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ABSTRACT 
 
Faces are an important class of visual stimuli, and are thought to be processed differently 
from objects by the human visual system. Going beyond the false dichotomy of same 
versus different processing, it is more important to understand how exactly faces are 
processed similarly or differently from objects. 
 
However, even by itself, face processing is poorly understood. Various aspects of face 
processing, such as holistic, configural, and face-space processing, are investigated in 
relative isolation, and the relationships between these are unclear. Furthermore, face 
processing is characteristically affected by various stimulus transformations such as 
inversion, contrast reversal and spatial frequency filtering, but how or why is unclear. 
Most importantly, we do not understand even the basic mechanisms of face processing. 
 
We hypothesize that what makes face processing distinctive is the existence of large, 
coarse face templates. We test our hypothesis by modifying an existing model of object 
processing to utilize such templates, and find that our model can account for many face-
related phenomena. Using small, fine face templates as a control, we find that our model 
displays object-like processing characteristics instead. 
 
Overall, we believe that we may have made the first steps towards achieving a unified 
account of face processing. In addition, results from our control suggest that face and 
object processing share fundamental computational mechanisms. Coupled with recent 
advances in brain recording techniques, our results mean that face recognition could form 
the “tip of the spear” for attacking and solving the problem of visual recognition. 
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“All models are wrong, but some are useful” 
 

–  George E. P. Box 
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Chapter 1:  Introduction 
 
 
Faces are an important class of object stimuli, and are thought to be processed differently from 
non-face objects. However, faces and non-faces share at least some processing in common, e.g. 
the initial processing in area V1. So, going beyond the false dichotomy of same versus different 
processing, it is more important to understand how exactly faces are processed similarly or 
differently from non-faces. If face and non-face processing are radically different, then 
understanding one may not contribute much to understanding the other. On the other hand, if 
face and non-face processing share fundamental similarities, then understanding one may help 
with the other. 
 
But why is this important? Faces are an interesting stimulus class in their own right, but they can 
also be viewed as a “model class”. In biology, scientists often study “model organisms” such as 
C. Elegans, fruit flies, zebrafish or mice because these organisms have certain properties such as 
simplicity or short reproductive cycles that make them especially useful. After gaining some 
fundamental understanding from these model organisms, scientists then use that knowledge to 
better understand more and more complex organisms, hoping to eventually translate that 
understanding into medical treatments for humans and so on. 
 
What makes faces a suitable candidate to be a “model class”? If we want to understand and 
ultimately replicate the amazing visual recognition abilities of humans, then it makes sense that a 
model class should be one that humans are good at recognizing, such as faces. We would also 
want the model class to be relatively well-defined and easily characterized. Faces fulfil these 
criteria, at least more so than many other classes such as fruits, clothes or animals. Finally, for 
practical purposes it would be greatly helpful if there existed a set of neurons that are spatially 
clustered and highly selective for the model class. Faces fit the bill perfectly. 
 
With that broad motivation in mind, how well do we understand the processing of this model 
class? Not very well. Various aspects of face processing, such as holistic, configural, face-space 
and norm-based processing are investigated in relative isolation, and the detailed relationships 
between these are unclear. Furthermore, face processing is characteristically affected by various 
stimulus transformations such as inversion, contrast reversal and spatial frequency filtering, but 
how or why is unclear. Most importantly, we do not yet understand even the basic mechanisms 
underlying face processing.  
 
There are two main messages in this thesis. The first is that we may be on our way to having a 
unified account of face processing. The second is that face processing and object processing may 
share striking similarities in underlying processing mechanisms. Coupled with recent advances in 
brain recording techniques, our results mean that face recognition could form the “tip of the 
spear” for attacking and solving the problem of visual recognition. 
 
What do we mean by a unified account, and what has not been unified? We examine this next. 
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[ Note: although strictly speaking, faces are themselves an object class (as opposed to non-object 
stimulus classes such as white noise, textures, etc.), throughout this thesis, we will use the terms 
“non-face objects”, “objects” and “non-faces” interchangeably. ] 
 
 
1.1 Gaps in understanding 
 
This thesis is a modeling study. If the purpose of scientific research is to gain a deeper 
understanding of the world we live in, how can models help to achieve that purpose? Empirical 
studies not only report about collected data, but also attempt to interpret that data. However, 
interpretation cannot exist in a vacuum, and relies on some model or theoretical framework. 
Empirical studies and modeling studies are thus complementary in the sense that they can work 
together to help us achieve an understanding that neither alone is capable of. We contend that the 
understanding of face processing is not advancing as quickly as it should, because of the lack of 
a unifying framework. We describe three major gaps in understanding currently faced by the 
field. 
 
1.1.1 Multi-faceted face processing 
 
There are multiple facets to face processing, and the relationships between these are still not 
clear. Under what is sometimes termed “configural processing”, three varieties are distinguished: 
first-order, holistic, and second-order processing (Maurer et al. 2002). There is also another set 
of inter-related processing styles: face-space and norm-based coding. The relationships between 
all of these types of processing are still not well understood (McKone 2010). 
 
Faces also seem to be different from objects in terms of their sensitivity to stimulus 
transformations such inversion, contrast reversal and spatial frequency filtering. How and why 
this is the case is not well understood. 
 
1.1.2 From neurons to behavior 
 
Another huge gap in understanding is in relating one level of description to another. Scientists 
have recorded from “face cells” in the macaque temporal lobe for decades (e.g. Gross et al. 
1972), and these electrophysiological techniques have recently been given a radical boost 
through the advent of fMRI-targeting (Tsao et al. 2006). At the same time, behavioral studies of 
face processing in humans have proceeded in parallel for many decades (e.g. Yin 1969). In more 
recent years, these behavioral studies have been augmented by large-scale brain recording 
techniques such as fMRI and EEG. 
 
However, there is still a yawning gap between each of these levels of description. It is still 
somewhat of a mystery how the responses of face-sensitive cells in the macaque temporal lobe 
relate mechanistically to human behavioral responses during face processing. How fMRI and 
EEG data relate to either of these is even more unclear, because there are multiple face-sensitive 
brain regions, and not all the findings from each region are consistent with behavior (Schiltz et 
al. 2010) 
 



 

19 
 

1.1.3 Faces and objects 
 
It is clear that faces and objects are processed differently in some ways and similarly in others. 
What does this mean in terms of the underlying processing mechanisms? Are faces and objects 
similar because they share processing stages (e.g. V1) and are different because their processing 
stages diverge later? Or are face and object processing similar-yet-different because their 
processing mechanisms are variations of each other? 
 
 
1.2 Hypothesis, results and contributions 
 
In this section, we briefly describe our main hypothesis. We then provide a quick preview of the 
results and contributions; these will be described in more detail in Chapter 13 (and justified 
through the course of this thesis). 
 
1.2.1 The “large coarse templates” hypothesis 
 
Our main hypothesis is that the key difference between face and non-face processing lies in the 
existence of large, coarse face templates. The initial motivation and inspiration for this 
hypothesis is the Composite Face Effect (reviewed in Chapter 2) and holistic processing, thought 
by some to be the key characteristic that distinguishes face processing from object processing. 
This hypothesis/theory is more fully described in Section 13.2. 
 
1.2.2 Preview of results and contributions 
 
Our first result is that our model with large, coarse templates reproduces the Composite Face 
Effect (CFE), a “gold standard” behavioral marker of “holistic processing”. With small, fine 
templates, the model does not show the CFE, consistent with our hypothesis. We then extend our 
investigation to inverted faces, and we find that our model can reconcile some of the conflicting 
behavioral results for inverted faces. Similarly, we find that our model can also reconcile some 
of the conflicting results stemming from two hotly debated versions of the CFE. 
 
We then turn to the effect of three stimulus transformations on face processing: contrast reversal, 
spatial frequency filtering and inversion. For each of these stimulus transformations, we show 
that our model can once again reconcile some of the contradictory findings. Crucially, by using 
the same model with large, coarse templates without any modification (and using small, fine 
templates as a control), we demonstrate the link between these stimulus transformations and 
face-specific (holistic) processing. 
 
Finally, we again use the same model and show that it can account for other kinds of processing 
(e.g. configural and face-space processing) thought by some to be face-specific, thereby linking 
these various aspects of face processing under our “large, coarse” framework. 
 
At every step along the way, we provide a mechanistic, step-by-step account starting from the 
responses of single model units up to the level of “behavioral” responses by the model. We also 
show that a change in “processing style” (i.e. “face-like” versus “object-like”), even using faces 
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as stimuli, can account for the differences between behavioral results that have been found for 
faces and objects. 
 
In short, we bridge each of the three gaps in understanding highlighted in Section 1.1. The 
contributions of our model and its implication are discussed in more detail in Chapter 13. 
 
 
1.3 Thesis overview 
 
We start off in Chapter 2 by doing an in-depth review of the Composite Face Effect (CFE), a 
“gold standard” marker of holistic face processing, because this is the starting point that 
motivates our “large, coarse template” hypothesis. In Chapter 3, we then review existing models 
of face processing to examine the current gaps in theoretical understanding. In Chapter 4, we 
review the HMAX model of object recognition, as this is the base model which we will modify 
to implement our “large, coarse template” hypothesis. We then proceed to verify our hypothesis 
in Chapter 5, by replicating the CFE. In Chapter 6, we extend our results by accounting for the 
CFE in inverted faces. We further extend our results in Chapter 7 by also accounting for an 
alternative CFE experimental design. In Chapters 8, 9, and 10, we switch gears to testing our 
model’s sensitivity to stimulus transformations such as contrast reversal, spatial frequency 
filtering and inversion, respectively. In Chapter 11, we again switch gears, and attempt to show 
that our model can also account for face-space processing (and norm-based coding in particular). 
In Chapter 12, we show that our quantitative model and the widespread intuitive account of the 
CFE are compatible. Finally, in Chapter 13, we summarize our results by presenting a new, 
unified theory of face processing, discuss its implications and then list some predictions and 
avenues for future work. 
 
 
1.4 What makes a model useful? 
 
“All models are wrong, but some are useful” – George Box (1979) 
 
The basic requirement of any model is that it should replicate whatever phenomenon it was 
designed for. It should also generalize, i.e. be applicable beyond that phenomenon. In our case, a 
good model of the Composite Face Effect should obviously replicate it, but also be able to 
account for the lack (or reduction) of it for inverted faces and non-faces. Beyond these basics, 
however, the usefulness of a model can be judged in various other ways. Throughout the course 
of this thesis, we will show that our model can do all of these things. 
 
1.4.1 Performing simulations 
 
One major way in which models can be useful is in performing simulations. Simulations allow 
scientists to test their hypotheses concretely by implementing them as quantitative models, rather 
than relying on their (sometimes incorrect) qualitative intuition. Because quantitative models 
have to be implemented in order for simulations to be run, this forces some implicit assumptions 
to be made explicit and mechanisms to be specified in detail. This helps to improve scientific 
rigor. In addition, practical considerations (such as length of experiments) impose certain 
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constraints on empirical studies; model simulations face fewer constraints, so they may be able 
to provide a more comprehensive picture. 
 
1.4.2 Making sense of data 
 
Another way in which models are useful is in making sense of data. Often, the empirical results 
can be unclear or even conflicting. This may simply reflect experimental noise or fluke results, 
but could also reflect the complexity of the underlying phenomena being studied. Models can 
help to potentially reconcile these conflicting results. Furthermore, empirical studies are rarely 
identical in their experimental design or procedure, and model simulations can help to bridge the 
differences between studies. Perhaps most importantly, like with the Standard Model of particle 
physics and the DNA/RNA molecular model of genetics, models can provide an overarching 
theoretical framework within which empirical results are interpreted. 
 
1.4.3 Making predictions 
 
Finally, models are also useful for making predictions (phenomena that “fall out” from the 
model, but were not the phenomenon that the model was designed to produce). Some of the 
“predictions” may have already been tested empirically, and thus might be termed “post-
dictions” instead. Nonetheless, these are still important, since the model was not specifically 
designed to show these. True predictions are extremely useful in suggesting experiments to 
further our understanding. 
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Chapter 2:  The Composite Face Effect (CFE) 

 
 
Chapter abstract 
 
In this chapter, we conduct a detailed and critical review of the Composite Face 
Effect (CFE), one of the “gold standard” behavioral measures of holistic face 
processing. It should be noted that is a standalone review, conducted independently 
of our modeling work. There are two main takeaways from this chapter. The first is 
that the CFE is likely to be a disproportionate/differential effect (i.e. quantitatively 
different for faces versus objects, rather than qualitatively different). The second is 
that despite the current controversy over the two different experimental versions of 
the CFE, they are, in theory, equally valid in tapping holistic processing. 
Conflicting results are likely to stem from confounds in specific aspects of 
experimental procedure and analysis, rather than experimental design per se. 
 
 
Chapter contents 
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2.5.3 Criticisms of “partial” design 
2.5.4 Criticisms of “complete” design 
2.5.5 Confounds in comparing “partial” and “complete” designs 
2.5.6 Studies analyzing both “partial” and “complete” designs 
2.5.7 The way forward 
2.6 Qualitative or quantitative 
2.7 Explanatory gaps 
2.7.1 From neurons to behavior 
2.7.2 Relation to other phenomena 
2.8 Perceptual integration versus selective attention 
2.9 Chapter summary 
 



 

25 
 

Chapter 2:  The Composite Face Effect (CFE) 
 
 
The Composite Face Effect (CFE) is widely acknowledged to be one of the “gold standard” 
behavioral markers of holistic/configural face processing (McKone & Robbins 2011, p.159). It is 
sometimes even presented as the “most convincing” demonstration of holism (Maurer et al. 
2002, p.256; also McKone 2008, p.313). As such, a detailed understanding of the CFE may be 
intricately linked to that of holistic face processing. However, an in-depth and comprehensive 
review of the CFE does not exist (but see Richler et al. 2011a, suppl.). While reviews of face 
processing generally provide good coverage of the CFE, they often do so in the context of other 
issues of interest, such as development or expertise, and only in conjunction with other effects 
(Maurer et al. 2002, McKone et al. 2007, Tsao et al. 2010). In contrast, there are extensive 
reviews solely dedicated to the Face Inversion Effect (Valentine 1988, Rossion & Gauthier 2002, 
Rossion 2008). Therefore, the objective of this chapter is to provide an in-depth and critical 
examination of the CFE. We include detailed discussions of some controversies, and suggest 
ways to reconcile these. Ultimately, we examine if the CFE is indeed the best marker of holism. 
 
We start by examining some limitations of other behavioral markers. The Face Inversion Effect 
(FIE), by itself, does not constitute evidence of face-specific processing (Maurer et al. 2002, 
p.258; McKone & Robbins 2011, p.161). This has been evident since the first study to 
demonstrate the FIE (Yin 1969; also see Valentine 1988, McKone et al. 2007), which explicitly 
stated that faces were disproportionately affected by inversion, in comparison to other objects 
that are customarily seen only in one orientation. The disproportionate (a.k.a. differential) nature 
of the FIE weakens the argument that face processing is qualitatively different. Furthermore, it is 
still not clear what the exact relationship between inversion and holism or second-order 
configuration might be. 
 
The Whole-Part effect (WPE) is also a differential effect rather than an absolute one (Robbins & 
McKone 2007, p.50). Furthermore, the WPE may be due to a shift in criterion, rather than an 
improvement in sensitivity (Michel et al. 2006), or may be due to a contextual advantage not 
specific to faces (Gauthier & Tarr 2002, Leder & Carbon 2005). Perhaps most importantly, 
subjects are not given explicit instructions regarding which parts of the stimuli to attend to. 
Therefore, the WPE could simply reflect subjects choosing to take multiple features into account, 
so an advantage for wholes may be not surprising (Michel et al. 2006, Cheung et al. 2008). This 
does not accord with the general consensus that holistic processing for faces is automatic, not 
under decisional control (McKone & Robbins 2011, Richler et al. 2011d). 
 
Does the CFE actually overcome the limitations faced by the FIE and WPE? To answer this 
question, we have to first describe the CFE in detail. 
 
 
2.1 The “partial” experimental design 
 
The CFE is tested using either the “partial” or “complete” experimental designs (see Fig. 2.1). 
The “partial” design is termed as such because it uses only a subset of the experimental 
conditions in the “complete” design. We describe this design first because it is simpler and more 
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widely used. (For an extensive listing of all “partial” and “complete” studies, see suppl. Table 2 
of Richler et al. 2011a) 
 
2.1.1 Identification and discrimination tasks 
 
The CFE was first discovered using an identification task (Young et al. 1987). The top and 
bottom halves of faces belonging to different famous people were aligned together (forming 
“composites”), and subjects were tasked to identify the person shown in the top half. Reaction 
times (RTs) for this aligned condition were slower compared to when the top and bottom halves 
were misaligned by shifting the halves laterally. 
 
 

 
Figure 2.1. Trial types for the CFE “partial” and “complete” designs. Congruent 
trials are those in which the top and bottom halves are either both same or both 
different. Note that the “partial” design is a subset of the “complete” design. 
(Figure reproduced from Cheung et al. 2008. See p.16 for copyright notice) 

 
 
Later, this experiment was extended to unfamiliar faces (Hole 1994) by using a discrimination 
(matching) task instead. Two composites are shown, either simultaneously or sequentially, in 
each trial. The top halves can be the same or different, while the bottom halves are always 
different. Subjects are instructed to ignore the bottom halves, and determine if the top halves of 
the two composites are the same or different. Importantly, because the bottom halves are always 
different, good performance on the “same” trials (which are the trials of interest) is contingent on 
ignoring the bottom halves as much as possible. Like with the identification task, performance on 
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the “same” trials is found to be better when the halves are misaligned instead of aligned. For this 
discrimination task, performance is defined as accuracy (i.e. hit rate, since only “same” trials are 
of interest), reaction time, or both. 
 
In both the identification and discrimination versions of the experiment, the standard 
interpretation of the results is as follows. When the top and bottom halves are aligned, the 
composite faces are automatically processed holistically. Therefore, perception of the top halves 
is influenced by the bottom halves (despite subjects trying to ignore the bottom halves). In the 
case of identification, the identity of the top half takes longer to match, since the bottom half 
belongs to a different person. In the case of discrimination, the top halves – which are in fact 
identical – seem different, because the bottom halves are different. When the halves are 
misaligned, holistic processing is “disrupted”, reducing the influence of the bottom halves and 
therefore producing better performance. We call this the “misalignment effect”, to differentiate it 
from the “congruency effect” that is found using the “complete” paradigm (Section 2.2). 
 
Note that in the discrimination task, the “different” trials are not analyzed because there is no 
clear prediction (at least by this intuitive account of the CFE; but see Section 12.4). Since the top 
halves are already different, the influence of the bottom halves could make them either “more 
different” or “less different”. Note that this logic is only applicable to the “partial” design, but 
has been incorrectly applied to the “complete” design also (see Section 2.2). 
 
2.1.2 Robustness of the “partial” design 
 
Since the CFE was first discovered in 1987, the effect has been replicated many times under a 
variety of experimental conditions, making it a highly robust effect (arguably as robust as the 
FIE). Multiple studies have used both the identification (Young et al. 1987, Carey & Diamond 
1994, Khurana 2006, Singer & Sheinberg 2006, McKone 2008) and discrimination tasks (most 
other studies). The CFE has been found for RT (Young et al. 1987, Carey & Diamond 1994, 
Hole 1994, McKone 2008), hit rate (de Heering et al. 2007, Mondloch & Maurer 2008) and both 
(most other studies). The faces used have been famous (Young et al. 1987, Khurana et al. 2006, 
Singer & Sheinberg 2006), personally familiar (Carey & Diamond 1994), familiarized through 
training (Carey & Diamond 1994, McKone 2008) and novel (most other studies). 
 
Presentation times have ranged from fairly short times of 80ms (Hole 1994) and 200ms (Le 
Grand et al. 2004, Mondloch & Maurer 2008), to unlimited time (Carey & Diamond 1994, de 
Heering et al. 2007, McKone 2008). For the discrimination task, the two composite faces have 
been presented simultaneously (Hole 1994, Hole et al. 1999, de Heering et al. 2007, Robbins & 
McKone 2007) or sequentially (most other studies). For sequential presentation, the faces have 
also been masked (Taubert & Alais 2009, Soria Bauser et al. 2011). 
 
Furthermore, the CFE has been replicated under more demanding conditions such as image 
jittering (Robbins & McKone 2007, Rossion & Boremanse 2008), as well as size and 
brightness/contrast differences between two sequentially-presented composites (Robbins & 
McKone 2007) to prevent dependence on low-level cues. The half to be ignored can be either top 
or bottom (Young et al. 1987, Robbins & McKone 2007), and the CFE is independent of gaze 
behavior (de Heering et al. 2008) 
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Thus far, we have listed studies that have replicated the CFE under changes to variables that any 
robust effect would be expected to, e.g. task, presentation time and jitter. We now turn to studies 
that have found the CFE even for more high-level or drastic changes. These are nonetheless 
unsurprising results that are either predicted intuitively, or consistent with findings from other 
markers like the FIE. These may therefore be considered further evidence of robustness (this is 
subjective, however). 
 
The CFE has been found for vertically-split halves (Hole 1994), horizontally-split but vertically-
misaligned halves (Taubert & Alais 2009) and even for interior/exterior composites (Young et al. 
1987, Singer & Sheinberg 2006). It is seen for in-plane rotations of up to 60 degrees (Mondloch 
& Maurer 2008, Rossion & Boremanse 2008), for frontal, 3/4 and profile views (McKone 2008), 
and even when the two composites within each trial are of different views (Hole et al. 1999). It 
has been demonstrated when misalignment only occurs for the second composite (Michel et al. 
2006), when the alignment/misalignment is manipulated using the flash-lag effect (Khurana et al. 
2006) and when the face “halves” that form composites are separated by 80ms of noise (Singer 
& Sheinberg 2006). Finally, the CFE is also seen for blurred or low spatial frequency (LSF) 
versions of faces (Goffaux & Rossion 2006, Cheung et al. 2008, Taubert & Alais 2011). 
 
2.1.3 Results derived from the “partial” design 
 
We now list a sampling of findings that have utilized the “partial” design to investigate holistic 
processing in faces – findings that are either surprising or at least not obviously predicted. Again, 
such characterizations are subjective. 
 
In children, the CFE has been found at ages 10 (Carey & Diamond 1994), 6 (Carey & Diamond 
1994) and even 4 (de Heering et al. 2007). This suggests that holistic processing is either present 
at birth or rapidly develops in infancy. However, the CFE is absent in patients with early visual 
deprivation – even after many years of subsequent visual experience (Le Grand et al. 2004), 
favoring the latter explanation. Furthermore, in adults, holistic processing was found for 
children’s faces, and the duration of each subject’s experience with children’s faces was 
correlated with the difference between misalignment effect magnitude for adult and children 
faces (de Heering & Rossion 2008). This further supports the theory that holistic face processing 
is experience-dependent. (Note that this does not imply that experience alone is sufficient to 
produce holistic processing – either for faces or objects.) 
 
Interestingly, the CFE is larger for same-race than other-race faces (Michel et al. 2006), although 
it is unclear if other-race faces are processed holistically (results regarding this were different for 
Caucasian and Asian subjects). 
 
Although contrast reversal is detrimental for recognition and discrimination, three separate 
studies have found that contrast-reversed faces are nonetheless processed holistically (Hole et al. 
1999, Calder & Jansen 2005, Taubert & Alais 2011), as are faces that are both blurred and 
contrast-reversed (Taubert & Alais 2011). (See Chapter 8 for an account of these seemingly 
contradictory phenomena) 
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Related to recent theories regarding the special status of horizontal information in face 
processing (Dakin & Watt 2009, Goffaux & Dakin 2010), the CFE is more tolerant to vertical 
than horizontal misalignment (Taubert & Alais 2009). 
 
Finally, consistent with many other findings regarding hemispherical asymmetry, a larger CFE 
was found for left visual field (right hemisphere) presentation (Ramon & Rossion 2012). 
However, this was found only for the discrimination task, not the identification task. 
 
 
2.2 The “complete” experimental design 
 
As mentioned earlier, the “partial” design uses a subset of the conditions in the “complete” 
design (see Fig 2.1). In the “complete” design, the phenomenon demonstrating holism is the 
sensitivity (i.e. D’) being higher in the congruent condition than in the incongruent condition, 
termed the “congruency effect”. 
 
The intuitive explanation of how the “congruency effect” relates to holistic processing is 
conceptually very similar to the explanation for the “partial” design. The logic is as follows (and 
best understood using Fig. 2.1 as a guide). In the incongruent trials, by definition, the bottom 
halves are opposite of the top halves. By this, we mean that if the top halves are the same, the 
bottom halves are different (and vice-versa). If the composites are processed holistically, then 
incongruent bottom halves exert detrimental influence on the top halves. Top halves that are 
identical seem different, while top halves that are different seem more similar. Therefore, holistic 
processing causes decreased sensitivity. In contrast, for the congruent trials, the top halves and 
the bottom halves are in agreement (by definition). It is debatable whether this makes top halves 
that are identical “more identical”, or top halves that are different “more different”. However, it 
is clear that compared to incongruent trials, congruent trials are less detrimentally influenced. 
Therefore, the D’ sensitivity for the congruent trials should be greater than for the incongruent 
trials. If the halves are misaligned, then this difference in D’ should decrease (or disappear). In 
the limit, when the halves are completely removed, there is no difference in D’ between 
congruent and incongruent trials (since they are now in fact indistinguishable). 
 
Importantly – and it is surprising that this has not been discussed elsewhere – it is not actually 
necessary to combine “same” and “different” trials into a D’ measure to see the effect of holistic 
processing. The logic is identical to that above, but let us go through it slowly. Consider the 
“same” trials first. Comparing the congruent versus incongruent “same” trials, it should be 
obvious that holistic processing would cause the top halves in the incongruent trials to seem 
more different, compared to the congruent trials. This implies a lower accuracy (hit rate) for 
incongruent trials. 
 
Now consider the “different” trials. Comparing the congruent versus incongruent “different” 
trials, it should also be intuitively obvious that holistic processing should make the top halves in 
the incongruent trials become more similar (relative to the congruent trials). This is regardless of 
whether B and D are more similar to each other than A and C, because B and D cannot be more 
similar than B and B. As a result, the accuracy (correct-rejection rate) for incongruent trials 
should be lower than for congruent trials. (In practice, because A and C are already clearly 
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different, the bottom halves may not be able to make them sufficiently similar, so as to be 
considered “same” – but that is an empirical matter) 
 
Since for both “same” and “different” trials, the accuracies (hit rate and correct-rejection rate, 
respectively) are lower for incongruent than congruent trials, therefore it automatically follows 
that the D’ for incongruent trials should be smaller. 
 
Does this logic pan out empirically? Only two studies involving the “complete” design publish 
accuracies separately for “same” and “different” trials (Cheung et al. 2008, Gauthier et al. 2009). 
A detailed examination of the numbers (Cheung et al. 2008, Appendices B & C; Gauthier et al. 
2009, Table 1) confirms that the trends are as predicted. 
 
As we have seen, the intuitive logic for both the “partial” and “complete” designs is essentially 
identical. However, the “complete” design has been incorrectly criticized on the grounds that 
there is no clear prediction for the congruent “different” trials (McKone & Robbins 2007, 2011). 
By itself, that statement is correct, and is a valid argument against analyzing the “different” trials 
in the “partial” design. However, when considered in relation to the incongruent “different” 
trials, it is clear that a clear theoretical prediction can be made. 
 
In the “partial” design, there were two task versions: identification and discrimination. Thus far, 
the “complete” design has primarily been used for discrimination, with the three exceptions 
being Singer & Sheinberg (2006), Richler et al. (2009b) and Cheung et al. (2011). The 
“complete” design for the identification task is depicted in Fig. 2.2. Whereas the “partial” design 
utilizes only the A/B composite, the “complete” design uses both A/A and A/B composites. 
Here, the A/A condition functions as a baseline with which to compare A/B performance, and 
the “congruency effect” refers to the difference in performance between A/A (congruent) and 
A/B (incongruent). This is very similar to the discrimination task, whereby the two congruent 
conditions can be construed as baselines for the two incongruent conditions. 
 
 
 

 
 

Figure 2.2. Trial types for the “complete” design identification task. The “partial” 
design uses only the A/B composite (right). The A/A composite is congruent, 
since both halves belong to the same person. The A/B composite is incongruent, 
since the halves belong to different people. 
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The identification task in the “partial” design relies on a comparison to the misaligned condition 
in order to establish holistic processing. However, despite the popularity of misalignment as a 
method to (ostensibly) “disrupt holism”, it is still unclear exactly what the effect of misalignment 
is. By comparing A/A to A/B, misalignment is not strictly necessary to establish holism. 
(Without holistic processing, performance for A/A and A/B should in theory be identical) This 
may make the identification task an important complement to the discrimination task. 
 
2.2.1 Robustness of the “complete” design 
 
While the “complete” design is generally less commonly used than the “partial” design, it is also 
fairly robust, and the congruency effect has been replicated under different conditions. 
Presentation of the two composites in each trail can be simultaneous (Goffaux 2009) or 
sequential (most other studies). The presentation times can as short as 200ms/200ms for the 
first/second composite (Richler et al. 2011a), 800ms/50ms (Richler et al. 2009c, Richler et al. 
2011c), and up to 3 seconds (Goffaux 2009). The half to be ignored can be either top or bottom 
(Richler et al. 2008a, 2008b, 2009, 2011b, 2011c, Goffaux 2009, Gauthier et al. 2009). The 
halves can be jittered (Goffaux 2009) or masked (Richler et al. 2008a, 2008b, 2009, 2011b, c, 
Gauthier et al. 2009, Cheung & Gauthier 2010). The halves in the two composites can be both 
aligned (Cheung et al. 2008, Richler et al. 2008b, Gauthier et al. 2009), or only one aligned 
(Richler et al. 2008a, 2008b, 2011a, 2011b, 2011c). Finally, the congruency effect is also found 
for low spatial frequency (LSF) faces (Cheung et al. 2008, Goffaux 2009). 
 
2.2.2 Results derived from the “complete” design 
 
Using the “complete” design, it was found that holistic face processing has a significant 
decisional component (Richler et al. 2008a), but neither perceptual nor decisional accounts alone 
is sufficient (Richler et al. 2008b). The congruency effect can be independent of top-down 
beliefs and also the ratio of “same” versus “different” trials (Richler et al. 2011b). A face 
memory load reduced the congruency effect, whereas an object memory load did not (Cheung & 
Gauthier 2010). 
 
A congruency effect has been found for high spatial frequency (HSF) faces to different degrees 
(significant: Cheung et al. 2008; marginal: Goffaux 2009). Inverted faces are also processed 
holistically, but require longer presentations times for holism to manifest (Richler et al. 2011c). 
 
In normal subjects, the magnitude of holistic processing (congruency x alignment interaction) is 
correlated with face recognition ability (Richler et al. 2011a). In individuals with Autism 
spectrum disorders (ASDs), the congruency effect is less affected by misalignment, compared to 
control subjects (Gauthier et al. 2009). 
 
Many “complete” design studies investigated the issue of expertise for non-faces (e.g. Gauthier 
et al. 2003, Hsiao & Cottrell 2009, Wong et al. 2009a, b, Bukach et al. 2010, Wong & Gauthier 
2010). The reader is referred to Gauthier et al. 2010 for a comprehensive review. 
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2.3 Inverted faces 
 
The face inversion effect (FIE) (Yin 1969) is the most established and well-known face-related 
phenomena. Its acceptance is such that inversion is commonly used as a control in face studies. If 
an effect exists for faces, but not for inverted faces (or at least significantly reduced), then the 
effect is claimed to be face-specific. 
 
The logic is not watertight, however. Inverted faces are sometimes purported to be processed 
“like objects” (Haxby et al. 1999, Richler et al. 2011c), but multiple studies have found that 
inverted faces also activate face-selective areas significantly – albeit less then upright faces 
(Kanwisher et al. 1998, Haxby et al. 1999, Yovel & Kanwisher 2005). Furthermore, the FIE is a 
differential effect. In other words, inversion affects both objects and faces, and the key signature 
is that it affects face significantly more than objects. Therefore, if an effect is merely reduced for 
inverted faces, then that is at most weak evidence for face specificity, since the effect of 
inversion on object-processing mechanisms might account for the reduction. If an effect is absent 
for inverted faces, then that is stronger evidence for face-specificity, but it is still not conclusive. 
In particular, if an effect is weak, then the effect of inversion on object-processing mechanisms 
alone may be sufficient to account for the absence of the effect. 
 
Earlier, we discussed the limitations of the FIE and WPE, including the fact that they are 
differential effects. The CFE is therefore sometimes preferred to the FIE and WPE as a marker 
for face-specific processing (and holistic processing in particular). Here, we critically examine 
whether the CFE is actually free of this limitation, in relation to inverted faces (below) and non-
faces (Section 2.4). We tackle this issue separately for the “partial” and “complete” designs. 
 
2.3.1 Inverted faces: “partial” design 
 
Many studies utilizing the “partial” design either do not include an inverted condition (e.g. Le 
Grand et al. 2004, Michel et al. 2006, de Heering et al. 2007, etc.), while others use inversion as 
the primary image manipulation rather than misalignment (Hole 1994, Hole et al. 1999, Singer & 
Sheinberg 2006). Of the studies that include inverted faces as a control for the misalignment 
effect in upright faces, there is no unanimous agreement. 
 
The studies that do not find a misalignment effect for inverted faces outnumber those that do. 
The following studies do not find a misalignment effect: Young et al. 1987 (Table 2), Carey & 
Diamond 1994 (Figs. 2, 4, and 5), Robbins & McKone 2007 (Fig. 7), McKone 2008 (Fig. 3), 
Mondloch & Maurer 2008 (Figs. 3 and 5) and Soria Bauser et al. 2011 (Fig. 3). In contrast, two 
studies found a misalignment effect for inverted faces (albeit significantly reduced): Goffaux & 
Rossion 2006 (Fig. 5) and Rossion & Boremanse 2008 (Figs. 3 and 4). 
 
How can these findings be reconciled? Before dismissing the results of Goffaux & Rossion 
(2006) and Rossion & Boremanse (2008) as statistical flukes or outliers, the differences between 
all of these studies deserve closer scrutiny. Perhaps the most salient factor is whether upright and 
inverted faces were shown in different blocks. If solely inverted faces were shown in a particular 
block, subjects could have used part-based strategies to perform the task, possibly leading to the 
absence of a misalignment effect. This, by itself, does not refute the claim that inverted faces are 



 

33 
 

processed non-holistically, but that is not the claim that researchers are actually trying to make. 
Rather, it is the claim that given identical conditions and task strategy (to the extent possible), 
upright faces are processed holistically, while inverted faces are not (or are processed less 
holistically). To demonstrate this, upright and inverted faces should be randomly intermixed. 
This cannot fully guarantee that systematic strategy differences are absent, but it is much better 
than blocked trials. 
 
Empirically, among the studies that do not find a misalignment effect for inverted faces, most 
have upright and inverted faces in separate blocks. The trials in Soria Bauser et al. 2011 are also 
blocked, but it is unclear what is being blocked. Experiment 1 of Mondloch and Maurer (2008) is 
apparently the sole study to randomly intermix orientations. However, aligned/misaligned trials 
were blocked, and it is unclear what effect this may have. 
 
On the contrary, Goffaux and Rossion (2006) had different sets of subjects for the upright and 
inverted conditions (meaning that subjects for the inverted condition might have used part-based 
strategies), and yet they nonetheless found a misalignment effect for inverted faces. If 
orientations were intermixed, this effect could potentially have been even stronger. Rossion & 
Boremanse (2008) do not explicitly describe what is blocked in their study. However, they had 5 
blocks but 7 orientation conditions, so we presume that orientation was randomized within each 
block. This study also found a misalignment effect for inverted faces. 
 
Altogether, it is possible that a misalignment effect was not found in many studies primarily 
because inverted and upright faces were blocked. Other factors may also contribute, since the 
studies were fairly diverse in their experimental conditions (e.g. task, presentation times, etc.) 
Another potentially important factor is the statistical analyses that were performed – but this has 
not been investigated thoroughly. Standard ANOVA (e.g. Carey & Diamond 1994) assumes that 
data in the different conditions are drawn from independent samples, and determines if the 
means in each condition differ significantly. Inter-subject variability (e.g. individual subjects 
performing very well or very poorly overall) tends to make the means in the various conditions 
more similar and the variances larger, therefore potentially masking the differences. To 
compensate for inter-subject variability, paired two-sample t-tests (with Bonferroni-correction) 
should be used. 
 
2.3.2 Inverted faces: “complete” design 
 
For the “complete” design, only two studies thus far have investigated the congruency effect for 
inverted faces. Similar to the “partial” design, the results are mixed. No congruency effect was 
found by Goffaux (2009, see Fig. 3), while congruency effects were found by Richler et al. 
(2011c, see Figs. 2 and 5). These two studies had numerous differences, e.g. simultaneous versus 
sequential presentation, so it is difficult to discern the cause of the conflicting results. 
 
2.3.3 Inverted faces: summary 
 
In sum, considering both the “partial” and “complete” designs, inverted faces have been found to 
be processed holistically or non-holistically in different studies. Unless the results of the former 
studies can be explained away, the common denominator is that inversion reduces holistic 
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processing, sometimes to the extent of completely disrupting it (or at least making it 
undetectable). 
 
This has important implications for the CFE and the study of face processing. One limitation of 
the FIE and WPE is that they are differential rather than absolute effects. The effect of inversion 
on the CFE suggests that it may also be a differential effect after all. If this is true, then among 
the three “gold standard” markers of holistic face processing, all are differential effects. This 
would then imply that we do not currently have a behavioral marker that qualitatively 
differentiates holistic from non-holistic processing, and therefore we also cannot conclusively 
claim that faces are qualitatively different from objects in terms of holistic processing. 
 
However, there is one other avenue for potentially redeeming the special status of the CFE as an 
absolute effect: non-faces. We examine this next. 
 
 
2.4 Non-faces 
 
If it is important to establish that the CFE is face-specific (i.e. exists for faces but not non-faces), 
then why not test this directly? Somewhat surprisingly, this has not be done extensively (for 
either “partial” or “complete” design), especially in comparison to the FIE. For the FIE, 
comparing inversion of faces and objects is the standard control used to establish face-
specificity. Perhaps due to the widespread acceptance of inversion as disproportionately affecting 
faces, studies using the CFE tend to rely on inverted faces rather than objects as control stimuli. 
This is truer for the “partial” design, whereby inverted faces are used to demonstrate the absence 
(or reduction) of the misalignment effect. For the “complete” design, studies tend to use 
misaligned (rather than inverted) faces to demonstrate the absence (or reduction) of the 
congruency effect. There may also be practical considerations for avoiding objects as control 
stimuli – extra stimuli do not need to be collected if inverted faces are used. But perhaps most 
importantly, inverted faces are very similar to faces in terms of physical characteristics. Apart 
from differences in phase, the spatial frequency content is exactly the same in upright and 
inverted versions of an image. This provides certain advantages to using inverted stimuli as 
controls. 
 
Nonetheless, given that we still do not fully understand how inverted faces are processed, it is 
useful and important to examine the CFE for non-face objects. We separately consider studies 
using the “partial” and “complete” designs. In the studies that included object experts and 
novices, we only considered the novices. We deliberately avoid the issue of holistic processing in 
object experts, and refer the reader to the existing literature (e.g. Gauthier et al. 2010, McKone & 
Robbins 2011) 
 
2.4.1 Non-faces: “partial” design 
 
We are aware of only three studies involving non-face objects using the “partial” design. No 
misalignment effect was found for dogs (Robbins & McKone 2007, Fig. 7). Similarly, no 
misalignment effect was found for bodies, either without heads or with faceless heads (Soria 
Bauser et al. 2011, Figs. 3 and 4). With frontal views of cars, Macchi Cassia et al. (2008) overall 
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found no misalignment effect. Interestingly, however, for short (200ms) presentation times, a 
misalignment effect may have been found for both hit rate and reaction time (Macchi Cassia et 
al. 2008, Fig. 3). Statistical significance was not reported, but visually, the SEM error bars were 
above zero (suggesting significance). Furthermore, for reaction time, the effect for faces and cars 
was not significantly different (p=0.728). For longer (600ms) presentation times, however, a 
misalignment effect was clearly absent. 
 
2.4.2 Non-faces: “complete” design 
 
In stark contrast to the studies using the “partial” design, most studies using the “complete” 
design found holistic processing for objects in novices. Using artificial novel stimuli, Wong et al. 
2009a found a congruency effect for “Ziggerins” (see Fig. 5), while Richler et al. (2009a) did so 
for “Greebles” (Fig. 3). Similarly, a congruency effect was found for cars (Gauthier et al. 2003, 
Table 1; Bukach et al. 2010, Figs. 4 & 5), Chinese characters (Hsiao & Cottrell 2009, Figs. 6 and 
7), and musical notes (Wong & Gauthier 2010, Figs. 2 and 3). However, Gauthier & Tarr (2002) 
did not find a congruency effect for “Greebles”; it is unclear why different results were obtained 
from Richler et al. (2009a). 
 
Apart from the congruency effect, we also looked at the interaction between congruency and 
alignment (see Section 2.5.2 for reason) wherever possible. Richler et al. (2009a) found no 
interaction between congruency and alignment for “Greebles”, meaning that the congruency 
effect was not significantly different for aligned or misaligned composites. In contrast, Bukach et 
al. (2010) found a strong main effect of misalignment on congruency effect (Fig. 4; p<0.001 
overall, including experts). Hsiao & Cottrell (2009) found a marginally significant interaction for 
Chinese characters (p<0.05); the congruency effect was larger for aligned than misaligned 
characters. Wong et al. (2009a) did not explicitly analyze the statistical significance, but judging 
visually from Fig. 5b, there is potentially an interaction between congruency and alignment. 
Overall, the results are somewhat mixed for (congruency x alignment) interaction for object 
novices. 
 
Interestingly, it seems that studies using the “partial” design tested more naturalistic objects such 
as bodies, dogs and cars (all of which can be seen in daily life), while studies using the 
“complete” design generally favored more artificial stimuli that are novel (“Ziggerins” and 
“Greebles”) or not often seen (Chinese characters and musical notes). It remains to be seen 
whether this is a causal factor contributing to the starkly different results arising from the two 
paradigms. 
 
2.4.3 Non-faces: summary 
 
The “partial” and “complete” designs seem to result in generally opposite findings regarding 
holism in non-faces. (Note, however, that neither design had unanimous results.) These generally 
opposing results for non-faces may have significantly intensified the debate on which design is 
the correct (or better) one, a debate that was initially sparked by the opposite findings regarding 
the “expertise hypothesis” (Gauthier & Bukach 2007, Robbins & McKone 2007, McKone & 
Robbins 2011). We now critically compare the two designs in detail. 
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2.5 Comparing the “partial” and “complete” designs 
 
In comparing the designs, the most basic question is whether they are consistent with holistic 
processing. The answer in both cases is yes. As described earlier, holistic processing makes 
certain predictions (misalignment effect and congruency effects) that have borne out empirically. 
The next question is in the reverse direction: do these effects necessarily imply holistic 
processing, or can there be alternative explanations? 
 
2.5.1 Alternative explanations 
 
For the “partial” design, Gauthier and colleagues have argued that biases have not been ruled out 
as alternative explanations for the misalignment effect (Richler et al. 2011c). In the “partial” 
design, “same” trials are also incongruent, while “different” trials are congruent. Does this 
confound matter? Empirically, Gauthier and colleagues found that misalignment causes a shift in 
bias towards a “same” response (e.g. Fig. 5B of Cheung et al. 2008, but see Fig. 3 of Richler et 
al. 2011c). This implies that the misalignment effect could, in theory, be simply due to this shift 
in bias, rather than disruption of holism. Moreover, a shift in bias (specifically, a congruency x 
alignment interaction for bias) is correlated with the misalignment effect across subjects (Richler 
et al. 2011b, Fig. 3). However, since the misalignment effect only uses “same” (incongruent) 
trials, it is unclear why the bias for congruent trials should be included for this correlation. 
Without the congruent trials, the correlation between bias and misalignment effect could be 
absent or much weaker (as hinted at by Figs. 3 and 4 of Richler et al. 2011c). Overall, the “bias- 
shift” explanation for the misalignment effect cannot be ruled out, but it is not conclusively 
proven yet. Importantly, there could be some underlying factor that causes both the bias-shift and 
the misalignment effect. 
 
For the “complete” design, there is an alternative explanation in terms of “response 
competition”. In Section 2.2, we described the logic behind the “complete” design in terms of 
what we call the “influence” account – for each composite, the bottom half influences perception 
of the upper half. Alternatively, one could also think in terms of the responses suggested by the 
top halves versus that suggested by the bottom halves. For example, for incongruent-same trials, 
the top halves suggest the response “same”, while the bottom halves suggest “different”, leading 
to lower accuracy. This “response competition” account is in some sense like the Stroop effect, 
and may not be face-specific. The key difference between the “influence” and “response 
competition” accounts is whether one compares composites or halves. The “influence” account 
combines the halves first, then compares composites. The “response competition” account 
compares the halves separately. The “response competition” account is less realistic, especially 
when the composites are presented sequentially. Since subjects are instructed to ignore the 
bottom halves, why would they subconsciously keep track of the bottom halves (separately from 
the top halves), compare the bottom halves and then allow that comparison to affect their 
behavioral response? It would be more parsimonious to suggest that separately for each 
composite, the two halves are perceptually integrated to some extent, i.e. the  
“influence” account. Nonetheless, the “response competition” account cannot be fully ruled out. 
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In addition, empirically, congruency effects can be induced contextually (Richler et al. 2009a), 
by mechanisms unknown. Furthermore, as discussed in Section 2.5.5, for the “complete” design, 
the first composite is often fully attended by subjects. This may lead to artificial inducement of 
seemingly “holistic” processing, a form of “holism” that could be Navon-like (Navon 1977), 
rather than the automatic holism that faces are thought to evoke. This is perhaps an explanation 
as to why “holism” is seen for objects – especially if measured by the congruency effect alone, 
but possibly even for a (congruency x alignment) interaction (see next Section). 
 
This brings us to the question of what the right measure of holism should be, for both the 
“partial” and “complete” designs. 
 
2.5.2 What should the right measure be? 
 
Richler and colleagues (Richler et al. 2009a) found congruency effects for “Greebles” in novices. 
To account for this, they suggest that congruency effects can be contextually induced, and that 
the congruency effect by itself may not be a good measure. Instead, “the comparisons of 
congruent and incongruent trials with a baseline and the interaction between congruency and 
alignment may be more indicative of holistic processing driven by the stimulus, as opposed to… 
context of the task” (Richler et al. 2009a, p.538). In practice, they have more commonly used the 
(congruency x alignment) interaction (e.g. Richler et al. 2011a), rather than a baseline 
comparison. If it is indeed true that the congruency effect alone is not such a good measure, then 
studies that rely on this (e.g. Gauthier et al. 2003, Bukach et al. 2006, Richler et al. 2009c) must 
be interpreted cautiously. One problem with the (congruency x alignment) is that there is no 
sound theoretical basis for why it better reflects holism than congruency alone. The misaligned 
condition can be likened to a baseline, but this serves a practical function, not a theoretical one. 
 
In addition, it is unclear if the signature of stimulus-driven, face-like holistic processing should 
simply be a (congruency x alignment) interaction, or the abolishment of a congruency effect for 
misaligned (or inverted) stimuli. Interestingly, congruency effects are abolished for misaligned 
(Cheung et al. 2008) or inverted (Goffaux 2009) faces when subjects are compelled to ignore one 
half for both faces. Conversely, when subjects are compelled to attend to the whole of the first 
face, congruency effects are mostly still found despite misalignment (Richler et al. 2008a, 2008b, 
Richler et al. 2011b, 2011c). This issue is examined in more detail in Section 2.5.5. 
 
The issue of the right measure also applies to the “partial” design. Many studies (e.g. Le Grand et 
al. 2004, Michel et al. 2006, de Heering et al. 2007) have relied solely on a misalignment effect 
to draw conclusions about holism for children, other-race faces, etc., without including inverted 
faces or some other control. A (misalignment x inversion) interaction may be a more robust 
measure for the “partial” design; this is analogous to the (congruency x alignment) interaction for 
the “complete” design. One important reason is that the hit rates are often not equalized (either in 
the aligned or misaligned condition) when comparing populations, such as children versus adults.  
Without equalization, one cannot quantitatively compare different populations to determine if 
holistic processing is weaker or stronger. Otherwise, for example, de Heering et al. (2007) might 
have concluded that holistic processing is stronger in 4, 5, and 6 year-olds than in adults (see Fig. 
4), which is counter-intuitive (though not necessarily wrong). Since equalization is not easy to 
achieve in practice, inverted faces or objects can act as controls. This issue is equally important 
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for accounting for individual differences when quantifying holism in individual subjects (Richler 
et al. 2011a, Wang et al. 2012). Note, however, that even if a (misalignment x inversion) 
interaction is used, the question of whether the misalignment effect should be abolished or 
reduced for inverted faces still remains (Section 2.3.1). 
 
Asides from issues of what the right measure of holism should be, there are other criticisms of 
the “partial” and “complete” designs that deserve closer scrutiny. 
 
2.5.3 Criticisms of “partial” design 
 
The main argument against the “partial” design is the issue of biases, discussed earlier as an 
alternative explanation for the misalignment effect (also see Gauthier & Bukach 2007, Richler et 
al. 2011a, b). This issue deserves further investigation. 
 
Considering the fact that the misalignment effect is abolished or significantly reduced for 
inverted faces and non-faces, it is hard to argue that generic biases are the primary cause of the 
misalignment effect (McKone & Robbins 2007). If the biases are specific to upright faces, then 
perhaps they are linked to holistic processing rather than other arbitrary factors. As Gauthier and 
colleagues themselves point out (Gauthier & Bukach 2007, p.326), the existence of these biases 
need not negate the claim that misalignment effects are caused by holism, as the causes and 
mechanisms for these biases are still unknown (Cheung et al. 2008, p.1333). One possible 
explanation is that holism is the underlying cause for both the biases and the misalignment effect. 
 
Furthermore, the random intermixing of aligned and misaligned trials (e.g. Robbins & McKone 
2007, etc.) strongly reduces the possibility that strategy-related biases that differ for aligned 
versus misaligned trials are the main cause of the misalignment effect. 
 
Finally, the misalignment effect has been consistently found for the identification task also (e.g. 
Young et al. 1987, Carey & Diamond 1994). It is unclear how biases could account for the 
misalignment effects found this way (McKone & Robbins 2007). 
 
2.5.4 Criticisms of “complete” design 
 
The main argument against the “complete” design is that it does not measure “face-like” holism 
(McKone & Robbins 2011). It is argued that the “complete” design “weakens the definition of 
holistic processing from… some form of very strong perceptual integration… to merely any 
failure of selective attention”, and that the congruency effect “merely shows that competition for 
attentional resources from the to-be-ignored half is stronger when subjects are experts with the 
object class” (McKone & Robbins 2011, p.163). This is identical to the “response competition” 
account described in Section 2.5.1. 
 
The definition of holism as perceptual integration is indeed stronger than the definition as failure 
of selective attention. Perceptual integration leads to failure of selective attention, but the latter 
does not necessarily imply the former, as there multiple reasons for failure of selective attention. 
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Crucially, however, this criticism of the “complete” design is equally applicable to the “partial” 
design. Perception cannot be directly measured, and has to be inferred from behavior. Qualitative 
definitions aside, do the experimental designs actually differ in what they measure? No 
arguments have been put forth as to how the pattern of behavior analyzed in the “partial” design 
is able to measure perceptual integration better than the “complete” design can. As a matter of 
fact, the “same” trials in the “partial” design are incongruent, and the “response competition” 
(failure of selective attention) account is also applicable. As discussed in Section 2.2, the logic 
underlying both designs is essentially identical. If anything, the fact that the “partial” design is 
strictly a subset of the “complete” design means that the latter has the potential to be a more 
robust and sensitive measure, if analyzed correctly. This leads to a related issue. 
 
Because of the way congruency is defined (i.e. whether there is agreement between the responses 
suggested by the top and bottom halves), the “complete” design is understandably seen by some 
as measuring the effect of competition by the two halves for attentional resources. This 
interpretation is not wrong – but it is also a valid interpretation of the “partial” design. Rather, it 
may be helpful to also separately analyze “same” and “different” trials. Lumping the two 
together to produce D’ has its advantages, but puts the focus on the notion on “congruency” (and 
thus competition between the halves). By looking at just the “same” trials (for instance), the 
focus is now on whether the bottom halves make the top halves “more same” or “less same” (and 
thus invoking the notion of perceptual integration). The same logic applies to the “different” 
trials. Importantly, separate analysis of “same” and “different” trials acts as additional validation 
that the predictions made by holistic processing do actually occur. Combining trials by 
calculating D’ may obscure potential failures of holistic processing or experimental artifacts. 
 
A secondary argument against the “complete” design is that the D’ measure includes the 
“different” trials, for which there is no theoretical prediction (McKone & Robbins 2007). This 
argument is incorrect, as discussed in Section 2.2. 
 
In any case, an important point has been raised. Neither the “partial” or “complete” design has 
been shown to be able to dissociate perceptual integration from “merely” failure of selective 
attention. It is unclear if these can be dissociated behaviorally (electrophysiological recordings or 
brain imaging may be more suitable). Nonetheless, this issue deserves more thought. 
 
2.5.5 Confounds in comparing “partial” and “complete” designs 
 
We have argued that the logic underlying both experimental designs is essentially identical. 
Why, then, do the designs sometimes seem to produce starkly different results (e.g. for non-
faces)? So far, criticisms have been focused on the designs themselves. If one design can be 
proven “wrong”, then the results derived from it can then be ignored. However, these criticisms 
may have neglected to examine other differences between studies that produce conflicting 
results. We examine the two most salient ones. 
 
The first is whether subjects are compelled to fully attend to the first composite. In the majority 
of studies employing the “complete” design, subjects are forced to fully attend to the first 
composite, because they have not yet been cued which half to ignore. This cueing happens 
during the intervening blank, or even simultaneously with the second composite. Out of the 23 
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“complete” design studies listed in Suppl. Table 2 of Richler (2011a), only 20 were for the CFE 
per se (McKone & Robbins 2007, p.334). Of those 20, eight studies pre-cued subjects to ignore a 
specific half: Gauthier et al. 2003, Cheung et al. 2008, Gauthier et al. 2009, Goffaux 2009, Hsiao 
& Cottrell 2009, Cheung & Gauthier 2010, Todorov et al. 2010 and Richler 2011a. In contrast, to 
the best of our knowledge, all “partial” design studies pre-cued subjects to ignore a particular 
half (almost always the bottom).  
 
If subjects fully attend to the first composite, how does this affect things? One might suspect that 
having to compare the second composite to a memory representation of a fully attended first 
composite may somehow induce the second composite to also be more fully attended. 
Furthermore, in some studies, the attentional cue (a bracket, shown either above or below the 
face) is only revealed concurrently with the second composite (e.g. Richler et al 2008a, Cheung 
& Gauthier 2010, Wong & Gauthier 2010, expt. 1 of Richler et al. 2011c). Subjects are thus 
ironically forced to attend to the entire stimulus in order to find out which half they have to 
ignore. Together, these may artificially induce what might seem to be “holistic” processing. 
Importantly, this is more like Navon-type global processing, rather than the automatic and 
unavoidable holistic processing that is thought to be face-specific. 
 
Consistent with this hypothesis, congruency effects are abolished for misaligned (Cheung et al. 
2008, Gauthier et al. 2009) or inverted (Goffaux 2009) faces when subjects are compelled to 
ignore one half for both faces. Conversely, when subjects are compelled to attend to the whole of 
the first face, congruency effects are mostly still found despite misalignment (Richler et al. 
2008a, 2008b, Richler et al. 2011b, 2011c). 
 
Can fully attending the first composite account for the counter-intuitive findings of congruency 
effects for objects in novices? Of the six studies that found such effects (see Section 2.4.2), four 
studies compelled subjects to fully attend to the first composite; these are consistent with our 
hypothesis. We now examine the other two studies more closely. Hsiao & Cottrell (2009) studied 
Chinese characters using simultaneous presentation of both composites. Because the composites 
were presented vertically (one above the other) and simultaneously, subjects may have been 
unable to properly ignore the appropriate halves in their haste to look at both composites, which 
were presented for 600ms. Sequential or simultaneous-horizontal presentations might have 
negated this confound. Gauthier et al. (2003) interleaved face and car composites and found 
congruency effects for both. The interleaving may have contextually induced holistic processing 
(see Gao et al. 2011 and Fig. 5 of Richler et al. 2009a) for the cars. (Note: there is no evidence 
that the “partial” design is any more or any less resistant to contextual inducement than the 
“complete” design). In addition, car expertise (as defined by an independent measure) fell along 
a continuum, and “novices” were simply defined as those below the median. Thus, it is not clear 
that congruency effects were actually found for car “novices” in the proper sense. Overall, there 
is no clear evidence refuting the hypothesis that a procedural confound (fully attending to the 
first composite or not), rather than the “partial” or “complete” design per se, is responsible for 
congruency effects in object novices. Therefore, while further studies are needed to verify this 
hypothesis, the “partial” and “complete” designs may potentially agree on the issue of holism in 
novices after all. 
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Another important procedural confound between “partial” and “complete” studies is whether the 
first composite is always aligned (even for “misaligned” trials) or not. Among the “complete” 
design face studies that have a misaligned condition, the first composite was always aligned in 
the following four studies: Richler et al. 2008a, and Richler et al. 2011a, b, c. Conversely, two 
“complete” design face studies had both composites misaligned: Cheung et al. 2008 and Gauthier 
et al. 2009. In contrast, among the many more “partial” design studies, as far as we are aware, 
only Expt. 1 of de Heering et al. (2007) had the first composite aligned in the “misaligned” trials. 
 
Interestingly, of the two studies that had both composites misaligned, both found that 
misalignment completely removed the congruency effect, not just reduced it (Cheung et al. 2008, 
Fig. 5; Gauthier et al. 2009, Fig. 4). In contrast, in the studies that had only the second composite 
misaligned, misalignment often only reduced the congruency effect, rather than removed it 
(Richler et al. 2008a, Fig6; Richler et al. 2011b, Figs. 3 & 6; Richler et al. 2011c, Figs. 2 & 5). 
This may not be surprising. If misalignment disrupts holism, then misalignment of only one 
composite may disrupt holism less than misalignment of both composites. If the vast majority of 
the “partial” design studies misalignment both composites, while many “complete” design 
studies do not, then this factor may be an important confound in comparing these studies. 
 
Why do some “complete” design studies (especially the more recent ones) always have the first 
composite aligned? Richler et al. (2009a) reported that congruency effects were found in 
“Greeble” novices when the first composite was misaligned, while no congruency effects were 
found when the first composite was aligned. These results were interpreted as showing that 
holism can be induced even in novel objects simply by having the first composite misaligned. As 
a result, subsequent studies by Gauthier and colleagues have had the first composites always 
aligned, in order to avoid such effects. (While we do not disagree with their interpretation, we 
believe that the crucial factor was the fact that the first composite was fully attended. This, in 
turn, was what allowed the misalignment of the first composite to induce a congruency effect, by 
necessitating a larger attentional window) 
 
Of special interest are the results of two studies that include all four combinations (first 
composite aligned/misaligned crossed with second composite aligned/misaligned) for faces 
(Richler et al. 2008b) and “Greebles” (Richler et al. 2009a). Subjects in both studies always fully 
perceived the first composite. For faces, when the second composite was misaligned, whether the 
first face was misaligned or not generally had small effects, especially on the magnitude of the 
congruency effect (see Figs. 4 and 6 of Richler et al. 2008b). Trial order was randomized in this 
study. For “Greebles”, the same result was found, but only when trial types were randomly 
intermixed (Richler et al. 2009a, Fig. 3). When alignment of the first composite was a between-
subjects variable, this had a significant effect (Richler et al. 2009a, Fig 2A). In other words, 
consistent with what we have discussed earlier, the alignment/misalignment of the first 
composite may affect processing strategy. 
 
In summary, differences in results from “complete” versus “partial” design studies cannot be 
solely attributed to the design per se, because of two confounds in experimental procedure (full 
perception and misalignment of the first composite). We have shown, prima facie, that these 
confounds may in fact be the reason for conflicting results. Specifically, these confounds may 
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act, separately or in concert, to give the appearance of a congruency effect for misaligned faces 
or non-faces. Further studies are needed to confirm this hypothesis. 
 
2.5.6 Studies analyzing both “partial” and “complete” designs 
 
In theory, any study employing the “complete” design can also analyze only the subset of trials 
found in the “partial” design, and compare the results of both designs. In practice, only in recent 
years has this been done. We look at each of the four studies that do so. 
 
Cheung et al. (2008) examined the CFE for spatial frequency (SF) filtered faces. Analyzing the 
“partial” design trials, they replicated the finding of Goffaux & Rossion (2006) that low spatial 
frequency (LSF) faces elicit a larger misalignment effect than high spatial frequency (HSF) 
faces. However, using the “complete” design, they found that both LSF and HSF faces elicited 
congruency effects and (congruency x alignment) interactions of similar magnitude. Like most 
“partial” design studies, Cheung et al. (2008) randomly intermixed trials, always 
aligned/misaligned both composites, and subjects knew beforehand which half to ignore. It 
would seem, therefore, that they genuinely found that different experimental designs can produce 
different results. However, Goffaux (2009) also used the “complete” design, but found larger 
congruency effects and (congruency x inversion) interactions for LSF than HSF faces. Thus, 
while Goffaux (2009) did not compare “partial” and “complete” designs, and therefore does not 
directly refute the claim that experimental design can influence findings, the issue is still not 
fully resolved. 
 
Richler et al. (2011a) use the “complete” design and found that the (congruency x alignment) 
interaction for D’ and RT were correlated with face recognition performance across subjects. On 
the other hand, the alignment effect was not found to be significantly correlated. It would then 
appear that the “complete” design produces a more robust measure of holism. However, it must 
be noted that the “complete” design analyzed 4 times the number of trials than did the “partial” 
design (“same”/”diff” x congruent/incongruent trials, compared to just “same” trials). 
Furthermore, the average correlation for the “partial” design was 0.143 (compared to 0.311 for 
the “complete” design), so the trend is in the right direction. If the number of trials had been 
matched, and/or an (alignment x inversion) interaction had been used instead, it is possible that 
the “partial” design correlations would have been significant too. (Inversion for the misalignment 
effect acts as a baseline control, analogous to misalignment for the congruency effect) 
 
Richler et al. (2011b) tries to discount the “partial” design by showing that the results are 
influenced by extraneous factors such as the perceived or actual same/diff trial mixture (e.g. 25% 
same 75% different versus the opposite case). The “complete” design was found to be resistant to 
such factors. Richler et al. (2011c) compared upright and inverted faces. It was found that the 
(congruency x alignment) interaction did no differ for upright and inverted faces. However, the 
misalignment effect did. However, in both studies, the same issues that were found for Richler et 
al. (2011a) also exist: 4 times the number of trials are used for “complete” design analyses, and 
the aid of a baseline control (misaligned condition) for the “complete” design. 
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In short, even in studies that directly compared “complete” and “partial” designs, it is still not 
clear if the design differences per se (rather than number of trials or use of baseline controls) 
contribute to the seeming weakness of the “partial” design. 
 
2.5.7 The way forward 
 
In comparing the “partial” and “complete” designs, we have touched on several different 
experimental and theoretical issues, such as the right metric to use, that have yet to be resolved. 
It is important that these issues be resolved, if we are to fully understand holism and face 
processing. Here, based on what we have discussed earlier, we summarize our views on some of 
these issues. 
 
We view both “partial” and “complete” designs as equally valid, in the sense that holistic 
processing predicts both the misalignment and congruency effects, and the logic behind these is 
essentially identical. In practice, one may be better than the other, not due to the design per se, 
but due to practical considerations. For example, the (congruency x alignment) interaction uses 
the misaligned condition as a baseline control, something which is missing in the misalignment 
effect. A (misalignment x inversion) interaction may be a better metric, just like the (congruency 
x alignment) interaction seems to be a better metric than the congruency effect alone. 
 
The issue of biases is an important one, even if we believe that it does not necessarily invalidate 
the “partial” design. There could be a common causal factor that produces both a bias shift and 
the misalignment effect. Nonetheless, when comparing conditions that are in separate blocks, 
and especially when comparing different populations, this is an important issue to take into 
account. 
 
As such, and since there does not seem to be any advantage to the “partial” design, we advocate 
using the “complete” design, with the following important details. We believe that the subjects 
should know beforehand which half to ignore, and that both halves should be either aligned or 
misaligned. Furthermore, to minimize effects of strategy, all trials should be intermixed. 
Analysis-wise, omnibus ANOVAs are not sufficient; within-subjects measures (adjusted for 
multiple comparisons) are more sensitive, since they sidestep inter-subject variability. Finally, 
before combining hit rate and false-alarm rate to produce D’, these should be separately verified 
to each show a congruency effect (or at least not a negative congruency effect). One secondary 
advantage of the “complete” design is efficiency: all the trials are used in the analysis, unlike the 
“partial” design, which discards “different” trials. 
 
There’s little doubt that any measure of holism can be affected by non-stimulus factors, e.g. Gao 
et al. 2011, Richler et al. 2009a, Richler et al. 2011a, b. What’s important is to minimize this. 
How should we go about isolating “face-like”, i.e. automatic and unavoidable, holism? By trying 
to prevent it as much as possible, e.g. clear demarcation of top/bottom halves, short presentations 
to avoid eye movements, side-by-side (rather than top-bottom) placement for simultaneous 
presentation, pre-cueing so that only the to-be-attended halves ever need to be processed, and 
misaligning by shifting only the to-be-ignored halves (rather than both halves). Altogether, the 
experiment should try to aid the subjects in perceiving only the halves to be attended. Thus, any 
measured holism would be intrinsic rather than incidental to the experimental procedure. 
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These measures serve to maximize the automatic, perceptual nature of the task. In other words, 
subjects should be able to maximally focus their attention on perceiving the to-be-attended half. 
Under such circumstances, the “amount of holistic processing” that is measured can be thought 
to be purely perceptual. Other factors, such as context and priming can indeed affect holistic 
processing, and we want to measure the holistic processing that is independent of these factors, 
which may not be face-specific. 
 
One remaining concern is that of using the (congruency x alignment) interaction as a metric, 
instead of just the congruency effect. The misaligned condition acts as a baseline control. For 
example, if for whatever reason the D’ is artificially boosted, because both aligned and 
misaligned trials should be equally affected, subtracting away the misaligned performance 
negates this artificial boost. However, there is no good theoretical reason why the congruency 
effect should not be an adequate measure of holism. Further thought should be given to this 
issue. 
 
 
2.6 Qualitative or quantitative 
 
We began this chapter by stating that the FIE and WPE are differential effects, meaning that they 
cannot prove that face processing is qualitatively different. This chapter has found that the CFE 
may also be a differential effect after all. 
 
But does it really matter if face processing is “merely” quantitatively different? The “special” 
status of face processing is not necessarily solely contingent on it being qualitatively different. 
For example, having a dedicated brain area for face processing does not necessarily mean that 
this brain area performs qualitatively different processing. Furthermore, faces can be processed 
both as parts and as wholes, and inverted faces activate both face and object selective areas. 
Finally, the definition of face-ness is not necessarily a binary one – stimuli can vary continuously 
in terms of how face-like they are. Overall, there is really no reason that face processing should 
be expected to be qualitatively different from object processing. 
 
In fact, even if only faces are processed holistically, holism itself is not an all-or-none 
phenomenon, as evidenced from the CFE magnitude at various angles of rotation (Mondloch & 
Maurer 2008, Rossion & Boremanse 2008). The amount of misalignment also affects the 
magnitude of the misalignment effect (Richler et al. 2008a, Fig. 6; Taubert & Alais 2009, Table 
1). In other words, it seems fruitless to search for a behavioral measure of holism that is absolute 
rather than differential, because holism itself is not an absolute, all-or-none phenomenon. 
 
Ultimately however, it may be a mistaken endeavor to attempt to infer 
qualitativeness/quantitativeness from the magnitude of behavioral measures. Just because 
something is qualitatively different does not necessarily mean that it will produce a large 
measurable difference. Conversely, quantitative differences can also produce small or large 
measurable differences. Take, for example, two V1 simple cells tuned to orthogonal orientations. 
Most people would consider the cells to be quantitatively different (differing only in the angle of 
tuning), but the cells would respond very differently to most stimuli, especially oriented gratings. 
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On the contrary, take a V1 simple cell and a V1 complex cell, both tuned to the vertical 
orientation. Assuming that the complex cell pools over several different simple cells, one might 
consider the complex cell to be qualitatively different from the simple cells. Under most 
circumstances, the responses of the complex cell and the simple cells would generally be similar, 
with some differences only in terms of position tolerance. Therefore, qualitative and quantitative 
are defined by the underlying mechanisms, not by the size of the measurable effects. 
 
 
2.7 Explanatory gaps 
 
Thus far, we have highlighted several issues that should be more closely examined (and 
hopefully resolved) in future work. Among these are the differential versus absolute nature of the 
CFE, the CFE for inverted faces and non-faces, as well as the “partial” versus “complete” 
designs. Apart from these, there are some other ways in which our lack of understanding about 
holism is notably glaring. 
 
2.7.1 From neurons to behavior 
 
It is still not at all understood how holism arises mechanistically from the activity of single 
neurons. While neurophysiological studies have found hints of holistic processing in single 
neurons (Kobatake & Tanaka 1994, Freiwald et al. 2009), it is not clear how this gives rise to 
behavioral measures of holism, such as the CFE. More importantly, little is known about how 
holism in single neurons comes about. 
 
2.7.2 Relation to other phenomena 
 
The relationships between holism and various other major aspects of face processing are still not 
well understood. For example, inversion is commonly thought to “disrupt holism”, but what 
exactly that means is unclear. Do inverted faces activate a population of neurons distinct from 
those activated by upright faces, and why are those neurons not holistic? Or is the same 
population of neurons activated, but simply to a lesser degree? 
 
Similarly, “holistic” and “configural” processing are sometimes lumped together, but it is unclear 
why they should be (Maurer et al 2002). Processing a face “as a whole” is not necessarily the 
same thing as calculating the second-order distances between face parts. Another major gap in 
understanding is the relationship between “holistic/configural” processing and face-space 
processing (see Chapter 11), as discussed in several studies (Carey & Diamond 1994, McKone 
2009a). 
 
 
2.8 Perceptual integration versus selective attention 
 
In their criticism of the “complete” design (see Section 2.5.4), McKone & Robbins (2011) have 
raised an important point. What should be considered “face-like” holistic processing, and what 
should not? McKone & Robbins (2011, p.163) define it as “very strong perceptual integration”, 
criticizing the definition as “failure of selective attention” to be too general. 
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However, do these different definitions actually make different predictions, and are the current 
behavioral measures able to discriminate these definitions? In general, investigation into these 
issues is lacking. In McKone (2008), which uses the “partial” design identification task, only top 
halves were named, so that interference from the bottom halves could not possibly be due to 
Stroop-like semantic effects. Richler et al. (2009b) argued that the CFE is not due to “response 
interference”, unlike the Stroop effect. More emphasis needs to be given to resolving this issue, 
however. 
 
 
2.9 Chapter summary 
 
In this chapter, we have conducted a detailed and critical review of the Composite Face Effect 
(CFE). It is considered to be one of the “gold standard” behavioral measures of holistic face 
processing, sometimes even the best measure. Our review has shown that the CFE, like other 
measures of holistic processing, may be just a differential effect after all. 
 
One major issue in the literature is disagreement over whether the “partial” or “complete” design 
is better. Our review suggests that both may have equal theoretical validity, and conflicting 
results in the literature stem from confounds in experimental procedure, rather than the 
experimental design per se. 
 
Overall, the CFE is still far from being fully understood. Does it measure “perceptual 
integration” or “failure of selective attention”? How exactly does inversion or misalignment 
affect holism, as measured by the CFE? How does the CFE relate to other measures or aspects of 
face processing? These questions remain to be answered. 
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Chapter abstract 
 
The main objective of this chapter is to examine existing models of face processing 
to see where they fall short in explaining the empirical behavioral and 
electrophysiological data on face processing. As such, we focus on models from 
Neuroscience and Psychology, rather than Computer Vision. The chapter is 
organized by issue/phenomenon (e.g. the Face Inversion Effect, Composite Face 
Effect) and the models pertaining to each issue are compared critically. Overall, we 
find three main shortcomings of existing models. Firstly, few models provide a 
mechanistic, step-by-step account of how the relevant phenomena come about. 
Secondly, many models focus on accounting for face processing phenomena, but 
neglect to account for the lack of the same phenomena for objects and inverted 
faces. Third and most importantly, there is no existing model that provides a 
unified account of the multiple aspects of face processing examined here. 
 
 
Chapter contents 
 
3 Models of Face Processing 
3.1 Holism 
3.2 Face Inversion Effect (FIE) 
3.3 Composite Face Effect (CFE) 
3.4 Inverted faces and non-faces 
3.5 Detection versus identification 
3.6 Spatial frequency 
3.7 Configural versus featural processing 
3.8 Face space and norm-coding 
3.9 Caricatures 
3.10 Contrast polarity 
3.11 Neurophysiology 
3.12 Gabor-PCA model 
3.13 Chapter summary 
 
 

 



 

 
 
 
 
 
 
 
 
 
 

THIS PAGE HAS BEEN 
 

INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

49 
 

Chapter 3:  Models of Face Processing 
 
 
This chapter is a critical review that compares and contrasts existing models of visual face 
processing. In particular, we point out the deficits of each, and also the disagreements among 
different models. The emphasis is not on comprehensiveness. Instead, we focus on face detection 
and identification, and give particular emphasis to processing characteristics that are thought to 
be face-specific (e.g. holistic and configural processing). We generally favor quantitative 
models, but here we have included qualitative models for their theoretical insights. We 
deliberately exclude models of size, position and view invariance. These invariances are clearly 
important, but they are not specific to faces. 
 
We also deliberately neglect models relating to expression and gaze. While these aspects of face 
processing are interesting and important, they are thought to be separate from processing of 
identity (Bruce & Young 1986, Haxby et al. 2000, but see Calder & Young 2005). Furthermore, 
expression and gaze processing clearly cannot precede some sort of face detection (or pseudo-
detection) stage. We wish to focus on this first stage of face-specific processing (which may 
simultaneously perform identification, etc.), under the assumption that understanding this stage 
will be the key to unraveling the rest of face processing. 
 
We begin our review with models of holism, which is the key issue that this thesis tackles. 
 
 
3.1 Holism 
 
In this section, we examine models that purport to explain holism, or at least replicate signatures 
of holistic processing. The main purpose here is to home in on the key aspect of each model that 
is supposed to produce holism. When this key aspect is not explicitly shown or stated by the 
authors, we attempt to decipher their work in order to extract it. 
 
Since holism is still not well-defined or generally agreed upon (McKone & Yovel 2009, McKone 
& Robbins 2011), we restrict ourselves to what we think is possibly the most important aspect of 
holism – the ability of one portion of the face to influence the processing of another portion. 
 
Examining a range of models, we find that they achieve this aspect of holism (shortened to just 
“holism” for the remainder of this section) generally via three mechanisms: “feature linkage”, 
“feature combination” and “unitary representation”. We examine each of these in turn. 
 
The main idea behind feature linkage is to form dependencies between discrete face features, 
thereby allowing a change in one feature to affect the processing of others. The “fiducial point” 
model of Biederman & Kalocsai (1997) and the “ratio-template” model of Sinha (2002) rely on 
nameable face parts, whereas the “key point” model of McKone & Yovel (2009) and the model 
of Schwaninger and colleagues (Wallraven et al. 2005, Schwaninger et al. 2009) use salient or 
key points in an image without regard to what those points are. The dependencies can take the 
form of distances between features (Schwaninger et al. 2009, McKone & Yovel 2009), feature 
overlap (Rossion & Gauthier 2002), contrast ratios (Sinha 2002), or deformation costs 
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(Biederman & Kalocsai 1997). One major limitation of these models is that processing of 
inverted faces and non-faces is not well accounted for. For example, in theory, the distance 
between face parts can be calculated from the image just as easily for inverted as for upright 
images – so why do humans show the Face Inversion Effect (FIE)? For non-faces, there is 
generally little more than brief justification as to why such feature linkage mechanisms couldn’t 
work or don’t exist. 
 
Models that take the “feature combination” approach (e.g. Turk & Pentland 1991, Cottrell et al. 
2002, Rossion & Gauthier 2002, Jiang et al. 2006) generally come from a more neuroscience-
oriented perspective, whereby neurons in higher-level visual areas are tuned to specific 
combinations of inputs from preceding visual areas. Hence, a change in a single local feature can 
change the response of a higher-level feature neuron, but that local feature cannot be pinpointed 
as the cause of the change just by looking at the neuron’s response alone. If perception and 
behavior primarily utilize higher-level features, then the local features are “bound together” and 
cannot be processed separately. The tuning functions that combine local features can be linear, 
e.g. linear projections (Turk & Pentland 1991) or non-linear, e.g. gaussian radial basis functions 
(Jiang et al. 2006). 
 
There are similarities between the “feature linkage” and “feature combination” approaches. The 
dependencies in “feature linkage” tend to be pair-wise and between a relatively small number of 
parts. The tuning to combinations of inputs in the “feature combination” approach can be viewed 
as creating dependencies between many features simultaneously, i.e. like “feature linkage”, but 
on a larger scale. 
 
However, models following the “feature combination” approach tend to be more biologically 
plausible and rely on simpler mechanisms. Moreover, the FIE has a straightforward account from 
these models: humans see many more upright than inverted faces, hence there are many neurons 
tuned to upright faces. Inverted faces elicit weak responses from such neurons, which may result 
in poor recognition for inverted faces. Overall, the “feature combination” models are more 
parsimonious. 
 
The third approach to holism is via “unitary representation”. Models following this approach 
tend to be qualitative and tend to adopt the traditions of behavioral psychology, i.e. they posit 
abstract psychological constructs to account for behavioral findings. Holism is attributed to 
“processing as a whole”, or “a single, global representation”, or “lack of decomposition into 
parts”, or other numerous variations thereof. We coin the term “unitary representation” for the 
lack of a better summary description. Qualitative models following this approach generally state 
that upright faces are “processed as wholes”, whereas inverted faces and non-faces are not, 
essentially just re-describing what is already known (or thought to be true). Models using this 
approach account for holism by appealing to the unitary nature of the representation. 
 
Overall, all these models seem to have one thing in common that supposedly gives rise to 
holism: they bank on perception and behavior primarily utilizing representations from which the 
contributions of individual local inputs are not easily isolated. Note, however, that there is 
nothing necessarily singular, global or even “whole” about such a description of holism. These 
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representations can be distributed (e.g. Jiang et al. 2006), and they can each represent just a 
portion of the face (e.g. Sinha 2002). 
 
We have analyzed these models in terms of the mechanisms that purportedly produce holism. 
However, not all of these models have actually been shown to demonstrate signatures of holistic 
processing. In the next two sections, we examine in more detail those models that claim to be 
able to show two such signatures of holism: the Face Inversion Effect (FIE) and the Composite 
Face Effect (CFE). 
 
 
3.2 Face Inversion Effect (FIE) 
 
The Face Inversion Effect (FIE) is a well-established phenomenon (see Chapter 10) dating all the 
way back to 1969 (Yin 1969). Surprisingly, not many models actually attempt to explicitly 
account for it. One possible reason is that it may seem obvious – any model can posit a bias for 
upright faces due to the fact that humans see way more upright than inverted faces, thereby 
easily accounting for the FIE. 
 
However, upon closer examination, properly accounting for the FIE is in fact crucial to the 
veracity of any model. The FIE is actually the differential FIE: faces are more affected by 
inversion than non-faces are (Yin 1969, Valentine 1988, McKone et al. 2007). Therefore, simply 
arguing that upright faces are seen more often than inverted faces is insufficient, because humans 
do not see upright and inverted houses, cars, etc. in equal proportion either. We now turn to the 
few models that attempt to explain the FIE, and see if they also account for the differential nature 
of the FIE. 
 
Jiang and colleagues (Jiang et al. 2006) use a shape-based model to quantitatively account for not 
just the FIE itself, but also the patterns of human performance for featural and configural 
changes in upright and inverted images (also see Section 3.7). Crucially, they also investigate the 
factors in their model that give rise to the FIE, finding that it is the tight tuning of their face units 
to upright faces that is the key. Accordingly, they explain the differential FIE as stemming from 
tight tuning for face units and broader tuning for car (or other non-face) units. Why the 
difference in tuning? They posit that expertise with faces causes this. Interestingly, this accords 
with the finding that dog experts have a large inversion effect (Carey & Diamond 1986, but see 
McKone et al. 2007 p.10). To summarize, Jiang and colleagues argue that the FIE is caused by 
exposure to more upright than inverted faces, and the differential FIE is caused by more 
expertise with faces than non-faces. Importantly, they specify that these differences are 
manifested in neuronal tuning properties. 
  
Zhang & Cottrell (2004, 2006) similarly tackle the effect of inversion on featural and configural 
changes. Like Jiang et al. (2006), they reproduce the FIE. However, they do not examine in 
detail the mechanisms that give rise to the FIE, nor attempt to account for the differential nature 
of the FIE. 
 
Like the two models above, McKone & Yovel (2009) attempt to account for the effect of 
inversion on featural versus configural changes, but qualitatively instead of quantitatively. They 
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hypothesize that “processing of upright faces encompasses not only spacing between the major 
features, but the detailed shape of those features as well” (p.788). As with similar models (that 
calculate distances between features), they do not detail the mechanisms of how the FIE occurs. 
We presume that it boils down to the exposure argument: upright faces are more commonly seen. 
As noted above, this is somewhat unsatisfactory, because in terms of image properties, the 
distances can just as easily be calculated for inverted faces. McKone & Yovel also do not 
attempt to account for the differential FIE. 
 
Valentine (1991) attempts to account for the FIE, especially in relation to the distinctiveness 
effect (distinctive faces are better-remembered than typical faces). However, the explanation is 
simply that inverted faces elicit larger errors, without explanation why or how. Furthermore, the 
differential aspect of the FIE is not tackled. 
 
Overall, thus far only one model (Jiang et al. 2006) has given a mechanistic account of the 
differential FIE, which is attributed to broader tuning width in object-tuned units, compared to 
face-tuned units. 
 
 
3.3 Composite Face Effect (CFE) 
 
As discussed in detail in the previous chapter, the Composite Face Effect (CFE) is one of the 
“gold standard” behavioral tasks used to gauge holistic processing. 
 
Tsao and colleagues (Tsao & Livingstone 2008, Tsao et al. 2010) propose qualitatively that the 
CFE is the result of aligned faces being “obligatorily detected as a whole, but misaligned faces 
and cars are not” (Tsao & Livingstone 2008, Fig. 5 caption). One major problem with this 
explanation is that it does not give a good account of which stimuli get detected as faces or not. 
The magnitude of misalignment in Figure 5 of Tsao & Livingstone (2008) is fairly small, and the 
misaligned composite is still obviously very much like a face, yet the detector misses it (by their 
definition). Yet, many studies showing the CFE used aligned composites with distinct gaps 
between the halves (e.g. Goffaux & Rossion 2006, de Heering et al. 2007, Cheung et al. 2008, 
Rossion & Boremanse 2008) – should those be detected as faces if this slightly misaligned 
composite is not? If the entire left side of a face is occluded, should it be detected as a face? (It 
would seem to match a regular face far less than a misaligned composite) Furthermore, there is 
empirical evidence of the CFE for contrast-reversed (Hole et al. 1999, Taubert & Alais 2011), 
rotated (Mondloch & Maurer 2008, Rossion & Boremanse 2008) and even inverted (Rossion & 
Boremanse 2008, Richler et al. 2011c) faces, directly contradicting the proposal that “the 
filters… used by this detector stage require an upright, positive contrast face” (Tsao & 
Livingstone 2008, p.425). Lastly, it is not clear why faces should be processed “as a whole” to 
begin with. The authors suggest that detection allows for specialized neural machinery to be 
activated, in order to perform face-specific processing such as identification or gaze-tracking. 
However, none of this necessitates detection “as a whole” (detection can happen in various 
ways). On the contrary, certain tasks such as gaze-tracking or expression recognition would seem 
to be better off using fine-grained, part-specific, “non-holistic processing” (Zhang & Cottrell 
2005), while it is still unclear whether identification is aided by “holistic processing” or not 
(Tsao & Livingstone 2008, Ullman et al. 2002). 
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Riesenhuber & Wolff (2009) state that their shape-based model (Riesenhuber & Poggio 1999, 
Jiang et al. 2009) “appears to also hold promise to account for some aspects of the CFE”, briefly 
noting that their face-tuned model units respond poorly to misaligned composites. Their S2 
templates are very small – covering only 2x2 C1 units (Jiang et al. 2006, p.169) – while their C2 
units are invariant to position changes. Therefore, only a small fraction of the 256 C2 units 
should be affected by misalignment (those whose S2 templates happen to match the middle 
region of the face). In other words, their face-tuned units respond poorly to misaligned 
composites because of sharp tuning, whereby changes in a small number of C2 inputs has a large 
effect on face-tuned units. This is the same account that they propose for the FIE. Since object-
tuned units have broader tuning, they are less affected by misalignment. 
 
The model of Biederman & Kalocsai (1997) utilizes Gabor-jets (collections of V1-like responses 
for multiple orientations and scales) as the basic representation for faces, while also representing 
the spatial relationships between these jets, either as a deformable grid or as a graph of landmark 
points. The authors hypothesize that for misaligned composites, since the landmark points in the 
lower halves are not in their expected locations, therefore the jet values corresponding to these 
landmarks are not used, eliminating their influence on the top halves. This qualitative 
explanation is plausible, but their model is sensitive to contrast reversal, whereas it has been 
found that contrast-reversed faces still show the CFE (Hole et al. 1999, Taubert & Alais 2011; 
also see Chapter 8). Furthermore, the model does not specify how inverted faces are processed, 
so it is unclear whether a misalignment effect is predicted for inverted faces or not. 
 
Unlike the model Biederman & Kalocsai (1997), the model of Cottrell and colleagues was 
actually used to concretely demonstrate the CFE, in both the “partial” (Cottrell et al. 2002) and 
“complete” (Richler et al. 2007) CFE designs (see Chapter 2). The model combined the 
ubiquitous V1-like Gabor-jet representation with Principal Components Analysis or PCA 
(inspired by eigenfaces) on the entire set of jets to produce a face representation that is holistic. 
However, little was done to advance the understanding of the nature of holism, especially in 
terms of giving a step-by-step account of the mechanisms that produce the CFE. In particular, it 
is not clear if it is PCA per se that is essential for the CFE, if any method that combines the entire 
set of jets will suffice, or if simply feeding the set of jets to the classifier (without combination) 
is enough. More generally, like some of the other models, this model has not been used to 
account for the CFE with respect to spatial frequency filtering, contrast reversal and inversion. 
Finally, no hypothesis is put forward to explain the absence of a composite effect for non-faces. 
 
Overall, like with the FIE, only one model has actually concretely demonstrated the CFE (in this 
case, the model of Cottrell et al. 2002 and Richler et al. 2007). However, no detailed mechanistic 
account was proposed. Crucially, it was not shown that the CFE was absent (or reduced) for 
inverted faces and non-faces, thus missing essential controls. 
 
 
3.4 Inverted faces and non-faces 
 
Here, instead of focusing on specific behavioral effects (i.e. FIE and CFE), we attempt to 
compare and contrast the various models in terms of the way they account for how and why 
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inverted faces and non-faces are processed differently from upright faces. Note, however, that 
many models do not explicitly include such explanations, while others are simply unable to do 
so. Also note that we simply state these accounts without comment as to which are more 
plausible or whether empirical evidence favors one over another. 
 
There are generally three accounts of the “specialness” of upright faces: stimulus characteristics, 
task demands, and exposure/expertise. These are not mutually exclusive. Also, some models 
have different accounts for explaining upright/inverted and face/non-face differences. 
 
Stimulus characteristics are generally used to explain the face/non-face distinction, rather than 
the upright/inverted distinction. Faces are a fairly uniform class of stimuli, compared to other 
non-face classes. The major face parts are found in a standard general configuration, with the 
differences between individual faces stemming from the appearance of parts and the fine details 
of the configuration. As such, a face-detection stage may exist in order to determine if further 
face-specific processing should occur (Tsao & Livingstone 2008). Alternatively, for the task of 
identification, faces vary in terms of general configuration less than non-faces, so face 
processing requires mechanisms that are highly sensitive to fine configural changes (Biederman 
& Kalocsai 1997, Schwaninger et al. 2009). Either way, faces require processing that is specific 
to the class, and such processing will not be applied to non-faces. 
 
The “task demands” account of the face/non-face distinction stems from the idea that faces need 
to be recognized at the individual level much more often than non-faces are. The computational 
demands of face identification may act in concert with stimulus characteristics (Biederman & 
Kalocsai 1997) or spatial frequency factors (Dailey & Cottrell 1997, 1999, Zhang & Cottrell 
2005) to result in holistic representations and processing. 
 
Finally, the exposure and expertise accounts can be used to explain both face/non-face and 
upright/inverted differences. Humans see faces more than any other single class of objects, and 
we also see upright faces more than inverted faces. As such, face processing units could become 
tightly tuned, while non-face units are more broadly tuned (Jiang et al. 2006). This account may 
also need to rely on the “task demands” account, since expertise at detection (rather than 
identification) may not necessarily require tight tuning. This task-specific expertise account is 
favored by Zhang & Cottrell (2006). Most (possibly all) models rely on the exposure account to 
explain the upright/inverted differences, although many do so only implicitly. Note that apart 
from amount of exposure per se, there are also other reasons for humans being face experts (e.g. 
social demands and/or genetics), so exposure and expertise are not synonymous. 
 
 
3.5 Detection versus identification 
 
One important issue over which models disagree is which face processing stage (or task) gives 
rise to holism and holistic representations. 
 
Tsao and colleagues (Tsao & Livingstone 2008, Tsao et al. 2010) explicitly proposed that 
“holistic face processing could be explained by the existence of an obligatory detection stage” 
(p.488 of Tsao et al. 2010). Similarly, the detection process seems to be the key to holism in the 



 

55 
 

work of Sinha (2002), since identification is not discussed, and the binary contrast-ratio 
representation seems to be unsuitable for the fine discriminations required for identification. 
 
In direct contrast, the work of Cottrell & colleagues specifically argue in favor of identification. 
Dailey & Cottrell (1997, 1999) show that face identification leads to a specialized (but not clear 
if holistic) face processing area, whereas face detection does not. Using a related model, Zhang 
& Cottrell (2005) show that large (“holistic”) image patches are more informative of identity 
than small image patches. 
 
Biederman & Kalocsai (1997) do not discuss face detection but state explicitly that 
“individuation of faces… requires specification of the fine metric variation in a holistic 
representation of a facial surface… Such a representation will provide evidence for many of the 
phenomena associated with faces, such as holistic effects…” (p.1218 of Biederman & Kalocsai 
1997). 
 
Implicit bias towards identification is shown by several models. However, these focus on the 
interaction between inversion and featural/configural changes, and are thus not necessarily linked 
to holism. Riesenhuber and colleagues (Jiang et al. 2006) deal with same/different discrimination 
rather than identification per se (although these are related). In theory, their shaped-based model 
could be used for face detection. However, since the “inversion effect is based on tightly tuned 
model units” (p.163), such tight tuning may be unsuitable for face detection, while broader 
tuning removes the inversion effect. Likewise, Rossion’s work proposing the qualitative 
“perceptual field hypothesis” (Rossion 2009) also makes no mention of detection. McKone and 
Yovel (2009) focus on identification, arguing qualitatively that there exists “a truly holistic 
representation of upright faces that integrates all details of the shape-related information for an 
individual face” (p.795), encompassing “not only spacing between the major features, but the 
detailed shape” too (p.788). Schwaninger and colleagues (Wallraven et al. 2005, Schwaninger et 
al. 2009) also see identification as the key to holism, as their face identification units “integrate 
featural and configural information to [form] holistic representations” (p.1436 of Schwaninger et 
al. 2009). 
 
Overall, while more models seem to favor identification as the key to holism, some are agnostic 
about detection, rather than specifically arguing for identification. As such, there is no clear 
consensus on this issue. Is there some way to reconcile these two views? Interestingly, the 
eigenface representation (similar to the Gabor-PCA representation used by Cottrell and 
colleagues, who explicitly argue in favor of identification) can be used for both detection and 
identification (Turk & Pentland 1991). Furthermore, upon closer inspection, the size of features 
that have been optimized for either identification (Zhang & Cottrell 2005) or detection (Ullman 
et al. 2002) turn out to be not very different: compare Figures 1 and 6 of Zhang & Cottrell 
(2005). Interestingly, Freiwald et al. (2009) found that the macaque middle face patch is 
sensitive to configural changes, even though it is fairly early along the visual processing 
pathway. This suggests that it might be involved in both detection and identification. Therefore, 
it seems likely that it is the response properties of face representation units that is paramount for 
understanding holism, while the usage of these units for detection or identification may be 
secondary. 
 



 

56 
 

 
3.6 Spatial frequency 
 
There is no agreement among models of face processing regarding the relationship between 
holism and spatial frequency, similar to what we find from empirical studies (see Chapter 9). 
Several models do not consider the issue at all (e.g. Jiang et al. 2006, Rossion 2008), perhaps 
considering it irrelevant. Among the models that do, some favor low spatial frequencies (LSFs), 
others favor high spatial frequencies (HSFs), but some are also neutral or ambivalent. 
 
Among the models favoring LSFs, only Dailey & Cottrell (1997, 1999) explicitly examined the 
issue. When two competing modules were fed information from different SF bands, the module 
that received LSF information showed a strong face specialization. Interestingly, this only 
occurred under specific task conditions (subordinate classification for faces and superordinate 
classification of objects). However, even when both modules received identical information, face 
specialization also developed, albeit less strongly. The qualitative model of Tsao and colleagues 
(Tsao & Livingstone 2008, Tsao et al. 2010) also somewhat favors LSF. Their “obligatory 
detection stage… uses a coarse upright template to detect wholes faces” (p.421 of Tsao & 
Livingstone 2008). However, it is unclear if “coarse” necessarily implies LSF. Furthermore, 
usage of the term “coarse” in their descriptions of the model is sporadic, suggesting that they 
may not consider it to be a key aspect. 
 
HSFs were not explicitly endorsed by any model. However, among the patches found to be best 
for face identification (highest mutual information) in Zhang & Cottrell (2005), the top 6 patches 
were all of mid to high spatial frequency (see Figure 6 of Zhang & Cottrell 2005). Of these top 6 
patches, 4 were from the second-highest SF (out of five SF bands). Nonetheless, a closer 
examination shows that LSF patches had fairly high mutual information also. The model of 
Biederman & Kalocsai (1997 and McKone & Yovel (2009) similarly do not explicitly favor 
HSFs, but they argue that processing for faces “must encompass detailed local shape 
information”, and “holistic processing derives from elements more local than the major parts”, 
suggesting that their model would favor the usage of fine HSF information. 
 
Some models are neutral or ambivalent on the issue of spatial frequency. The model of 
Schwaninger and colleagues (Wallraven et al. 2005, Schwaninger et al. 2009) combined LSF 
(“configural”) and HSF (“component”) information, stating that the combination of both types of 
information is what produces holistic representations. The patches of faces found to have the 
highest mutual information by Ullman and colleagues (Ullman et al. 2002) included a range of 
SFs (but note that the exact numbers were not stated; our interpretation is based on visual 
judgment from Figure 1 of their paper). However, among the top 8 patches, only one patch 
(ranked 5th) was unambiguously LSF. Interestingly, there seems to be some tradeoff between 
patch size and resolution (the LSF patch encompassed the whole face, while other patches were 
smaller), a tradeoff that we assume in our work. Zhang and Cottrell (2006) examined the effect 
of spatial frequency on their model’s results, and found counter-intuitively that the ability to 
discriminate configural changes increased when higher SFs were used, because LSF templates 
are more shift-invariant. Nonetheless, their results matched human performance best at the 2nd-
coarsest scale tested. The authors state that the issue requires “more careful treatment before 
[they] can draw any firm conclusions” (last paragraph, p.2433). 
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Overall, none of the models examined the issue of spatial frequency in detail. An important 
aspect may be the issue of cycles-per-face versus cycles-per-degree (or cycles-per-pixel, in the 
case of models). Many papers are not explicit about the exact numbers, therefore it may be 
difficult to make direct comparisons (LSF in one paper might only be MSF in another). 
 
 
3.7 Configural versus featural processing 
 
There is debate over whether inversion disrupts “configural processing” more than it disrupts 
“featural processing”. Configural processing usually translates to sensitivity to distances between 
semantic face parts, while featural processing usually means sensitivity to swapping a face part 
from one person with that from another person. 
 
According to the “perceptual field” hypothesis (Rossion 2009), the perceptual field (the “area of 
vision where… information for the task [can be extracted]”, p.305) is constricted for inverted 
faces, and because of this reduced spatial window, each facial feature has to be processed 
sequentially and independently. Thus, configural processing is more disrupted than featural 
processing. 
 
On the other hand, McKone & Yovel (2009) argue that the existing body of evidence indicates 
that featural processing is only less-disrupted than configural processing when “feature” changes 
included color and brightness (i.e. features that are not face-specific). When changes were only 
in terms of shape, both featural and configural processing are equally disrupted. Accordingly, 
McKone & Yovel propose that face-specific processing encompasses not only spacing between 
semantic parts, but also detailed shape information. 
 
Similarly, Riesenhuber et al. (2004) also found that configural and featural processing are 
equally disrupted by inversion. Jiang et al. (2006) subsequently showed that a purely shaped-
based model could be fitted to reproduce the results of Riesenhuber et al. (2004). Their results 
suggest that “configural” and “featural” may be an artificial distinction that may stem from the 
stimulus manipulations, rather than different underlying processing. This view mirrors that of 
Perrett & Oram (1993) and Farah et al. (1998); the latter proposed that holistic representations 
implicitly contain both first-order and configural features (p.495). 
 
Zhang & Cottrell (2004) found that their Gabor-PCA model was overly holistic and did not 
match the human developmental data. By introducing a part representation, this problem was 
fixed. However, Zhang & Cottrell (2006) later found that the developmental data could be 
explained as a function of number of training images, or also as a function of increasing HSF 
information. Together, these findings suggest that their modeling results must be interpreted 
cautiously: there may be more than one model that can account for the data, and simply 
replicating the data is insufficient to distinguish between correct and incorrect ones. 
 
Unlike the above models, the model of Schwaninger & colleagues (Wallraven et al. 2005, 
Schwaninger et al. 2009) was not tested on inverted faces, but on scrambled and blurred faces. In 



 

58 
 

their model, featural processing is related to high spatial frequencies, while configural processing 
is related to low spatial frequencies (this is the opposite of Zhang & Cottrell 2006).  
 
Overall, there are three concrete models that claim to replicate the data for configural versus 
featural processing (Jiang et al. 2006, Zhang & Cottrell 2006, Schwaninger et al. 2009). 
However, there is disagreement as to whether these forms of processing are even different to 
begin with – and if they are, what the source of the difference is. 
 
 
3.8 Face space and norm-coding 
 
The notion of face space is basically the idea that individual faces can be represented as points in 
some multi-dimensional space. In theory, objects can also be represented as such. However, 
because faces share a common arrangement of semantic parts (“first-order configuration”), the 
notion of a face space appeals to the idea that perhaps the dimensions are “meaningful” ones 
such as second-order metrics (e.g. eye separation, nose-mouth distance) or first-order metrics 
(e.g. nose width, eyebrow angle). 
 
Face space was first proposed by Valentine (1991). Specifically, two models were proposed: a 
norm-based coding model and an exemplar-based coding model. The norm-based model accords 
special status to the norm (average face), as representations are calculated with respect to the 
norm. In the exemplar-based model, representations are based on distance from some set of 
exemplars. Interestingly, both models accounted for the distinctiveness effect (better recognition 
for distinctive than typical faces) the same way – by relying on the assumption of a normal 
distribution. It is only for the opposite effect of distinctiveness for face detection that the two 
models have differing explanations. Ultimately, however, the two models were unable to be 
distinguished empirically. 
 
Models of face processing differ with regard to norm-coding mainly in two aspects. The first is 
whether there is an explicit norm or an implicit one. The other is whether deviation from the 
norm is coded by opponent-pairs, where each half of a pair of neurons (or population of neurons) 
is directly opposite from the other (with respect to the norm). We discuss these two aspects next. 
 
By default, most models that do not address the issue of norm-coding (e.g. Biederman & 
Kalocsai 1997, McKone & Yovel 2009, etc…) can be thought of as favoring an implicit norm. 
One idea, as articulated by Jiang et al. (2006), is that “there are more face neurons tuned to 
‘typical’ faces that are close to the mean than to less common faces that are farther away from 
the mean” (p.168), mirror the assumption of normal distribution by Valentine (1991). Lewis & 
Johnston (1999) similarly utilized this assumption to account for the caricature effect without an 
explicit norm (see next section). 
 
Rhodes & Jeffery (2006) proposed that the norm is implicitly represented, and identity is coded 
by opponent neuronal populations. For each dimension of face space, there is a population of 
neurons that responds strongly to low values for that dimension, and there is an opponent 
population that responds strongly to high values. Thus, the norm is implicitly coded, by equal 
activation of both populations. 
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Another method of coding for a norm implicitly is via competitive, “repulsive” interactions 
between representational units that cause the units to “move away” from each other in face 
space, so that they are equally spaced out. One such model is that of Brunelli and Poggio (1993), 
which is discussed in the context of caricatures in the next section. This method is compatible 
with the idea of opponent populations, although it may not necessarily produce units with exactly 
opposite tuning properties. 
 
The influential “eigenfaces” method (Turk & Pentland 1991) is one that uses an explicit norm. 
During the PCA process, the mean face is explicitly subtracted, and the directions of largest 
variance around the mean face are calculated. While studies have tried to determine if the 
principal components actually correspond to the dimensions that human face perception is 
attuned to (e.g. Hancock, Burton & Bruce 1996), it seems that the results may not be conclusive, 
because the principal components depend heavily on the set of faces used. 
 
Overall, apart from the caricature effect (next section), there do not exist any implemented 
models that account for face-space and norm-coding data, such as adaptation aftereffects (e.g. 
Leopold et al. 2001, Rhodes et al. 2004)  and neural response properties (e.g. Leopold et al. 
2006, Freiwald et al. 2009). 
 
 
3.9 Caricatures 
 
The notion of caricatures stems from face space and norm-coding. During the process of creating 
a caricature, the features of a given face are exaggerated away from some typical or average 
value (e.g. nose enlarged, eye separation increased). Thus, caricaturization can be thought of as 
shifting a given face away from the norm, especially for the dimensions in which the face is 
already atypical. For example, a face with big eyes is given even bigger eyes. 
 
Brunelli & Poggio (1993) represented faces by a vector of automatically-extracted features such 
as nose width, mouth height and lip thickness. To perform gender classification, they created a 
“HyperBF” network in which two competing prototypes (each representing the average vector 
for one gender) were modified during a learning process. This process resulted in altered 
prototypes that enhanced the differences between the genders. In other words, the prototypes 
started off as the average male and female faces, but became caricatured male and female faces. 
Crucially, there was no explicit representation of the overall average face (norm), yet the 
prototypes seemed to move away from this implicit norm in directions that specifically enhanced 
their male-ness and female-ness. This scheme was then extended to the identification of 
individuals, with one prototype per individual. Again, the learning process resulted in caricatured 
prototypes. However, identification performance was already at ceiling even when the original, 
non-caricatured prototypes were used. Therefore, it is unclear if having caricatured prototypes is 
actually beneficial for identification of regular faces. Nonetheless, it is clear that caricatures 
would be better recognized than regular non-caricatured faces, since caricatures would activate 
the prototypes more strongly.  
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Lewis & Johnston (1999) combined the assumption of Valentine (1991) of a gaussian face-space 
distribution with an exemplar-based model featuring “Voronoi” cells. Each cell contains the 
space around one exemplar, and points in space that are equidistant from different exemplars 
form the cell boundaries. Because the gaussian distribution implies a higher exemplar density 
near the center of face space (i.e. the implicit norm), the exemplars are typically off-center within 
the cell, and are closer to the norm than the cell centroids are. Then, faces near the cells centroids 
are further away from the cell boundaries and therefore less prone to “jump” to an incorrect cell 
due to noise perturbations, hence these are better recognized. Since such faces are caricatures by 
definition (i.e. further away from the norm than the regular exemplars), the caricature effect is 
thus explained without an explicit norm. 
 
Costen et al. (1996) show that by separating out the shape and texture components of a training 
set of faces and then performing PCA on these separate components, the resulting representation 
replicates the caricature effect. Unlike Brunelli & Poggio (1993), it is unclear if the prototypes 
(i.e. principal components) themselves are caricatured. More importantly, PCA utilizes 
knowledge about the average face, so the norm is explicit in this case. 
 
Giese & Leopold (2005) tested two models: one prototype-based (like Brunelli & Poggio) and 
one that explicitly calculates distances from a face norm. Both models were equally able to 
replicate the electrophysiological findings for “lateral” caricatures (Leopold et al. 2006), but the 
norm-based model was better for “normal” caricatures. Thus, the results suggest that the norm-
based model is a better representation of the actual neurophysiology underlying caricatures. 
 
Overall, there exist multiple models that implement or replicate data relating to caricatures. This 
is somewhat surprising, given that only a handful of implemented models are geared towards 
replicating the FIE and CFE. In any case, however, the most important point is that these models 
are distinct – there is no model that can explain or link all of these phenomena. 
 
 
3.10 Contrast polarity 
 
Few models, either qualitative or quantitative attempt to account for the sensitivity of face 
processing to contrast polarity. This is surprising, since this is a well-established phenomenon 
specific to faces, but not objects (see Chapter 8). Two such models are described here. 
 
The model of Biederman & Kalocsai (1997) utilizes Gabor-jets as the basic representation for 
faces, while also representing the spatial relationships between these jets. Sensitivity to contrast 
polarity is not actually demonstrated, although they hypothesize that the Gabor-jet representation 
makes the model sensitive to changes in lighting direction and contrast reversal. Crucially, the 
difference between the contrast sensitivities of faces and objects is attributed to objects being 
represented as a “structural description specifying qualitative characterizations” based on edges 
and depth discontinuities. These characterizations have been abstracted away from their initial 
Gabor-jet representations, and are therefore insensitive to contrast reversal. The reason for this 
difference in representation is attributed to faces requiring “highly accurate representations” for 
“accurate storage of and discrimination among thousands of highly similar exemplars” 
(Biederman & Kalocsai 1997, p.59). 
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Sinha (2002) performed face detection via multiple binary contrast polarity relationships 
between pairs of facial regions. In face images, the eyes are generally darker than the cheeks, and 
the mouth is generally darker than the chin. The proposed model searches for such binary 
contrast relationships in an image, and the presence of several of these suggests that the image 
contains a face. Because the representation is binary-valued (i.e. “darker-than” or “lighter-than”), 
this method is tolerant to changes in lighting direction and overall illumination level, while being 
sensitive to contrast polarity. However, this method is proposed as a generic recognition scheme 
(i.e. not face-specific), and face detection was simply the task chosen for demonstration 
purposes. Thus, it is not clear why faces and objects would differ in their sensitivity to contrast 
polarity under this scheme. One possibility is that this model only works for objects with a 
relatively uniform first-order 3D structure or uniform pigmentation scheme. 
 
Overall, there are few satisfactory accounts of the sensitivity of faces (and insensitivity of 
objects) to contrast polarity. In contrast (pun not intended) to the two models discussed here, our 
account for this phenomena is based on the coarse spatial scale of face templates (see Chapter 8). 
 
 
3.11 Neurophysiology 
 
To date, there have been many models that attempt to account for behavioral phenomena 
associated with face processing. However, few – perhaps even none – have really tried to 
account for face processing at the neural level. The main reason is probably that until recently, 
face-selective cells could not reliably be found, and therefore many electrophysiology studies 
examined only a limited number of such cells. Thus, it was not always clear if the data were 
robust enough to try modeling concretely. However, with the recent advent of fMRI-targeted 
electrophysiology, robust data is no longer an issue. In this section, we briefly examine some 
electrophysiological findings and see if the above-mentioned models are consistent with them. 
 
The neural FIE – a reduction or delay in response when faces are inverted – is still not well 
characterized. Early studies found different results in different brain areas. A recent study (Tsao 
et al. 2006) found that overall, a strong 2.2x (55%) reduction in response. However, only one 
face patch was studied. Furthermore, the distribution of response reduction was not examined, so 
it is unclear if the reduction is similar for all neurons. All models that account for the behavioral 
FIE can account for the reduction in response quite straightforwardly. However, a delay in 
response was also found, and models generally do not have good accounts of the dynamics of 
face processing. 
 
Freiwald et al. (2009) found that in the middle face patch (sub-patches “MF” and “ML”) of 
macaques (Moeller et al. 2008), face-selective cells are tuned to the presence/absence of at most 
four (out of seven possible) face parts. No model has directly attempted to explain this, 
especially in relation to holistic face processing. However, the model of Jiang et al. (2006) and 
Rossion and Gauthier (2002) are potentially consistent with these results. It is unclear if the 
Gabor-PCA models (which perform PCA on the entire Gabor response pattern to a whole face) 
are consistent or not – it may vary with the specific principal components. Generally, since most 



models d
hard to re
 
Freiwald
face patc
to the ex
Rhodes &
of face sp
 
Finally, t
behavior 
face (Fig
somewha
in the ey
strongly 
al. 2010)
patch cel
any mod
it is not c
linear tun
tested. 
 

 
F
at

do not speci
eally test or 

d and colleag
ch are tuned 
xtremal spac
& Jeffery (20
pace. Howev

the study of
(Tsao & Li

g 3.1 B), but
at sensitive t
ye and mou
(E vs. G), an

). While this
lls are sensit
el can replic
clear if linea
ning of the 

igure 3.1.  A
t left of PST

ify which br
falsify these

gues (Freiwa
to the spacin

cing values. 
006), which 
ver, it is unc

f Kobatake 
vingstone 20
t not when t
to the backg
uth regions 
nd this was 
s was just on
tive to four f
cate this beh
ar models (s
model in Ji

A “holistic” 
THs indicate 

rain areas co
e models. 

ald et al. 200
ng of seman
This is mos
proposed tw

lear if other 

& Tanaka (
008, Tsao et
the internal f
ground lumin

(H). Crucia
taken as evi
ne cell – and
face parts or 
avior. The r
uch as the G
iang et al. (

face cell fou
normalized 

 

62 
 

orrespond to

09) also foun
tic face part
st directly r
wo opponent
models are 

(1994) had a
t al. 2010). T
features wer
nance (G), b
ally, the cel
dence for “G
d it seems to
less (Freiwa
esponses of 

Gabor-PCA 
2006) may 

und by Koba
firing rates. 

o which part

nd that face
ts. Moreover
related to the
t population
consistent or

a cell that s
This cell res
re missing (C

but was high
ll required a
Gestalt” or “
o contradict
ald et al. 200

f the cell seem
models) can
be more su

atake & Tan
Figure from

ts/aspects of

-selective ce
r, cells were 
e opponent-

ns of cells fo
r not with th

seemed to ex
sponded stro
C, D, F). Th

hly sensitive 
a face boun
“holistic” pro

the finding 
09) – it is in
m to be high
n account fo
uitable, but t

naka (1994). 
m Tsao et al. 

f the model,

ells in the m
most often t

-coding mod
r each dimen

hese findings

xemplify ho
ongly to a ca
he cells was
to the lumin

ndary to res
ocessing (Ts
that middle

nteresting to 
hly non-linea
r them. The
this has not 

 

Numbers 
(2010). 

, it is 

middle 
tuned 
del of 
nsion 
s. 

olistic 
artoon 
s only 
nance 
spond 
sao et 
e face 
see if 
ar, so 
 non-
been 



 

63 
 

 
3.12 Gabor-PCA model 
 
Finally, we devote a section to the Gabor-PCA model of Cottrell and colleagues (Dailey & 
Cottrell 1999, Cottrell et al. 2002, Zhang & Cottrell 2004, 2005, 2006). Among the models 
reviewed here, the Gabor-PCA model has been the most extensively applied to various aspects of 
face processing. It is also somewhat similar to the model used in this thesis. Two key differences 
are in the template-matching process and the use of spatial frequencies. Here, we simply aim to 
put together in one place, a review of the findings from this model, as these have been scattered 
throughout this chapter. 
 
The replication of the CFE is the most relevant finding. This was done for both “partial” (Cottrell 
et al. 2002) and “complete” (Richler et al. 2007) designs. However, the CFE was not investigated 
for inverted, SF-filtered, contrast-reversed, or non-faces. Moreover, it is not clear exactly how 
holism arises – whether it is due to the PCA, to the usage of all SFs, or the usage or all locations 
– and when it doesn’t. 
 
The relationship between holism and face identification is investigated in Zhang & Cottrell 
(2005). They found that the optimal face patches for face identification were not whole face 
patches (which were used in Cottrell et al. 2002), but covered at least two semantic face parts. 
They interpret their results to suggest that holism arises because it is good for face identification. 
However, they did not actually show that these optimal face patches were in fact holistic i.e. able 
to reproduce the CFE (in fact, Cottrell et al. 2002 was not even cited, for some reason). 
Interestingly, the optimal patches were all from high to mid SFs (in contrast to our work). 
 
On a related note, Dailey & Cottrell (1997, 1999) found that a specialized face-processing area 
arose only for the combination of a low SF bias and differential tasks demands (identification for 
faces; categorization for objects). This is somewhat contradictory to the results of Zhang & 
Cottrell (2005), in which the purportedly holistic face patches were biased to high SFs. 
 
Finally, Zhang & Cottrell (2004, 2006) found that the Gabor-PCA model was able to replicate 
the developmental trajectories of configural versus featural processing, and the effect of 
inversion on these. Interestingly, their results suggest that the increased discriminability of 
configural changes over time, is due to the increasing availability of higher SFs. While they 
explain that LSFs are more shift-invariant and therefore less suitable for detecting configural 
changes, it is still not clear why HSFs would favor configural over featural processing. 
 
To summarize, while the Gabor-PCA model has been applied broadly to several interesting 
aspects of face processing, there remain two major issues. Some of their results seem to be 
somewhat contradictory, and have not yet been reconciled (to the best of our knowledge). 
Secondly, these results have used slightly different variants of the model, and it is not clear if a 
single model would be able to replicate all of their results. 
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3.13 Chapter summary 
 
Overall, the state of models of holism (and of face processing in general) is rather unsatisfactory. 
Few have good accounts for the processing of inverted faces and non-faces, while none have 
really isolated what causes holism, e.g. by proposing a thorough mechanistic explanation for the 
CFE, or by demonstrating holism from the single cell level to the behavioral/perceptual level. 
More broadly, no single model ties together all the major aspects of face processing, such as 
holistic/configural processing, norm-coding, responses to inversion, SF filtering and contrast 
reversal, etc. 
 
This thesis will attempt to address all the issues listed here. We begin by proposing in the next 
few chapters a thorough, step-by-step explanation of how the CFE arises. 



 

 

 
Chapter 4:  The HMAX model 

 
 
Chapter abstract 
 
The main objective of this chapter is to provide a brief description of the HMAX 
model of object processing, since this thesis builds on the HMAX model. 
Additionally, detailed methods for the experimental simulations in the various 
chapters are included here. 
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Chapter 4:  The HMAX model 
 
 
The objective of this chapter is to describe the overall operation of the HMAX model of visual 
object processing, which is the key simulation tool used in this work. HMAX models the large-
scale neuronal operation of the ventral visual cortex in primates. It is a “neural-network” model 
in some senses of the term, but unlike other models such those of Dailey & Cottrell (1999) or 
Rumelhart & McClelland (1986), its origins are in Neuroscience rather than Cognitive 
Psychology. 
 
 
4.1 Brief history 
 
HMAX (Riesenhuber & Poggio 1999) was designed to demonstrate that a quantitative model 
could replicate several key characteristics of neurons in ventral cortex. Such neurons form a 
hierarchy, and neurons in “higher” areas are tuned to more complex visual stimuli (Felleman & 
Van Essen 1991). At the same time, neurons in higher areas are more tolerant to changes in 
position and size of visual stimuli (Tanaka 1996, Hung et al. 2005, Rust & DiCarlo 2010). 
Finally, neurons near the top of the hierarchy are view-tuned, rather than view-invariant 
(Logothetis & Pauls 1995, Logothetis et al. 1995). 
 
HMAX is not completely unique; it shares many characteristics with other models of visual 
processing (e.g. Fukushima 1980, Perrett & Oram 1993, Mel 1997, Wallis & Rolls 1997, Amit & 
Mascaro 2003, Ranzato et al. 2007). As such, we often refer to these models as a “family of 
models” that take inspiration from primate visual neurophysiology. 
 
The parameters were initially manually determined. Serre & Riesenhuber (2004) later modified 
these parameters to be quantitatively consistent with the known values in published 
neurophysiological studies, wherever possible. Nonetheless, there are still many free parameters 
unconstrained by actual data. 
 
 
4.2 Implementation details 
 
There are three aspects to the implementation of HMAX: general architecture, neuronal 
operations, and numerical parameters. The general architecture has already been described 
above: a hierarchical structure, with units of increasing selectivity for complex stimuli and 
tolerance to position and scale. More specifically, the hierarchy consists of layers that either 
increase selectivity or tolerance, in an alternating fashion. These layers achieve these different 
goals by performing different neuronal operations, described in the next section. Finally, both the 
general architecture and the neuronal operations have parameters that need to be specified. 
 
In this work, the software implementation of HMAX that we used is the “HMAX package” 
within the Cortical Network Simulator (CNS) software system developed by Mutch et al. (2010). 
CNS is a broad simulation framework that is capable of simulating many different architectures. 
We used the “PNAS parameter set” within the “HMAX package” of CNS, meaning that general 
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architecture and neuronal operations follow that of Serre et al. (2007). The numerical parameters 
also follow those of Serre et al. 2007 (i.e.) to the extent possible. 
 
Importantly, this work uses the “PNAS parameter set” as-is, without any modifications. The sole 
caveat is that we adjust the template parameters in accordance with our hypothesis about what 
differentiates face and object processing (large/coarse versus small/fine templates). No other 
changes are made to make the HMAX computations face-specific (e.g. calculation of eye 
separation). The significance of this is that according to our work, the key difference between 
face and object processing may be a quantitative rather than a qualitative one. 
 
We now describe the different layers in our hierarchical model. 
 
4.2.1 Multi-scale image pyramid 
 
The model takes as input images that are 256-by-256 pixels. This image is then resized into 10 
different scales to form an “image pyramid” (See Fig ??.??). This multi-scale representation is 
common to many computer vision algorithms. 
 
 

  
 
Figure 4.1. Schematic of the HMAX model. Processing sequence starts from 
bottom left (“Image Layer”) and ends at top right (“C2 Layer”). Figure split into 
two to reduce space usage. Adapted from Mutch & Lowe (2006). © 2006 IEEE. 

 
 
4.2.2 V1-like processing 
 
Next, the model simulates the processing by simple and complex cells of the primary visual 
cortex (“V1”) in primates. In the S1 layer, template matching is performed on the image 
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pyramid. The matching uses the normalized dot product (ndp) function as a measure of how well 
each portion of the image pyramid matches the templates. Since the templates are Gabor filters at 
4 different orientations, the template matching process is analogous to transforming the image 
into 4 channels, each of which corresponds to a different orientation. Therefore, each point in the 
pyramid now consists of 4 S1 units. The response of each S1 unit represents the amount of 
orientation information for a particular orientation, at a particular scale, at a particular location. 
This is similar to what simple cells in V1 do. 
 
Next, in the C1 layer, tolerance to position and scale changes in the image is increased by 
pooling over a small local region in the image pyramid. Specifically, every local region 
consisting of 8 x 8 S1 units x 2 scales is pooled into a single C1 unit by taking the maximum 
value over this 8 x 8 x 2 region. This is performed independently for each orientation. Since 
adjacent C1 units have very similar values, for efficiency purposes, C1 units at every other 
location are discarded (“downsampling”), reducing the number of C1 units by a factor of 4. Note 
that compared to the S1 pyramid, the C1 pyramid is much smaller (as a combined result of 
pooling and downsampling). 
 
4.2.3 High-level templates 
 
Next, the S2 layer again performs template matching (like S1). This time, instead of 4 Gabor 
filters, the templates can be an arbitrary number of arbitrary templates. In practice (e.g. Mutch & 
Lowe 2008, Serre et al. 2007), the templates are random “snapshots” of local regions (e.g. 4 
orientations x 12 x 12) of C1 unit responses at some scale. These C1 responses are usually those 
elicited in response to the presentation of an arbitrary subset of the image set used. 
 
In our case, out of the 100 frontal-view, oval-cropped male faces from the Max Planck dataset, 
we use the 50 odd-numbered ones (e.g. Fig. 4.2 top left) for this random template “snapshot” 
process. The other 50 are used to construct composites (e.g. Fig. 4.2 bottom left). For each of the 
50 odd-numbered faces, 20 template “snapshots” are taken are random locations in the image, 
resulting in 1000 templates total. 
 
For our face-like processing, these 1000 templates are of size 12 x 12 and are from scale 7 
(where scale 9 is the coarsest). We call these “large, coarse templates”. (The 4 orientations are 
implicit, i.e. the templates are actually 4 x 12 x 12) 
 
For our object-like processing, the 1000 templates are also of size 12 x 12, but are from scale 3 
(where scale 1 is the finest). We call these “small, fine templates”. 
 
It is important to note that the same 50 face images are used in both cases, even in the case of 
“object-like” processing. This is so that we can avoid the confound of different physical stimulus 
properties, which might arise if non-face images were used. 
 
Where useful, we also utilize templates of size 24 x 24 from scale 3, and templates of size 4 x 4 
from scale 7. We terms these “large, fine templates” and “small, coarse templates” respectively. 
 
 



 

70 
 

 

 
 

       Image    Scale 3        Scale 7 
 
Figure 4.2. Left: examples of original (top) and composite (bottom) images. 
Middle: C1 responses at scale 3. Right: C1 responses at scale 7. Depicted 
response is the mean over 4 orientations. Blue: low response. Red: high response. 

 
 
Note that “coarse” or “fine” refers to scales 7 and 3 respectively. “Large” and “small”, however, 
do not simply refer to the numerical size of the templates, since the large, coarse templates and 
small, fine templates are all 12 x 12. Rather, they refer to what proportion of the whole face the 
templates cover. At scale 7, the entire image is represented as 25 by 25 C1 units, and the whole 
face by approximately 22 by 17 C1 units (height x width). Therefore 12 x 12 is a relatively large 
proportion. In contrast, at scale 3, the entire image is 55 by 55 C1 units, and the whole face is 
about 36 by 28. Therefore, 12 x 12 is a relatively smaller proportion. 
 
4.2.4 High-level template matching 
 
The template matching process in S2 is essentially the same as in S1. Note, however, that in 
terms of practical implementation, both Mutch & Lowe (2008) and Serre et al. (2007) utilize a 
Gaussian radial basis function (grbf) in S2 to measure similarity, instead of the ndp function 
used in S1. Empirically, both functions give similar levels of object recognition performance. 
Comparisons of the two functions are beyond the scope of this work. We simply follow the 
design decisions made by Mutch & Lowe (2008) and Serre et al. (2007). 
 
Note that each point in the S2 pyramid corresponds to 1000 features (one feature is synonymous 
with one template). This is like how each point in the S1 pyramid corresponds to 4 orientations. 
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4.2.5 Global pooling over location and scale 
 
Finally, at the C2 stage, we also perform pooling by taking the maximum value over a given 
region (analogous to the pooling in C1). However, this time, the pooling is done over all 
locations and all scales (i.e. the entire pyramid) – but separately for each feature, like for C1. 
This provides much greater tolerance to changes in image position and scale. Because pooling is 
done over the whole pyramid, the pyramid is reduced to a single point. However, because the 
pooling is done separately for each feature, these remain distinct. Therefore, the end result is that 
the pixel image is ultimately represented as a vector of 1000 feature responses. Each response is 
between 0 and 1, and can be thought of as the output of a graded feature detector (where the 
feature being detected is specified by the corresponding S2 template) that is tolerant to position 
and size variations. 
 
 
4.3 Detailed methods 
 
4.3.1 Choice of scale and template size 
 
We chose scales 7 and 3 to be distinct enough, yet not at the scale extremes (9 and 1). We chose 
the template size of 12 x 12, so that at scale 7, the templates would unambiguously not cover the 
whole face. This was to underscore the point that holism is not necessarily about wholes. We 
chose to also use 12 x 12 templates at scale 3 so that the “complexity” (number of C1 inputs) is 
constant for both types of features. 
 
For the small, coarse features, we chose the template size of 4 x 4 because it roughly corresponds 
to the size of semantic face parts (e.g. eyes, mouth), and therefore cannot be said to be too small. 
 
For the large, fine features, we chose the template size of 24 x 24 arbitrarily to be “on the safe 
side”, i.e. so that they would be large enough to also show “holism”. We were cautious not to 
make the templates too large, as computation time could start to be prohibitively long. 
 
4.3.2 Randomization 
 
To provide an estimate of uncertainty, the reported mean values are the mean over 100 
randomized runs, in all cases. In each run, a different random pairing of faces is done, so that the 
set of composites used in each run is different. Error bars are standard error of the mean (SEM) 
unless otherwise reported. 
 
In most runs, all 1000 features are used. In some instances (e.g. in Chapter 5), a random subset of 
features is used in each run, to verify the robustness to number of features. In this case, 
randomization of face pairing (previous paragraph) and feature subset occurs together in the 
same run. 
 
Our randomization is not meant to simulate experimental noise or inter-subject variability, so our 
measures of uncertainty (error bars) cannot be compared to empirical ones. We generally side-
step statistical analyses in this thesis, because we believe these to be rather meaningless in the 
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absence of realistic sources of noise and variability. Reporting p-values (which would be 
extremely significant in almost all cases) might confer undeserved legitimacy. An effect that is 
statistically significant in our simulations could very well be non-significant in empirical studies. 
Except where noted, it is clear from the very small error bars (in most cases hardly visible) that 
effects are “statistically significant” in the regular sense. 
 
4.3.3 Distance metrics 
 
We assume that human behavioral responses in same/different tasks are generated based on the 
following intuitive description: the neural responses to each stimulus are compared using some 
distance metric, and if the neural responses are similar enough (i.e. distance is small enough), 
then the response is “same”. It is unclear if this is what actually happens, but we make this 
assumption in the absence of compelling evidence otherwise. 
 
Unlike the Euclidean distance, the Pearson correlation and normalized dot product (ndp) are 
similarity metrics, and attain their maximum value when the inputs are identical. To convert 
these into distance metrics, we simply calculate 1 – x, where x is the correlation or ndp. Thus, a 
distance of 0 is attained when the inputs are identical. Note: the output ranges of [-1 +1] become 
[2 0] (or [0 2], rather) as a result. 
 
4.3.4 Thresholds 
 
In each randomized run, 20 trials for each of 16 conditions (upright/inverted x same/different x 
aligned/misaligned x congruent/incongruent) are generated. To determine whether our model 
responds “same” or “different” on each trial, a threshold is required. If the distance between the 
two composites in a trial is below the threshold, our model responds “same”. 
 
Instead of pre-determining a threshold, or trying to find an optimal one, we calculate results (e.g. 
hit rate, D’, accuracy) for a range of thresholds spanning the entire range of distances in each 
run. The range of distances varies slightly from run to run. For each run, we linearly divide the 
range of distances by 18, thus providing 18 thresholds. Therefore, we are able to analyze the full 
range of possible outcomes independently of how thresholds are (implicitly) determined in 
humans. 
 
In some instances (e.g. in Chapter 9), when we compare different sets of experiments (e.g. high 
versus low spatial frequency filtered faces), we run the simulations twice. The first time, the 
simulations are run as per normal, with thresholds determined as described above. We then 
examine the range of thresholds for each experiment to determine a common range that is 
suitable for all sets of experiments being compared. A tradeoff between coverage (covering all 
distances in all sets of experiments) and resolution (having thresholds that are not too far apart) is 
performed subjectively to decide the set of common thresholds to be used. A second round of 
simulations is then performed, with this set of thresholds used in all runs, for all sets of 
experiments. 
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4.3.5 Stimuli 
 
The bulk of our simulations (e.g. in Chapters 5 to 10) used faces from the Max Planck database. 
In particular, we used the set of 100 frontal-view male faces. These faces were oval-cropped to 
remove external features. Each face was then normalized so that the mean and standard deviation 
of pixel values in all faces was the same. The background pixel value is 0 (black) unless 
otherwise stated. When creating composites, the bottom halves were shifted downwards by 2 
pixels to create a gap. 
 
4.3.6 Re-centering 
 
To match many empirical experiments (including our own pilot experiments), in which subjects 
fixated the eye region in the top halves, the composite faces were shifted downwards by 30 
pixels, so that the eyes were in the center of the image. This was also done during the feature 
extraction process (Section 4.2.3) to ensure consistency. Incidentally, this may have parallels in 
human vision, e.g. slight favoring of the eye region over the mouth region. 
 
4.3.7 Attentional modulation 
 
In the current absence of a good understanding of attentional modulation in humans (and 
primates), we simply perform the simplest version of attentional modulation by multiplying the 
pixels values corresponding to the lower face halve by some fraction. This sidesteps the issue of 
determining which units should correspond to lower or upper halves, which would arise if 
modulation was done at some level(s) higher than pixels (e.g. S1, C1, etc.), which would be 
making further assumptions about how attention operates. 
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Chapter 5:  Modeling the Composite Face Effect (CFE) 

 
 
Chapter abstract 
 
 In this chapter, we verify our main hypothesis, that the Composite Face Effect 
(CFE) can be produced by using large, coarse templates in the HMAX model. 
When small, fine templates are used, no CFE is found. We also show that the CFE 
is qualitatively robust to various low-level factors. There are two crucial 
contributions. Firstly, we provide a mechanistic, step-by-step account of the CFE, 
linking holism at the single-unit level to the misalignment effect at the behavioral 
level. Secondly, we show that the key factor in producing holism is the largeness 
of the templates, in terms of “image coverage” rather than number of pixels or 
units. 
 
 
Chapter contents 
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Chapter 5:  Modeling the Composite Face Effect (CFE) 
 
 
In this chapter, we present our main result, which is that a computational model can replicate the 
Composite Face Effect (CFE). Our hypothesis is that holism, which the CFE reflects, arises as a 
result of neurons being tuned to large portions of faces (henceforth “large templates”). To test 
this hypothesis, we took the HMAX model of object recognition and modified it to have large 
templates. This single change is the only one necessary to produce holism in the model. 
 
First, we show that holism at the level of a single neuron can also be shown by a model unit 
tuned to large templates. Then, we also show that such model units can replicate the CFE. We 
thus demonstrate that these units are holistic, both at the single-neuron “brain” level and the 
behavioral “mind” level. Crucially, we trace the mechanisms that enable the model to produce 
holistic behavior from holistic neural responses, providing a step-by-step account of how holism 
arises. We thus bridge the explanatory gap between brain and mind for holistic face processing. 
 
 
5.1 Replicating holism at the single-neuron level 
 
We first perform a quick validation of our hypothesis that holism arises due to large templates by 
showing that a model unit that is tuned to the entire image can replicate a single-neuron 
demonstration of holism (Fig. 5.1). Because the unit’s template encompasses the entire image, 
the removal of any portion weakens responses substantially (Fig. 5.1 b, c, d). Interestingly, even 
though the face outline is only a few pixels thick, its removal also weakens responses 
substantially (e vs. f), reminiscent of “Gestalt” processing. Importantly, it is easy to see why a 
model unit tuned to only a portion of the image (“small template”) would not be able to replicate 
these results. For example, if the template did not cover the mouth, then removal of the mouth (b, 
d) would have no effect at all, contrary to the neural data. More modeling details can be found in 
Section 4.3. 
 
 
5.2 Replication of CFE (misalignment effect) 
 
In order to simulate the experiments in which human subjects participated, we also did the 
following. To simulate the attentional modulation that happens when subjects try to ignore the 
bottom halves, we multiplied the pixel values in the bottom halves by a modulation factor 
(default value is 0.1). To simulate the process of deciding if the two top halves in each trial are 
the same or not, we first calculated the distance between the two sets of HMAX outputs (default 
metric is Euclidean distance). Then, if the distance is below a certain threshold, the two top 
halves are considered to be the same. Section 4.3 describes these methods (as well as stimuli and 
model parameters) in more detail, and also justifies each of these design decisions. 
 
We found that HMAX with large, coarse face templates replicated the CFE (misalignment 
effect). Specifically, for the “partial design” (see Section 2.1), the hit-rate increased when the 
bottom halves of the stimuli were misaligned (Fig 5.2 left). As a control, we re-ran the model, 
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changing only the template size (but not coarseness). Consequently, the model failed to show an 
increase in hit-rate when the bottom halves were misaligned (Fig 5.2 right). 
 
 

 

       

 
Figure 5.1. A model unit that is tuned to the entire image (a) is “holistic”, 
responding significantly less when face parts are missing (b, c, d). The 
background contrast has only a moderate effect (e), but the face outline is 
essential (e vs. f), as is the right contrast polarity for the eyes and mouth (a vs. g). 
The model unit’s responses are in good agreement with those of the neuron from 
Kobatake & Tanaka (1994, Fig. 4). Images reproduced from Tsao et al. (2010). 

 
 
5.3 Step-by-step account 
 
How does the model go from the holistic response properties of single units to produce a higher 
hit-rate for pairs of bottom-misaligned images? We first examine the responses of model units to 
misalignment of individual images, and then look at the subsequent effect on image pairs. 
 
5.3.1 Effect of misalignment: individual images 
 
Following from the holistic properties of units with large templates, we see that when the face 
halves are misaligned, these units respond less strongly (Fig. 5.3 left). In comparison, for units 
with small templates, the units respond as strongly as before (Fig. 5.3 right). 
 
5.3.2 Effect of misalignment: distances between images 
 
We now examine the effect of misalignment on the distances between the two images in each 
trial. Because misalignment causes responses to each image to decrease, this also generally 
causes distances between images to decrease (Fig. 5.4). In theory, this may not be true in all 
cases, but Fig. 5.4 shows that this holds true empirically. We speculate that the high 
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dimensionality of the response vectors (i.e. number of units), as well as the somewhat small and 
uniform decrease in responses (Fig. 5.3 top left) may contribute to this empirical result. 
However, further examination of the underlying cause(s) is beyond the scope of this thesis. The 
decrease in distance holds true even for a non-Euclidean metric such as the Pearson correlation 
(see Section 5.4.4). 
 
The decrease in distances between images leads directly to an increase in hit-rate, if a relatively 
stable threshold in assumed (red line in Figs. 5.4 and 5.5). Since two images are declared to be 
“same” if their distance is below the threshold, a decrease in distance due to misalignment 
increases the proportion of image pairs below the threshold, i.e. a higher hit-rate. Note that the 
actual value of the threshold is not crucial, as long as it is fairly constant across trials. 
 
Thus, we have traced the effect of misalignment from the level of a single model unit, to the 
“behavioral” level of producing a response of “same” or “different” (like human subjects). For 
large templates, there is a clear and step-by-step account of how holism at both levels is related. 
Correspondingly, for small templates, there is no evidence of holism (Figs. 5.2 right and 5.5). 
 
 
 
 

             
 

Figure 5.2. The model shows the CFE (misalignment effect) for large, coarse 
templates (left), but not for small, coarse templates (right). Error bars: ± 1 SEM. 
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Figure 5.3. Misalignment causes decreases in responses for units with large (left), but not 
small (right) templates. Top: scatterplots for responses of 1000 model units to 2450 
composites. Bottom: overall mean responses. 
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Figure 5.4. For large, coarse templates, distances between composites are larger 
for aligned (top) than misaligned (bottom) trials. Blue: “same” trials. Yellow: 
“different” trials. Hanging bar indicates mean of distribution. Red line: threshold 
producing roughly 75% hit rate for aligned “same” trials. 

 
 

 
 

Figure 5.5. For small, coarse templates, distances between composites are similar 
for aligned (top) and misaligned (bottom) trials. Blue: “same” trials. Yellow: 
“different” trials. Hanging bar indicates mean of distribution. Red line: threshold 
producing roughly 75% hit rate for aligned “same” trials. 
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5.4 Robustness 
 
Robustness to changes in parameter values is a desirable property for any model, qualitative or 
quantitative. Qualitative models sidestep this issue completely, but that does not mean that they 
are robust. On the other hand, quantitative models are forced to be explicit about design 
decisions and parameter values, allowing robustness to be evaluated. In this section, we show 
that our model is robust to various changes. These results can also be considered evidence that 
large templates are the key to holism, not other factors. 
 
5.4.1 Threshold 
 
The exact value of the threshold is not important for the model to show the CFE. Apart from 
extremely high and low threshold values leading to hit-rates of 0% or 100%, the model always 
shows an increase in hit-rate for misaligned trials (Fig 5.6). The amount of increase does vary, 
however, unsurprisingly. Note that for behavioral experiments performed to date, aligned hit-
rates have ranged from 54% (Taubert & Alais 2009) to 88% (de Heering et al. 2007). However, 
since Gauthier and colleagues have shown that this can be manipulated (Richler et al. 2011b), the 
robustness of our results is reassuring. In this thesis, unless otherwise noted, results are shown 
for thresholds that produce aligned hit rates of roughly 70-85%, to avoid ceiling or floor effects. 
 
 

 
 

Figure 5.6. Top: hit rates for aligned (blue) and misaligned (red) trials as a function of 
ordinal threshold. Bottom: size of misalignment effect (misaligned hit rate – aligned hit 
rate) as a function of threshold. Note: ordinal, not numeric, threshold values are shown 
here, because exact numerical values vary slightly from one random run to another. 
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5.4.2 Jitter 
 
In our pilot psychophysics (not reported here), we jittered the images to ensure that subjects did 
not perform the discrimination task by focusing on a small set of low-level features. This was not 
necessary for model simulation, since no low-level (i.e. V1-like) features were used. 
Nonetheless, the model is robust to image jitter (Fig. 5.7 left). This is not surprising, since the 
units are tolerant to position changes by design. 
 
5.4.3 Number of features used 
 
We have used 1000 model features as the default number. Figure 5.7 (middle and right) shows 
that the model replicates the CFE even with only a handful of randomly chosen features (out of 
the 1000) in each run, demonstrating robustness to the exact number of features used. 
 
 

 
 

Figure 5.7. The CFE (misalignment effect) shown by the model (large, coarse 
templates) is robust to image jitter (left) and number of features (middle: 10 
randomly chosen features per run; right: 1 randomly chosen feature per run). 

 
 
5.4.4 Distance metric 
 
Earlier, we noted that a decrease in response to an individual image does not necessarily mean 
that distances between images decreases. Nonetheless, this relationship is seen empirically, at 
least for the Euclidean distance metric. In Fig. 5.8 (left), we see that even for a non-Euclidean 
metric such as the Pearson correlation (r), this relationship holds. Thus, a misalignment effect 
(CFE) is also seen (Fig. 5.8 right) 
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Figure 5.8. Using Pearson correlation as the distance metric (specifically, 1 – r), 
misalignment also reduces distances (left), creating a misalignment effect (right). 

 
 
Since the Pearson correlation is invariant to linear transformations (e.g. subtractive or divisive 
decreases in this instance), one question might arise: shouldn’t the decrease in responses (due to 
misalignment) be abolished by this invariance property? However, invariance is only true if all 
responses decrease by the same amount or same proportion. Since the decrease is not identical 
across features, thus there is no invariance, and the decrease in response affects the correlation. 
 
5.4.5 Attentional modulation 
 
We used multiplicative modulation of pixel values to simulate the attentional modulation 
achieved by subjects when told to ignore the bottom halves. The detailed mechanisms of 
attentional modulation are still unknown. Hence, we chose this method for its simplicity, despite 
of its non-realism. A similar method was used by Cottrell et al. (2002) and Richler et al. (2007). 
 
 

  
 

Figure 5.9. If pixel values for the bottom halves are multiplied by 0.5 (as used 
here) instead of 0.1, a misalignment effect is also seen, unsurprisingly. 
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Unless otherwise noted, we multiplied the pixel values of the bottom halves by 0.1. This is 
clearly more than the amount of modulation subjectively experienced by humans (empirically 
very moderate modulation, see Carrasco et al. 2000, 2004, Pestilli & Carrasco 2005). In other 
words, we have made it especially hard for our model to be affected by the bottom halves, i.e. to 
be holistic. Nonetheless, the exact amount of modulation is not crucial for the existence of the 
CFE (Fig. 5.9). Of course, in the extreme case (multiplication by 0.0), no holism is shown – nor 
should holism be expected. 
 
5.4.6 Template matching 
 
In our model, the S1 layer (approximating V1 simple cells) is derived from the multi-scale image 
pyramid by matching every possible region to Gabor templates. This template-matching process 
uses the normalized dot product (ndp) template-matching function to determine how well a given 
region matches the template. 
 
There is also neurophysiological evidence that normalization actually occurs, at least in the cat 
(Heeger 1992) and primate (Carandini & Heeger 1994, Carandini et al. 1997) primary visual 
cortex. However, normalization counteracts the effect of the simulated attentional modulation 
(Fig. 5.10). Therefore, we need to discount the possibility that holism arises in our model only 
because the bottom halves are effectively restored to their full pixel intensities. (Although it 
should be noted, in any case, that small templates using the ndp do not show holism, Fig. 5.2 
(right), so this control is not strictly necessary) 
 
Using just the dot product (without normalization) as the function for template-matching, the 
model still replicates the CFE (Fig. 5.10 right). However, for a given level of attentional 
modulation (e.g. multiplication by 0.1), the effect is weaker when using the dot product (dp), as 
compared to using the ndp. Weaker modulation is required for a strong CFE to be shown. 
 
 

            
 
Figure 5.10. Using ndp (left), but not dp (middle) for template matching 
counteracts the effects of simulated attentional modulation. Mean C1 activity over 
all orientations is shown. (Note: color scales are different). Using a dot product, 
the model can still produce the CFE, but is less tolerant to attentional modulation. 
The CFE is strong for modulation of 0.5 (right), but less for 0.1 (not shown). 
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These results do not contradict our hypothesis or previous findings. As mentioned above, 
multiplication of 0.1 is a much stronger modulation than what humans experience. Furthermore, 
since normalization has been found in the brain, these results point to the unrealistic nature of 
our modulation method, rather than the problem with normalization. For the rest of this thesis, 
we retain the ndp as the template-matching function, in line with our philosophy of modifying 
HMAX only when absolutely necessary. 
 
5.4.7 Background intensity 
 
Unless otherwise noted, the pixel value of the background is set to 0 (black). As seen in Fig. 5.1, 
holistic face cells are slightly sensitive to the background value of an image. We wanted to verify 
that the background value during the feature extraction stage is not a crucial factor. This factor 
may seem unimportant currently, but it is important for the issue of contrast polarity (see Chapter 
8). When the contrast of an image is reversed, it is an open question whether the background 
contrast should also be reversed or not. 
 
When the background is set to 128 (halfway between black and white, i.e. grey), there are two 
effects. Firstly, the face boundaries are much less salient at all levels of representation (Fig. 
5.11),  unsurprisingly. Second, and more importantly, weaker attentional modulation is required 
for a strong CFE to occur (Fig. 5.12). This is reminiscent of the effect of using the dp instead of 
ndp for template matching (previous section). The underlying reasons are actually related. Since 
the background value is now much larger (128 vs. 0), the vector norm is fairly constant (and 
large), regardless of attentional modulation (which is applied only to the face). Hence, the 
amount of normalization (i.e. re-scaling to produce a norm of 1) does not depend on attentional 
modulation. In other words, normalization does not counteract attentional modulation, 
effectively reducing ndp to a dp (qualitatively, not quantitatively) when the background is grey. 
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      Image       S1             C1 
 
Figure 5.11. For a grey background (bottom row), the face boundary is 
perceptually less salient, compared to a black background (top row). This effect 
carries over to the S1 (middle column) and C1 (right column) activity, where the 
boundary is no longer apparent. Mean activity over all orientations is shown. 
Blue: low activity. Red: high activity. 

 
 
 
 

   
 
Figure 5.12. For grey backgrounds, attentional modulation of 0.5 produces a 
strong CFE (left), whereas modulation of 0.1 produces a very weak effect (right). 

 
 
 
 
 



 

88 
 

5.5 Factors affecting holism 
 
Thus far, we have examined some low-level factors which the model is relatively robust to, in 
terms of qualitatively producing a misalignment effect. In this section, we examine factors that 
are more intuitively relevant to holism (this distinction is subjective, however). Recall that our 
hypothesis is that template size is key – large templates produce holism, small templates do not. 
 
It is important to define template size more precisely. In the model, the spatial scales differ from 
one another in terms of their spatial frequency (SF) content. The finer scales represent 
information at higher spatial frequencies (HSFs); coarser scales represent lower spatial 
frequencies (LSFs). Because of certain implementation specifics, the finer scales have fewer 
units than coarser scales. For example, at the C1 layer, each orientation channel of the finest 
scale consists of 79 x 79 units, while the coarsest scale has 15 x 15 units. Thus, there are two 
notions of “template size”: the number of C1 units covered by a template, versus the proportion 
of the image covered by a template. Given a fixed number of C1 units, a template at a coarser 
scale will cover more of the image than one at a finer scale (Fig. 5.13). Conversely, to represent a 
given portion of the image, a template at a coarser scale will need to cover fewer C1 units than 
one at a finer scale. (Note: thus far, we have kept the scale constant (scale 7) and varied the 
number of C1 units covered) 
 
In Fig. 5.2, we showed that for a particular scale (scale 7 of 9), a large template size (12 x 12 C1 
units) results in the CFE, whereas a small template size (4 x 4 C1 units) does not. Thus, it is clear 
that spatial scale or spatial frequency is not by itself a crucial factor. However, by keeping to a 
fixed scale, we have confounded number of C1 units with image coverage. We de-confound 
these next, by keeping the number of C1 units constant, and instead varying the scale. 
 
 

  
 
Figure 5.13. Mean C1 activity (averaged over all orientations) at a finer scale 
(scale 3, left) and a coarser scale (scale 7, right). The entire image or face is 
represented using more units at the finer scale than at the coarser scale (note the 
units on axes). Templates covering a particular number of C1 units (e.g. 12x12, 
white squares), therefore cover more of the image or face for the coarser scale. 
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5.5.1 Spatial scale 
 
Using a fixed number of C1 units covered by each template (12 x 12), we found that the CFE 
disappears for finer scales (Fig. 5.14). Thus, the key factor is not the number of C1 units per se, 
but what proportion of the face is covered by the template. 
 

 
 

        Scale 7          Scale 5            Scale 3             Scale 1 
 
Figure 5.14. Hit-rates for templates extracted from different spatial scales (L to R: 
scales 7, 5, 3, 1). C1 has 9 scales total, the finest being scale 1. Magnitude of 
misalignment effect decreases from scales 7 to 5, disappearing for scales 3 and 1. 

 
 
5.5.2 Image coverage 
 
As additional verification that the key factor is image coverage (not spatial scale) of the 
templates, we show that even one of the finer scales can also produce the CFE if templates cover 
enough of the image (Fig. 5.15). This same scale with smaller templates did not show the CFE 
(results not shown). Note that “image coverage” is not the same as receptive field size. In our 
model, all these high-level C2 units have the entire image as their receptive fields, since max-
pooling is performed over all positions and scales. 
 
 

  
 

Figure 5.15. Scale 3 (third-finest) can also show a misalignment effect if the 
templates are sufficiently large in size (24 x 24 C1 units, in this instance). 
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5.6 Chapter summary 
 
In this chapter, we have established the basic result that our model can produce a misalignment 
effect (i.e. CFE) by using large, coarse templates. Beyond simply replicating the CFE (e.g. 
Cottrell et al. 2002), we also show that it is qualitatively robust to various low-level factors. 
 
We made two crucial contributions. Firstly, we provided a step-by-step account of the CFE, 
linking holism at the single unit level to the misalignment effect at the behavioral level. 
Secondly, we showed that the key factor in producing holism is the largeness of templates, in 
terms of image coverage. This sounds unsurprising on hindsight, but has not actually been shown 
prior to this. Importantly, we show that the key factor is neither spatial scale nor receptive field 
size per se, factors that can be confused with image coverage. 
 
In the next chapter, we expand our investigation of the CFE and holism by looking at inverted 
faces. 



 

 

 
Chapter 6:  CFE for Inverted Faces 

 
 
Chapter abstract 
 
In this short chapter, we examine the effect of inversion on the CFE. We find that 
for our model, the CFE is reduced, rather than absent, for inverted faces. This is 
consistent with our review in Chapter 2, which suggested that the CFE is 
differential, rather than absolute. At the same time, we find an “inversion anti-
effect” for both face-like and object-like processing. This suggests that inversion 
alone is the wrong control condition, and misalignment should be used. The most 
important finding of this chapter is that stimulus-related changes alone (rather than 
different processing style) can account for the reduced CFE for inverted faces. This 
suggests that inversion does not really “disrupt holism”, as commonly thought. 
 
 
Chapter contents 
 
6 CFE for Inverted Faces 
6.1 Effect of inversion 
6.2 Reconciling conflicting empirical results 
6.3 Chapter summary 
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Chapter 6:  CFE for Inverted Faces 
 
 
As reviewed in Section 2.3, there are conflicting results regarding the CFE for inverted faces. 
Even within the “partial” design alone, results are mixed. Some studies find no CFE, while 
others find a reduced CFE. As discussed, there are many differences between the conflicting 
studies; one key difference may be the blocking versus intermixing of upright and inverted 
conditions. Here, we examine the predictions of our model, and see if it can reconcile the 
conflicting empirical findings. The results presented in this chapter are for large, coarse 
templates, unless otherwise noted. 
 
 
6.1 Effect of inversion 
 
Inversion causes a large drop in the average model unit response, as shown in Fig. 6.1 (for 
aligned composites, a 42% drop from 0.79 to 0.46). More importantly, however, misalignment 
has less of an effect on inverted than upright faces. From Fig. 6.2, we see that the change in 
response due to misalignment is larger for upright than for inverted faces. This is true in both 
absolute terms (Fig. 6.2) and in terms of percentage change (results not shown). 
 
How does this differential effect on model unit responses translate into effects on distances? 
From Fig. 6.3, we see that misalignment causes little effect for inverted faces, compared to 
upright faces. In particular, we see that the distances for the “same” trials (blue) decrease 
significantly (e.g. from the blue hanging bars that indicate the means) for upright faces, but not 
for inverted faces. For any given threshold (e.g. red line in Fig. 6.3), this decrease in distance 
translates into an increase in hit rate, i.e. a CFE (a.k.a. “misalignment effect”). 
 
Importantly, however, there is a small but noticeable change in the distances for inverted faces 
(Fig. 6.3 bottom panel). From Fig. 6.4, we see that for inverted faces (red hues), there is a small 
but distinct CFE. For both upright and inverted faces, the CFE magnitude can vary with 
threshold, unsurprisingly. As a control, we see that for small, fine features, there is very little 
change in distance as a result of misalignment (Fig. 6.5), nor is there a CFE (Fig. 6.6). 
 
Interestingly, however, there is an “inversion anti-effect” (i.e. higher hit rate for aligned-inverted 
than aligned-upright) for both large, coarse and small, fine features. We term this an “anti-effect” 
because there is a performance improvement, rather than the performance decrement associated 
with the FIE. The mechanisms for the “inversion anti-effect” are nonetheless very similar to 
those underlying the “misalignment effect”. Since inverted faces elicit smaller responses and 
distances, for a given threshold, this translates into a higher hit rate. As predicted by our model, 
this “inversion anti-effect” is found in virtually all “partial” design studies that included inverted 
faces: Young et al. 1987 (Table 2), Goffaux & Rossion 2006 (Figs. 4 and 5), Robbins & McKone 
2007 (Fig. 7), McKone 2008 (Fig. 3), Mondloch & Maurer 2008 (Figs. 2 and 4), Rossion & 
Boremanse 2008 (Fig. 3) and Soria Bauser et al. 2011 (Fig. 3). Only Carey & Diamond 1994 
(Figs. 2, 4, and 5) found opposite results, but blocking of orientation could account for this (e.g. 
by allowing different strategies or thresholds to be used for upright and inverted faces). 
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However, if inversion “disrupts holism” like misalignment does, then these results are not 
surprising for faces. Therefore, we now check if this “inversion anti-effect” is found for non-
faces, as predicted from Fig. 6.6. Only two studies used the “partial” design for non-faces. 
Robbins & McKone 2007 (Fig. 7) found non-significant differences. Soria Bauser et al. 2011 
(Figs. 3 and 4) found non-significant differences in two conditions, and results contrary to our 
prediction in one condition. Therefore, based on the limited evidence so far, our model’s 
prediction does not hold true. Nonetheless, since the regular inversion effect has been found for 
non-faces (just smaller than for faces), and we because believe that this “inversion anti-effect” 
stems from the same mechanisms (but manifested differently), we maintain that a more thorough 
investigation of this issue will validate our prediction. 
 
Overall, our results suggest that inversion may not be the right control to demonstrate face-
specificity of the CFE, unless it is used together with misalignment. There are several studies 
that have inversion without misalignment (e.g. Hole 1994, Hole et al. 1999, Goffaux 2009), and 
these studies may need to be replicated with misalignment included. 
 
6.2 Reconciling conflicting empirical results 
 
Can our model account for the conflicting empirical results? The CFE is generally small for 
inverted faces, and the effect is reduced at very high and very low hit rates (Fig. 6.4). This 
suggests that the conflicting studies may differ quantitatively, rather than qualitatively. Since the 
CFE for inverted faces is small even under noiseless modeling conditions, various experimental 
factors such as blocking of conditions or inter-subject variability could make the CFE appear to 
be absent in some cases (see Section 2.3.1 for further discussion). 
 
In our modeling, we have shown the choice of threshold can affect the magnitude of the CFE. 
We are not suggesting that this is the only relevant factor, but rather that this factor alone 
demonstrates the fact that seemingly qualitative differences may in fact be quantitative ones. 
Crucially, our results suggest that with respect to the issue of upright versus inverted faces, the 
CFE is a differential (or disproportionate) effect, rather than an absolute one. 
 
6.3 Chapter summary 
 
In this chapter, we have expanded our investigation of the “partial” design CFE by examining the 
effects of inversion, again providing a step-by-step account of the underlying mechanisms. By 
showing that the CFE is smaller (rather than absent) for inverted than for upright faces, we have 
demonstrated that according to our model, the CFE is a differential effect, not an absolute one. 
 
Importantly, since the computational mechanisms were identical for both upright and inverted 
faces, we have shown that stimulus-related changes alone can account for the reduction of CFE 
magnitude for inverted faces. Thus, our model suggests that inversion does not “disrupt holism” 
per se, as is commonly thought. 
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         UPRIGHT         INVERTED 
 

Figure 6.1. Mean responses for large, coarse templates to upright (left) and 
inverted (right) composites. (SEM error bars are barely noticeable) 

 
 

 
 

UPRIGHT 
 

 
 

INVERTED 
 

Figure 6.2. Histogram of change in response as a result of misalignment for 
upright (top) and inverted (bottom) faces. Y-axis: number of model units. Red line 
indicates mean of distribution. 
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UPRIGHT 
 
 

 
 

INVERTED 
 

Figure 6.3. Histograms of distances for large, coarse templates for upright (top 
panel) and inverted (bottom panel) faces. Blue: “same” trials. Yellow: “different” 
trials. Red line: arbitrary threshold (set to 1.5 in this figure for illustration 
purposes only). Hanging bar indicates mean of distribution. 
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Figure 6.4. Hit rates for large, coarse, features over a wide range of threshold 
values. Upr: upright. Inv: inverted. SEM error bars are plotted, but are smaller 
than the dots representing the mean hit rates. 
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UPRIGHT 
 
 

 
 

INVERTED 
 

Figure 6.5. Histograms of distances for small, fine templates for upright (top 
panel) and inverted (bottom panel) composites. Blue: “same” trials. Yellow: 
“different” trials. Red line: arbitrary threshold (set to 1.5 in this figure for 
illustration purposes only). Hanging bar indicates mean of distribution. 
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Figure 6.6. Hit rates for small, fine features over a wide range of threshold values. 
Upr: upright. Inv: inverted. SEM error bars are plotted, but are smaller than the 
dots representing the mean hit rates. 
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Chapter 7:  The “Complete” Design 

 
 
Chapter abstract 
 
In this chapter, we extend our results by also accounting for the so-called 
“complete” experimental design for the CFE. In doing so, we show that holistic 
processing is consistent with both the “partial” and “complete” designs. 
Importantly, our results provide clarification and justification as to what the right 
metric in the “complete” design should be. 
 
 
Chapter contents 
 
7 The “Complete” Design 
7.1 Results 
7.1.1 Detailed explanation for large, coarse features 
7.1.2 Results for small, fine features 
7.2 Which is the better paradigm? 
7.3 Chapter summary 
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Chapter 7:  The “Complete” Design 
 
 
In Section 2.5, we discussed and compared the two experimental designs for investigating the 
CFE. To briefly recap, the “complete” design has two additional conditions absent in the 
“partial” design (See Fig. 7.1), hence the terminology. Whereas holistic processing in the 
“partial” design is reflected in a “misalignment effect” (higher hit rate for misaligned than 
aligned trials), in the “complete” design, holistic processing is reflected in a “congruency effect” 
(higher D’ for congruent than incongruent trials). Additionally, the congruency effect is reduced 
for misaligned or inverted faces, and this is termed a “(congruency x alignment) interaction”. 
 
 

 
 
Figure 7.1. Trial types for the CFE “partial” and “complete” designs. Congruent 
trials are those in which the top and bottom halves are either both same or both 
different. Note that the “partial” design is a subset of the “complete” design. 
(Figure reproduced from Cheung et al. 2008. See p.16 for copyright notice.) 

 
 
In this section, our primary goal is to show that our model can also replicate the CFE for the 
“complete” design. As discussed in Section 2.2, the logic underlying both designs is essentially 
identical. Therefore, a model of holism should be expected to show the CFE using either design. 
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Note that here, we vary only the experimental design, keeping everything else identical. This is 
so that we can be sure that any differences are solely due to experimental design. This is unlike 
the empirical studies that have been conducted, where differences in experimental design are 
confounded with procedural differences (discussed in Section 2.5.5). In particular, here, both 
first and second composites are either aligned or misaligned. Also, the attentional modulation is 
identical for both first second composites. 
 
 
7.1 Results 
 
From Fig. 7.2, we see that our model does indeed reproduce both characteristics of the CFE for 
the “complete” design. For aligned composites, D’ is higher in the congruent than incongruent 
condition (i.e. there is a congruency effect). This congruency effect is reduced or absent for 
misaligned composites (i.e. there is a congruency x alignment interaction). 
 
 

 
 

Figure 7.2. D’ results in the “complete” design for large, coarse features, shown 
for the full range of thresholds. A: aligned. M: misaligned. 
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7.1.1 Detailed explanation for large, coarse features 
 
In order to gain a mechanistic understanding of the congruency effect, we now examine in detail 
the distances between composites for each of the four conditions, as well as the effect of 
misalignment on each of these. The distribution of distances is shown in Fig. 7.3 
 
 

 
 

 
 

Figure 7.3. Histograms of distances for large, coarse features. Top: aligned trials. 
Bottom: misaligned trials. Blue hues: “same”. Yellow hues: “different”. Darker 
shades: incongruent. Brighter shades: congruent. Hanging bar indicates mean of 
distribution. Note: for aligned trials, dark yellow hanging bar obscures dark blue. 

 
 
First, we concentrate on the aligned trials (Fig. 7.3 top). For the same-congruent condition, the 
distances are all 0 (indicated by bright blue hanging bar only). This is not surprising, since the 
first and second composites are literally identical, and our model is noiseless. For the same-
incongruent condition (dark blue), distances are somewhat similar to the different-incongruent 
condition (dark yellow), hence the very low D’ in the incongruent condition (Fig. 7.2). 
Importantly, the distance separation between the congruent trials (bright blue and bright yellow) 
is larger than that between the incongruent trials (dark blue and dark yellow) – hence the 
congruency effect. 
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As predicted in Section 2.2, usage of D’ is not necessary to see a congruency effect. For any 
given threshold, congruent-same trials (bright blue; distance 0) will have a higher hit-rate than 
incongruent-same trials (dark blue). At the same time, congruent-different trials (bright yellow) 
will have lower false-alarm rate than incongruent-different trials (dark yellow). In other words, 
separately for both “same” and “different’ trials, congruent trials have better performance than 
incongruent trials. 
 
When composites are misaligned (Fig. 7.3 bottom), distances generally become smaller. 
Crucially, however, the separation between incongruent-same (dark blue) and incongruent-
different (dark yellow) conditions is increased (compared to aligned composites), leading to a 
higher D’ (see Fig. 7.2). At the same time, the separation for congruent trials (bright blue and 
bright yellow) is decreased compared to aligned composites, leading to a lower D’. Together, 
these result in a smaller congruency effect for misaligned than aligned composites. 
 
Results using large but fine features are qualitatively the same (results not shown) as when using 
large, coarse features. 
 
7.1.2 Results for small, fine features 
 
We next examine the results using small, fine (“object-like”) features. Somewhat surprisingly, a 
congruency effect is also found (see Fig. 7.4). Importantly, however, misalignment does not 
affect this congruency effect. In other words, there is no (congruency x alignment) interaction. 
 
In Section 2.5.5, we examined the congruency effect for various “complete” design studies and 
hypothesized that a congruency effect was found even in object novices primarily due to 
“contextual induction”. This is not the case here, however; both composites receive attentional 
modulation. So why do our “object-like” features show a congruency effect? 
 
In our model, attentional modulation is not absolute. Therefore, the bottom halves are still 
“perceived” to some extent (and exacerbated by the use of ndp; see Section 5.4.6). Therefore, 
even for our “object-like” features, congruency (agreement between top and bottom halves) still 
matters. 
 
What does this mean in practice, for empirical studies? We do not make any claims about the 
realism of our attentional modulation scheme. However, attentional modulation in human 
subjects is unlikely to be absolute either (for both objects and faces). Thus, our modeling results 
suggest that in additional to contextually-induced “holism”, another reason why congruency 
effects can be found for objects in novices is because the bottom halves are still at least partially 
attended and processed. 
 
More importantly, our results suggest that there are two somewhat separable contributions to the 
empirical measurement of holism. The first is the “holism” of the features. In our model, this 
corresponds to the proportion of a whole face that each feature is tuned to. The second is how 
successfully modulated the processing of the to-be-ignored bottom halves is. This is not 
traditionally what is considered to be “holism”, since it is more related to attentional mechanisms 
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that are not face-specific. These two contributions can be construed as “perceptual integration” 
versus “selective attention” (discussed in Section 2.8). However, these two things may not be 
completely separable, and more thought needs to be given as to how best to measure “perceptual 
integration” per se. 
 
In any case, our modeling results provide justification for why the signature of holistic 
processing in the “complete” design should be a (congruency x alignment) interaction, rather 
than a congruency effect per se (as discussed in Section 2.5.2). Specifically, because of imperfect 
attentional modulation mechanisms, even object-like processing will produce congruency 
effects. 
 
 

 
 

Figure 7.4. D’ results in the “complete” design for small, fine features, shown for 
the full range of thresholds. A: aligned. M: misaligned. 
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Does this mean that the “partial” design is better at isolating “perceptual integration” than the 
“complete” design? No. As we can see from Fig. 7.5, for small, fine features, all four conditions 
(same/different x congruent/incongruent) are equally resistant to misalignment (unlike in Fig. 
7.3). In other words, as we have emphasized, both designs are equally valid. The issue with the 
“complete” design was the wrong metric (congruency effect), possibly due to incomplete 
reasoning (e.g. reasoning about how holism produces congruency effect, but neglecting other 
factors that may also contribute to producing a congruency effect). This is precisely one of the 
advantages of quantitative modeling. It has aided us in answering the question: “holistic 
processing causes a congruency effect, but does the presence of a congruency effect necessarily 
imply that processing is holistic?” We have shown that the answer is no. 
 
 

 
 

 
 
Figure 7.5. Histograms of distances for small, fine features. Top: aligned trials. 
Bottom: misaligned trials. Blue hues: “same”. Yellow hues: “different”. Darker 
shades: incongruent. Brighter shades: congruent. Hanging bar indicates mean of 
distribution. 

 
 
7.2 Which is the better paradigm? 
 
Based on our modeling results, we confirm our intuition that both designs are equally valid (if 
the right metric is used). Nonetheless, it is important to note some practical issues. We have 
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discussed these in Section 2.5.7, but reiterate them here. Analysis in the “complete” design for 
the (congruency x alignment) interaction uses four times as many trials as in the “partial” design. 
If this is equated, both designs are likely to be equally robust. 
 
However, there is an important caveat, as highlighted by Gauthier and colleagues. The “partial” 
design is more susceptible to fluctuations in threshold, i.e. “bias” (in the sense of inexplicable 
propensities to favor “same” over “different” or vice-versa). This is not necessarily the same as 
“bias” (a.k.a. “criterion”) in the Signal Detection Theory (SDT) sense. Changes in SDT 
criterion/bias can be due to changes in threshold or changes in signal distribution. For a fixed 
threshold, changes in SDT criterion/bias can be qualitatively accounted for, simply by the 
decrease in distances (due to inversion or misalignment, for instance). Instead, the problem arises 
when conditions (e.g. upright versus inverted) are blocked, not intermixed, or when different 
populations (e.g. children versus adults) are compared. There, the thresholds may differ in 
uncontrollable ways, and looking at only the hit-rate may be misleading. 
 
 
7.3 Chapter summary 
 
In this chapter, we accounted for the “complete” design. In doing so, we showed that holistic 
processing is consistent with both the “partial” and “complete” designs. Importantly, our results 
provide justification for what the right metric in the “complete” design should be. 
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Chapter 8:  Contrast Reversal 

 
 
Chapter abstract 
 
Contrast reversal impairs the recognition of faces, but not objects. One might infer 
from this that contrast reversal disrupts face-specific processing, much like 
inversion does. However, the CFE is found for contrast-reversed faces. In this 
chapter, we use our model to reconcile these apparent contradictions. In addition, 
the model makes several counter-intuitive post-dictions and predictions. Overall, 
this chapter highlights the importance of a mechanistic, step-by-step 
understanding. 
 
 
Chapter contents 
 
8 Contrast Reversal 
8.1 Mini-review of contrast reversal 
8.2 CFE for contrast-reversed faces 
8.3 Step-by-step account 
8.3.1 Effect of contrast reversal on responses 
8.3.2 Effect of contrast reversal on distances 
8.4 Effects of contrast reversal on recognition 
8.5 Contrast reversal versus inversion 
8.6 Chapter summary 
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Chapter 8:  Contrast Reversal 
 
 
Another hallmark of face processing is the sensitivity to contrast polarity (Sinha et al. 2006). 
Faces are much harder to recognize when their contrast is reversed (e.g. Galper 1970, Hayes et 
al. 1986, Kemp et al. 1996). However, this is not the case for objects (e.g. Gauthier et al. 1998, 
Nederhouser et al. 2007). Surprisingly, however, the CFE has been found for contrast-reversed 
(a.k.a “negative”) faces (Hole et al. 1999, Calder & Jansen 2005, Taubert & Alais 2011). If 
contrast reversal impairs face processing (possibly like misalignment or inversion), then why are 
contrast-reversed faces nonetheless processed holistically? 
 
Can our model “predict” (post-dict) and reconcile the body of results that have been found? 
Importantly, we examine our model “as-is”, without any further modifications to fit the existing 
literature regarding contrast reversal. To do so, we delve into the sometimes puzzling (even 
contradictory) findings that have been uncovered since the first study by Galper in 1970. 
 
 
8.1 Mini-review of contrast reversal 
 
We do not aim to provide a comprehensive review of contrast reversal in this section. Rather, we 
will give a broad sampling of key results. In particular, we do not shy away from presenting 
conflicting studies; one of our goals here is to see if our model can reconcile these. 
 
The most basic result of sensitivity of face processing to contrast reversal is a robust one. It has 
been found for identification of famous faces (Gilad et al. 2009), and for novel faces in 
seen/unseen (Liu & Chaudhuri 1997) and two-alternative forced-choice (Galper 1970) memory 
tasks. It has also been found for tasks that minimize confounds from memory-related effects: 
simultaneous match-to-sample (Nederhouser et al. 2007) and simultaneous same/different 
(Robbins & McKone 2007) tasks. In contrast, this sensitivity has not been found for “Greebles” 
(Gauthier et al. 1998), chairs (Subramaniam & Biederman 1997), and “blobs” (Nederhouser et 
al. 2007). 
 
Subtle distinctions must be made, however. It is clear that when study/test or sample/match faces 
are of opposite contrast (positive/negative or negative/positive, a.k.a. PN and NP respectively), 
performance is much worse than in the positive/positive (PP) condition. However, results are 
mixed for a fourth condition: negative/negative (NN). 
 
Two studies found that face discrimination performance is significantly worse in the NN 
condition than in the PP condition (Russell et al. 2006, Robbins & McKone 2007). Interestingly, 
this difference was also found (albeit reduced) for dog stimuli in novices (Robbins & McKone 
2007). However, Liu & Chaudhuri (1997) found that performance in the NN and PP conditions 
did not differ significantly. In addition, performance in both the NN and PP conditions were 
significantly better than in the NP and PN conditions (which did not differ significantly). 
 
On the other hand, there is unanimous agreement among three studies that examined holistic face 
processing using the CFE in both NN and PP conditions. All studies used the “partial” design. 
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Conditions were either blocked (Hole et al. 1999, Calder & Jansen 2005) or intermixed (Taubert 
& Alais 2011). Composites were presented either simultaneously (Hole et al. 1999, Calder & 
Jansen 2005) or sequentially (Taubert & Alais 2011). The controls consisted of either inverted 
(Hole et al. 1999) or misaligned faces (Calder & Jansen 2005, Taubert & Alais 2011). Holistic 
processing was found for both identity (Hole et al. 1999, Taubert & Alais 2011) and expression 
(Calder & Jansen 2005). Altogether, these studies show that the findings are generally robust, 
and not specific to any particular experimental variables. 
 
Few electrophysiological studies have been conducted to examine the effects of contrast reversal. 
To the best of our knowledge, only one published study has investigated this (but see Ohayon et 
al. 2010 for an unpublished study). Rolls & Baylis (1986) recorded from face-selective neurons 
in the anterior dorsal part of the superior temporal sulcus (STS) in area TPO and on the ventral 
lip of the sulcus in areas TEm and TEa. Testing 42 neurons with positive- and negative-contrast 
faces, they found that as a population, these neurons responded essentially equally strongly to 
both sets of faces, since the slope of the regression line is 0.9 (see Fig. 8.1). How these data fit 
with the behavioral results is a further mystery, but our model will shed some light on this. 
 

 
 

Figure 8.1. Effect of contrast reversal on neuronal response. Each point represents 
one neuron. Slope of the regression line (dashed) is 0.9. Figure reproduced from 
Rolls & Baylis (1986). See p.16 for copyright notice. 

 
In summary, there are four sets of findings that we would like our model to account for: 
 
1) The CFE was found for contrast-reversed faces 
2) Face recognition performance for NP and PN is worse than for PP 
3) Object recognition performance for NP and PN is as good as for PP 
4) Conflicting results for face recognition performance for NN versus PP 
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Figure 8.3. Contrast-reversed faces elicited a “misalignment effect” for large, 
coarse features for virtually all thresholds. Upr: upright. Inv: inverted. 

 
 

 
 

Figure 8.4. Contrast-reversed faces elicited a congruency effect and (congruency 
x alignment) interaction for large, coarse features for virtually all thresholds. 

 
 
We find further similarities between results for positive and negative contrast faces. In both 
cases, the CFE is not dependent on spatial scale per se (i.e. CFE was also found using large, fine 
features; results not shown here). Also, using “object-like” small, fine features, there is no 
misalignment effect (Fig. 8.9), but there is an “inversion anti-effect” (see Section 6.1). 
 
We note one interesting difference between the results for positive and negative faces. For 
positive-contrast faces, misalignment produces a greater boost in hit rate than inversion. For 
negative-contrast faces, however, both produce roughly equal boosts in hit rate (Fig. 8.3). Further 
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investigation is required to see if this is a genuine effect in the model, but this may potentially 
lead to an interesting prediction. 
 
 
8.3 Step-by-step account 
 
Like we did for regular (positive-contrast) faces in Chapter 5, we take a step-by-step approach to 
understand why negative faces also elicit a CFE. As we will show, this is the key to reconciling 
the ostensibly puzzling results for contrast reversal in recognition tasks. 
 
8.3.1 Effect of contrast reversal on responses 
 
From Fig. 8.5, we can see that unlike misalignment or inversion, contrast reversal does not 
decrease the mean response much (from 0.79 to 0.73). Furthermore, the responses to positive and 
negative composites are highly correlated (slope of regression line is 0.91, similar to that in Fig. 
8.1). Note, however, that for any particular unit, the response to positive and negative versions of 
a composite can be quite different (note that many points are relatively far away from the 
diagonal line of equality). 
 
 

 
 

Figure 8.5. Scatter-plot of responses to negative versus positive composites, for 
large, coarse features. Dashed black line: equal response to positive and negative 
composites. Red line: regression line constrained to pass through origin. 

 
 
Why does contrast reversal not have a deleterious effect on the mean response? To understand 
this, we look at the V1-like responses at Scale 7 (the scale of the large, coarse templates). From 
Fig. 8.6, we can see that the responses are not drastically different – the eye, nose and mouth 
regions still produce strong responses. This is not surprising. Complex cells in V1 are strongly 
invariant to 180 degree phase-shifts (i.e. contrast reversal) in grating stimuli (De Valois et al. 
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1982, Skottun et al. 1991). Faces are not gratings, hence the responses are less invariant, but 
similar principles apply. The significance of the model not showing strong invariance will 
become apparent later (in Section 8.4), when we attempt to account for the effect on contrast 
reversal on face recognition. 
 
 

 
 

Figure 8.6. C1 responses to positive (top row) and negative (bottom row) versions 
of a typical composite. Blue: low responses. Red: high responses. Orientation 1: 
vertical. Orientation 3: horizontal. 

 
 
Note that perfect invariance to contrast reversal could in theory be achieved. During the V1 
simple-cell-like template matching (“S1”) stage, if the image patches are normalized to have a 
mean value of zero (not currently done) and the outputs of the template matching are rectified 
(currently done), then contrast reversal will have absolutely no effect – in theory. In practice, 
because we keep the background black instead of also reversing its contrast, V1-like responses at 
the face boundary regions will be affected by reversal. If the background was also reversed, or 
was always kept at mid-gray, then perfect invariance to contrast reversal can be achieved in 
practice. 
 
The previous paragraph might seem overly concerned with ostensibly unimportant details, but it 
illustrates how such details may potentially have important consequences. For example, Rolls & 
Baylis (1986) found that contrast reversal had little overall effect on neural responses (Fig. 8.1), 
but Ohayon et al. (2010, as yet unpublished) found that firing rate was reduced by 50% on 
average. It is currently unclear why different results were found. Empirical studies have 
understandably not investigated such issues in detail, e.g. by assuming that the background 
luminance is unimportant. However, quantitative modeling forces such assumptions to be made 
explicit and examined.  
 
After looking at the effect of contrast reversal per se, we now turn to the effect of misalignment 
on positive and negative contrast faces (Fig. 8.7). Because contrast reversal generally did not 
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reduce responses by much, we see that misalignment has very similar effects on negative (Fig. 
8.7 left) and positive (Fig. 8.7 right) faces. 
 
 

       
 

  Negative contrast             Positive contrast 
 

Figure 8.7. Scatter-plot of responses to misaligned versus aligned composites for 
negative (left) and positive (right) contrast. 

 
 
8.3.2 Effect of contrast reversal on distances 
 
Since contrast reversal did not strongly reduce individual unit responses, it stands to reason that 
the distances between negative faces are similar to distances between positive faces. 
Furthermore, since misalignment has similar effects on responses (to positive and negative 
faces), then it also stands to reason that misalignment will have similar effects on distances also. 
These two phenomena are indeed seen empirically in our model, and negative faces produce a 
misalignment effect for large, coarse features (Fig. 8.8), but not for small, fine features (Fig. 8.9) 
 
 
8.4 Effects of contrast reversal on recognition 
 
After accounting for the CFE, we now see if our model can also account for recognition 
performance. In this section, we look at model unit responses to the same set of images as before 
(i.e. composites with a gap between top and bottom halves). This is so that any differences 
cannot be attributed to the use of different stimuli. Note, however, that subjects in the recognition 
tasks as not instructed to ignore the bottom halves. Accordingly, we do not perform any 
attentional modulation on the images. 
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From Fig. 8.10, we see that on average, the distance between the positive and negative versions 
of the same face (Fig. 8.10 top row) is larger than even the distance between different faces that 
are compared within polarity (Fig. 8.10 third and fourth rows). This explains why performance in 
the PN and NP conditions are worse than the PP condition for faces (Finding #2). 
 
What about objects? To examine this, we use small, fine features, for “object-like” processing. 
This time, however, the model does not match the empirical results (Finding #3). From Fig. 8.11, 
we see that, just as for “face-like” processing, contrast-reversed versions of the same face are 
even more different than different faces within a polarity. Does this mean our model is wrong? 
Not necessarily so. 

 
 

Figure 8.8. Histograms of distances for large, coarse features for contrast-reversed 
faces. Blue: “same” trials. Yellow: “different” trials. Hanging bar indicates mean. 
 

 
 

Figure 8.9. Histograms of distances for small, fine features for contrast-reversed 
faces. Blue: “same” trials. Yellow: “different” trials. Hanging bar indicates mean. 
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Figure 8.10. Histograms of distances between faces for various types of face pairs 
for large, coarse features. Yellow line indicates mean of distribution. Pos: 
positive. Neg: negative. 

 
 

 
 

Figure 8.11. Histograms of distances between faces for various types of face pairs 
for small, fine features. Yellow line indicates mean of distribution. Pos: positive. 
Neg: negative. 
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First, from Fig. 8.12, we see that for inverted faces (using regular large, coarse features), the 
effect of contrast reversal is less than that for upright faces (compare top two rows versus bottom 
two rows for Figs. 8.10 and 8.12). This suggests that stimulus characteristics may play a larger 
role than type of processing in this context. Interestingly, Russell et al. (2006) found that for 
faces that differed only in shape but not pigmentation, faces of either contrast elicited equal 
performance. However, for faces that differed only in pigmentation but not shape, negative faces 
elicited significantly worse performance than positive faces. While this study compared PP 
versus NN conditions (rather than PN/NP versus PP, which we are examining here), it 
nonetheless supports our explanation. We therefore predict that especially for discrimination 
tasks that minimize memory effects, if exemplars within an object class are made to differ only 
in “pigmentation”, then contrast reversal will cause a performance detriment, much like for 
faces. As a corollary, we claim that in studies that reported no effect of contrast reversal for 
objects, exemplars in these studies differed primarily (or at least diagnostically) in shape. In 
other words, the different findings for faces and objects arose from stimulus and task factors, 
rather than different processing mechanisms. Consistent with our prediction, Vuong et al. (2005) 
found that the addition of pigmentation cues lead to greater contrast reversal effects 
(performance difference between PP/NN and PN/NP) for both faces and “Greebles”. 
 
 

 
 

Figure 8.12. Histograms of distances between inverted faces for various types of 
face pairs for large, coarse features. Yellow line indicates mean of distribution. 
Pos: positive. Neg: negative. 

 
 
We now turn to Finding #4 (comparison of NN versus PP). Robbins & McKone (2007) and 
Russell et al. (2006) found significant differences, while Liu & Chaudhuri (1997) did not. Can 
our model reconcile these results? There are many differences between the three studies, but we 
believe that the most salient difference is in the blocking (or not) of conditions. Conditions were 



 

123 
 

intermixed in the studies that found significantly worse performance for negative faces, while 
conditions were blocked in the study that did not. How is this pertinent to our model? 
 
Note that in Fig.8.10, although the distance histograms for the PP and NN conditions (third and 
fourth rows, respectively) look fairly similar, if the same threshold is used in both conditions to 
determine if faces are same or different, then the PP condition does indeed lead to better 
performance than the NN condition (Fig. 8.13 left). Hence, intermixing of conditions (which 
limits different thresholds or “biases” for different conditions) is linked to better PP than NN 
performance. On the other hand, if conditions are blocked, then each condition may have its own 
threshold that optimizes performance for that condition, leading to smaller differences between 
conditions. In the case of Liu & Chaudhuri (1997), which had conditions blocked, there is in fact 
a small (but non-significant) performance drop in the NN condition compared to the PP 
condition. If conditions had been intermixed, this drop may have become significant, as 
predicted by our model, and as found in Robbins & McKone (2007) and Russell et al. (2006). 
 
Furthermore, from Fig. 8.13 (left, red curve), we see that the performance difference between PP 
and NN conditions (a.k.a “reversal effect”) tapers off at low and high accuracy levels. In Liu & 
Chaudhuri (1997), performance approached ceiling (91.4% for PP, 86.6% for NN). Thus, ceiling 
effects are another possible explanation for why they did not find a “reversal effect”. In sum, the 
conflicting results are likely to be merely quantitative differences arising from either ceiling 
effects or procedural differences between studies. 
 
 

       
 

       Large, coarse features         Small, fine features 
 

Figure 8.13. Accuracies for different thresholds. One dot for each threshold. Blue: 
accuracy for PP versus NN pairs. Red: magnitude of “reversal effect” (accuracy 
for PP minus accuracy for NN). Left: large, coarse features. Right: small, fine 
features. Dashed black line: equal accuracy for PP and NN. 
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Interestingly, Fig. 8.13 (right) shows that our model predicts that “object-like” processing also 
produces a “reversal effect” (possibly even larger; but this needs further investigation). 
Consistent with this, Robbins & McKone (2007, Fig. 10) found reversal effects for dog images in 
dog novices (but the effect size was smaller than for faces). We therefore predict that for faces, 
activity in areas such as LOC (and perhaps the OFA), reversal leads to poorer discrimination 
(measurable perhaps through adaptation). 
 
 
8.5 Contrast reversal versus inversion 
 
Interestingly, although our model predicts that inversion reduces the PN/NP versus PP/NN 
difference (compare the top two rows versus bottom two rows of Figs. 8.10 and 8.12), it also 
predicts a PP versus NN difference for inverted faces that is about as large (perhaps even larger) 
as for upright faces (Fig. 8.14). Robbins & McKone (2007) found precisely this; the PP versus 
NN “reversal effect” was highly significant (p<0.001) for both upright and inverted faces. 
 
Robbins & McKone (2007, p.62) concluded from prior work that “these findings argue that 
contrast reversal effects and configural processing arise from different stages of visual 
processing”. Our model replicates their results, but clearly shows that a single stage of visual 
processing can account for both types of effects. 
 
 

 
 

Figure. 8.14. Accuracies for inverted faces (large, coarse features). One dot for 
each threshold. Blue: accuracy for PP versus NN pairs. Red: magnitude of 
“reversal effect” (accuracy for PP minus accuracy for NN). Dashed black line: 
equal accuracy for PP and NN. 
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8.6 Chapter summary 
 
In this chapter, we have used our model to both analyze and synthesize the body of results 
pertaining to contrast reversal. Consistent with empirical behavior, we have shown that although 
negative faces are less well discriminated than positive faces, they are nonetheless processed 
“holistically”, as evidenced by the CFE. 
 
Furthermore, we have demonstrated that the notion that “inversion disrupts processing” is not a 
useful one. Inverted faces elicit a significantly smaller “misalignment effect” than upright faces, 
but they elicit a “reversal” effect that is as strong as for upright faces. In all cases, identical 
processing occurs; it is simply the stimulus changes that give rise to these effects. Our model 
thus shows that a step-by-step, mechanistic understanding is crucial. 
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Chapter 9:  Spatial Frequency 

 
 
Chapter abstract 
 
In this chapter, we look at the effect of spatial frequency filtering on face 
processing. Specifically, we attempt to reconcile the conflicting findings regarding 
the CFE for high spatial frequency (HSF) filtered faces. Overall, since our model 
uses coarse templates, we find that low spatial frequency (LSF) filtered faces are 
more “holistically processed” than HSF faces, consistent with other studies. 
 
 
Chapter contents 
 
9 Spatial Frequency 
9.1 The CFE and spatial frequency 
9.2 Reconciling the conflicting studies 
9.3 Step-by-step account 
9.3.1 C1 responses 
9.3.2 C2 responses 
9.3.3 Distances between images 
9.4 Spatial frequency and object-like processing 
9.5 Chapter summary 
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Chapter 9:  Spatial Frequency 
 
 
This chapter examines the issue of spatial frequency (SF), primarily focusing on the CFE for full 
spectrum (FS), low spatial frequency (LSF) filtered, and high spatial frequency (HSF) filtered 
faces. The issue of SF has been closely linked to face processing (see Ruiz-Soler & Beltran 2006 
for a review). Interestingly, links between SF, face recognition and certain disorders like Autism 
have been found (e.g. Deruelle et al. 2004, Leonard et al. 2011). 
 
In Chapter 5, we showed that largeness was the key factor in producing the CFE, rather than 
spatial scale. We nonetheless maintained our hypothesis that the characteristics of face 
processing arise due to the use of large, coarse templates (and small, fine templates for object-
like processing). This was for several reasons, including the maintenance of constant 
“complexity” (number of afferent C1 units) as a control, and also in line with the idea of 
“informativeness” (Ullman et al. 2002); see Section 13.4.6 for a discussion of more reasons. 
 
In the previous chapter, we indirectly alluded to the coarseness (i.e. SF) of the templates as a 
factor that enabled our model to account for the characteristics of face processing for contrast-
reversed faces. 
 
In this chapter, we directly examine this issue, especially in relation to the CFE. Since our model 
uses coarse templates, one might expect that differently filtered images may be processed quite 
differently by our model. However, like with many other issues relating to face processing, the 
issue of SF filtering for the CFE has yielded conflicting behavioral results. We show that our 
model can reconcile these results. 
 
 
9.1 The CFE and spatial frequency 
 
Several studies have investigated the effect of SF filtering on the CFE (Goffaux & Rossion 2006, 
Cheung et al. 2008, Goffaux 2009), but have found conflicting results. All three studies used 8 
cycles per face (cpf) as the low frequency cut-off, and 32 cpf as the high frequency cut-off. Fig. 
9.1 shows the FS, LSF and HSF versions of one example face. Note that oval-cropping and 
insertion of the mid-line gap were done post-filtering, to maintain the sharpness of the face 
boundary and midline gap, as was done by Goffaux & Rossion (2006) and Cheung et al. (2008). 
 
(Methodological note: we attempted to replicate the SF filtering methods of the aforementioned 
studies as faithfully as possible, but some essential details were omitted. Furthermore, as is 
apparent from the figures in the three studies, their stimuli were rather different) 
 
Goffaux & Rossion (2006) found that LSF faces had a larger misalignment effect than HSF 
faces. Cheung et al. (2008) replicated these results, but showed that when the “complete” design 
is used, there is no difference in the congruency effect (and congruency x alignment interaction) 
for LSF and HSF faces. However, Goffaux (2009) also used the “complete” design, but showed 
that there is a significant difference between LSF and HSF faces in terms of congruency effect 
and (congruency x inversion) interaction. 
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Figure 9.1. Full-spectrum (FS), low spatial frequency (LSF), and high spatial 
frequency (HSF) versions of a typical composite face. 

 
 
Why did these studies find opposite results? Cheung et al. (2008) replicated the methods of 
Goffaux & Rossion (2006) quite faithfully, so it is not surprising that they also replicated their 
results (for the “partial” design misalignment effect). (But note that their filtered stimuli appear 
to be visually somewhat different, at least from the published images) 
 
Goffaux (2009) used very different experimental conditions. In particular, they used a 
simultaneous presentation of both composites, and presentation time was up to 3 seconds 
(compared to 600ms/1000ms sequential presentation for the other two studies). In addition, the 
stimuli of Goffaux 2009 were much larger (6° x 7.8° versus 3.1° x 4.1°). Moreover, the filtered 
faces were adjusted to match the unfiltered FS faces in luminance and RMS contrast, something 
that the other studies did not do. 
 
With so many differences between Goffaux (2009) and the other two studies, is it hopeless to try 
to reconcile them? Should we just conclude that the relationship between SF and face processing 
is not a robust one? In the next section, we show that one very simple factor may be sufficient to 
reconcile all three sets of results. 
 
 
9.2 Reconciling the conflicting studies 
 
We first begin by using the “complete” design, and attempt to replicate the results of Cheung et 
al. (2008). Fig. 9.2 shows the D’ for FS, LSF and HSF faces for various thresholds. As discussed 
in Chapters 5 and 7, the threshold affects only the magnitude, not existence, of the CFE (though 
the CFE obviously disappears for extreme thresholds). The reason why we display many 
thresholds here will be apparent later. 
 
When comparing FS, LSF and HSF results, we are making judgments about the magnitude of the 
CFE, not its existence (all studies found the CFE, even for HSF faces). We must therefore be 



 

131 
 

careful about choosing which threshold to use. Both Goffaux and Rossion (2006) and Cheung et 
al. (2008) randomly intermixed trials types. This would suggest that subjects apply the same 
threshold from trial to trial, and it should not differ (much) for FS, LSF and HSF faces. But 
which threshold to use? For now, we make the assumption that subjects implicitly choose a 
threshold that maximizes overall performance. From the average D’ (yellow lines) in Fig. 9.2, we 
see that the best thresholds are roughly 0.750, 0.450 and 0.900 for LSF, HSF and FS faces 
respectively. Therefore, the optimal threshold over all SF conditions would be roughly between 
0.600 and 0.750. We thus focus on these two thresholds in Fig. 9.3. 
 
From Fig. 9.3, we see that the magnitude of the CFE is similar, regardless of SF condition (and 
CFE metric), qualitatively replicating the results of Cheung et al. (2008). This is particularly true 
for the 0.600 threshold. For the 0.750 threshold, the CFE for HSF faces is slightly less, but in 
practice, noisy computation, experimental noise and inter-subject variation would most likely 
ablate these differences. More importantly, the CFE magnitudes are in the same ballpark, and are 
generally larger than the differences in magnitude (this is more so for the congruency effect than 
the congruency x alignment interaction). 
 
On the other hand, Goffaux (2009) found that HSF faces elicited a significantly smaller CFE. As 
discussed earlier, there were many differences between the studies (Cheung et al. 2008 and 
Goffaux 2009), but we would nonetheless like to see if our model can reconcile these results. As 
hinted at in the previous paragraph, we believe that the threshold is the key factor. 
 
Figure 9.4 shows the (congruency x alignment) effect for LSF and HSF faces at a broad range of 
thresholds. (The congruency effect at different thresholds is already shown in Fig. 9.2). It is now 
very clear that the roughly equal CFE magnitude for LSF and HSF faces is only true for a very 
small range of thresholds (roughly around 0.600). For LSF faces, the CFE magnitude keeps 
increasing up to even a threshold of 1.650, whereas for HSF faces, the CFE magnitude peaks at 
0.600. Thus, even for a moderately different threshold from before, like 0.900, CFE magnitude 
(for upright faces) for LSF faces becomes more than twice that for HSF faces. In short, the CFE 
is equal in magnitude for LSF and HSF faces only in some circumstances. 
 
Note that we are not suggesting that a different threshold is literally the only difference between 
the two studies, nor that Cheung et al. (2008) found a spurious result. It is not at all clear what 
methods are actually used in the human brain to determine thresholds. The usefulness of models 
(such as ours) in situations like this, is to allow a simulation and examination of the effects of 
various parameters to understand the range of possible outcomes. What we have found is that 
even with a system using coarse templates, there exist reasonable conditions (e.g. maximal mean 
D’) in which both LSF and HSF faces might seem to be roughly equally holistic. Under a 
broader range of conditions, however, LSF faces generally elicit larger CFEs than HSF faces, 
which is not surprising for our model. 
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Figure 9.2. CFE for large, coarse templates over various thresholds (numeric values indicated on 
x-axis). Top left: LSF faces. Top right: HSF faces. Bottom: FS faces. A: aligned. M: misaligned. 
Yellow line: mean D’ over all four conditions for each threshold. 
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Figure 9.3. The CFE for FS (left column), LSF (middle column) and HSF (right 
column) faces at two thresholds (0.600 and 0.750), measured by three metrics. 
Top row: D’ (black diamond: congruent, white square: incongruent). Middle row: 
congruency effect (i.e. congruent D’ – incongruent D’). Bottom row: congruency 
x alignment interaction (i.e. aligned congruency effect – misaligned congruency 
effect).  A: aligned. M: misaligned. U: upright. I: inverted. 
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 LSF              HSF 

 
Figure 9.4. CFE as measured by (congruency x alignment) interaction for a 
broader range of thresholds (numeric values indicated on x-axis). Left: LSF faces. 
Right: HSF faces. Blue: upright faces. Red: inverted faces. 

 
 
Before we turn to a more in depth exploration of how and why these SF differences come about 
(in the next section), we note an interesting “post-diction” made by our model that strikingly 
matches the behavioral data qualitatively. Cheung et al. (2008) claimed that the “partial” design 
used by Goffaux & Rossion (2006) is susceptible to some poorly-understood “biases” that the 
“complete” design is able to sidestep through the use of D’, and that it is these biases that gave 
rise to the supposedly incorrect finding of greater CFE for LSF than HSF faces. 
 
Using the same thresholds as before (0.600 and 0.750), we found that our model produces the 
same qualitative behavior that Cheung et al. (2008) find in their calculation of bias (Fig. 9.5). 
Specifically, they found that congruent trials have a more negative bias than incongruent trials 
(marginal significance of p=0.074), misalignment shifts biases in the negative direction (main 
effect of alignment, p=0.0001), and biases are more towards the negative direction for HSF than 
LSF faces (main effect of SF, p<0.0001). Importantly, there is an interaction between SF and 
alignment (p<0.01). 
 
As we will see in the next section, these differential biases can be explained rather simply as 
arising from the distances between faces, not some arbitrary or unknown effects. Briefly, 
assuming similar thresholds across all conditions, the smaller distances for HSF faces, 
misaligned trials, and congruent trials lead to the more negative biases in all these cases. 
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Figure 9.5. Bias (a.k.a. “criterion”) for FS, LSF and HSF faces. Top row: model 
results for the two thresholds that correspond to the best overall average D’. 
Bottom row: behavioral results (reproduced from Cheung et al. 2008. See p.16 for 
copyright notice). 

 
 
9.3 Step-by-step account 
 
After looking at the CFE results, we now examine in more detail how these results come about. 
As always, we start from the responses of individual model units, and then look at the distance 
between two faces (calculated using the responses over a population of units). 
 
9.3.1 C1 responses 
 
We first look at the “physical properties” of these SF-filtered images, in terms of the V1-like 
(C1) responses that they elicit. From Fig. 9.6, we see that at the coarse C1 scales (e.g. scale 7), 
LSF responses are more similar than HSF responses are to the FS responses. At the finer scales 
(e.g. scale 1), the converse is true. (Note that the differences are visually subtle, partly due to 
averaging over orientations; the subtlety may be worsened by display factors when viewing on 
different computers or printing to different printers) 
 
However, it is also important to note that the highest responses are mostly at the face boundaries, 
which are very similar for all SF conditions. In other words, at least for the stimuli that we use 
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(also used in Goffaux & Rossion 2006 and Cheung et al. 2008 – and possibly other studies too), 
the differences between SF conditions could be reduced due to the presence of strong, sharp 
edges. (Importantly, such edges contain information at all frequencies, not just the HSFs, and 
therefore affect all scales strongly) 
 
Given that the C1 responses at coarse scales for LSF and FS are more similar than HSF and FS 
are, one would then expect that the same would be true for C2 responses corresponding to coarse 
templates (templates which are simply snapshots of C1 responses at coarse scales). We examine 
these responses in the next section. 
 
 

 
 

Figure 9.6. C1 responses (averaged over all orientations) at scales 1 and 7 to LSF, 
FS and HSF versions of a composite. Blue: low activity. Red: high activity. Note: 
the differences between LSF and HSF responses were less noticeable for scale 3, 
so scale 1 is shown instead (this is purely due to visualization reasons). 

 
 
9.3.2 C2 responses 
 
Figure 9.7 (top left) shows that as expected, the mean responses to FS faces are highest, followed 
by LSF, and then HSF faces. It should also be noted, however, that the differences are moderate, 
not large. The scatter-plots in Fig. 9.7 confirm these findings: the responses to all SF conditions 
are highly correlated, but overall the largest differences are between FS and HSF responses. 
 
For small, fine features (results not shown), as expected, the opposite results are found. The 
largest differences are between FS and LSF responses, and the mean responses to LSF faces are 
the lowest. 
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Apart from the responses in the different SF conditions per se, what about the effects of 
misalignment? Fig. 9.8 shows that the effect of misalignment (i.e. difference in response to 
aligned vs. misaligned counterparts) is larger for LSF than for HSF faces. Again, the difference 
between LSF and HSF faces is moderate (but noticeable). 
 
The differences at the level of individual model units are moderate, but we will see in the next 
section that when using many units to calculate distances between faces, the differences can be 
quite large. 
 

               
 

        
 

Figure 9.7. Responses of large, coarse templates to FS, LSF and HSF composites. 
Top left: mean responses (average of 1000 units x 2450 composites). Clockwise 
(from top right): scatter-plots of responses to HSF vs. LSF, HSF vs. FS and LSF 
vs. FS composites. Each scatter plot displays 1000 x 2450 points. 
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Figure 9.8. Histograms of effects of misalignment on responses. X-axis: response 
to aligned (ALG) composite minus response to misaligned (MIS) counterpart. Y-
axis: number of units. Top: LSF. Bottom: HSF. Red line indicates mean of 
distribution. Green line indicates median. 

 
 
9.3.3 Distances between images 
 
Figure 9.9 shows the distribution of distances for the “partial” design. First, the average distance 
for LSF faces is roughly twice that for HSF faces (note the different x-axis scales). More 
importantly, however, is the effect of misalignment. The moderate difference in effect of 
misalignment for individual units (Fig. 9.8) is now much more apparent. 
 
This difference is robust to specific threshold, but for illustrative purposes we have used a 
threshold of 0.7 (red lines in Fig. 9.9). For LSF faces (top panel), misalignment causes the 
proportion of “same” trials (blue) falling below the threshold (i.e. the hit-rate) to become much 
larger. This increase in hit-rate is much smaller for HSF faces (bottom panel), replicating 
Goffaux & Rossion (2006) and Cheung et al. (2008). 
 
Interestingly, our model “predicts” that the hit-rate for HSF faces is generally higher than for 
LSF faces (if the same threshold is applied to both conditions), which was found empirically by 
both Goffaux & Rossion (2006) and Cheung et al. (2008). 
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Figure 9.9. Histograms of distances between the two composites in each trial, for 
the “partial” design. Top: LSF. Bottom: HSF. X-axis: Euclidean distance (note 
different scales for LSF and HSF). Y-axis: number of trials. Blue: “same” trials. 
Yellow: “different” trials. Red line: arbitrary threshold, set to ~0.7 in this figure. 

 
 
We now turn to the “complete” design, shown in Fig. 9.10. Since our model is noiseless, the 
congruent-same trials (which show identical faces) always have a distance of 0, and these are not 
shown (except by the hanging blue bar at distance 0). In the “complete” design, the main effect is 
the “congruency effect”, i.e. the difference in D’ for congruent trials (brighter shades) versus 
incongruent trials (darker shades). 
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Figure 9.10. Histograms of distances between the two composites in each trial, for 
the “complete” design. Top: LSF. Bottom: HSF. X-axis: Euclidean distance (note 
different scales for LSF and HSF). Y-axis: number of trials. Blue hues: “same” 
trials. Yellow hues: “different” trials. Brighter shades: congruent. Darker shades: 
incongruent. Red line: arbitrary threshold, set to 0.5 and 1.0 in this figure. 

 
 
For simplicity, we only discuss the aligned trials here. As discussed earlier, the threshold matters 
in the comparison of LSF and HSF conditions. For a low threshold like 0.5, we see that for both 
LSF and HSF, the vast majority of the congruent-different trials (bright yellow) are above the 
threshold, leading to very high congruent D’ (see Fig. 9.2). For the incongruent trials (dark blue 
and dark yellow), their distribution of distances are similar, so the congruent D’ is very low (and 
this does not change much regardless of threshold). 
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For a higher threshold like 1.0, we see that now there is a big difference between LSF and HSF. 
For LSF, because the distances are generally much larger, the threshold of 1.0 gives results that 
are not dramatically different from the 0.5 threshold. However, for HSF, the 1.0 threshold makes 
a big difference. Many of the congruent-different trials (bright yellow) are below the threshold, 
leading to a strong false-alarm rate and much lower congruent D’ than before. From Fig. 9.2, we 
see precisely this: for a threshold of 1.050, the difference between LSF and HSF is primarily in 
the congruent D’ (black diamonds). 
 
 
9.4 Spatial frequency and object-like processing 
 
Finally, as the usual control, we contrast the large, coarse, templates with small, fine templates. 
As mentioned earlier, the opposite results are found for small, fine templates. The C1 responses 
for HSF faces are more similar than LSF faces to FS faces, and the C2 responses to HSF faces 
are larger than to LSF faces (results not shown). 
 
What about the CFE? We have already shown that for regular FS faces, small, fine templates do 
not produce a CFE (at least when defined by a congruency x alignment interaction). Nonetheless, 
we note that Fig. 9.11 shows that as one would expect, the congruency effect (not interaction) is 
smaller for LSF faces than for HSF and FS faces. In other words, for “object-like” processing, 
our model predicts that LSF images will show a smaller congruency effect (but not a smaller 
congruency x alignment interaction) than for HSF images. 
 
 
9.5 Chapter summary 
 
In this chapter, we examined the effects of spatial frequency filtering on the CFE. As would be 
expected for a system using coarse templates, the CFE is generally larger for LSF than HSF 
faces. We nonetheless show that under some (reasonable) assumptions, the CFE for LSF and 
HSF faces can be similar, thus reconciling the results of two conflicting studies. 
 
More broadly, the key contribution of this chapter is in reinforcing the notion that both “partial” 
and “complete” designs can be accounted for, reconciled and equally valid. The issue of “biases” 
that cast doubt on the “partial” design can be accounted for by our model. 
 
More general investigation of SF and holism (e.g. Goffaux et al. 2005, McKone 2009b) or 
general face (e.g. Hayes 1988, Vuilleumier et al. 2003) or object (e.g. Oliva & Schyns 1997) 
processing is left for future work. 
 
 



 

142 
 

  
 

 
 
Figure 9.11. CFE for small, fine templates over various thresholds (numeric values indicated on 
x-axis). Top left: LSF faces. Top right: HSF faces. Bottom: FS faces. A: aligned. M: misaligned. 
Yellow line: mean D’ over all four conditions for each threshold. 
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Chapter abstract 
 
The main purpose of this short chapter is to replicate the Face Inversion Effect 
(FIE), which is not the same as the CFE for inverted faces (Chapter 6). The key 
contribution of this chapter is in demonstrating the mechanistic relationship 
between holism and inversion, which surprisingly has not been shown to date. 
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Chapter 10:  The Face Inversion Effect (FIE) 
 
The main purpose of this chapter is to show that our model can also replicate the differential FIE. 
Note that our model is solely designed to be “holistic”, and it is not clear from prior work what 
the exact relationship between holism and the FIE is. Our work will shed light on this 
relationship, by showing that large, coarse features (“face-like” processing) produce a larger FIE 
than small, fine features (“object-like” processing). 
 
10.1 Model results 
 
Here, we show that the model replicates the differential FIE, i.e. a larger inversion effect for 
“face-like” processing than “object-like” processing. 
 
As before, we do not make any changes to the model used to demonstrate the CFE. Furthermore, 
we use the same composite images (but with no attentional modulation). We selected 49 
composites such that none of the halves appeared in more than one composite, i.e. 49 distinct top 
halves were paired with 49 distinct bottom halves. For “face-like” processing, we use 1000 large, 
coarse features. For “object-like” processing, we use 1000 small, fine features.  
 
We simulate a same-different discrimination task, whereby given a pair of images, the model has 
to determine if the images are same or different. This is similar to the tasks used by other studies, 
which reduce memory-related confounds. In our case, since the distance between images in the 
“same” trials will always be 0 (by definition, and due to noiseless conditions), we simply look at 
the “different” trials. 
 
10.1.1 Step-by-step account: responses 
 
As with the CFE, we give a step-by-step account of the differential FIE, beginning with the 
responses of individual model units. From Fig. 10.1, we see that as a result of inversion, the 
large, coarse units suffer a much larger drop in response than the small, fine units. For the large, 
coarse units, the mean response drops from 0.82 to 0.46. For the small, fine units, the mean 
response drops from 0.84 to 0.70. Note that the mean response to the upright faces is similar to 
both types of units (0.82 versus 0.84). 
 
Interestingly, the correlation between upright and inverted responses is -0.44 for the large, coarse 
units. From Fig. 10.1, we see that the units with larger upright responses tend to suffer larger 
decreases. Consistent with this, the correlation between upright response and magnitude of 
decrease is 0.82 (results not shown). We are not aware of any studies investigating this 
relationship, so this is a novel prediction by our model. 
 
10.1.2 Step-by-step account: distances 
 
Next, we calculated the Euclidean distance between all pairs of faces. As Fig. 10.2 shows, 
inversion causes a larger decrease in distance for large, coarse features than small, fine features. 
For large, coarse features, the mean distance decreases from 2.62 to 1.82 (a drop of 0.80). For 
small, fine features, the mean distance decreases from 2.06 to 1.76 (a drop of 0.30). Instead of 
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looking at the change in mean distance, we also looked at the mean change in distance (results 
not shown). The numbers were essentially identical (mean decrease of 0.80 for large, coarse 
features and 0.30 for small, fine features). 
 
Since we are only looking at the “different” trials (distances between pairs of composites that are 
different from one another), a drop in distance implies a decrease in discriminability. In other 
words, the findings above imply that inversion causes a greater decrease in discriminability for 
large, coarse features than for small, fine features. This is essentially the differential FIE. 
 
10.1.3 Step-by-step account: accuracies 
 
We go on to actually calculate accuracies and gauge the size of the FIE. To get accuracy values, 
we assume a fixed threshold that determines whether a pair of images is considered “same” or 
“different”. If the distance between a pair of images is smaller than the threshold, that is a false-
alarm (since the images are all different). We use 50 different thresholds that linearly span the 
full range of distances, in order to examine the full range of outcomes. 
 
From Fig. 10.3 (top), we see that for upright faces, for any given threshold, large, coarse features 
have higher accuracy (correct-rejection rate) than the small, fine features. This is somewhat 
counter-intuitive, as one might imagine that fine features would be better for within-category 
discrimination. The suitability of large, coarse features for both detection and identification is 
discussed further in Section 11.1. 
 
More importantly, we see that for any given threshold, the FIE for large, coarse features is larger 
than for small, fine features (Fig. 10.3 bottom). Even when the thresholds for both types of 
features can be independently chosen so that accuracy for upright faces is matched (Fig. 10.4), 
the differential FIE still exists. 
 
10.2 Chapter summary 
 
We have shown the that differential FIE is easily explained using our model by comparing large, 
coarse features (“face-like” processing) and small, fine features (“object-like” processing). 
Importantly, we give a step-by-step account of the effects of inversion, going from individual 
unit responses, to distance between faces, to discrimination accuracies. 
 
Other (similar) models have previously also shown the FIE (e.g. Zhang & Cottrell 2004) and 
differential FIE (e.g. Jiang et al. 2006). The key contribution of our model in this chapter is that 
we have demonstrated the mechanistic relationship between holism and inversion. “Holistic” 
(large, coarse) features experience a larger FIE than “non-holistic” (small, fine) features. This is 
unlike the work of Jiang et al. (2006) in which the differential FIE was accounted for by 
differential tuning width for face-tuned versus object-tuned units; no link to holism was 
established. 
 
In previous chapters, we focused on holism (particularly the CFE). We then linked holism to 
inversion in this chapter. In the next chapter, we proceed to bridge the large gap between holism 
and configural/face-space/norm-based processing. 
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Figure 10.1. Scatter-plot of responses to inverted versus upright faces, for large, 
coarse features (left) and small, fine features (right). 

 
 

 
 

Figure 10.2. Histograms of distance between pairs of faces. Top row: upright 
faces. Bottom row: inverted faces. Left column: large, coarse features. Right 
column: small, fine features. Yellow line indicates mean of distribution. 



 

148 
 

 

 
 

Figure 10.3. Accuracy (top) and FIE size (bottom) for each of 50 linearly spaced 
thresholds. FIE size is defined as upright accuracy minus inverted accuracy. UPR: 
upright. INV: inverted. 

 
 
 

 
 

Figure 10.4. FIE size versus accuracy for upright faces. 
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Chapter abstract 
 
In this chapter, we attempt to bridge the gap between holistic processing and 
configural/face-space/norm-based processing. We first show that (surprisingly), 
large, coarse features are more sensitive than small, fine features to individual 
identity. We then show this to be the case for second-order configural changes 
also. Furthermore, our model replicates the ramp-shaped opponent coding for 
second-order configural changes found in neurons in the macaque middle face 
patch. Finally, we show that our model replicates some signatures of norm-based 
coding during adaptation. Crucially, all of these findings were made using our 
model without any changes, suggesting that all of these aspects of face processing 
may arise implicitly from large, coarse features rather than through explicit and 
specialized mechanisms for second-order configuration and norm-based coding. 
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Chapter 11:   Holism and beyond 
 
 
One of the major issues in face processing research is the disconnect between different aspects of 
face processing. The relationship between holistic processing and inversion is already not well 
understood. The same is true for the relationship between holistic and configural processing, 
even though these are sometimes lumped together. The biggest disconnect is between holistic 
processing and face-space/norm-based coding (McKone 2009). 
 
In this chapter, we attempt to link all of these aspects of face processing using our model. It is 
important to remember that our model was modified from a model of object processing with the 
sole aim of replicating the Composite Face Effect (CFE). It is one thing to design a model that 
just replicates one thing, but a useful model should be able to do more than that. A test of the 
usefulness of the model as a model of general face processing is therefore whether it can account 
for phenomena that it was not designed to. We aim to show this here. 
 
 
11.1 Relating holism to detection and identification 
 
We first examine the issue of detection versus identification. As discussion in Section 3.5, 
models of face processing disagree over whether holism is linked to detection or to 
identification. We claim that holism is related to both detection and identification, by showing 
that even large, coarse features can easily discriminate individual faces. 
 
This claim is also made by a similar model (Riesenhuber & Poggio 2003, Fig. 111.7). The logic 
is simple. Because units are tuned to faces, non-faces elicit weak responses. At the same time, 
different faces elicit different responses. Using a population code, individual faces can thus be 
easily identified. However, the model of Riesenhuber & Poggio (2003) is different from ours; the 
most salient difference is our usage of large, coarse features. It is unclear if such features are 
discriminative enough; we will show that they do. 
 
We examined the responses of the 1000 large, coarse templates to 50 different individual faces. 
(These faces were not the same as the 50 faces from which the templates were extracted.) To 
gauge the discriminability of each feature (i.e. template), we calculated the difference between 
maximum and minimum responses to the 50 faces. Fig. 11.1 shows that this difference can be 
quite substantial. For upright faces, the mean difference is 0.28, which is 32% of the overall 
mean response (0.87). In other words, large coarse templates can easily discriminate between 
individual faces, because these faces can elicit quite different responses. Similar to the results 
presented in Chapter 10 (FIE), the discrimination for inverted faces is worse than for upright 
faces (Fig. 11.1 bottom). 
 
However, is this discriminability linked to holism, or can any set of templates perform 
discrimination equally well? From Fig. 11.2, we see that for small, fine templates, the difference 
between maximum and minimum responses to the 50 faces is small (mean difference of 0.16, 
compared to 0.28 for large, coarse templates). In fact, we can see that over 400 (out of 1000 
total) features respond essentially the same to all the 50 faces (i.e. difference of 0 between max 
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and min response). This is not because small, fine templates respond poorly to the 50 faces. 
Their overall mean response is 0.91, which is similar to the 0.87 for the large, coarse templates. 
 

 
Figure 11.1. Histogram of differences between maximum and minimum responses 
for large, coarse features. Red line indicates mean. Top: upright faces (mean 
0.28). Bottom: inverted faces (mean 0.21). 

 
 
Why are small, fine templates less discriminative than large, coarse ones? This seems counter-
intuitive, and also contrary to at least one other model (e.g. Zhang & Cottrell 2004, 2006). One 
possibility, specific to our model, is that because the features are position and scale invariant (i.e. 
the max in the C2 layer is taken over all positions and scales), many “false positives” contribute 
to the resulting C2 response. For the large, coarse, templates, because of their large size, there 
are fewer positions to take the max over, so there are fewer “false positives”. Further work is 
needed to determine if this is the true reason. 
 
So, large, coarse templates can support identification. What about detection? Since the set of 
non-face classes is infinite, rather than compare responses to faces versus some small, arbitrary 
set of non-faces, we look at faces versus inverted faces. Inverted faces share many physical 
characteristics with upright faces, and in fact their frequency spectra are identical, except for a 
phase shift. For large, coarse templates, the mean overall response to inverted faces is 0.47, 
compared to 0.87 for their upright counterparts. One might then infer than in general, non-faces 
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would elicit even smaller responses. Thus, face detection can easily be achieved. (Of course, one 
can always deliberately construct sets of face-like stimuli that may elicit relatively high 
responses and fool these templates.) 
 

 
Figure 11.2. Histogram of differences between maximum and minimum responses 
for small, fine features. Red line indicates mean. Top: upright faces (mean 0.16). 
Bottom: inverted faces (mean 0.13). 

 
 
11.2 Implicit coding of second-order configuration 
 
Since large, coarse templates can discriminate between individual faces, could they also be 
sensitive to configural changes, in particular? The answer is yes. In other words, holistic and 
configural processing are one and the same thing. 
 
As a proof-of-concept, we created a single large, coarse model unit that is maximally tuned to an 
“average” cartoon face (Fig. 11.3 middle face). (We return to our regular large, coarse templates 
in the next section.) Fig. 11.4 (left) shows the response of this unit when the eyes and eyebrows 
are horizontally or vertically shifted. 
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From Fig. 11.4 (left), we see that this unit is sensitive to second-order configural changes in eye 
separation (horizontal change) and eye height (vertical change). Crucially, this sensitivity is 
implicit, because there were no mechanisms for explicitly measuring eye separation or eye 
height. This sensitivity is much reduced for inverted faces, as has been found empirically (e.g. 
Tanaka & Sengco 1997, Freire et al. 2000, Le Grand et al. 2001). Importantly, this reduced 
sensitivity arises simply from the fact that responses are generally lower, and not because some 
mechanism responsible for “configural processing” has been disrupted by inversion. The 
previous section has already shown that small, fine templates are less discriminative, so this 
control is not shown here. 
 
 

  

   
 

Figure 11.3. Cartoon faces that differ in second-order configuration (i.e. distance 
between parts). Top row: horizontal distance between eyes. Bottom row: vertical 
distance between eyes and nose. Faces were adapted from Freiwald et al. (2009). 

 
 
Interestingly, although the vertical and horizontal changes were of the same amount in pixels, 
sensitivity to vertical changes was greater. We believe that this is simply due to the fact that 
faces contain more horizontal contrast energy (already clearly apparent in V1-like responses, see 
Fig. 11.4 right), rather than more complicated reasons (e.g. Dakin & Watt 2009, Goffaux & 
Dakin 2010). As a result of greater sensitivity to vertical changes, we also find a larger effect of 
inversion on vertical than horizontal changes, as reported by Goffaux & Rossion (2007). 
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Figure 11.4. Left: responses of one model unit to horizontal (blue) and vertical 
(red) second-order changes, for upright (solid) and inverted (dashed) faces.  
Right: C1 (complex-cell-like) response maps to a cartoon face (Fig. 11.3 middle). 
Orientation channels are (clockwise, from top left) vertical (0°), oblique (-45°), 
oblique (+45°), horizontal (90°). Low responses in blue, high responses in red. 

 
 
11.3 Ramp-shaped opponent coding 
 
Freiwald et al. (2009) recorded responses from neurons in the “middle face patch” in the 
temporal lobe of macaque monkeys, and found ramp-shaped (monotonic, not necessarily linear) 
tuning for second-order configural changes, consistent with the “opponent coding” theory of 
norm-based coding (Rhodes & Jeffery 2006). Our model qualitatively replicates their results. 
 
Fig. 11.5 shows the responses of two example large, coarse features to the cartoon faces shown 
in Fig. 11.3 (top row). Changes in eye-spacing produce monotonic, ramp-shaped tuning curves, 
like those found by Freiwald et al. (2009). 
 
Over the population of 1000 large, coarse templates, we find tuning properties that are 
remarkably similar to those found by Freiwald et al. (2009). As evidence for opponent-coding, it 
was found that most tuning curves had maxima and minima at the extreme feature values (Fig. 
11.6 left). This same property was found for our large, coarse templates (Fig. 11.6 middle), 
whereas this property was less strong for the small fine templates (Fig. 11.6 right). 
 
Ramp-shaped opponent-coding was further evidenced by the finding that the variability in 
response was larger for the extremal feature values (because the responses can be maxima or 
minima), compared to the “average” value (Freiwald et al. 2009, Fig. 4c). Again, this property 
was found for large, coarse templates (Fig. 11.7 top left) more than for small, fine templates (Fig. 
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11.7 top right). Furthermore, the minimal response was predominantly found at the extreme 
opposite of the feature value that gave the maximal response (Fig. 11.7 bottom row). This was 
true 57% of the time for large, coarse templates (67% for middle face patch neurons), compared 
to 47% for small, fine templates. 
 
 

 
 

Figure 11.5. Responses of two model units to faces that differ in eye separation. 
Vertical axis: normalized response. Horizontal axis: eye separation (ordinal units). 
Faces are depicted in Fig. 11.3, top row (-3: top left. 0: top center. +3: top right). 

 
 
Altogether, there is good evidence that our large, coarse templates share similar properties with 
neurons in the middle face patch, in terms of opponent coding for second-order configuration. 
Importantly, small, fine templates were less similar than large, coarse templates to these neurons. 
Thus, we have established a link between holistic processing and opponent coding. Crucially, 
however, our model does not have any explicit mechanisms designed to produce such opponent 
coding. So, how does this come about? 
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Figure 11.6. Number of neurons or model units with maxima (orange/beige) or 
minima (blue) at each feature value. Left: neurons (from Freiwald et al. 2009). 
Middle: large, coarse templates. Right: small, fine templates. Note: we used 
stimuli similar to Freiwald et al. (2009), but did not have their exact stimulus set. 

 

 
      Large, coarse features      Small, fine features 

 
Figure 11.7. Top row: standard deviation in response over all features for 
extremal and “average” feature values (Left: large, coarse. Right: small, fine). 
Bottom row: percentage of features for which the minimal response was found at 
a given feature value (Left: large, coarse templates. Right: small, fine templates). 
Note (bottom row only): following Freiwald et al. (2009) Fig. 4d, feature values 
were flipped when necessary, so that +3 corresponded to maximum response. 
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There are two aspects to opponent coding: ramp-shaped tuning and opponency. We examine how 
our model produces either of these in turn. The ramp-shaped tuning arises simply because the 
physicals changes are relatively small, compared to the space of all possible changes that could 
be made. As illustrated in Fig. 11.8, for small changes in the input space, gaussian tuning (used 
by our model) is monotonic and relatively linear for most local sections of the tuning curve (Fig. 
11.8, black circle). Only occasionally will the changes span the “hump” sections of the turning 
curve and produce bell-shaped tuning (Fig. 11.8, black rectangle). In more technical terms, it is 
only when the direction of change is orthogonal to the direction of the gradient, will the local 
section of the overall tuning curve be bell-shaped. It should be noted, however, that this is only 
true for relative small changes (i.e. small sections of the tuning curve). We predict that for the 
neurons found by Freiwald et al. (2009) to have ramp-shaped tuning, spanning a larger region of 
the space will produce bell-shaped tuning rather than ramp-shaped tuning. This could be 
achieved by showing morphs from an object to a face to the “anti-object” that is “on the opposite 
side”, for instance. 

 
 

Fig 11.8. Gaussian tuning curve, cutaway for easier visualization. Maximum 
output (1.0 on the vertical axis) occurs for input values of [0.5, 0.5]. For small 
changes in the input, changes in the output are mostly ramp-shaped (black circle). 
Changes are only bell-shaped under certain circumstances (black rectangle). 

 
 
Apart from ramp-shaped tuning, the second aspect of opponent coding is opponency: the notion 
that for each metric feature such as eye separation, there exists two populations of neurons, each 
with slopes of opposite signs (Fig. 11.9 left). The norm (average face) is implicit rather than 
explicit, but is given a special status, encoded by the equal firing of both neuronal populations. 
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Our model, which derives its large, coarse templates by randomly sampling patches from some 
arbitrary set of faces, contends that it is not the norm per se that has some special status. Rather, 
because of the physical properties of faces, the approximate average along any arbitrary 
dimension will induce a roughly symmetric distribution of distances on either side of this 
approximate average. Importantly, however, this model predicts that the norm does not need to 
be average along all other dimensions also. (This would be needed if the “truly average face” had 
a special status). For example, if the dimension of interest is eye separation, but this eye 
separation is varied for a very old, masculine face with atypical eye height and face width, then 
evidence for norm-coding can still be found, e.g. from adaptation studies. Of course, evidence 
may be weaker, e.g. weak adaptation, because the number of neurons that would be strongly 
activated by these faces may be small. Consequently, the model predicts that for faces that vary 
in multiple dimensions (e.g. variation along 2 dimensions, each with N steps), there will be an 
interaction between the dimensions. This is not a trivial prediction. One could imagine models 
where eye separation is explicitly calculated, and thus neurons that code for this are completely 
independent from dimensions such as eye height or mouth width. 
 
The norm-based opponent model is sometimes contrasted to the exemplar-based “multi-channel” 
model (Fig. 11.10 right). We view this as a false dichotomy that is based on quantitative rather 
than qualitative differences. To see this, if the neurons in the multi-channel model (Fig. 11.10 
right) are as broadly tuned as those in the opponent model – and the electrophysiological 
evidence suggests that face cells are indeed broadly tuned – then there is little difference between 
the two models. Neurons that are tuned to non-extremal faces will respond roughly equally 
strongly to all faces, making them effectively neutral to adaptation effects. Thus, a broadly-tuned 
multi-channel model is effectively indistinguishable from the opponent model. In fact, it is more 
parsimonious, because it makes no assumptions about the special status of the average feature 
value or average face, and can account for the fact that different studies show evidence for 
different norms (as explained earlier). 
 

 

 
 

Figure 11.10. Face space models. Left: opponent-coding (norm-based) model. 
Right: multi-channel (exemplar-based) model. Figure from Susilo et al. (2010). 
See p.16 for copyright notice. 
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11.4 Adaptation and norm-based coding 
 
The adaptation paradigm is often used to investigate norm-based coding. The idea, illustrated in 
Fig. 11.9 (left), is that after prolonged exposure to a face with some non-average feature value, 
neurons that code for this feature experience “fatigue” and fire less strongly. As such, the point 
of balance between opponent pools (which is assumed to code for the norm) becomes shifted 
towards the adapted face. Perceptually, subjects report that after adaptation, the adapted face 
seems more average, and the actual average face seems more extreme. 
 
Our model also shows this behavior. We implemented adaptation straightforwardly by 
attenuation each feature’s response proportional to its response to some adapter face. We then 
tested these post-adaptation features to a set of faces that varied metrically in eye separation. 
There were 7 such faces, labeled -3 to +3. To measure the “perception” experienced by this set of 
features, we performed linear regression for each feature to find the slope and offset that would 
allow each feature’s response to predict the face label (e.g. +2, -1, etc.). Many features had 
slopes close to 0, and were thus non-informative. Therefore, out of 1000 features, we only 
analyzed the 200 features with the most negative and positive slopes. Importantly, at no point do 
we introduce any explicit coding of the “norm” (face 0), nor accord it special status. 
 
First, we verify that before adaptation, features with either positive or negative slopes indeed 
“perceive” the faces veridically, according to their actual labels (black lines, Fig. 11.11 left and 
right). We then examined the “perceived” face identities after adaptation to either the -3 face 
(blue lines) or the +3 face (red lines). Consistent with the opponent coding model, features with 
positive slopes were more affected by adaptation to +3 than -3 (Fig. 11.11 left). Conversely, 
features with negative slopes were more affected by adaptation to -3 than +3 (Fig. 11.11 right). 
 

 
 

Figure 11.11. Effects of adaptation on face “perception” on opponent unit pools. 
Left: model units with positive slopes. Right: model units with negative slopes. 
Note: “slope” indicates whether responses increase or decrease with face number 
(Fig. 11.9 left), not the slope of the lines shown in this figure. 
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Looking at both the positive- and negative-slope features together, we see that adaptation to -3 
causes a relative shift towards -3, compared to adaptation to +3 (Fig. 11.12 left). Note that in 
absolute terms, adaptation to +3 also shifted the (red) curve left, relative to veridical perception 
(the y=x diagonal). This is anomalous. There are two possible reasons for this. Firstly, we picked 
the ‘0’ face arbitrarily (copying the ‘0’ face in Freiwald et al. 2009; note the asymmetries in Fig. 
4a and 4b, suggesting that this face is not quite “average”), so that there is no guarantee that it is 
actually “average” in any sense. Secondly, our features were extracted from 50 arbitrary faces, 
which is a relatively small number, and may not reflect the balanced, symmetric distribution of 
properties found in more realistic, broader sets of faces. 
 
In Figs. 11.6 and 11.7, we showed links between large, coarse templates and opponent coding. Is 
this also true for adaptation? Fig. 11.12 (right) shows that for small, fine templates, the effects of 
adaptation are not significantly different for adaptation to -3 and +3. This is also true even when 
features with positive and negative slopes are analyzed separately (Fig. 11.13). 
 
 

 
 

Large, coarse features   Small, fine features 
 
Figure 11.12. Effects of adaptation. Combined results for neurons with positive 
and negative slopes. Left: large, coarse features. Right: small, fine features. 

 
 
The quantitative difference between adaptation effects for large, coarse templates and small, fine 
templates is not due to insufficient adaptation. When the parameter controlling adaptation 
strength is 10 times as strong as before (leading to behaviorally implausible levels of adaptation, 
shown in Fig. 11.14), the difference between adaptation to -3 and +3 is still apparent for large, 
coarse features (Fig. 11.14 left), but not for small, fine features (Fig. 11.14 right). 
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Figure 11.13. Effects of adaptation for small, fine templates. Left: model units 
with positive slopes. Right: model units with negative slopes. 

 
 

 
 

Large, coarse features   Small, fine features 
 
Figure 11.14. Effects on adaptation, with adaptation strength 10 times of that used 
to produce Fig. 11.12. Left: large, coarse features. Right: small, fine features. 

 
 
Finally, it has been found that adaptation for upright and inverted faces can be independent 
(Rhodes et al. 2004, Susilo et al. 2010). Our model easily explains this. Similar to what was 
discussed in Chapter 10 for the FIE, since the correlation of responses to upright and inverted 
faces is negative, the features that respond most strongly to upright faces are those that respond 
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the weakest to inverted faces (Fig. 11.15 left). Therefore, adaptation to an upright face affects 
these features the most, while adaptation to an inverted face affects them least. In other words, 
independent adaptation to upright and inverted faces is not because there are separate neuronal 
populations coding for these. (In our model, all templates are derived from upright faces, and 
virtually all respond more strongly to upright than inverted faces). On a related note, the fact that 
the correlation is, instead, positive for small, fine features (Fig. 11.15 right) makes the prediction 
that adaptation to upright and inverted images is not independent for “object-like” processing. 
 
 

 
 

Large, coarse features   Small, fine features 
 

Figure 11.15. Responses to inverted (y-axis) vs. upright faces (x-axis). Each point 
represents the mean response (averaged over 50 faces) of one model unit. Points 
below the diagonal show inversion effects. Left: large, coarse features (r = -0.37). 
Right: small, fine features (r = +0.57). 

 
 
We end off by recapping the conditions required to produce the effects attributed to opponent, 
norm-based coding, even in a model that does not explicitly have such coding. First, the physical 
properties of the stimuli must be symmetrically distributed about the mean. Bodies, for example, 
may be suitable, but letters are probably not. Second, the features must be sensitive to the 
relevant stimulus changes, such as changes in body height/width ratio. Since many of these 
changes are “configural” in the sense that they involve relationships between different parts of 
the stimulus, only “holistic” features may show opponent coding for such changes (dimensions). 
A related prediction is that for faces, small fine templates may exhibit opponent coding for 
“local” changes such as nose width, but not for “configural” changes with as eye separation. 
 
 
11.5 Chapter summary 
 
We attempted to bridge the gap between holistic processing and configural/face-space/norm-
based processing. We first showed that large, coarse features are more sensitive than small, fine 



 

165 
 

features to individual identity. We then showed this to be the case for second-order configural 
changes also. Our model also replicated the ramp-shaped opponent coding for second-order 
configural changes. Finally, we showed that our model replicates some signatures of norm-based 
coding during adaptation. Crucially, all of these findings were made using our model without any 
changes, suggesting that all of these aspects of face processing may arise implicitly from large, 
coarse features rather than through explicit and specialized mechanisms for second-order 
configuration and norm-based coding. 
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Chapter 12:  Alternative Accounts 

 
 
Chapter abstract 
 
In this chapter, we compare our account of the CFE with the more widespread, 
intuitive account. We first show that our account is better in terms of 
generalizability. Nonetheless, we proceed to compare the predictions from the two 
accounts. We find that there is some empirical support for our model, but that more 
targeted experiments need to be conducted. We then proceed to show that the two 
accounts may actually differ in the “decision-making” stage, rather than the core 
“holistic processing” stage. Furthermore, we show that our model can actually 
show characteristics of both accounts under different circumstances. Overall, this 
chapter illustrates some pitfalls of relying solely on intuitive “mental models” to 
understand phenomena and make predictions. 
 
 
Chapter contents 
 
12 Alternative Accounts 
12.1 The “reduction” account 
12.2 The “influence” account 
12.3 Comparing accounts: generalizability 
12.4 Comparing accounts: “partial” and “complete” designs 
12.5 Existing empirical data 
12.6 Closer examination of model predictions 
12.6.1 What does the model actually predict? 
12.6.2 Does our model really implement the “reduction” account? 
12.6.3 Intuitive versus actual predictions 
12.7 Proposed experiments 
12.8 Chapter summary 
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Chapter 12:  Alternative Accounts 
 
 
So far, the explanations of how our model produces various effects (e.g. misalignment effect, 
congruency x alignment interaction, and face inversion effect) have mostly hinged on reduced 
responses of model units to misaligned and inverted faces. Looking at this from the neural and 
mechanistic perspectives, it seems reasonable that face-tuned units respond less to these “non-
standard” face stimuli. Accordingly, this “reduction” account of holistic face processing may 
also seem reasonable. 
 
However, these effects can also be explained from a more cognitive or psychological 
perspective. We utilized this more intuitive “influence” account (see Section 12.2) in Chapter 2, 
where we reviewed the CFE independently of our model. Under this account, misalignment or 
inversion “disrupt holism” in some unspecified way. 
 
Are these two accounts compatible with each other? Are they really just the same thing described 
in different ways? If they are different, do they actually make differing predictions that can be 
tested empirically? This chapter explores these questions. 
 
 

 
 
Figure 12.1. Trial types for the CFE “partial” and “complete” designs. Congruent 
trials are those in which the top and bottom halves are either both same or both 
different. Note that the “partial” design is a subset of the “complete” design. 
(Figure reproduced from Cheung et al. 2008. See p.16 for copyright notice.) 
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12.1 The “reduction” account 
 
We briefly recap the “reduction” account for the misalignment effect here (see Chapter 5 for a 
more detailed explanation). First, we note that misaligned composites elicit somewhat smaller 
responses than their aligned counterparts. Secondly, we note that generally speaking, the distance 
between two vectors (each representing the responses to a composite) becomes smaller when the 
elements in the vectors become smaller (e.g. due to misalignment). Finally, assuming a relatively 
constant threshold, smaller distances imply higher hit rates. In short, misaligned composites elicit 
smaller responses, which lead to smaller distances, which lead to higher hit rates. Thus, the 
misalignment effect is produced. 
 
But what about holistic processing per se, independent of the effects of misalignment? Because 
the templates are large, many include portions of both the top and bottom halves. Therefore, 
unless the bottom halves are completely attenuated due to attentional effects, the bottom halves 
will contribute to the responses of many units. In the case of incongruent-same trials (see Fig. 
12.1), this means that the identical top halves will inevitably be “perceived” to be non-identical 
by the model (see Section 13.4.4 for more detailed explanation). 
 
 
12.2 The “influence” account 
 
The “influence” account is not very different from the “reduction” account when it comes to 
explaining holism per se. Under this account, the bottom halves “influence” perception of the top 
halves (by unspecified mechanisms). Therefore, in the incongruent-same trials, because the 
bottom halves are different, the identical top halves are perceived to be non-identical. 
 
However, when it comes to explaining the misalignment effect, the “influence” and “reduction” 
accounts differ. Under the “influence” account, misalignment “disrupts holism” (again, by 
unspecified mechanisms). Therefore, the top halves are not influenced by the bottom halves, and 
are perceived to be identical. Note that this account makes no prediction about the responses to 
each composite, only the distance (or similarity) between the two composites. The “influence” 
account, although it has not been explicitly termed as such, is currently the commonly accepted 
account. 
 
 
12.3 Comparing accounts: generalizability 
 
A model is only useful if it not only reproduces the phenomenon it is designed to show, but if it 
can also explain how the phenomenon comes about. By this criterion, the “influence” account is 
less useful. Unlike the “reduction” account, the “influence” account currently has no explanation 
(quantitative or qualitative) of plausible neural or computational mechanisms that give rise to 
holism. 
 
Additionally, a good model should also generalize, i.e. predict (or at least “post-dict”) 
phenomena other than the phenomenon that the model was designed to reproduce. As we have 
described in the previous chapters, the “reduction” account seems to do a credible job of this. 
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However, the “influence” account is rather vaguely specified, so it is hard to make predictions. 
One could say that it predicts that holism is disrupted when composites are manipulated in any 
way that makes them differ from “normal” faces. This would be consistent with the results for 
inverted and misaligned composites. However, disregarding the fact that the composites are 
already quite different from normal faces (gap between the halves; oval crops that exclude hair, 
ears, and normal face shape), the fact that contrast-reversed faces (clearly not normal) are 
perceived holistically (see Chapter 8) nullifies this argument. 
 
One might then modify the argument to say that only changes that disrupt the normal first-order 
configuration (again, this is somewhat poorly specified) will disrupt holism. However, Taubert & 
Alais (2009) found that vertically shifting the bottom halves (which does not change first-order 
configuration) produces a misalignment effect, i.e. disrupts holism. 
 
One might then again modify the argument to say that faces must have biologically plausible 
second-order parameters (which is how Taubert & Alais 2009 interpret their results), otherwise 
holism is disrupted. This may well be true, but then now the “influence” account becomes less 
distinguishable from the “reduction” account. According to the “reduction” account, composites 
that produce reduced responses will consequently produce a higher hit rate. This is not so 
different from saying that non-biologically plausible changes to second-order configuration 
(which presumably elicit reduced neural responses) disrupt holism. 
 
Thus, in the end, the two accounts are not so different, but the “influence” account had to be 
modified and extended post-hoc to remain consistent with the empirical evidence. Crucially, the 
“influence” account still does not give a mechanistic explanation, nor does it link holism to other 
important aspects of face processing. 
 
 
12.4 Comparing accounts: “partial” and “complete” designs 
 
We now return to the CFE for regular, upright composites and examine in more detail if the two 
accounts really are that similar. We first examine the “partial” design. Since both accounts were 
“designed” to account for the misalignment effect in “same” trials, we compare the predictions 
of either account for “different” trials. 
 
As discussed in Section 2.1.1, the intuitive “influence” account makes no predictions for the 
effect of misalignment on the “different” trials, since it is unclear whether the bottom halves (B 
and D) will influence the top halves (A and C) to seem “more different” or “less different” (it 
helps to refer to Fig. 12.1). On the other hand, the “reduction” account makes a clear prediction. 
Like for the “same” trials, misalignment reduces the responses and distances for the “different” 
trials. Hence, misalignment should lead to a drop in accuracy (i.e. increased false alarm rate), at 
least in theory. In practice, it is possible that the reduction in distance is insufficient to cause the 
distances to fall below the threshold. Section 12.5 examines what actually happens empirically. 
 
We now turn to the “complete” design, and examine the other two conditions not covered in the 
“partial” design. For congruent-same trials, i.e. two identical composites, both accounts make the 
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same prediction – as should any reasonable account. In both cases, misalignment should cause 
little change, since the two composites have identical top and bottom halves. 
 
The incongruent-different trials are the most interesting condition. According to the “influence” 
account, since the bottom halves are identical, they influence the top halves to seem more 
similar. Misalignment should therefore lead to a decrease in false alarm rate (or no change, if the 
effects are subtle). In contrast, the “reduction” account predicts that since the distances are 
decreased by misalignment, there should be an increase in false alarm rate (or no change, if the 
effects are subtle). 
 
Now that we have made intuitive predictions for both accounts, we examine the empirical data 
and model results to see if the predictions are correct. In particular, we look at the congruent-
different and incongruent-different conditions, since both accounts make similar predictions for 
the “same” trials. 
 
 
12.5 Existing empirical data 
 
For the congruent-different condition, the “influence” account makes no clear prediction. As 
such, no empirical result would be inconsistent with it. However, if the empirical results clearly 
favor one outcome over another, then this account cannot explain this. The “reduction” account 
predicts that the false alarm (FA) rate should increase (or stay the same, due to pragmatic factors 
such as experimental noise or lack of statistical power). If the FA rate decreases, this account has 
no good explanation. 
 
What do the empirical results show? We examined all the CFE studies (to the best of our 
knowledge) that reported the FA rates. Since the widespread intuition is that there is no 
prediction for the “different” trials, few papers reported FA rates. These results are summarized 
in Table 12.1. (Note: all studies reported CR rates, rather than FA rates. Hence, Table 12.1 lists 
CR rates. The prediction from the “reduction” account is that CR rates should decrease) 
 
As the results in Table 12.1 indicate, all but one experiment show a decrease in the CR rate, 
consistent with the “reduction” account’s prediction. For the one experiment that does show an 
increase, this is clearly non-significant (de Heering et al. 2007, Table 2). For the experiments that 
showed an decrease in CR rate, 2 had non-significant trends, 2 had trends of unreported 
significance, and 1 had a significant effect. Together, these results are not in any way ironclad 
proof supporting the “reduction” account, nor do they disprove the “influence” account. 
However, they do constitute a “proof-of-concept” for the “reduction” account that justifies 
further investigation involving targeted experiments (see Section 12.7). 
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Study Data 
source 

CR 
aligned 

CR 
misaligned

Trend 
consistent w/ 
“reduction” 

Signif. 

Le Grand et al. 
(2004) 

Fig. 2 & p.764 See source figure Y p>0.1 

de Heering et al. 
(2007) 

Table 1 & p.63 87 (12) 81 (14) Y p=0.017 1 
Table 2 & p.66 90 (9) 92 (11) N n.s. 2 

F(1,56) < 1 
Robbins & McKone 
(2007) 

Table 7 75 ± 4 70 ± 4 Y -- 

Cheung et al. 
(2008) 

Appendix C 96 89 Y -- 

Rossion & Boremanse 
(2008) 

Table 1a & p.6 94 ± 2 89 ± 4 Y p>0.22 3 

      
 

Table 12.1 Correct-rejection (CR) rates (i.e. accuracy for “different” trials) across 
various studies. Numbers in parentheses indicate standard deviations. Numbers 
after ± indicate standard errors. 
 
-- indicates significance not reported. 
1 p-value is for main effect of alignment across all age groups tested. No main 
effect of age, nor interaction between age and alignment was found. 
2 Reported F-value is for main effect of alignment across all age groups tested. No 
interaction between age and alignment was found. 
3 p-value was for main effect of alignment across all orientation conditions. A t-
test for the upright condition was not performed. 

 
 
 
We next turn to the incongruent-different condition, used only in the “complete” design. The 
“influence” account predicts a decrease in FA rate for misalignment, while the “reduction” 
account predicts an increase. Non-significant changes are consistent with both accounts. Only 
one study (Cheung et al. 2008) published the raw FA rates (equivalently, correct rejection or CR 
rate). Here, there was no significant difference in CR rate (93.09% aligned versus 93.10% 
misaligned), so further experiments need to be conducted (see Section 12.7). 
 
 
12.6 Closer examination of model predictions 
 
Before we discuss the experiments proposed to specifically validate our model’s predictions, let 
us examine these predictions more closely. We made those predictions by reasoning intuitively 
from the “reduction” account. Does the model actually even make those predictions? 
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12.6.1 What does the model actually predict? 
 
In Section 5.3.2, we explicitly stated that smaller responses generally lead to smaller distances. 
This is not always true. Furthermore, while both Euclidean distance and Pearson correlation are 
able to replicate the misalignment effect (Section 5.4.4), the congruency effect (results not 
shown) and the (congruency x alignment) interaction (results not shown), we have not yet 
examined if both distance metrics have the same effect on “different” trials per se. 
 
As Fig. 12.2 (top) shows, for regular (full spectrum) faces, using Euclidean distance, the false 
alarm rate increases as predicted. This is true for both congruent and incongruent trials. Using 
Pearson correlation as the distance metric, qualitatively similar effects are found (results not 
shown). In other words, the predictions for the “reduction” account from intuitive reasoning and 
from model results match. 
 
(The relevance of the other spatial frequency conditions, i.e. LSF and HSF, will become clear in 
Section 12.6.2). 
 
12.6.2 Does our model really implement the “reduction” account? 
 
We have not yet considered the possibility that our model could in fact implement the 
“influence” account also. As we explicitly point out in Section 4.3, given that selective attention 
and decision-making are as much unsolved problems as face perception is, we just implemented 
the simplest methods that simulate these. The core of our model lies in the large, coarse 
templates. Without altering this, could alternative methods at the selective attention or decision-
making stages implement the “influence” account? 
 
The “influence” account states that when the composites are misaligned, the influence of the 
bottom halves on the perception of the top halves is reduced. Another way of thinking about this 
is that the relative contribution or weight of the bottom halves is reduced. Since the “reduction” 
account states that misalignment reduces responses, could this reduction somehow lead to 
reduced relative weight of the bottom halves? 
 
The normalized dot product (ndp) distance metric seems to implement this. (Note that the ndp 
measures similarity, so we define distance as 1 – ndp) A dot product is just a weighted linear 
sum. The ndp normalizes each vector (to have a norm of 1) first, before calculating the dot 
product. If the part of the vector corresponding to the response from the bottom half is reduced in 
magnitude, then normalization means that the other part (corresponding to the response from the 
top half) now has a larger relative contribution, similar to what happens according to the 
“influence” account. Note: unlike the Euclidean distance, the ndp distance generally need not 
decrease if the responses decrease, because of this normalization. 
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 FS 

 LSF 

 HSF 
 

Figure 12.2. False alarm (FA) rates for FS (top), LSF (middle) and HSF (bottom) 
faces. A: aligned. M: misaligned. 
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Accordingly, we see from Fig. 12.3 (top) that when ndp is used as the distance metric, the 
incongruent FA rate does in fact decrease (especially at low FA rates), as per the “influence” 
account. (Compare this to Fig. 12.2 top for Euclidean distance). Crucially, even when using ndp, 
both the “partial” design misalignment effect and the “complete” design (congruency x 
alignment) interaction are still found (results not shown). In other words, the core of our model is 
consistent with both the “reduction” and “influence” accounts of holistic processing, and the only 
difference is in the distance metric used. 
 
Interestingly, for small, fine features, while neither the misalignment effect nor the (congruency 
x alignment) interaction is found (results not shown), using ndp also produces an incongruent FA 
rate decrease (Fig. 12.3 bottom), similar to large, coarse features. This phenomenon needs further 
investigation, but it may be an interesting and counter-intuitive prediction of the model. 
 
 

 
Large, coarse features 

 

 
Small, fine features 

 
Figure 12.3. False-alarm rates using the ndp distance metric for large, coarse 
features (top) and small, fine features (bottom). A: aligned. M: misaligned. 
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We have also not yet considered another question: is it necessarily the case that our model (even 
with the regular Euclidean distance metric) does not show “influence-like” behavior? From Fig. 
12.2, we see that depending on the SF condition, our model (using large, coarse features nd 
Euclidean distance) can show behavior consistent with either “reduction” (FS and LSF) or 
“influence” (HSF) accounts. Amazingly, this is exactly what was found by Cheung et al. (2008), 
as shown in Fig. 12.4. We see that there is striking resemblance between Figs. 12.2 and 12.4. For 
any given threshold, not only does the FA rate generally rise from FS to LSF to HSF, the FA 
rates for congruent trials are also generally higher than for incongruent trials. In particular, again 
using thresholds of 0.600 and 0.750 (as we did in Chapter 9), we see that for the incongruent 
trials, there is little change in FA rates as a result of misalignment for FS and LSF. However, for 
HSF, the FA rates decrease, consistent with the “influence” account (p-value not reported in 
Cheung et al. 2008). 
 
 

 
 

Figure 12.4. Empirical false-alarm rates for FS, LSF and HSF faces. Error bars 
show 95% confidence intervals of the 3 x 2 x 2 within-subjects interaction effect. 
Figure reproduced from Cheung et al. (2008). See p.16 for copyright notice. 

 
 
12.6.3 Intuitive versus actual predictions 
 
We seem to have contradicted our predictions in Section 12.4. If it were not actually clear that 
our model would make these predictions, or that it were actually different from the “influence” 
account, why did we use the “reduction” account to make predictions? 
 
The “reduction” account was the intuitive way of explaining the behavior of our model, so that is 
easy to understand the misalignment effect and congruency x alignment interaction. However, an 
intuitive explanation is not a model. The point of having quantitative models is precisely because 
intuitive explanations are sometimes insufficient. Having quantitative models forces us to be 
explicit about assumptions and design decisions, such as which distance metric to use. Intuitive 
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explanations conveniently put these aside and ten to rely on human qualitative reasoning being 
adequate and infallible. 
 
Thus, we wanted to illustrate the point pedagogically, that without a quantitative implementation, 
a qualitative model – such as the “influence” account – should not be seriously compared to a 
quantitative model. What might seem to be “predicted” by a qualitative model (e.g. the 
“reduction” account) may in reality be highly dependent on implicit assumptions that have not 
been thoroughly considered. 
 
 
12.7 Proposed experiments 
 
In Section 12.5, we said that the empirical evidence for some of the “reduction” account 
predictions was encouraging but far from conclusive. In light of the modeling results in Section 
12.6, it may seem redundant to test the prediction for the incongruent-different trials. However, 
there is still a clear model prediction for the congruent-different trials that is robust to distance 
metric and is not found for small, fine features (see Figs. 12.2 top and 12.3). Note that if this 
prediction (increase in congruent FA rate for misaligned trials) is found empirically, it would not 
disprove the “influence” account per se (which makes no prediction), but would be evidence 
supporting the model (whether it is more “reduction”-like or “influence”-like is beside the point). 
 
In theory, all the existing CFE studies (both “partial” and “complete) already have the raw data 
to test this prediction, even though only a handful report these results (i.e. the studies in Table 
12.1). However, in practice, there is a problem that needs to be tackled. The accuracy in the 
“different” trials is often very good, possible leading to a ceiling effect (equivalently, floor effect 
for FA rate), as indicated in Table 12.1. This is also evident in the modeling results (Figs. 12.2 
top and 12.3 top). 
 
Therefore, a targeted study may need to intentionally increase FA rates, e.g. perhaps by using 
faces that differ subtly only in terms of second-order configural changes. However, this needs to 
be carefully calibrated to avoid overall chance-level performance. Apart from that, the guidelines 
suggested in Section 2.5.7 may help to isolate face-like intrinsic holistic processing. 
 
 
12.8 Chapter summary 
 
We compared the “reduction” account of the CFE with the more widespread “influence” 
account. We first show that the “reduction” account is better in terms of generalizability. 
Nonetheless, we proceed to compare the predictions from the two accounts. We find that there is 
some empirical support for the “reduction” account, but more targeted experiments are needed. 
We then proceed to show that the two accounts may actually differ in the “decision-making” 
stage, rather than the core “holistic processing” stage. Furthermore, we show that our model can 
actually show characteristics of both accounts under different circumstances. Overall, this 
chapter illustrates some pitfalls of relying solely on intuitive “mental models” to understand 
phenomena and make predictions. 



 

 

 
Chapter 13:  Discussion 

 
 
Chapter abstract 
 
In this final chapter, we begin by reiterating the main problem(s) that this thesis 
tries to address. We then propose a new theory of face processing based on our 
modeling work, and highlight the unique and novel contributions of our work. We 
proceed to discuss the broader implications of the theory and of our results, and 
then present a collection of predictions that can be tested empirically to validate 
our theory/model. Finally, we end off by listing several avenues for future work. 
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Chapter 13:  Discussion 
 
 
13.1 Linking the what, how and why of face processing 
 
One of the biggest problems in the current understanding of face processing is the lack of a 
cohesive picture of how various facets of face processing relate to each other. For example, 
research on holistic/configural processing is notably disjoint from research on face-space/norm-
coding (McKone 2009a). There is also little research relating face-space/norm-coding to image 
manipulations such as spatial frequency filtering and contrast reversal. Even within the 
holistic/configural ambit, the relationship between these two types of processing is still unclear 
(Maurer et al. 2002). 
 
Furthermore, within each type of processing, we are far from achieving a cohesive understanding 
that links effect to process to cause (i.e. what, how and why). For example, Zhang & Cottrell 
(2005) suggest that holism arises because holistic features are good for identification, whereas 
Tsao & Livingstone (2008) suggest that holism arises from detection. For configural processing, 
it is unclear whether sensitivity to configural changes is due to the second-order properties of 
face stimuli, the task of identification, or some combination of the two. 
 
This thesis is an initial attempt to address the key problem of the lack of an overarching 
framework to understand face processing. We started off by showing that a biologically plausible 
model of visual processing could replicate a key signature of holistic processing: the CFE 
Chapter 5). We then proceeded to show that the model could account for the relationship 
between holistic processing and several stimulus manipulations: inversion, contrast reversal, and 
spatial frequency filtering (Chapters 6 to 9). We also verified that the model can replicate the FIE 
(Chapter 10). Importantly, the model accounts for the difference between face-like and object-
like processing for both the CFE and FIE. In Chapter 11, we then made preliminary attempts to 
address some of the issues mentioned earlier. We showed that our holistic model also performed 
configural processing. Furthermore, this configural processing shows characteristics of norm-
based coding in face space. Finally, we showed that this holistic/configural/norm-coding model 
is related to both detection and identification of faces. In short, it appears that we may have 
found a model that is potentially capable of uniting all the different major aspects of face 
processing (less expression, gaze, etc.). 
 
If this model does in fact truly account for all these aspects of face processing, what does that 
imply in terms of a theoretical understanding of face processing? We discuss this next. 
 
 
13.2 A new theory of face processing 
 
Here, we present a new theory regarding the mechanisms underlying face processing. This 
theory is, on the whole, not a radical departure from current theories, and has elements in 
common with some. Crucially, however, it is unprecedented in its ambition and scope, covering 
all the major aspects of identity-related face processing, i.e. excluding expression, gaze, etc. It is 
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also unique in its view of the effects of inversion, and of the key difference between face and 
object processing. 
 
The heart of the theory is that what makes face processing different from object processing is the 
existence of large, coarse (LSF) templates for faces. Small, fine (HSF) templates exist for both 
faces and objects. 
 
When any image is presented, all of these templates are used. Face images match all of these 
templates relatively well, possibly even the small, fine object templates. In contrast, non-face 
images only match the small, fine templates well (possibly including those for faces). Therefore, 
“face-specific processing” is really just the natural by-product of the fact that only faces match 
the large, coarse (face-tuned) templates well. In other words, what’s special about face 
processing lies in the templates, not the template-matching process or some other kind of 
“special processing”. The difference is quantitative rather than qualitative; there is likely to be a 
continuum between large and small templates in reality. 
 
The large, coarse face templates act as a gateway leading to further face processing, such as 
gaze-tracking or expression recognition. This gating is implicit, and is simply the result of the 
neurons that correspond to these templates (henceforth “face cells”) firing at best weakly in 
response to non-face stimuli. Importantly, the large, coarse templates support both face detection 
and identification, but they do not perform either task per se. These tasks are performed by 
downstream neurons (possibly in the prefrontal cortex) using the information from the face cells. 
 
“Holistic processing” is simply the result of templates being large; the actual processing is just 
regular template-matching. “Holism” is not about literal wholes. “Holistic perception” arises 
from the fact that the individual contributions of local face regions cannot be titrated out based 
on the response of a face cell. Face processing is both “holistic” and “partistic”, because face-
related templates include both large, coarse ones and small, fine ones. Importantly, the 
distinction between large/coarse and small/fine is likely to be artificial; a continuum may exist. 
 
“Configural processing” is simply the result of face cells being sensitive to second-order 
configural changes; the actual processing is, again, just regular template-matching. Configural 
and holistic effects are therefore just different phenomena arising from the same root cause – the 
use of large, coarse templates. The difference is in the stimulus changes; processing is identical. 
 
Inversion does not really “disrupt” any processing. Inverted faces elicit reduced responses from 
face cells; the processing is, as always, just regular template-matching. Inverted faces are harder 
to discriminate because the reduced responses are either more similar to each other, are more 
susceptible to noise, or both. Objects exhibit smaller inversion effects because the responses of 
small, fine templates are reduced by a lesser amount. Inverted faces are processed “like objects” 
only to the extent that responses of small, fine templates become relatively more prominent. 
 
The space in “face space” arises simply from the physical properties of face stimuli. “Face 
space” is manifested psychologically and behaviorally because large, coarse templates preserve 
the structure of that space. Norm-based coding relies on an implicit norm, not an explicit one. 
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More speculatively: large, coarse templates exist for faces due to a combination of innate factors, 
low visual acuity in infancy, ubiquity of faces, task demands and the physical properties of face 
stimuli (see Section 13.4.6 for longer discussion). The main locus of large, coarse face templates 
is the right FFA, which is biased towards LSFs. The small, fine face templates correspond to the 
left FFA, the OFA, or both. 
 
 
13.3 Contributions 
 
The main contribution of this thesis is that, for the very first time, we have demonstrated a model 
that may unify all the major aspects of face processing in a single framework. 
 
Starting with holism, we show that our “large, coarse template” theory of face processing 
explains the difference between “face-like” and “object-like” processing for both the FIE and 
CFE. Importantly, because we kept the stimuli constant while changing the “processing style”, 
we avoided the common confound of differences in physical stimulus characteristics. We also 
linked holism to the effects of inversion, spatial frequency filtering and contrast reversal. 
 
Crucially, we linked the two main dominant frameworks: holistic/configural processing and face-
space processing. With the same large, coarse templates used to account for holistic/configural 
processing, we showed that various aspects face-space/norm-coding can be reproduced also. 
 
Another important contribution is the fact that our model links the properties of face-selective 
single-neurons to behavioral effects for face processing. Starting from the responses of 
individual model units, we provided mechanistic, step-by-step accounts of how these behavioral 
effects arose. 
 
 
13.4 Implications 
 
In this section, we elaborate on certain aspects of our theory that run counter to prevailing ideas, 
are more speculative, or are more broadly applicable beyond face processing. 
 
13.4.1 The “single face” of configural processing 
 
An influential review by Maurer et al. (2002) is titled “The many faces of configural 
processing”. They distinguish between three kinds of “configural processing”: first-order 
processing (related to detection), holistic processing, and second-order configural processing. 
Based on behavioral markers, interaction with stimulus manipulations, and developmental 
trajectories, Maurer et al. (2002) argue that these are distinct forms of processing. 
 
In contrast, we propose that there is essentially only one form of processing (template matching), 
and these supposedly distinct forms of processing are simply different manifestations of the same 
process under different stimulus and task conditions. 
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The seemingly different developmental time-courses may just be incidental. We have not 
proposed a developmental aspect to our theory, but for now, let’s suppose that the number of 
large, coarse templates increases with development. This increase in number of templates may 
have different effects on different tasks. Detection may not improve much, once a certain number 
of templates are present. On the other hand, identification (and sensitivity to configural changes) 
may require more templates before performance plateaus. 
 
There are two caveats to our claim that there is just one form of processing. Firstly, the dynamics 
of the neural response may influence the information content available in face cells. Tsao et al. 
(2006) found that identification seems to have a longer latency than detection. We believe that 
this may simply be the result of gradually sharper tuning, rather than different processing. This 
sharpening of tuning could be a deliberate, general strategy not specific to faces, possibly linked 
to the notion of coarse-to-fine processing. Importantly, the process – template matching – is 
identical throughout. 
 
The second caveat is that the relative contributions of small, coarse templates (both for faces and 
objects) may vary as a function of time-course, stimulus properties, task, and the responses to the 
large, coarse templates. This means that there may be apparent differences in “processing style” 
under different circumstances, but the differences are just quantitative. For example, if the 
behavioral task is fine discrimination, small, fine templates may be more heavily relied on, 
compared to when the behavioral task is rapid face/non-face detection. 
 
 
13.4.2 Holism is not about wholes, and it is not all-or-none 
 
According to our theory, “holism” is somewhat of a misnomer, because it is not really about 
wholes. Historically, “holistic processing” is simply a term used to describe the unobservable 
psychological construct that was created to explain certain results in behavioral experiments 
(Richler et al. 2011b). There is really no evidence at all to suggest that face processing 
mandatorily involves 100% of a given face stimuli, rather than say 90% or 80%. 
 
It is unclear how literally the notion of “wholes” is generally taken, but the widespread usage of 
terms like “undecomposed”, “unified”, “unitary”, “single”, “all parts” and “as a whole” seems to 
suggest that this idea is taken seriously by some, if not many. This is rather mystifying, since 
faces can obviously be processed “part-istically” too. If faces were literally processed only as 
single unitary wholes, then we would only be able to perceive eyes and noses when faces were 
inverted (i.e. when “holism is disrupted”). 
 
Mechanistically, there are two versions of what it means for faces to be processed “as wholes”. 
The first is that all parts of a face are processed together, and all non-face parts are excluded. 
One problem with this idea is that it does not exclude scrambled faces from being processed 
holistically. More importantly, it cannot account for the holistic processing of blurred faces, in 
which the face parts are only recognizable in the context of the face. This leads to the second 
version, in which face detection is required. However, faces are not an unambiguously defined 
category with sharp boundaries (Meng et al. 2012), and it would seem rather un-parsimonious to 
suggest a sharp switch in processing style occurs when some threshold of face-ness is crossed. 
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This brings us to another point, which is that according to our theory, holism is not all-or-none 
(nor is face processing in general; Bukach et al. 2006). Instead of having two distinct separate 
processing styles (likely performed by distinct neuronal populations), our theory simply proposes 
that the degree of holism is continuous. It is a function of both the face templates and the stimuli. 
Larger templates are more “holistic”; stimuli that match the templates less are less “holistically 
processed”. While the templates can support detection, their responses are graded, not binary. 
This sidesteps the issue of whether line drawings, cartoon depictions, partial faces (and an 
infinite number of potentially face-like stimuli) should be considered faces or not. It is simply a 
matter of how well they match the face templates, so the issue is merely a quantitative one. 
 
13.4.3 Link between discriminability and neural response 
 
Beyond face processing, our theory has some interesting implications for visual recognition in 
general. For faces, since the templates are tuned to upright faces, they respond to inverted faces 
less strongly. Therefore, when inverted faces have to be discriminated, the elicited patterns of 
responses are more similar to each other, and are less discriminable. For the small, fine 
templates, inversion has less of a detrimental effect (e.g. since an inverted eye still somewhat 
resembles an eye). These findings are not profound or novel, and have been demonstrated before 
(Zhang & Cottrell 2004, 2006, Jiang et al. 2006). 
 
What’s interesting is the link to other phenomena. Take the other-race effect (ORE), for 
example. Face templates may be particularly attuned to own-race faces; therefore other-race 
faces may elicit smaller responses, which lead to less discriminability. 
 
Another interesting link is that to expertise. One explanation of why discrimination (or 
identification) performance improves with training is that the classification boundaries become 
appropriately adjusted through supervised training. However, another explanation (not mutually 
exclusive) is that the templates are adjusted in an unsupervised manner. Initially, generic 
templates may not respond strongly to the stimuli in question. However, through exposure, these 
templates become tuned to the stimuli, and therefore respond more strongly (Sigala & Logothetis 
2002). This leads to better discrimination. 
 
13.4.4 The units of perception and attention 
 
While our work on holism models purely the behavioral aspects (e.g. reproducing the CFE), 
there are interesting implications for the more subjective, perceptual aspects. The CFE is not 
simply an effect that arises from subjects making same-different discriminations; it arises from 
the experience of the face halves forming a combined percept. This does not happen when the 
face halves are inverted. The “perceptual field” hypothesis (Rossion 2009) reflects precisely 
these findings. 
 
However, what exactly is a “perceptual field”? How does it come about? Why is it smaller for 
inverted faces and objects? Our theory proposes a very simple and straightforward answer. 
Perception must arise from the activity of some population of neurons. The “basic unit” of 
perception therefore corresponds to the activity of one neuron. If the neurons are the “face cells” 
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that implement large, coarse template matching, then each neuron’s template is a largish face 
region. Putting these ideas together, the basic, indivisible unit of perception corresponds to a 
largish face region! In other words, the halves of a composite face are perceptually combined 
because each unit of perception covers a large portion of the face, and many units will span both 
halves. (Note that the small, fine templates contribute to perception too, but we ignored them for 
simplicity) 
 
For inverted faces, because the small, fine templates are less affected by inversion, their 
responses are now larger than those of large, coarse templates. Perception is therefore dominated 
by these responses. Accordingly, the “perceptual field” is thus, overall, smaller than for upright 
faces because of the template sizes. The same idea applies for perception of objects. 
 
A highly related topic is that of attention. Like for perception, the basic unit of attention must be 
the neuron. Using similar logic as for the case of perception, we argue that the “attentional field” 
for upright faces is larger than that for inverted faces and objects. 
 
In our simulations, we chose to model attentional modulation at the pixel level, for reasons of 
simplicity and making minimal assumptions. In reality, we believe that the notion of a large 
“attentional field” for upright faces is precisely why subjects display the CFE despite explicit 
instructions to attend to only the top halves. Because many face cells are tuned to face regions 
that span both halves, the attentional system has no choice but to (at most) minimally modulate 
the responses of these face cells. The exact algorithm for attentional modulation is not important 
for explaining the CFE. What is important is that in comparison to inverted faces and objects, the 
(large, coarse) templates for upright faces span both halves in greater proportion and to a greater 
extent. 
 
13.4.5 Faces, faces, everywhere 
 
One interesting phenomenon is that people seem to be able to perceive face-ness is many 
situations where there is clearly not a real (biological) face. While this phenomenon is clearly not 
solely restricted to faces (e.g. people can imagine many things from looking at clouds), it seems 
to be much more prevalent for faces. 
 
Our theory posits that this is because of the coarseness of the face templates. While holism stems 
from the largeness rather than the coarseness of the templates, we argue for various reasons (see 
next section) that these templates should also be coarse. What this means is that many images 
will tend to activate these templates relatively strongly, as long as the images have the first-order 
configuration of faces. Importantly, this is not face detection per se, because it is clear that these 
face-like stimuli are not real faces. Interestingly, face-specific properties such as emotional 
expression can be perceived from such face-like images, further arguing against the notion that 
face detection acts as a binary gating mechanism for subsequent face-specific processing. 
 
13.4.6 Why large, coarse templates? 
 
This thesis was focused on the “how” (mechanisms) and the “what” (behavior, 
electrophysiology) of face processing. Here, we speculate about the “why” – specifically, why 
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would face templates be both large and coarse? We believe that it is a combination of stimulus 
properties, innate genetics, ubiquity, social demands, poor infant visual acuity, and task 
demands. The relative importance of these factors is debatable, but they all play a part. 
 
The most fundamental factor is stimulus properties – the fact that faces have a common first-
order configuration. If not for this fact, the other factors would most likely not come into play. 
Both largeness and coarseness are viable characteristics because of the common first-order 
configuration. For other stimulus classes that lack a first-order configuration (e.g. fruits, lamps, 
and chairs), large templates or coarse templates would be poorly informative. 
 
There is evidence of innate genetic influences on face perception (Polk et al. 2007, Sugita 2008, 
McKone & Palermo 2010, Wilmer et al. 2010), and in particular, evidence for large, coarse 
templates (Valenza et al. 1996, Turati et al. 2002). This is linked to other factors such as 
ubiquity, social demands, stimulus properties and infant visual acuity. It would appear that there 
may be some evolutionary advantage to having good face recognition abilities, since faces are 
ubiquitous and their recognition is essential for social survival. However, if faces did not have a 
common first-order configuration, innate coding for coarse templates may not be viable. 
Moreover, due to poor visual acuity in infancy, it would be uneconomical – perhaps even 
detrimental – for innate face templates to be finely coded. 
 
Even if there were no innate specification of face templates (and face recognition abilities were 
developed purely through interaction with the environment), the ubiquity of faces during infancy 
would still seem to dictate that face templates would arise early in development. They would be 
coarse templates, as a result of poor visual acuity. Furthermore, since small, coarse templates 
would be rather less informative than large, coarse ones, the latter would be preferred. 
Interestingly, it has been found that subjects with early visual deprivation do not show the CFE 
misalignment effect (Le Grand et al. 2004). Later in development, more non-face objects are 
viewed and need to be recognized – at which time visual acuity may be sufficient to support 
small, fine templates (for both faces and non-faces). 
 
Finally, a combination of task demands and stimulus properties may also necessitate large, 
coarse templates. More so than for any other stimulus class, faces commonly need to be 
identified, not just detected. At the same time, individual faces vary strongly (though not solely) 
in second-order configuration. Discrimination of configural differences may rely strongly on 
large, coarse templates. 
 
 
13.5 Predictions 
 
Models – whether qualitative mental models or quantitative computational models – are 
important as tools to help put together a coherent understanding. Equally important is the role of 
models in suggesting experiments and making predictions to help advance that understanding. In 
this section, we attempt to do precisely that. 
 
Our predictions come in various degrees of specificity. Also, not all stem directly from the 
quantitative model that was implemented; some are from the more qualitative theoretical 
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framework proposed earlier in this chapter. The more speculative or vague predictions are 
indicated by an asterisk (*). 
 
13.5.1 General predictions 
 
The CFE is a differential effect. While some evidence of this already exists (see Chapter 2), we 
believe that stronger evidence can be found by using unambiguously non-face stimuli that vary 
in identity solely in terms of second-order configuration. Examples could include dot patterns 
(e.g. like the stimuli used in Farah, Tanaka & Drain 1995) 
 
Holism for face-like stimuli. Stimuli that look like faces, but are clearly not (e.g. eyes replaced 
with other objects, Donnelly et al. 1994) should also elicit a FIE and CFE, but probably of a 
smaller magnitude. This is because the large, coarse templates are activated relatively strongly. 
In order to maximize this effect, the task should be discrimination of configural changes, and 
conducted should be under feedforward conditions (e.g. short presentation times, masking). 
 
Measures of holism correlate with face-ness ratings. Related to the previous prediction, subjects’ 
rating of face-ness (of noise-masked or LSF stimuli, for example) should correlate with measures 
of holism on a trial-by-trial basis. For example, for a single trial using two stimuli that rated as 
highly face-like, subjects should (on average) exhibit the CFE. This is unlike the current 
paradigms, which average over trials that unambiguous faces. 
 
Behavioral CFE magnitude correlates with neural reduction on a trial-by-trial basis. Our account 
of the CFE banks on reduction of responses to inverted and misaligned faces. Measures of neural 
activity (e.g. BOLD, N170, spike count) in “holistic” brain areas (e.g. FFA, MF/ML) should 
reflect this reduction on individual trials that show the CFE. 
 
Measures of holism are correlated with “largeness”. Neurons or brain areas are usually 
characterized as responsive to parts or wholes in a binary manner. More sensitive, continuous 
characterization in terms of “largeness” (e.g. size of optimal face stimulus) should correlate with 
measures of holism, since holism is not all-or-none. 
 
Face-space adaptation to contrast-reversed and regular faces is similar. Responses to inverted 
and upright faces are negatively correlated, which is why adaptation effects appear to be distinct 
for inverted and upright faces. However, responses to contrast-reversed and regular faces are 
positively correlated. Therefore, neurons that are strongly activated by (and adapt to) regular 
faces, are also the ones that would have been strongly activated by contrast-reversed faces. 
 
* Attentional “resilience” for faces. Since face cells are tuned to large face regions, faces may be 
more “resilient” than objects in terms of attentional modulation. Some examples might involve 
overlapping translucent stimuli, or scenarios involving attentional capture. However, it may be 
difficult to disentangle any results from the fact that faces are more salient due to social factors. 
 
* The size of the face “perceptual field” is not retinotopic. Earlier, we stated that the perceptual 
field is larger for upright than inverted faces. However, since we believe that face templates are 
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scale-tolerant and not tied to retinotopic factors, these sizes are in relative terms (e.g. percentage 
of a whole face), not absolute ones (e.g. degree of visual angle). 
 
13.5.2 Electrophysiology 
 
The optimal stimuli for MF/ML are large faces regions. Freiwald et al. (2009) have shown that 
MF/ML face cells respond to at most four semantic face parts. We predict that by using a 
“growing” search paradigm (increasing the proportion of a face until responses plateau or 
decrease), the optimal stimulus should similarly be large (but not necessarily whole).  
 
MF/ML neurons fire more strongly to aligned than misaligned composites. Our account of the 
CFE banks on reduction of single-neuron responses due to misalignment. Since MF/ML neurons 
seem to share many common characteristics as our large, coarse units, we predict that these 
neurons respond to misalignment like our units do, and are the neural basis of the CFE. 
 
Neurons that are most strongly activated by upright faces are the ones most affected by 
inversion. According to our simulations (see Fig. 10.1), the responses to upright and inverted 
faces are negatively correlated for large, coarse templates. 
 
13.5.3 fMRI 
 
Voxels that span both halves will show the misalignment effect, but not others. Our account of 
the misalignment effect essentially arises from the fact that our large, coarse units span both 
halves of the composites. Regardless of specific brain region (OFA, FFA, fSTS), we predict that 
only individual voxels that respond significantly stronger to whole faces than either half alone 
will show the CFE. Furthermore, this is also true for voxels that respond significantly stronger to 
the middle region than top or bottom regions (equalized for size). 
 
13.5.4 Behavior 
 
Bias towards “same” for inverted faces. Cheung et al. (2008) found that for both “partial” and 
“complete” designs, misalignment shifted the bias towards “same”. Our simulations predict that 
this shift should also happen for inversion. 
 
 
13.6 Future work 
 
13.6.1 Detection versus identification 
 
While we found that large, coarse templates seem to be able to support both detection and 
identification, we have yet not actually trained classifiers to do so. We predict that performance 
on both tasks will be above chance (though not necessarily equally good). An interesting 
extension to this will be to examine performance as a function of tuning width. One possibility is 
that in the brain, initial broad tuning optimizes detection performance, while a gradual 
sharpening of tuning happens in order to better support identification. 
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13.6.2 Face space, norm-based coding and caricatures 
 
In chapter 11, our adaptation results were not ideal in the sense that adaptation to both -3 and +3 
face were in the same direction, and we hypothesized that this was due to the small and non-
representative sample of faces used during template extraction. We should verify that a large, 
naturalistic set of faces are indeed normally distributed (as presumed), and then examine the 
templates extracted from this set of faces to see if these are also normally distributed in some 
manner. 
 
We have not demonstrated the caricature effect. Modifications to the model, such as allowing the 
templates to “repel” each other through competitive interactions (Brunelli & Poggio 1993), may 
be required. 

 
13.6.3 Featural versus configural processing 
 
While similar models such as those of Zhang & Cottrell (2004, 2006) and Jiang et al. (2006) 
have replicated the behavioral findings regarding featural versus configural changes, our model 
has not. This will be an important sanity check for our model. 
 
13.6.4 Other-Race Effect (ORE) 
 
We can attempt to reproduce the ORE by extracting templates from faces of only one race, and 
then compare the discrimination performance on “own-race” versus “other-race” faces. 
 
13.6.5 Computer Vision 
 
Variants of our model have been used for object recognition tasks on standard Computer Vision 
(CV) datasets and achieved competitive performance (Serre et al. 2007, Mutch & Lowe 2008). If 
our model does indeed mimic the human visual system, then we would hope that it also performs 
well on standard CV datasets for faces as well. Unlike the approach taken in this thesis, 
substantial parameter tuning may be required. Importantly, both large/coarse and small/fine 
templates are likely to be needed for good performance. Interestingly, Pinto and colleagues 
(Pinto et al. 2011) have already achieved good face recognition performance using similar 
models. We have not yet compared the properties (e.g. template size) of our model and theirs. 
 
 
13.7 Conclusion 
 
In this thesis, we have concentrated on accounting for face processing using large, coarse 
features. However, at every step along the way, we have used small, fine features as a control, 
calling it “object-like” processing. While this thesis has already set the ambitious goal of 
providing a unified account of face processing, there is the remote possibility that if our model is 
correct in that face and object processing really just differ in the use of large, coarse templates 
versus small, fine templates, then perhaps we have also made the first step towards a unified 
account of face and object processing! 
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