one exception seems to be for the 'head' condition when an

MCC classifier is used, for which the C2b and the mix of all unit types tend to perform

better than the C1, C2 and C3 units).

The fact that C1 units work almost as well as using a combination of all unit types differs

from the findings of Serre et al., (2007) which showed that Model C1 units have a lower

level of performance than the full Model (see Serre et al., (2007), supplemental table 2).
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Two differences exist between the methods used here and those used by Serre et al.,

(2007). First, we used an RLS classifier here, while Serre et al., (2007) used an SVM.

Second, Serre et al., (2007) used 1500 Model Cl units and 6000 units of all types in their

'full' model, while we used 1500 Model C1 units, and 1500 randomly chosen units of all

types in our comparison. Thus either the classifier type of the number of model units

used in the 'full' model should account for the difference in our findings. Below we

explore these two possibilities.
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Figure 4.5 Comparing different computational model unit types using either an MCC or an
RLS classifier with either 100 or 1500 model units. The results show that performance is much
better when an RLS classifier is used, and that there is a slight increase in performance when
more units are used. Overall in most cases, the type of computational model unit used did not
have a large affect on decoding accuracy.
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Figure 4.6 shows results from comparing how these two factors influence decoding

accuracy for the animal-scenes dataset. As can be seen, when an SVM is used (Figure

4.6A), there is a large difference between the C1 units (blue trace) and using the full

model with 6000 units (green trace), thus we were able to replicate the findings of Serre

et al., (2007). Also, when 1500 units of all types are used (i.e., the 'full' model, but using

just 1500 units), the decoding accuracy is between using the C1 features and using the

'full' model with 6000 units, indicating that approximately half the increase in

performance when going from Cl units to the 'full' model was that there were 4 times as

many features used in the full model, and half the increase was due to the diversity of

features used (i.e., C1, C2, C2b and C3). When an RLS classifier was used (Figure

4.6B), the pattern of results was a bit different. First, there was almost no difference in

decoding accuracy between the full model results when 1500 units are used and when

6000 units are used. Second, on the head and close-body conditions there is almost no

difference between C1 units and the full model results. Finally, for the medium-body and

far-body conditions, the decoding accuracy for the C1 units still appear slightly lower

than the full model results. Thus when an RLS classifier is used, not only is the decoding

accuracy higher using the Cl and 1500 model units than when an SVM is used, but

additionally the differences between the simple Cl features and the full model are greatly

reduced. This raises the question about how useful the complex and highly size and

position invariant properties that are built into C2b and C3 feature responses are for

animal non-animal discrimination in this dataset.

We also did an additional analysis to try to determine what was giving rise to the

difference in the SVM and RLS results. There are two differences between how the

SVM and RLS classifiers were used in our analyses. The first difference is that the SVM

and RLS use different loss functions when the classifier is learning a separating function

on the training data. The difference in these loss functions is what defines these two

algorithms and thus is not a parameter that can be freely modified. The second different

between the SVM and RLS algorithms is that there is an efficient way to optimize the

error penalty constant on the training data for the RLS algorithm, while optimizing the
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error penalty constant for an SVM is a very computationally intensive. Thus, for all the

analyses above, we optimized the error penalty constant for the RLS algorithm on the

training data, but for the SVM we used the default error penalty constant (which was the

same method used by Serre et al., (2007)). However, since it was possible that the error

penalty constant could be a large factor in contributing to the difference in results, we

reran the SVM analysis several times using different error penalty constant values in

order to determine whether the difference in error penalty constant values was giving rise

to the difference in results.

Figure 4.6C shows the decoding accuracy for an SVM (averaged over the 4 head, close-

body, medium-body and far-body conditions) as a function of the error penalty constant

value C (Supplemental figure 4.8 shows the results separately for the 4 distances). As

can be seen, the highest decoding accuracy is obtained when the error penalty constant is

C=.001 for all three model unit number/types that were tested. Additionally, having the

optimal value for the error penalty constant affected the 1500 unit results more than it

affected the results based on using 6000 units. When the SVM animal/non-animal results

were recalculated using this optimal value of C=.001 (Figure 4.6D), the SVM results

were a much closer match to the RLS results, indicating that the difference in error

penalty constant values was a large factor contributing to the difference in the SVM and

RLS results. More importantly, with this optimized error penalty constant value, the head

and close-body conditions were no longer higher using all model unit types compared to

when only using Cl features. These results indicate that for the animal-scene dataset

used in this study that: 1) the model unit results (unlike the results based on neural data)

are very sensitive to the exact classifier parameters used, and 2) while using a

combination of more complex visual features in the higher model units as well as lower

level units does lead to an improvement in discriminating between animals and natural

scenes this improvement is smaller than is suggested by Serre et al. (2007) (and seems

nonexistent for close-body conditions).
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Figure 4.6 Comparison of using many model unit types, to using only C1 units, for an SVM
classifier and a RLS classifier. A: results based on using an SVM (with the default error
penalty constant value C =1), yields better performance when the full model using 6000 unit are
used compared to using just 1500 C1 features, thus replicating the findings of Serre et al., (2007).
When 1500 units of all types are used with a SVM, the results are between the Cl results and the
6000 model unit results of all types, indicating that part of the reason why the 'full' model of
Serre et al., (2007) outperformed the C1 units was due to the fact that Serre's full model used four
times as many units. B: For the RLS classifier, there is not much difference between using 1500
model units of all types and 6000 model units of all types. Additionally, the Cl units seem to
only perform worse on the medium-body and far-body conditions. C: SVM animal/non-animal
classification results (averaged over all 4 image distances), as a function of the error penalty
parameter C (for all the RLS results, the optimal value of C was always determined using the
training data). As can be seen the optimal value of C is .001, which yields higher performance
than using the libSVM default value of C = 1. D: SVM animal/non-animal decoding results
using an error penalty parameter of C = .001 (that we determined to be optimal in Figure 4.6C).
With this error penalty parameter, the SVM results look much more similar to the RLS results
shown in Figure 7B.
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Finally, given the fact that simple C1 features did almost as well as more complex C2b

and C3 features, we decided to test whether even simpler features than the C1 units could

reproduce the level of performance that was seen when decoding information from the

model units or the neural data. The simple features we decided to test were: randomly

chosen pixels, Si features (which are Gabor filters that match simple cell receptive

fields), and the mean value of pixels in neighbors that were the size of Gabor filters used

for the SI features (see methods for more details). Results from this analysis are shown

in Figure 4.7. As can be seen in most cases, the decoding accuracies based on random

pixels, mean pixel intensities, and Sl features performed worse than the model unit

features and the neural data, particular when an RLS classifier is used (Figure 4.7B).

This matches of findings of Serre et al. (2007) who showed that many image feature

types did not perform as well as the computational Model units described in this paper.
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Figure 4.7 Comparing simpler visual image features based either on pixel values (yellow
trace), mean pixel intensities in small image patches (red trace), or S1 model units (purple
trace) to the other model units used in this paper (blue, green and cyan traces), when an
MCC classifier was used (A), or a RLS classifier was used (B). As can be seen, the results of
these simpler features are generally worse than the results from the model units used in this paper,
particularly when an RLS classifier is used. Thus, not all image features work well for
discriminating which images contain pictures of animals.

Discussion

The results of this paper show that it is possible to decode whether an animal is in a

cluttered scene image using neural data from AIT and also using the computational

model units of Serre et al., (2007) at levels that are well above chance. Given the

diversity of visual appearance of the images used, and the fact that classification based on

using simple image features perform worse, this result is not completely trivial.

Additionally, the pattern of classification accuracies as a function of image distance was

similar among the neural data and computational model units, suggesting that both the
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neural data and computational model units could be relying on similar visual information

in the images. This result is related to the findings of Serre et al., (2007) who showed the

mistakes humans make in detecting animals in cluttered scenes are similar to the mistakes

made by a classifier that is trained on the same computational model units, although the

correspondence between the computational model units and the neural data was not as

strong as that seen between the human psychophysics results and the computational

model units.

One of the more surprising findings was that the decoding accuracy for the computational

model units was higher than the decoding accuracy based on using neural data. In

particular, the decoding accuracy based on simple combinations of Gabor filters (C1

features) was higher than the decoding results based on AIT neural data, which suggests

that much of the information is available in simple features to detect whether an animal

was in a natural scene image was not present in the neural activity. While one could

easily make the decoding results from the computational model units lower by adding

noise to their responses (which in a certain sense could actually make the computational

model unit better match the neural data, given that unlike the neural data, the model units

at the moment to not have any variation to a particular stimulus), adding such noise

would not give any additional insight into what is lacking in the neural responses that is

present in simple computational features. Below we speculate on a few other reasons

why the decoding accuracy from the neural data was not that high.

1. The monkey was not engaged in an animal detection task. While several studies have

shown that IT is selective for visual features even when a monkey is passively viewing

images (Keysers et al., 2001; Kiani et al., 2007) it is possible that in order for the neural

population to respond similarly to images that vary greatly in their visual appearance, the

monkey must be actively training (or engaged) in a relevant discrimination task. Indeed,

several studies have found that when monkeys are trained to discriminate between

different classes of objects, neurons in IT respond more similarly to members within a

category compared to members across category boundaries (Sigala and Logothetis, 2002;

Meyers et al., 2008), although these effects seem to be small relative to their overall
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shape turning (De Baene et al., 2008). Also, feature based attention increases the

selectivity of neurons to visual stimuli (Maunsell and Treue, 2006), which could

potentially increase the selectivity of neurons in IT. Thus if the monkey were engaged in

an animal discrimination task, neurons in IT would most likely be more strongly tuned to

complex features that discriminate between the relevant categories, which should result

in a higher population decoding accuracy.

2. The brain regions we analyzed the data from might not be the areas that are critical

for rapid animal/non-animal discrimination. Neurons in AIT tend to be spatially

clustered next to other neurons that have similar visual response properties (Wang et al.,

1998; Tsunoda et al., 2001; Op de Beeck et al., 2007). If neurons in different areas in

AIT underlie the ability to discriminate between different classes of objects, it is possible

that the recordings we made were not in specific regions where the neurons that are

critical for analyzing information relating to animal-like shapes. In order to test this

hypothesis, we reran a stimulus set that was used by of Hung et al. (2005) and compared

the decoding results to the results obtained from the data from of Hung et al. (2005), (data

not shown). The results indicated that indeed there was a lower decoding accuracy on the

data from the monkeys used in this study compared to the data from the monkey from

Hung et al. (2005) (although we also obtained slightly above chance decoding accuracy

from the Hung et al. (2005) during the baseline period before the stimulus appeared on

the screen, indicating that the data we had were slightly biased). Additionally, the degree

of firing rate modulation in the data from this study was less than seen in the Hung et al.

(2005) data, and there was more variability in the neural responses to particular stimuli,

again suggesting that differences in recording site or technique could be contributing to

the less selective neural responses in this study.

It is also possible, that the ventral visual pathway is not critical for rapidly detecting

animals in natural scenes and that the dorsal visual pathway could be more involved in

such rapid detection tasks (Kirchner and Thorpe, 2006; Girard et al., 2008). A recent

study by Girard et al, (2008) has shown that macaques can reliably make saccades to

animal images within 100ms of stimuli onset and given that the latency of AIT neurons is
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typically reported to be around 100ms (Nowak and Bullier, 1998), there does not appear

to be enough time for AIT to actually be involved in this rapid categorization behavior.

Results from our analysis (Figure 4.2C) suggest that the latency of information about

whether an animal is in an image occurs around 125-150ms after stimulus onset, which

supports the view that AIT might not be critical for rapid object categorization (at least at

the level that is needed to make a saccade to an animal image). However, since the

monkeys in this study were engaged in a fixation task rather than a categorization task, it

is possible that the relatively long latency of information was due to the fact that the

monkey was in a different behavioral state than when the monkey is engaged in a

categorization task, or that the rapid sequence of image presentation created forward

masking effects that delayed the neural responses. Thus based on our current results it is

not possible to definitively conclude that IT is not important for rapid categorization.

3. The decoding/experimental methods we used are not adequate to extract the relevant

information from the AIT neural activity. In this study we used linear classifiers to

decode information from populations of AIT neurons, which is a strategy that has yielded

significant insight into the function of AIT in other studies (Hung et al., 2005; Meyers et

al., 2008). While we have found that generally using more complex classifiers does not

affect decoding performance (for example, see Figure 4.4, and Meyers et al., 2008

supplementary material), it is obviously not possible to test all decoding algorithms,
which leaves open the possibility that a different decoding strategy might extract more

information from the population of neurons and could be more biologically relevant for

this animal detection task. Of more concern is the possibility that the data we used to

train the classifier was not adequate to learn the relevant function necessary to

discriminate between the diverse set of images used in this dataset. While in past studies

we have found as few as 5 training examples was adequate to achieve seemingly high

levels of classification accuracy (Meyers et al., 2008) which is much less than the 600

training images used in this study, all past decoding studies we have been involved in

have used simpler stimuli such as isolated images on a gray background, and objects that

were in the same class appeared to be much more visually similar than the diverse set of
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animal and scene images used here. Thus it is possible that if we had much more training

data that better spanned the space of visual images of animals, classification accuracy on

the neural data could potentially have been as good or better than that seen based on low

level model unit features.

Apart from the fact that classification accuracy was lower using neural data than we

would have expected based on the computational model unit decoding results, additional

differences between the computational model units and the neural data also existed. At

the population level, the predictions made about whether an animal was in an image

based on using model unit data generally did not match the pattern of predictions made

from using neural data that well relative to the agreement based on predictions between

the neural data from the two monkeys (see table 1 and 2). Thus it seems that there is

potentially explainable variability in the neural responses that is not being captured by the

model units.

These results prompted us to take a closer look at the computational model's

performance, which lead to a number of findings. First, we observed that the decoding

accuracy based on using model units increases dramatically when a regularized classifier

is used compared to when using a simple MCC classifier, which again differs from the

results based on using neural data which seemed to be largely insensitive to the exact

classifier used (see Figure 4.4). These findings are similar to the literature in computer

vision that has shown that performance can greatly improve when more complex

classifiers are used, and also to vision neuroscience literature that has previously shown

roughly equivalent decoding accuracies for simple and slightly more complex classifiers

(Meyers et al., 2008). We speculate that this difference might be due to differences in the

distributions of model unit responses and neural responses, with the neural responses

having a more Gaussian like noise-structure than the computational model unit responses.

Second, we observed that decoding accuracies were not much different based on whether

simpler computational model units were used (e.g., C1 units that are supposed to model

complex cell responses), compared to when more complex computational model units are
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used (e.g., C3 units that are supposed to model the responses of IT neurons) (see Figure

4.5). These findings differ from the results of Serre et al. (2007) in which it was

suggested that a 'full' model that used all types of computational model units

outperformed simple C1 features (see supplemental material Serre et al. (2007)). Further

investigation showed that the discrepancy in the results can largely be explained by the

fact that when Serre et al. (2007) did their comparisons they used 4 times as many units

for the full-model results than for the C1 units results, and also they used a regularization

constant value that generally worked better for high level units than for C1 units. Here

when we corrected for these factors, we found that the higher level model units only led

to a marginal improvement in this animal/non-animal classification task (see Figure 4.5

and Figure 4.6). This suggests that the database created by Serre et al., (and used in this

study) contains images with position specific features that are indicative of whether an

animal is present in an image. Thus the added invariance to 2D transformations of the

C2b and C3 units as compared to C1 units does not add much benefit to the task on this

dataset.

The finding that low level model units work about as well as higher level model units in

this animal/non-animal classification task raises questions about what are the added

benefits of using these more complex units for discriminating between these categories.

Recent work in computer vision has also demonstrated simple Gabor-like filters can

achieve state of the art performance on many popular computer vision datasets, provided

that the images of the objects in the dataset do not vary too drastically in their pose (Pinto

et al., 2009). Thus for object recognition tasks in which the objects do not vary greatly in

size, position, and pose, units that respond to simple features might be all that is needed

in order to achieve relatively high recognition rates. Similarly, behavioral work in

humans and monkeys (Kirchner and Thorpe, 2006; Girard et al., 2008) has also led to the

suggestion that the complex feature selectivity seen in AIT neurons might not be

involved in the rapid discrimination of whether an animal is in an image, and instead that

a more direct path that goes from V4 to the LIP and the FEF might underlie this rapid

categorization behavior. In agreement with this theory, recent studies of LIP and FEF

have shown that it is possible to discriminate between simple visual shapes based on the
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neural activity from these areas (Sereno and Maunsell, 1998; Lehky and Sereno, 2007;

Peng et al., 2008) (however testing whether LIP and FEF neurons can discriminate

between more complex shapes is still needed).

Of course this raises the questions of what role does AIT plays in visional recognition.

While we do not have a full answer, we can speculate that perhaps AIT is involved in a

more detailed analysis of an image that occurs after an initial quick recognition and is

perhaps useful for recognizing objects across highly different poses, positions, sizes, and

other more complex images transformations (and/or AIT could be involved in processing

that is involved in linking visual information to memory and decision based systems in

the hippocampus and the prefrontal cortex). Indeed, visual responses of neurons in AIT

do appear to generalize more across image transformations than neurons in (Janssen et

al., 2008), supporting this theory. Thus, perhaps the visual system uses a two-staged

processing strategy in which a fast coarser recognition is carried out first by neurons in

the dorsal stream that respond to simple features, followed by a more detailed analysis

that occurs in AIT. Such a system would could explain the chicken and egg like problem

of being able to fixate on relevant objects of interest before knowing exactly what the

object is. Additionally, such a coarse-to-detailed recognition strategy has been shown to

be an extremely efficient method used in computer vision for the detection of faces

(Viola and Jones, 2004), and perhaps a similar strategy would also be an effective for

object recognition in general.
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Supplementary material

Classification accuracy
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Supplemental figure 4.1 Decoding accuracy for the 77 isolated object stimuli used by Hung
et al., (2005). Upper plots show decoding accuracy and rank accuracy using the average firing
rates in a bin taken 100-300ms after stimulus onset, while the lower plots show decoding
accuracies using 25ms sliding bins taken at 25ms intervals (i.e., a separate classifier was trained
and tested using data sampled every 25ms). Plots on the left show the raw classification
accuracy, where the black horizontal line represents change (1/77). Plots on the right show the
'normalized rank' accuracy which shows that when a classifier gives an ordered list of
predictions, how far down the list was the label of the actual image that was shown (a normalized
rank of .5 indicates chance performance). All the results shown above were lower than the
accuracies obtained from the data used by Hung et al. (2005) (results now shown), although there
appeared to be above chance classification accuracy during the baseline period in the Hung et al.,
(2005) dataset, so it is not clear if the higher accuracy on that dataset is an artifact. Also monkey
A in this study was myopic which could have led to lower decoding accuracies from his data.
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MonkeyA Monkey B

77 object 54.05 (51.65) 66.77 (64.26)

animal/non-animal 59.74 (48.71) 33.09 (23.91)

Supplemental table 4.1 Percentage of neurons that were 'visually selective' as determined

by either an ANOVA or a Kruskal Wallis test (numbers in parentheses) using the mean
firing rates in a 200ms bin that started 100ms after stimulus onset. As can be seen for the 77

objects, monkey B had a higher percentage of selective of selective neurons than monkey A. For

the animal/non-animal data, the number of selective neurons was found using and ANOVA (or

Kruskal Wallis test) separately for each 120 block of images and then averaged over the 10

blocks to counter the effects of non-stationarity in firing rate over the course of the experiment

that can lead to an upward bias in the number of selective neurons. Results for the animal/non-

animal data show that monkey A had a slightly higher percentage of selective neurons than

monkey B. These results show a very similar pattern to the decoding results in seen in Figure 4.2

and Supplemental figure 4.1 in terms of how 'good' the neural responses were from the different

monkeys.
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Supplemental figure 4.2 Percentage of visually selective neurons found using a Kruskal-

Wallis test (i.e., percent of neurons that had p-values less than 0.01 with the different images

as conditions in the test) using 50ms sliding bins for the isolated objects data (left) or the

animal-scenes data (right). The results from the percent of selective neurons from isolated

objects data look very similar to decoding results from this data (Supplemental figure 4. 1), with

the percentage of selective neurons from the data from monkey B being higher than the

percentage of selective neurons from monkey A. Since the alpha level for this test was set to

0.01, the number of selective neurons should be approximately 1% during the baseline period.

For the animal/non-animal data, the number of selective neurons was found using and ANOVA

(or Kruskal Wallis test) separately for each 120 block of images and then averaged over the 10

blocks to counter the effects of non-stationarity in firing rate over the course of the experiment

that can lead to an upward bias in the number of selective neurons. The results show similar

patterns as seen in Figure 4.2A with Monkey A higher more selective neurons than Monkey B,
although the difference here appears even greater.
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z-score normalized average firing rates

Time from stimulus onset (ms)

Unnormalized average firing rates
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Time from stimulus onset (ms)
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z-score normalized average firing rates

0 50 100 150 200 250 30

Time from stimulus onset (ms)

Supplemental figure 4.3 Average firing rates of neurons in the 77 isolated object
experiment (A), and the average firing rates for the animal-scenes data (B). Plots on the left
show the average of the raw firing rates of all neurons, while plots on the right show the average
firing rate once each neuron was z-score normalized by having each neuron's firing rate have a
zero mean firing rate and a standard deviation of one over the time course of a trial. The
normalized firing rate give a better sense of the modulation of the population since neurons with
overall higher firing rates do not dominate the average. As can be seen for the 77 isolated object
experiment (A), the modulation in firing rate from the data recorded from monkey A (red trace)
is less than the modulation in firing rate from the data recorded from Monkey B (blue trace). In
the animal-scenes experiment, the modulation in firing rates for the two monkeys appears
somewhat comparable. We are not sure why there is a different in level of neural modulation
between the two experiments from Monkey A. However we do note that this difference mirrors
the difference seen in the decoding accuracies in which the decoding accuracy for monkey A
seems to be lower than the decoding accuracy from Monkey B in the isolated object experiment,
but the decoding accuracies from both monkeys appear comparable in the animal/non-animal
decoding experiments.
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77 isolated objects

Monkey A

Monkey B

Median CV

112

87

Max time

162

137

Min time

112

112

Max time

187

162

Supplemental table 4.2 The bin that had the minimum and maximum firing rate taken
from Supplemental figure 4.2. Values were based on the average firing rates over all neurons
using 25ms bins sampled every 25ms (values in parenthesis are given for the normalized average
firing rate when they differ from the raw firing rate min or max).

p-val

(A, B), p =.13

(B, H), p < 10~'

over all ID

1.42

1.36

p-val

(A, B), p = .23

(B, H), p < 10-3

Supplemental table 4.3 Median coefficient of variation (CV = stdev/mean) values from the
population of neurons from monkey A, and B using the 77 isolated objects data. For each
neuron, the coefficient of variation was calculated either separately for each stimulus shown and
then averaged together (sep ID ave), or calculated over trials regardless of the stimulus shown
(over all ID). The median values over all the neurons are shown above. P-values using a Mann-
Whitney U (which is the same as the Wilcoxon rank-sum) were calculated on the CV values for
all pairs monkeys. Results from monkey H (recorded by Hung et al., 2005) had less variability
compared to monkey A, and B (data not shown), which could partially account for the higher
decoding accuracy seen in that monkey.
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Supplemental figure 4.4 Basic animal/non-animal decoding results (same as Figure 4.2) but
plotting as in terms of the percent correct classification accuracy rather than as d'.
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- Monkey A
- Monkey 8
- C2b model units
- C3 model units

Head Close- MedIum- Far-
body body body

Supplemental figure 4.5 Decoding results from training and testing the classifier separately
on the head, close-body, medium body and far-body conditions (rather than training on all
4 conditions jointly as was done throughout most of the paper). The same conventions are
used here that were used in Figure 4.2. Notice also that the results look very similar to Figure
4.2A, indicating that training the classifier separately on each distance does not make a large
difference in the results that were obtained.
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Supplemental figure 4.6 Decoding results from training and testing the classifier
separately on the head, close-body, medium body and far-body conditions (rather than
training on all 4 conditions jointly as was done throughout most of the paper), and plotting
the decoding accuracies separately for the animal and non-animal images. The same
conventions are used here that were used in Figure 4.3. Notice again that the model and neural
data have the similar trends. However, the far-body distance here is not below chance due to the
fact that the classifier was optimized separately for each distance.
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A B C1 C2 C2b C3 units pix Human model
Monkey A 0.48 0.24 0.22 0.26 0.19 0.25 0.09 0.40 0.38
Monkey B 0.45 0.32 0.36 0.34 0.27 0.37 0.07 0.51 0.43
C1 0.25 0.36 0.24 0.25 0.16 0.29 0.00 0.49 0.52
C2 0.24 0.36 0.26 0.68 0.71 0.85 0.02 0.42 0.50
C2b 0.28 0.36 0.27 0.74 0.91 0.88 0.21 0.50 0.56
C3 0.21 0.29 0.18 0.75 0.93 0.88 0.18 0.40 0.45
all units 0.27 0.38 0.32 0.88 0.92 0.92 0.12 0.51 0.58
Rand pix 0.11 0.12 0.04 0.06 0.21 0.19 0.16 0.21 0.15
Human 0.37 0.48 0.51 0.42 0.50 0.42 0.51 0.25 0.72
Serre

model 0.36 0.44 0.54 0.52 0.61 0.50 0.62 0.20 0.71

Supplemental table 4.4 Correlation coefficient values between how often each of the 1200
images were predicted as containing an animal based on using human psychophysics
results, classification accuracies from neural or computational model units. The results are
the same as Table 1 but with additional correlations of Cl, C2, units, and random pixel decoding
results. Upper triangular results are based on Pearson's correlation coefficient and lower
triangular results are based on Spearman's correlation coefficient.
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- Monkey A

- Monkey B
- C2b model units
- C3 model units

0.5 F

Head Close- Medium-
body body

Supplemental figure 4.7 Decoding accuracies for whether an animal is in a cluttered scene
image using a support vector machine (SVM) classifier (same as Figure 4.4, but using a
SVM instead of an RLS classifier). For these plots, the error penalty constant value was set
to C = 1, which is the same value that was used by Serre et al. (2007). A: Results plotted in
the same format as Figure 4.2A and Figure 4.4A, except that a SVM classifier is used instead of
an MCC or RLS classifier. B: The change in d' classification accuracy when using a SVM
classifier compared to when using an MCC classifier (values calculated by subtracting the MCC
decoding accuracies in Figure 4.2A from the SVM classification accuracies shown in Figure
4.4A). As can be seen, using a SVM improves the classification performance of the
computational model units on the farther image distances, while leading to a decrease neural
decoding results for monkey A at the close distances. However overall, the pattern of results look
the same (as can be seen in A).

203

1.5 F1

0.51-

0

-0.5
Head Close- Medium- Far-

body body body
Far-

body

............ ...... .. ............ .. ................ ..... ............... .



A B C1 C2 C2b C3 units pix Human model

Monkey A 0.49 0.33 0.35 0.36 0.36 0.36 0.13 0.41 0.39

Monkey B 0.47 0.47 0.47 0.44 0.45 0.47 0.09 0.51 0.44

C1 0.34 0.49 0.94 0.78 0.79 0.91 0.14 0.62 0.70

C2 0.35 0.47 0.94 0.78 0.79 0.92 0.13 0.66 0.74

C2b 0.37 0.46 0.80 0.80 0.95 0.92 0.21 0.66 0.77

C3 0.36 0.47 0.80 0.81 0.93 0.93 0.19 0.66 0.75

all units 0.37 0.49 0.91 0.93 0.92 0.93 0.18 0.69 0.79

Rand pix 0.13 0.09 0.17 0.15 0.21 0.19 0.19 0.24 0.19

Human 0.39 0.49 0.63 0.65 0.66 0.65 0.69 0.25 0.72

Serre

model 0.38 0.45 0.71 0.75 0.77 0.76 0.79 0.20 0.71

Supplemental table 4.5 Correlation coefficient values between how often each of the 1200
images were predicted as containing animals based on using human psychophysics results,
classification accuracies from neural or computational model units when an RLS classifier
was used. The results are the same as Table 2 but with additional correlations of Cl, C2, units,
and random pixels decoding results. Upper triangular results are based on Pearson's correlation
coefficient and lower triangular results are based on Spearman's correlation coefficient.
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Supplemental figure 4.8 SVMI animal/non-animal decoding results as a function of the
error penalty parameter (C), plotting separately for the head, close-body, medium-body
and far-body conditions. As can be seen, the best regularization constant value is around 0.001
for most image distances and model unit conditions. For the close-body condition at the peak
error penalty constant value there is not much difference in the decoding results between using
C1 and model units of all types. For the other conditions, generally there is a slight advantage to
using all unit types and using more units (although this advantage tends to be smaller around the
optimal error penalty constant value, than when compared to the default error penalty constant
value C=1 that was used by Serre et al. (2007)). Also shown on the right of each plot are the
decoding RLS results (same as Figure 4.6B) that were found by optimizing the error penalty
constant using only the training data.
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Supplemental figure 4.9 Results from decoding each block of 120 images separately and
then combining the results together (errorbars are stdevs over all decoding results from all
blocks combined). Since the neural data had more similar firing rates within each block of 120
images compared to firing rates across blocks of images (which could be due to either electrode
drift or to associations formed by repeatedly showing the same group of images together), we
thought it might be possible to achieve higher accuracy on the neural data by separately on each
block since it would eliminate the within block similarity confound. However, the results show
that if anything, training separately on each block led to lower decoding accuracy of the neural
data, with the results from the computational units remaining largely the same. We speculate that
perhaps the neural results were lower in the blocked readout paradigm because there were fewer
training points used on each decoding block, although this does not explain why the
computational model unit results remain largely unchanged (although perhaps because the
computational model units are less variable in their response so a smaller training set is
sufficient).
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Supplemental figure 4.10 Comparison of animal/non-animal decoding results using
different number of training and testing points from 100 neurons in AITd using a MCC
classifier for Monkey A (left plot) and Monkey B (right plot). Red traces shows the results
when data from 5 presentations of each image were in the training set, giving rise to 3000
training points and 600 test points on each bootstrap-like iteration (this is the same paradigm that
was used for all neural decoding results in the paper). Blue trace shows the decoding results
when data from only a single trial was in either the training or test set, giving rise to 600 training
points and 600 test points. The green trace shows the results from first averaging together all 5
repetitions for each image, and then applying the full decoding paradigm using the averaged data
with 600 training and 600 test images on each bootstrap-like iteration. As can be seen, using data
from 5 repetitions for each image in the training (red trace) set has a slightly better performance
than using data from only 1 repetition of each image type (blue trace). Averaging together the
results for all 5 trials for each stimulus and then applying the decoding procedure (green trace) led
to slightly higher results. This is not surprising since averaging the results reduces the large
amount of noise that can be present on a specific individual trial - however given the fact that
such averaging is not representative of the amount of information that is available on actual
individual trials, we used the more realistic analysis of decoding data from single trials in the
body of the paper.
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Supplemental figure 4.11 Animal/non-animal decoding with data within each block of 120
images z-score normalized. Examining the neural data carefully revealed that it contained slow
temporal trends that which resulted in the slow increases and decreases in the mean firing rates of
neurons that seemed to be unrelated to the stimuli being presented. These slow trends, combined
with the block design used, resulted in images within a block being biased to have slightly more
similar firing rates than images in different blocks. To see if these slow trends had a large affect
on decoding accuracy we normalized the firing rates for all trials that occurred within a block to
have a mean of zero and a standard deviation of one (we also applied this normalization to the
Model units above to be consistent). We then applied the same decoding procedure used in
Figure 4.2A. The results plotted above shown that overall the decoding accuracy for the neural
data was slight higher when this normalization was applied, but overall the results are very
similar.
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C3 Human Serre full model

Monkey A

Monkey B

C1

C3

Human

Serre full model

0.55

0.31

0.24

0.45

0.43

0.46

0.40

0.33

0.56

0.51

0.20

0.30

0.93

0.54

0.60

0.13

0.23

0.91

0.46

0.51

0.36

0.48

0.45

0.36

0.75

0.33

0.42

0.52

0.42

0.70

Supplemental table 4.6 The same conventions as table 1 but using the data that was z-score
normalized for each block prior to the decoding algorithm was run. Z-score normalizing the
data removed some of the 'noise' from the neural signal that was due to slow changes in firing rate
that were unrelated to the stimuli. This lead to higher correlations between the monkeys in terms
of the pattern of classification mistakes made, although the correlations between the monkeys and
the Model remained about the same.

Monkey A Monkey B

300 400 500 600 0 100 200 300

Time (ms) Time (ms)

Supplemental figure 4.12 Decoding accuracies as a function of time using data that has
been block z-score normalized (the same as Figure 4.2C, but the data has been block z-score
normalized). As can be seen, the results look similar to Figure 2C except that the decoding
accuracy is slightly higher due to the block z-score normalization which removed some slow
temporal noise from the data.
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C3 Human Serre full model

Monkey A

Monkey B

C1

C3

Human

Serre full model

0.52

0.42

0.41

0.49

0.45

0.43

0.52

0.51

0.57

0.52

0.33 0.31

0.43 0.42

0.94

0.95

0.70 0.69

0.79 0.77

Supplemental table 4.7 The same conventions as table 1 (and table 2) but using the data
that was z-score normalized for each block prior to the decoding algorithm was run and
using an RLS classifier. Z-score normalizing the data again led to higher correlations between
the monkeys in terms of the pattern of classification mistakes made. Here we see that the results
from Monkey B are about equally well explained by either Monkey B or by the Model units
(although the results from Monkey B seem to best match the human psychophysics results).
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Additional supplemental material 4.1 Examining the dynamic representation of
animal/non-animal information. Here we show the results from figure 4.2C (averaged over all
four distances), when training the classifier at time 1 (indicated by the y-axis) and testing the
classifier at time 2 (indicated by the x-axis), as was done in figure 3.6, for monkey A (left) and
monkey B (right). Overall it appears that the representation is rather static, although given that
the stimuli were only presented for a short amount of time, strong conclusions should not be
drawn.
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Additional supplemental material 4.2 Examining the dynamic representation of exact
stimulus identity decoding. Here we show the results from Supplemental figure 9 (i.e.,
decoding the identity of the 120 images shown in each block, and then averaged the results over
the 10 blocks), when training the classifier at time 1 (indicated by the y-axis) and testing the
classifier at time 2 (indicated by the x-axis), as was done in figure 3.6, for monkey A (left) and
monkey B (right). Overall it appears that the representation is has some slight dynamics,
although given that the stimuli were only presented for a short amount of time, strong conclusions
should not be drawn.
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Chapter 5: Object decoding with attention in inferior
temporal cortex

This work in this chapter was done as a collaboration between the Desimone lab and the
Poggio lab. Ying Zhang recorded the data with the help of Narcisse Bichot. I analyzed
the data and helped write the manuscript along with Robert Desimone, Tomaso Poggio.
A modified version of this work has recently been submitted for publication.

Abstract

Recognizing objects in cluttered scenes requires attentional mechanisms to filter out
distracting information. Previous studies have found several physiological correlates of
attention in visual cortexl-6, and have suggested that these physiological changes should,
in principle, be beneficial for visual information processing. However a more
computational understanding of how the visual system recognizes objects in clutter and
how attention contributes has not been developed. Here, we develop a deeper
computational understanding of how attention improves object recognition by assuming
that visual objects are represented by patterns of neural activity in the inferior temporal
(IT) cortex, and examining how attention influences these representations. We trained
monkeys to covertly deploy their visual attention from a central fixation point to one of
three objects displayed in the periphery, and we decoded information from populations of
IT neurons7 8 . The results show that before attention was deployed, information about
each object was greatly reduced relative to when these objects were shown in isolation.
However, when a monkey attended to an object, the pattern of neural activity across the
population was restored toward the pattern representing the isolated object, increasing the
amount of information about this object. Increasing the saliency of nonattended objects
overrode these attentional enhancements. Thus we find that specific firing rate changes
can have a significant impact on the information present in IT cortex. By taking a
computational perspective, this work brings us closer to an algorithmic level
understanding of how attention affects object recognition, and also provides insight into
which attention related physiological changes are directly related to information
processing, and which are byproducts of the particular mechanisms/(implementation) that
is used by the brain.
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Results

We recorded the responses of IT neurons to either one or three extrafoveal stimuli in the

contralateral visual field while monkeys fixated a spot at the center of a display (see

Figure 1 and Supplemental figure 5.1). The three stimuli were positioned so that each

was likely to be contained within a different receptive field (RF) of cells in V4 and lower

order areas but within the same large RFs of IT cells. When one stimulus appeared in

isolation, it was always the task-relevant target, but when three stimuli appeared, one was

the target while the other two stimuli were distracters on a given trial. Approximately

525 ms after the stimuli onset, a directional cue (line segment) appeared that "pointed" to

the target stimulus to attend. The monkey was rewarded for making a saccade to the

target stimulus when it changed slightly in color, which occurred randomly from 518 to

1260 ms after cue onset. On half of the trials, one of the distracter stimuli changed color

before the target change (foils), but the monkey was required to withhold a saccade to it.

Of trials that the monkeys fixated until the time of cue onset, correct saccades to the

target color change occurred on ~72% of trials, and incorrect saccades to a distracter

color change were made on only ~1% of trials (with additional fixation errors accounting

for remainder of the performance).

To understand how information about objects is represented by populations of IT

neurons, we applied population decoding methods7'8 to the firing rates of pseudo-

populations of 187 neurons from two monkeys on a first stimulus set (similar results were

obtained from each monkey so the data were combined, see Supplemental figure 5.2) and

on a second stimulus set shown to monkey 2 (Supplemental figure 5.5). We trained a

pattern classifier on data from isolated object trials and then made predictions about

which objects were shown on either different isolated object trials or on trials in which

three objects had been shown (see methods). Figure 2a shows that information about the

identity of isolated objects (blue trace), rose rapidly after stimulus onset reaching a peak

value for the area under the ROC curve (AUROC) of .83 +/-.022 at 225 ms after stimulus

onset, while information about the objects in the multiple object displays also rose after

the onset of the stimuli (red and green traces), but only reached a peak value of .62 +/-
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.014 prior to the onset of the attentional cue. An AUROC of 0.5 represents chance

performance. Thus, before the attentional cue, the amount of information about each

object in the three-object displays was greatly reduced compared to when these objects

were shown in isolation, showing that clutter has a significant impact on the amount of

information about specific objects in IT (also see Supplemental figure 5.2). After the

attentional cue was displayed, information about the attended object (red trace) rose,

reaching an AUROC value of .64 +/- .017 400 ms after the onset of the cue which was

similar to the value of .68 +/- .024 for decoding isolated object trials during the same trial

period, while information about the nonattended stimuli (green trace) decreased to a

value of .56 +/- .010. Thus location-directed attention can have a significant impact on

the amount of information about specific objects in IT. These attention related changes

can also be observed in the firing rate of the population of neurons to preferred and non-

preferred stimuli (Supplemental figure 5.3).

In addition to identity information, position information was also enhanced (Figure 5. 1c).

When this position enhancement was examined using more conventional analyses of

firing rate tuning curves for the best to worst stimuli', this position enhancement

appeared as a constant offset in the tuning curves of individual neurons (Figure 5.1d).

However, this upward shift in tuning curves is a consequence of aligning all neuronal

responses to their preferred and non-preferred stimuli - for a given stimulus and location,

these position related attention effects once again created increases and decreases in

activity across the population of cells, leading to a distributed pattern of activity for

position information.
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Figure 5.1. Effects of attention on decoding accuracy. a, Timeline for 3-object trials. Single
object trials had the same time line except only one object was displayed. b, Decoding accuracies
for which object was shown on isolated object trials (blue traces), and the attended object (red
trace) and nonattended objects (green trace) in the 3-object displays. Vertical lines indicate the
times of stimulus onset and cue onset. Colored shaded regions indicates +/- 1 stderr of the
decoding results (see methods). c, Decoding accuracies for the position of isolated stimulus (blue
trace) and the attended stimulus (red trace). Black square boxes indicate times where the
decoding accuracy for the position of the attended object was above what would be expected by
chance (chance performance is 33%). d, Normalized population firing rates to cluttered display
images ranked based on their isolated object preferences. The data from isolated object trials
were first used to calculate each neuron's best and worst position and the ranking of its best to
worst stimuli. The firing rates to these stimuli on cluttered trials were then calculated and
averaged over all neurons, and are plotted separately for attention to the best versus worst
position. Attending to the neuron's preferred position led to a relatively constant offset in the
neuron's object tuning profile.
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By training the classifier with data from isolated object trials and then evaluating the

classifier with data from cluttered trials, we tested whether one of the effects of attention

was to restore the pattern of neural activity to a state that was similar to when an object

was shown in isolation. However it is possible that attention could have additional effects

on neural representations that modify the representation of each object to make them

more distinct from one another (and thus increase the amount of information about the

objects), but in a way that is not related to the neural representations that are present

when the objects are shown in isolation. To test this possibility, we trained the classifier

on either cluttered display data or on isolated object data and compared the classification

accuracies for decoding objects in the cluttered display data. If attention added additional

information, then there should be higher accuracy when training with cluttered data than

when training with isolated object data. Figure 5.2 shows that when the same amount of

training data was used, training on isolated object trial data (blue trace) was always better

than training on cluttered trial data (red trace). Thus, attention seemed to restore the

population of neural activity to a state that was similar to when the attended object was

shown in isolation.
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Figure 5.2. Attention restores neural activity to a state that is similar to when the attended
object is presented alone. We trained a classifier using either data from isolated object trials
(blue trace) as was done in figure 1, or using data from cluttered trials using the identity of the
attended object (red trace). The results are plotted as a function of the number of training
examples used, and the data are from the cue period (200-500 ms after cue onset). No matter how
many training examples were used, the results for training with attended object in cluttered
displays were never better than training with data from isolated object trials. Thus it appears that
the effect of attention was to restore the neural representation to a state that was similar to when
the attended object was shown alone rather than creating a new 'attention-based' representation.
Chance decoding accuracy is 1/16 or 6.25%.

The above results show that top-down attention has a large impact on what information is

represented in IT. However, it was not clear how these representations would be affected

by "bottom-up" salient changes in distracter objects. We therefore aligned the data to the

time when a distractor underwent a color change, and we decoded the identity of both the

target and the distractor stimuli. The results, plotted in Figure 5.3, show that before the

distractor change there was a large improvement in decoding with attention (red trace) as

seen before. However when the distractor changed color, the dominant representation in

IT briefly switched to the distractor object (light green trace), before returning to the

attended object representation (red trace). Thus bottom-up changes in the saliency of the
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distractor objects overrode the top-down attention induced enhancements of particular

objects. An examination of behavioral data (Supplemental figure 5.4), revealed that

reaction times were longer when the target changed soon after the distractor change,

suggesting that the monkeys' behavior is likely to be influenced by which objects are

being represented in IT.

- Changing distractor

- Attended Object

25 - Non-chaning distractor

U 20

Time from distractor change (ins)

Figure 5.3 Changes in the salience of distractor stimuli dominate over attention related
enhancements. A comparison of the decoding accuracies for the attended stimulus (red trace), to
the distractor that underwent a color change (green trace), and the distractor that did not undergo
a color change (cyan trace). The data are aligned to the time when one of the distractors
underwent a color change (black vertical bar). Chance decoding accuracy is 1/16 or 6.25%.

Previous work at earlier levels of the ventral stream has shown that attention to a stimulus

in the RF is correlated with increases in firing rates or effective contrast, increase in

gamma synchronization, and decreases in the Fano factor and noise correlation,

compared to when attention is directed outside the RF- 4 ,9 -12. However, because these

effects are relatively modest, and because the results have not been interpreted in terms of

the computational functions of downstream brain regions, it has been unclear how object

recognition at higher stages might be impacted by these physiological changes. Our
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results show that in cluttered scenes, the amount of information about behaviorally

relevant objects in IT is significantly increased by attention related firing rate changes.

Also, because our decoding method was invariant to the overall level of firing rate in the

population as a whole, we believe that on the single neuron level, the differential effects

on attended and unattended objects in the same IT RF4'43-15 captured by "biased

competition" models9'16 "7 are a better description of the important information processing

operations underlying object recognition, as opposed to global increases in firing rates' or

synchrony 3 with attention. With clutter in the RF, firing rates for a given stimulus may

increase or decrease with attention, but the important result is that the pattern of activity

across the population is restored to the pattern that would have been obtained by the

object in isolation.

One limitation of this study is that most of the neurons were not recoded simultaneously,

and thus it was not possible for us to directly test how noise correlations or synchrony

would impact the population decoding results. However when we artificially added noise

correlations to our pseudo-populations, in a way that replicated the noise correlations

seen in several experiments, we found the results were largely unchanged. Thus, overall

our results support the view that the main goal of attention is to suppress clutter in order

to allow higher modules to recognize an object in clutter after learning its appearance

from isolated presentations (or in a different clutter).

Methods

Experimental procedures. Procedures were done according to NIH guidelines and were

approved by the MIT Animal Care and Use Committee. Single unit recordings were

made from anterior IT.

Visual stimuli. The visual stimuli consisted of 16 objects from four categories (cars,

faces, couches and fruit), and are shown in supplemental figure 1. The stimuli were 2.3*

219



x 2.30 in size and were shown at an eccentricity of 5.50 from fixation, at angles of +60*,

0* and -60* relative to fixation. The stimulus size/locations were chosen such that there

would be little overlap between the three simultaneously presented stimuli in terms of
27most V4 neurons' RFs . For the 3 object displays, 864 configurations were chosen (out

of the possible 3,360 permutations), two-thirds of which consisted of three objects from

the same category. A second set of 7 stimuli were also shown to the second monkey for

additional results presented in Supplemental figure 5.5; all configurations of the 630 were

used for the three object displays in this second set of experiments.

Data selection. A total of 98 and 139 neurons were recorded from monkey 1 and

monkey 2 respectively. All of the recorded neurons were used for the individual neuron

analyses (Supplemental figure 5.3, Supplemental figure 5.5d). For the population

decoding analyses, all neurons that had at least 12 representations of the isolated objects

and 800 presentations of cluttered trials were included; this gave 75 neurons from

monkey 1 and 112 neurons from monkey 2. Since different three-object images were

shown to different neurons, we only used the three-object images that had been shown to

all neurons, which gave data from 635 three object trials. For the data recorded on the

second stimulus set, we used all neurons that had been shown 60 repetitions of the

isolated object stimuli and all 630 three-object images, which gave us 87 usable neurons

of the 132 recorded.

Decoding analyses. The decoding results were based on a cross-validation procedure

that has previously been described8 . Briefly, the decoding algorithm works by: 1)

randomly selecting a number of trials for each stimulus from each neuron and creating

pseudo-populations responses (i.e., fake 'populations' responses from neurons that were

recorded independently but treated as if they had been recorded simultaneously); 2)

dividing these pseudo-populations responses into a k different splits, with each split have

at least one pseudo-population response to each stimulus; 3) creating a training set using

k-i of these splits and a test set using the remaining split; 4) z-score normalizing the

responses of each neuron of each trial using the mean and standard deviation of each

neuron over all trials in the training set (this ensures that neurons with high firing rates do
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not completely dominate the decoding); 5) training a pattern classifier to discriminate

between the different experimental stimuli/conditions using the training set and testing

the classifier's performance on the test set. 6) repeating this procedure from step 3 k

times, using a different split for the test set each time, and 7) repeating this whole

procedure from step 1 fifty times with different pseudo-populations each time. Standard

errors for the decoding accuracy were estimated by repeating the decoding procedure but

creating pseudo-populations by sampling neurons with replacement (being careful not to

include any of the same data in the training and test sets) and then taking the standard

deviation of the mean decoding accuracy over the 50 bootstrap runs, in order to estimate

the variability that is present if a different subset of neurons had been selected from a

similar population (this procedure creates a slightly negatively biased estimate of the

actual decoding accuracy of the larger population, so we use a procedure that samples

without replacement for estimating true decoding accuracy, and only sample with

replacement when estimating the standard error).

In order to make a fair comparison between the decoding accuracies on the isolated

object trials and the three object trials, a decoding accuracy measure based on the area

under the ROC curve (AUROC) was used. This measure was calculated separately for

each class i by: 1) computing a vector vi that was the average of all the training points

from class i, 2) calculating the correlation coefficient between vi and all test points, 3)

repeating this for all cross-validation splits to get a large collection of correlation

coefficients, 4) calculating the ROC curve from the correlation coefficient values from

test points that were in class i and the values of test points that were not from class i, and

5) averaging the results over all classes.

For decoding the isolated object decoding (blue trace in figure 5.1b), a twelve-fold cross

validation procedure was used in which the classifier was trained on 11 pseudo-

population examples of each stimulus and tested on 1 example of each stimulus on each

cross-validation run. For the cluttered trial decoding (figure lb red and green traces), the

classifier was trained on 11 pseudo-population examples of each object on the isolated

object trials, and testing on the 635 three object trials pseudo-population responses. For
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figure ic (Supplemental figure 5.5c), the classifier was trained using 2 (18) examples of

each stimulus at all three locations. Statistical significance was assessed by running the

full decoding procedure 200 times with randomly shuffled labels and finding all time bins

in which less than 1% of the randomly shuffled runs were higher than the real decoding

accuracy. For figure 5.2, the classifier was either trained on n training examples of the

attended object (displayed with two other random objects) and was tested on all the

remaining cluttered trial data (red trace), or the classifier was trained on n examples of

isolated objects, and then was tested on all the cluttered trials (blue trace), where n is the

value given on the x-axis of that figure. For figure 5.3, the classifier was again trained on

11 examples from isolated object trials and tested on all clutter trials in which one of the

distractors changed color. The decoding accuracy for figures 5.1b and 5.3 are based on

training the classifier on isolated object data using 500ms period that started 85ms after

stimulus onset. The training and test data for figure 5.2, and 5.1c, are based on firing

rates in a 300ms bin that started 200ms after the onset of the attentional cue. In general

the results were very robust to the parameters used in the decoding procedure. Figure

5.1 d was created by using isolated trials to find the position that elicited the highest and

lowest firing rate for each neuron, and then assessing the best to worst stimulus again

using 500ms of data from the array period. These tuning curves were then plotted for the

attended object using data from cluttered trials when attention was directed to best or

worst position.
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Supplemental figures

Supplemental figure 5.1 Stimulus sets. The stimuli came from four categories (face, couch, car
or fruit). Two-thirds of the multiple object trials consisted of all three images from the same
category and one-third of the trials consisted of images from different categories. For all analyses
reported in this paper, all images were treated the same (i.e., the category of the stimuli was
ignored).
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Supplemental figure 5.2. Figures showing decoding results for both monkeys separately.
Both monkeys show a similar pattern of reduced decoding accuracy when multiple objects are
presented (red and green traces) compared to when only a single object is presented (blue trace)

prior to the onset of the attentional cue. After the onset of the attentional cue (vertical line at
-500ms), information about the attended object increased (red trace), while information about the

attended object decreased (green trace) for both monkeys. Because the results were similar for
both monkeys, we combined data from both monkeys for all other analyses. It should be noted
that the impact of clutter in our study is larger than has been reported in a recent paper by Li et al.
(2009), which is most likely due to the fact that Li et al., used the same images when training and
testing the classifier, which allows the classifier to also exploit visual features related to the
configurations of the objects (rather than learning a representation that was completely invariant
to the surrounding clutter). Our findings are more in line with Agram et al. (2010), which also
showed decreased performance when multiple objects were present.
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Supplemental figure 5.3. Effects of attention on firing rates averaged across the
population of cells. a, Firing rates (with mean subtracted) to the 'best stimulus' (the
stimulus that elicited the highest firing rate) and the 'worst stimulus' (the stimulus that
elicited the lowest firing rate) on isolated object trials (red and blue traces), and on three
object trials (magenta and cyan traces). Before the attentional cue was presented on three
object trials, the best stimulus had a higher firing rate than the worst stimulus, and this
difference increased after attention had been deployed, with the best stimulus and worst
stimulus trials matching the firing rates seen on isolated object trials. The best and worst
stimuli were found using data on isolated object trials using a time period from 100-400
ms after stimulus onset (gray shaded region). To correct for selection biases on the
isolated object results, we randomly shuffled the labels of the stimuli, found the 'best' and
'worst' stimuli on these shuffled data and subtracted these randomly shuffled best to worst
firing rates from the best and worst firing rates obtained from the real stimuli. The results
were averaged over all neurons and the colored shaded regions are one standard error of
the mean. b, Z-score normalized firing rates for the stimulus that was cued on the three
object trials, sorted from the best to worst stimulus as determined on isolated object trials.
Before attention was deployed, the ranking seen on isolated object trials were preserved
(left panel) and that after attention was deployed this ranking was accentuated for the
attended stimulus and largely abolished for the non-attended stimulus.
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Supplemental figure 5.4. Reaction times were slower when the target changed color soon
after the distractor changed color. The distribution of reaction times on trials when the time
difference between the target and distractor color change was 20-60ms (blue trace) was compared
to when the time difference was 100-150ms (red trace). As can be seen, the distributions were
shifted to longer reaction times when the time between the target and distractor change was short.
This increase in reaction time could be related to the fact that changes in distractor saliency
caused information in IT to be dominated by properties related to the distractor immediately
following the distractor color change.
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Supplemental figure 5.5. Replication of the results on a second stimulus set. a, We
replicated the experiment on the second monkey using a new stimulus set that consisted of 7
unique objects b-d, The decoding results were similar to those with 16 stimuli, except the
decoding accuracy for the attended object did not reach the accuracy seen for the isolated object.
e, Replication of the results figure 2 using the 7 stimulus set. f, Replication of the results in figure
3 using the 7 stimulus set. Chance performance is 1/7, or 14.29%.
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Additional Supplemental Material

Additional results related to the attention and IT
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Additional supplemental material 5.1 Adding correlation noise only slightly impact on
population decoding. a, Noise correlations plotted as a function of signal correlation for the
isolated object trials (blue trace) and for the attended object in the three object trials (magenta
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trace), for the array period (left) and cue period (right). As can be seen, noise correlations are
similar in the array and the cue periods for both the isolated object and the attended object, thus
we do not see any significant changes of noise correlation with attention. We use common
methods for calculating these functions to be consistent with the rest of the literature28 , however,
it should be noted the functions of increasing noise correlations with signal correlations could be
a function of misestimating the signal correlations for neurons that have strong noise correlations,
and also that the errorbars are likely underestimated due to the fact that we do not correct for the
fact that each neuron contributes to many noise correlation values. b, Results showing that our
pseduo-populations (blue traces) do not have any noise correlations, however we can add noise
correlations to our data (cyan traces) that resemble those seen in the real data by multiplying the
pseudo-population vectors by a constant from 1-10 chosen from a uniform distribution. c,
decoding results for a Pearson's correlation coefficient classifier (which is the classifier used in
the paper), before noise correlations have been added (blue trace), and after noise correlations
have been added (cyan trace). As can be seen, adding correlated to the noise had little effect on
the classification accuracy from this classifier. d, the same results as in c but with a dot product
classifier. Here the results are more effected by noise, although still a high level of accuracy can
be achieved. It should also be noted that similar noise correlations can also be induced by adding
multivariate Gaussian noise using the signal correlations as the covariance matrix, however for
this type of noise both classifiers maintained their high classification performance. Based on the
difference in the results between c and d, it is interesting to speculate that perhaps neural circuits
operate in a way that is analogous to a Pearson's correlation classifier, with the normalization
operation that is commonly seen with the onset of stimuli1 and used to describe the effects of
attention2 9,30 being analogous to the normalization operation in the denominator when calculating
Pearson's correlation coefficient. In such a scenario, we could also speculate that when no
stimulus is being represented by a given brain region (i.e., when the brain region is in an ideal
state), that neurons in that brain region can fluctuate in a correlated way, and that when something
is being represented, the activity in a brain region is normalized to be in a consistent range
(perhaps via divisive inhibition), to that a downstream area can readout the information. This
interpretation thus gives one possible explanation for the results seen in Cohen and Maunsell
(2010).
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Additional supplemental material 5.2 Results comparing the decoding accuracy for the two
monkeys on the same plot. These results are similar to the results plotted in supplemental figure
2, except here we put the results from the two monkeys on the same figure, using the same
number of bootstrap neurons (65 neurons on each iteration). As can be seen, the results from
monkey 1 are slightly higher than the results from monkey two, but in general they show the
same trends.
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Additional supplemental material 5.3 Effects of attention on firing rates averaged across
the population of cells using the 7 unique object stimulus set. This figure is the same as
supplemental figure 3, except the data comes from the second monkey using the 7 unique object
stimulus set (see supplemental figure 3 for more information about how these figures were made).
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Additional supplemental material 5.4 Results from the 7 unique object stimulus set,
showing that reaction times were again slower when the target changed soon after the
distractor changed color. This figure is the same as supplemental figure 4, except the data

comes from the second monkey using the 7 unique object stimulus set (see supplemental figure 4

for more information about how these figures were made).
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Additional supplemental material 5.5 Population averaged z-score normalized firing rate to
each position, ranked according to each neuron's the isolated object position preference for
both monkey on 16 object stimulus set (a) and for monkey 2 on the 7 object stimulus set (b).
Before attention is deployed this is no difference between the attended and nonattended isolated
object position preference, however after attention has been deployed, firing rates increase when
the monkey is attending to neurons' 'best' positions and decrease when the monkey is attending to
neurons's worst positions.
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object at each position generates a particular pattern of neural activity, which we call the
'population representation' of a particular object at a particular location. For this analysis we
create the population representations of each object at each position using data from the isolated
object trials, and then we correlate these population representations with data from cluttered
object trials. B, Illustration showing that the cue creates both an 'attended object' and an 'attended
location'. In this example, attention is directed to object 2 at position 2. If attention affects object
and position information independently, then we might expect the population activity on this
cluttered trial to be similar to the population representations that share the same identity as the
attended object, and to the population representations that share the same position as the attended
object. Thus, for this example, we would expect the population activity to be similar to the
population representations that contain object 2 (red representations in the second column on the
right of the figure), and to be similar to the population representations that contain an object at
position 2 (solid underlined representations in row two on the right of the figure). C, The plot on
the upper left shows the correlation coefficient between the cluttered data and population
representation of the attended object at the attended location, and also the correlation coefficient
between the cluttered data and the population representation of the attended object at the
nonattended locations. As can be seen, there is more similarity between cluttered data and the
population representation of the attended object at the exact attended location, then there is with
the population representations of the attended object at nonattended locations. The plot on the
upper right shows the correlation coefficient between the cluttered data and population
representations of the nonattended object at the attended location, and also the correlation
coefficient between the cluttered data and the population representations of the nonattended
object at the actual location these nonattended objects were shown. As can be seen, prior to the
onset of the attentional cue, there is a higher correlation between the cluttered data and the
population representation of nonattended objects at the actual locations they were shown, than the
population representations of the nonattended objects at the location that will be attended.
However, after the onset of the attentional cue, the cluttered data more closely resembles the
population representations of the nonattended objects at the attended locations, than it does the
nonattended objects at the actual locations they are on the screen. The plot on the lower left
shows the correlation coefficient between the cluttered data and population representation of the
objects that were not shown at the attended location, and also the correlation coefficient between
the cluttered data and the population representations of the objects that were not shown at the
nonattended locations. As can be seen, after the onset of the attentional cue, the cluttered data
more closely resembles the population representations of objects that were not shown at the
attended location compared to the population representations of objects that were not shown at
the nonattended locations. The plot on the lower right compares all the correlation coefficients
shown in the other plots together. It can be clearly seen that after the onset of the attention cue,
the cluttered data is more similar to the population representations for the attended object than for
the nonattended objects, and that the cluttered data is more similar to the population
representations for the nonattended objects than to the population representations for the objects
that were not shown (red > green > cyan). Likewise, after the onset of the attention cue, the
cluttered data is more similar to the population representations for objects at the attended location
(solid lines) compared to the population representations of objects that are at the nonattended
location (dashed lines). Thus attention enhances the population representations for both object
identity and object position. These figures were created by running trying to decode each object
at its exact location using a MCC classifier (training on isolated object data and testing on
cluttered data), and then plotting the correlation values separately for the different attention
conditions.
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Additional supplemental material 5.7 Classification accuracy confusion matrices. Top plot
shows the confusion matrix the 16 object stimulus set (decoding based on combining data
from both monkeys), and the bottom plot shows the confusion matrix the 7 object stimulus
set (decoding based on data from monkey 2). In general, there is not a clear pattern of
mistakes made by the classifier, even on the 16 object stimulus set where the images come for 4
categories - although there are a few trends in this dataset, such as the fact that the image of an
apple was often mistaken as an image of an orange, there is more confusion among the couches,
and the cars generally had lower decoding accuracies than the other categories of objects.
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Additional supplemental material 5.8 Classification accuracy confusion matrices for
decoding which object was shown at which exact location. Upper plot shows the confusion
matrix for the 16 object stimulus set, and the bottom plot shows the confusion matrix the 7 object
stimulus set. While some mistakes are made between the same object at different locations, in
general there are not too many obvious trends in the pattern of mistakes, and objects at particular
locations can be distinguished from each other surprisingly well.
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classifier using data from one location and then tested the classifier with data from when either
the isolated object was shown at a different location (blue trace), or when the attended or
nonattended object was shown at a different location (red and green traces). The results are
averaged over training and testing at all locations, a, results from the 16 object stimulus set (data
combined from both monkeys), and b, are the results from the 7 object stimulus set (data from
monkey 2).
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Additional results on IT and showing the robustness of decoding
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Additional supplemental material 5.10 Results showing that the population response to the
isolated objects is similar at the different locations. For this analysis we trained the classifier
with data from one location (indicated by the label on the x-axis), and we tested the classifier with
data from either the same or a different locations. While in general training and testing at the
same location led to slightly better results, the difference was small (as can be seen by comparing
the left most three bars on each plot), and even this small difference disappeared when training
with data from all locations (right two bars), showing that it is easy to learn a position invariant
representation from data in IT. The results in this plot all comes from 7 object stimulus set (from
monkey 2).
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Additional supplemental material 5.11 Results from training the classifier at one time
(indicated in the y-axis), and testing the classifier at the same or a different time (indicated
by the x-axis). This plot is similar to Figure 3.6. As can be seen, the representation for the
identity of the different objects is rather stationary, with one object being represented by the same
pattern of activity over all time periods. This is quite different from the abstract category
information which changed dynamically in time (see Figure 3.6), although is slightly more
similar to the decoding of identity information from the Freedman et al., (2003) data (see
Supplemental figure 3.7). These findings are similar to recent results reported by Crowe et al.,
(20 10)31. Chapter 6 discusses these findings further.
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Additional supplemental material 5.12 A comparison of classification accuracies using
different classifiers for the 16 object stimulus set (upper plots), and the 7 object stimulus set
(lower plots). As can be seen, all the results are qualitatively similar regardless of which
classifier is used, and there are only slight differences in their absolute levels of performance.

243

0 500 1000 1500 2000

lime (ms)

-- MCC

SVM
RLS
PNB

- MCC no normalization
-- Raw dot product

.......................................



Isolated object

U

ID

Attend object
0.1

OAS

05

0A

0.7

0.5

0.55

0.54

Nonattend objects
OM'

0.6

0.62

0.6-

0.56

0.56

0.54

0.52

0 500 1000 150 2000

Time (ms)

- 10
-40

-100
- 130
-160

Number of training
examples

Attend object
0.9

0.85

0.8

0.75

0.7

0.5

0A

0.55

0.5

0 500 1000 15 2000

Time (ms)

OA5 - 10~0.40
O - 70

40 Number of training
0.s examples

0 500 1000 150m 2000

Time (ms)

Additional supplemental material 5.13 Decoding results plotted as a function of the
number of bootstrap neurons used for the 16 object stimulus set (upper plots), and the 7
object stimulus set (lower plots).
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Additional supplemental material 5.14 Isolated object decoding results using (left) or
excluding) the most selective k neurons for 16 object stimulus set (upper plots), and the 7
object stimulus set (lower plots). The best k neurons were selected by applying an ANOVA to
each neuron in the training set, and then using only these neurons to train and test the classifier.
For the 16 object stimulus set, the results were about as good using only 16 of the most selective
neurons compared to using a population of 128 neurons, while for the 7 object stimulus set, the
results continued to improve slightly as more neurons were added (the difference between the
results is probably due to the fact that the there were many more repetitions of each trial type in
the 7 object stimulus set, so the classifier could learn the parameters better, and was thus better
able to utilize information even in highly noisy neurons). Performance degraded slowly when
the top k neurons were excluded.
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Chapter 6: Conclusions

In this thesis we have developed and applied a set of decoding procedures in order to gain

deeper insight into the content and coding of information that is present in high level

visual areas. Before this research was started, it was unclear how useful these decoding

methods would be because a careful examination of how sensitive these methods were to

particular parameter choices had not been conducted. Consequently, I spent a fair

amount of time making sure these methods were robust. The findings presented in this

thesis demonstrate that across several different datasets, the decoding results are indeed

robust to the choice of classifier (see Figure 2.3, Supplemental figure 3.2, Additional

supplemental material 3.1, and Additional supplemental material 5.12), the data

normalization method used (Additional supplemental material 3.2), and to the various

different representations of the neural data (Additional supplemental material 3.10 and

Additional supplemental material 3.11). Thus the empirical evaluation of these decoding

methods give us a fair amount of confidence that discoveries made using these techniques

are capturing underlying consistencies in the data, and are not particularly sensitive to

choices of data analysis parameters used.

In addition to showing that these decoding methods are a reliable way to analyze data, we

also discovered many new findings about the function of IT cortex and other related brain

regions, which demonstrate the usefulness of these methods. In chapter 3, we show there

is information about abstract categories in IT, and that this information is contained in a

small subset of neurons that change in time. In chapter 4, we see that simple features

(i.e., combinations of features that resemble the response properties of VI neurons),

might be sufficient to coarsely identify the presence of an animal in a cluttered scene, and

that the latency of information in IT appears to be quite long relative to previously

reported behavioral results (Kirchner and Thorpe, 2006; Girard et al., 2008), which gives

tentative support to the idea that rapid coarse identification of animals in cluttered scenes

might be primarily driven by other areas apart from IT. Finally, in chapter 5, we use

these decoding methods to show that one of the main roles of attention is to restore
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patterns of neural activity to a state that is similar to when the attended object is presented

in isolation, which gives a coherent computational explanation for many of the attention

related effects that have been described at the single neuron level. Thus, the work in this

thesis makes several significant new findings about the processing that occurs in IT, and

while we may still be a long way from understanding the exact computational role of this

brain region, the work in this thesis highlights that complex visual processing occurs in

IT well beyond the initial feed-forward sweep of visual processing that is often

exclusively analyzed in many studies of this brain area.

The findings in chapter 3, showing that abstract category information is coded by

changing patterns of neural activity (Figure 3.6, and Figure 3.7), are particularly

interesting when compared to the findings other information in IT is coded by more

stationary patterns of neural activity (see Additional supplemental material 5.11, and to a

lesser degree Supplemental figure 3.7). A recent study by Crowe et al., (2010) used

similar population decoding methods to show that there is dynamic coding of relative

spatial information in parietal area 7a, while information about task-irrelevant visual

stimulus properties were coded by static patterns of neural activity. Based on these

findings, Crowe et al., (2010) suggested that such dynamic population coding might

mediate task-critical cognitive processing, while static coding might be more related to

task irrelevant information. This interpretation seems fairly reasonable to us2 6, and

additionally, dynamic coding might be related to memory processing, since such dynamic

coding is often seen in tasks that have a memory component to them (Baeg et al., 2003;

Zaksas and Pasternak, 2006; Pastalkova et al., 2008). Having a dynamic code in memory

tasks makes sense because such tasks require that new information is compared to what

was previously seen, and if a static code were used, this new information would overwrite

the information about previously seen stimuli, making it impossible to complete the task.

2 Where this interpretation agrees with all our data is questionable however (see Additional supplemental
material 3.17 and Additional supplemental material 4.2)
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Finally, one issue that arisen in all data analyses in this thesis, is the fact that we use

always use pseudo-populations 27 of neural activity rather than examining neural activity

that was actually recorded simultaneously. While the previous literature has suggested

that correlated neural activity seems to contain only a relatively small amount of

information (Panzeri et al., 2003; Averbeck and Lee, 2004; Aggelopoulos et al., 2005;

Anderson et al., 2007), we thought it would be useful to do a few initial analyses to

address this question. In collaboration with Jim DiCarlo's lab at MIT 28, we recorded

several sessions of data using Utah probes that could simultaneously record the activity

from 32 channels in area V4. Results comparing pseudo-population decoding accuracies

to the decoding accuracies based on simultaneous recordings for natural images patches,

color patches, polar, hyperbolic and regular gratings (Gallant et al., 1993), and for

isolated objects (Hung et al., 2005) are shown in Figure 6.1. While further analyses need

to be done (particular using more complex classifiers), the preliminary results show

similar decoding accuracies are obtained using both types of data2 9, which gives support

to the notion that correlated activity might not contain additional information.

27 By pseudo-populations we mean neurons that were recorded on separate sessions but were treated as if
they were recorded simultaneously (see chapter 2, and the methods sections of chapters 3-5 for more
details).
28 Jennie Deutsch, Joel Leibo, and Cheston Tan, helped contribute to collecting this data.
29 For a few cases, the results from the simultaneous recordings were slightly higher than the results for the
pseudo-populations (e.g., on the natural image patches, and the isolated objects in Figure 6.1). These
higher decoding accuracies seem to be due to the fact that there is correlated noise in the data (i.e., the
whole population fluctuates up and down together), and the normalization process in the MCC classifier
leads to slightly higher performance. When a raw cross-correlation classifier is used, these differences go
away (and also these differences are not present when other decoding accuracy measures are used, such as
the normalized rank, or the area under and ROC curve).
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Figure 6.1 Classification accuracies are similar for simultaneously recorded populations
and for pseudo-populations. Results are from the four datasets that consist of natural image
patches, colored circles, Cartesian and non-Cartesian gratings, and isolated objects. An MCC
classifier was using on firing rates calculated in 150ms bin sampled every 50ms. As can be seen,
the results for pseudo-populations and simultaneous recordings are very similar.

Advantages of using decoding to analyze neural data

In the beginning of this thesis, we pointed out that neural decoding has many advantages

when compared to more commonly used data analysis methods. However, before

showing how population decoding can be applied to neural data, it was difficult to give

examples of these advantages in a way that could be easily understood. At this point,
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however, we feel it is instructive to once again revisit the advantages of neural decoding

and illustrate these advantages by highlighting examples from this thesis. Below I list

some of the strengths of population decoding, and give examples of how I have used

these advantages in the analyses in my thesis.

1) The ability to examine 'abstract' information. One of the great strengths of

population decoding is its ability to evaluate whether a population of neurons contains

information that is abstract from physical properties of stimuli. To evaluate whether a

population of neurons contains abstract information, one simply trains a classifier on one

set of conditions and then test the classifier on a related set of conditions. For example,

to evaluate whether ITC contains information about a visual object's identity that is

abstract from the position of the object, one can train the classifier using data from trials

when stimuli were shown at one position, and then test whether the classifier can classify

these stimuli at a different position (see Figure 2.5 and Hung et al., 2005). Another

example where I use this in thesis is to examine whether ITC and PFC contain abstract

category information (e.g., information about whether a stimulus belongs learned

category, that is separate from the visual properties of the stimulus). To do this analysis I

trained the classifier to discriminate between images that belonged to two categories

using one set of stimuli, and then tested the classifier on a different set of visual stimuli

that were also members of these same categories. Because the visual image used in the

training and test set were distinct, the ability of the classifier to perform well on this task

had to come from the fact that through the monkey's experience learning this

categorization task, neurons in ITC and PFC started responding similarly to the category

of the stimuli, regardless of the visual features present in particular images.

The reason that the ability to evaluate whether abstract information is present is

important, is because if such information is present, it must have been activity

constructed by neural processes, which strongly suggests this abstract information is

actually being used by the brain to influence behavior. In contrast, evaluating non-

abstract information, (for example, if one is trying to decode the exact same stimuli using

data from data from different trials), is less interesting because even if there is a high
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amount of information present, it is hard to interpret whether this information is used to

influence behavior since this information is inherent in the stimulus, and thus could be

passively propagated through the brain. Most conventional data analyses methods do not

have the ability to readily evaluate whether a brain region has abstract category

information, which highlights a major advantage of neural population decoding.

2) The ability to examine questions related to neural coding. Another strong point of

population decoding, is that the method allows one to examine questions about how

information is coded in neural activity. At the moment it is unclear whether all

information is contained in the firing rates of neurons, or whether additional information

is contained in inter-spike intervals, synchronized activity of many neurons, or in some

other form of neural activity. Population decoding analyses can examine these questions

by using different neural features (such as inter-spike interval times or firing rates in

different bin sizes) and comparing how high the decoding accuracy is with these different

features. If a much higher decoding accuracy can be obtained with one type of neural

feature representation than another, this suggests that the brain might be using this type of

neural code to transmit information. In Additional supplemental material 3.10 I compare

how decoding accuracies when using firing rates calculated in different bin sizes, which

is an example of how this method can be applied30 .

3) The ability to compare different types of data. Because many different types of

data can be fed into pattern classification algorithms, it is possible to compare how much

information is in different types of signals. Signals I have looked at in the past include:

single unit spiking activity (most data in this thesis), multi-unit spiking activity (e.g.,

Figure 6.1), computer vision features (see chapter 4), local field potentials, and functional

30 Results from analyses comparing different bin sizes generally show that larger bin sizes contain more
information. However whether the brain averages activity over longer periods still remains an open
question due to the fact that the data I analyzed was not collected simultaneously. Thus, this higher
decoding accuracy could be a result of the fact that the information was present at different latencies in
different trials, and using larger bins is really just averaging out differences between trials rather than
saying something about the temporal precision of the neural code (i.e., the neural code could be very
precise in terms of a joint activity across many neurons, but this joint activity could occur at different
latencies on different trials).
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magnetic resonance imaging. Also because population decoding analyses report results

as the percentage of conditions correctly classified, it is possible to compare decoding

results to human performance on psychophysics tasks when similar measures are used

(see chapter 4). Thus it is possible to evaluate how many different types of neural signals

compare to the behavioral performance of humans and/or other primates.

4) Robustness to selection biases (and the ability to examine sparseness/compactness

of information). Selection bias appears to be widespread in the analysis of neural and

fMRI (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). One example of where

selection bias is likely to be present is when researchers plot examples of individual

neuron's activity to show that single neurons have particular effects, as is commonly done

in many papers studying the visual properties of neurons. The reason that selection bias

can be a problem is that if example neuron was chosen just because it showed desired

effect (rather than being selected randomly), then the observed effects could just be due

to noise (i.e., it is likely that just by chance one could find a single neuron that shows the

desired effect). Another common example where selection can arise, is when researcher

first screen a population of neurons for a particular property (such as only using neurons

that are visually selective), and then applying additional analyses using only using these

neurons. While analyzing subpopulations might make sense in particular circumstances,

often the data used to select the subpopulation contains the same information that the

subsequent analyses rely on, creating dependencies between these statistical tests, which

can lead to incorrect conclusions (see Additional supplemental material 3.7)

The cross-validation procedure used in neural population decoding analyses can help

reduce selection bias. By having separate training and test data splits, it is possible to use

the training set to select a specific subpopulation of data, and then the test set can be used

to validate that the selected data actually contains additional desired properties. For

example, one could test if decoding results are affected by non-visually selective neurons

by doing the decoding analyses using all the data, and comparing the results to a

decoding analysis that first applies data selective to the training set to find the visually

selective neurons, and then evaluating the classifier's performance on the test set using
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only these visually selective neurons . Additionally, it is possible to use these cross-

validation methods to evaluate whether information is coding in a small subset of neurons

by selecting only highly selective neurons using the training set data, and then evaluating

whether this small subset of neurons contains all the available information on the test set

(see Figure 3.4). Determining whether there is a compact set of neurons that contain all

available information using convention statistics is difficult because such statistics give a

fixed level of false positives (as determined by the alpha level used), and also because

conventional statistics applied separately to a set of neurons cannot evaluate whether

neurons contain redundant information with one another.

5) The ability to analyze joint activity of neurons. Examining the properties of many

neurons jointly has several advantages over commonly used analyses that examine each

neuron individually. From a purely theoretical point of view, it is widely believed that

information is processed in the brain by the joint activity of many neurons, thus this type

of data analysis can explore neural activity that potentially more relevant to the neural

information processing. From a data analysis perspective, analyzing the joint activity of

neurons allows for more robust estimates by pooling the seemingly weak and noisy

signals that individual neurons have in order to obtain a more robust signal, thus allowing

one to clearly see the flow of information with a relatively high temporal precision (a

good example of this is figure 5.3 where we can see that ITC is switching between

representing different objects as the monkey changes the focus of attention).

Additionally, examining the joint activity of neurons allows one to explore questions that

cannot be addressed with single neuron analyses, including, is additional information

coded in the joint activity of neurons (see Figure 6.1) and how redundant is the

information coded by different neurons in a population (see Figure 3.5).

31 The analyses I have done examining this question have shown that decoding results are very robust to
including non-selective neurons., i.e., including non-visually selective neurons does not appreciably change
the results in any of the analyses I have done (See Additional supplemental material 5.14)
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6) A change in perspective from finding significant effects, toward a better

understanding of the importance of observed effects. Many analyses of neural data

focus on finding statistically significant differences in neural activity between different

conditions, (often by computing different 'selectivity indices' and applying standard

statistical tests such as t-tests and ANOVAs to these values). While this hypothesis

testing approach is effective in showing that an effect exists, it leaves the task of

determining the importance of the observed effect unanswered. Thus if often feels that

the field of neuroscience is overrun by facts, while lacking a clear way to piece these

facts into a coherent picture that can explain how the observed effects can influence

behavior. Neural population decoding can help to give more insight into developing a

real computational understanding of neural processing in several ways. First, since

population decoding can evaluate the magnitude that different effects contribute to

particular tasks, this method can give insight into which effects are most important.

Second, population decoding forces one to evaluate data in a way that is potentially more

biologically relevant (see chapter 5). Many common data analyses only analyze

responses to stimuli that the maximally excite a neuron thus generating a dataset that is

highly unrepresentative of the most common neuronal responses (or create indices that

have no direct meaning in terms of the activity of a neuron on a single trial). Because

population decoding has to make predictions about each stimuli/conditions regardless of

whether it is a 'preferred stimulus' or not, population decoding gives a more realistic

picture of neural processing that is occurring on individual trials. Third, as mentioned

before, population decoding results can be compared to the performance of an animal and

to computer vision systems, making the results directly interpretable in terms of

computational goals of a biological/computational system (see chapter 4). Finally,

population decoding can easily track the state of a population of neurons, which enables

one to get a better view of the dynamic computations (see Figure 3.6), which is probably

a necessary first step toward algorithmic-like description of neural information

processing.
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Future directions

To conclude, I thought I would mention a few future directions that I would like to take

this work. Many of my future research interests in neural population decoding involve

analyzing data that has been recorded simultaneously using chronic recording methods

(such as Utah probes), and also they involve creating better ways to share data, analysis

code, and results in order to speed up the rate of discovery.

As discussed above, preliminary analyses of simultaneous recordings of V4 data from the

DiCarlo lab indicate that there is pseudo-populations contain the same information as

simultaneously recorded data, however I would like to examine this question more

thoroughly by exploring the results using more complex classifiers and neural coding

schemes. I would also like to examine the temporal precision of the neural code using by

applying decoding methods to simultaneously recorded data using firing rates calculated

over different timescales. While my previous results analyzing pseudo-population

responses have shown that there is more information in longer time periods (see

Additional supplemental material 3.10), the analysis of simultaneously recorded data

could reveal information coded shorter timescales. For example, it is possible that a

large amount of the trial-to-trial variability in spiking activity seen in almost all

electrophysiological experiments is due to the same information being represented at

slightly different times on different trials (i.e., neural activity is not perfectly time-locked

to an experimentally chosen event). However, if one looks at activity of a whole

population simultaneously using neural decoding, it might be possible to see temporally

precise patterns of activity across the population that occur at slightly different times on

each trial (e.g., the whole population could undergo state changes on a time scale of say

25ms, but these state changes could occur at different latencies on different trials). If this

is the case, it could explain why neurons appear to be able to fire with a high degree of

temporal precision and yet it seems that firing rates in longer bins contain the most

information. Such a result would have a profound impact on the way electrophysiology

data is collected and analyzed since it would indicate that averaging activity over

repeated trials (e.g., PSTHs) could be missing essential features of the neural code.
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Another direction I am interested in exploring concerns trying to better understand the

visual features/dimensions that neurons in IT respond to. A major limitation of past

studies exploring this question has been the fact that standard electrophysiological

recording methods only allow a limited recording time (on the order of a couple of

hours), and thus only a limited stimulus set can be shown to each neuron. By analyzing

responses to a much large stimulus set collected over many days, it should be possible to

get a much better sense of the visual features neurons are responding to. I am particularly

interested in assessing how neurons respond to commonly encountered image

transformation (e.g., affine transforms, contrast changes, etc.), and examining how these

different images are related to each other in terms of distances in 'neural activity space'.

This geometric perspective might reveal whether neurons are responding to lower level

visual properties or to more behaviorally relevant factors and might give new insights

over standard analyses that typically focus on the 'optimal' stimuli for each neuron.

Finally, to verify that the information that I am decoding is relevant for behavior, I would

like to develop decoding algorithms that will allow for real-time decoding experiments in

vision. One such experiment that am particularly interested in, involves training a

monkey detect a change in either of two stimuli that are shown simultaneously. If the

change in the stimulus is made subtle enough, the monkey will have to attend to only one

of the stimuli at a time, and by applying population decoding, it should be possible to

detect which stimulus the monkey is attending and thus predict the monkey's behavior on

a trial-by-trial basis. If such predictions were successful, this would give us increased

confidence that we are extracting information that is used by the animal.

Apart from analyzing data, I would also like to develop infrastructure that will allow

researchers to better share data and software tools. Currently, there is no agreed upon

standard method for analyzing electrophysiological data, so most researchers develop ad

hoc methods for each paper that is published. This lack of standard methodology makes it

very difficult to interpret the results reported in many papers. If the neuroscience

community developed a culture that was more similar to that seen in biology, where data
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and analysis tools are almost always shared, it should be much easier to tell which results

are real and which are simply artifacts of the data analysis method, which in turn would

lead to much more rapid progress. To try to move the field in this direction, I would like

to develop common data formats to enable the sharing of data, and I would like to create

a database where researchers can submit data, analysis software, and results. Hopefully,

this will allow the field to converge on the best methods and allow for more confidence in

the accuracy and interpretation of results reported in the literature, which in turn should

lead to much more rapid progress in understanding the algorithms that underlie high level

visual processing and other functions of the brain.
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