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Abstract 

Some of the biggest achievements in our lives are made even before we learn to 
tie our shoes. Within a few years of life, we master a language, acquire cultural norms, 
and develop naïve, yet rich, abstract, coherent theories about how the world works. 
How do young learners achieve such a feat? The goal of my thesis is to lay the 
groundwork for a unified account of a rational inference mechanism that underlies this 
remarkable human faculty to learn so much, so fast, from so little. The first study 
(Chapter 2) provides evidence that 16-month-old infants can use co-variation 
information among agents and objects to infer the cause of their failed actions; 
depending on their attribution, infants either approached another agent or another 
object. The second study (Chapter 3) shows that 15-month-old infants consider both the 
sample and the sampling process to rationally generalize properties of novel objects in 
the absence of behavioral cues. The results are consistent with the quantitative 
predictions of a Bayesian model, and suggest that infants’ inferences are graded with 
respect to the probability of the sample. Finally, the third study (Chapter 4) shows that 
older children make sophisticated inferences about properties of agents; children 
evaluated an informant based on information he provided, and such evaluations 
affected how children learned from that informant. These studies provide evidence for 
rational, probabilistic, domain-general inference mechanisms in preverbal infants, and 
demonstrate how young learners seamlessly integrate data from different sources in 
ways that affect their exploration, generalization, and evaluation of both the physical 
and the social world. 
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Chapter 1 

Understanding How We Learn 

 

 

Imagine a 2-year-old. She watches her mother flip a switch and sees a light turn 

on. The toddler tries to flip that switch. Then she turns to a different switch – for 

example, one on her new toy, and the toy plays music.  She now tries a novel action, 

flipping it back, and the music stops. She finally flips a switch on the vacuum cleaner 

(which, unbeknownst to the child, is unplugged). Seeing that nothing happens, she 

turns to her brother to ask why it doesn’t work. 

From just a few minutes of watching this child play, you can see the whole range 

of behaviors associated with what we call “learning”: observation, imitation, inductive 

generalization, production of novel interventions, communication with others and even 

asking for more information. The transition between learning from others and learning 

from her own exploration of the environment appears seamless, and the child is in 

command of her own behavior in every aspect. Embedded in the mundane, everyday 
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activity of a young child is a remarkable ability to flexibly combine a host of ways to 

maximize learning in a given context.   

A fundamental challenge for theories of human learning is to fully appreciate 

this distinctive human faculty to flexibly learn from others as well as from the physical 

world, and to provide a unified account that explains how we can learn so much, so 

quickly, yet so accurately, in a complex, noisy environment. In this thesis, I aim to 

provide the groundwork for building an account of a learning mechanism that makes 

this daunting task feasible even for a 2-year-old.  

 In my dissertation, I continue in the tradition of advancing a unified account of 

rational inference across areas traditionally thought of as domain-specific knowledge 

(with respect to both the core systems of knowledge and our intuitive theories) and 

those traditionally thought of as domain-general processes (e.g., the ability to draw 

inductive inferences from evidence). As such, my work draws from the cognitive 

development literature on infants’ rich, abstract conceptual repertoire (Spelke, 

Breinlinger, Macomber, & Jacobson, 1992; Carey & Spelke, 1994) and children’s naïve 

theories in different content domains (Gopnik & Wellman, 1994; Carey, 2009)  and the 

hierarchical Bayesian framework for understanding human cognition (Tenenbaum, 

Kemp, Griffiths, & Goodman, 2011).  

 In what follows, I describe the key ideas that constitute the theoretical origins of 

my work. First I review developmental research on core systems of knowledge and 

children’s naïve theories of the world (1.1). I then briefly introduce hierarchical 

Bayesian inference mechanisms as a formal learning principle (1.2), and review recent 

research predating my work that provides cases of learning in which children’s rich 

understanding of the world interacts with powerful inferential capacities to construct 
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abstract knowledge (1.3). Finally, I conclude Chapter 1 with a discussion of what this 

dissertation aims to contribute theoretically, methodologically, and empirically, to this 

research tradition (1.4). 

 

1.1 Core knowledge and intuitive theories: What we know and what we 

learn 

In the past few decades, research in cognitive development has transformed our 

views about both the content and the form of children’s knowledge about the world 

(Carey, 1985, 2009; Keil, 1989; Gopnik, 1988; Perner, 1991; Gopnik & Wellman, 1992; 

Wellman, 1990). One direction of this transformation was spurred by hundreds of 

studies showing how much children know about the world. Especially with the 

development of looking-time methods, research has revealed that an infant’s mind is 

neither a “blooming, buzzing confusion” (James, 1890) nor a simple sensorimotor 

machinery that merely reacts to an external stimulus, but much the opposite; even very 

early in life, infants possess a rich, abstract understanding of their environment that 

forms the core of the end state of cognitive development. Such initial representational 

repertoire, referred to as core knowledge (Spelke & Kinzler, 2007) or core cognition 

(Carey, 2009), is thought to be largely shared by other non-human species (Emlen, 

Wiltschko, Demong, Wiltschko, & Bergman, 1976; Regolin & Vallortigara, 1995; 

Mascalzoni, Regolin, & Vallortigara, 2010; Gallistel, 1989; Blaisdell, Sawa, Leising, & 

Waldmann, 2006) and have distinct evolutionary origins across different domains. 

These core content domains include: (a) objects, and the kinds of information we bring 

to bear on understanding events that involve physical entities in space (Spelke, 1990; 
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Baillargeon & DeVos, 1991; Carey & Xu, 2001), (b) number, with respect to both the 

magnitude of large numbers (Xu & Spelke, 2000; McCrink & Wynn, 2004; Lipton & 

Spelke, 2003) and a precise representation of small numbers (Wynn, 1992; Feigenson, 

Carey, & Spelke, 2002; see Feigenson, Dehaene, & Spelke, 2004, for review),  and agents, 

which include the core principles governing people’s perceptions, attention, goals, and 

their actions (Luo & Johnson, 2009; Johnson, Slaughter, & Carey, 1998; Carpenter, 

Nagell, Tomasello, Butterworth, & Moore, 1998; Woodward, 1998; Gergely & Csibra, 

2003). Armed with such abstract representations of the world, infants already show 

early signatures of bringing these resources together to make accurate predictions of 

events that occur among objects and people (Leslie & Keeble, 1987; Muentener & Carey, 

2010; Saxe & Carey, 2006; Hamlin, Wynn, & Bloom, 2007). A vast amount of literature 

now attests to both the richness and sophistication of infants’ and young children’s 

system of knowledge that far exceeds the limits that Piaget proposed more than half a 

century ago. 

While it is important to study the earliest possible stages of cognition, it is also 

important to study how it changes; that is, how children build coherent systems of 

conceptual knowledge beyond what is in the innate repertoire, and how such 

representations change and grow. Decades of research in cognitive development has 

revealed that the structure of representations in young children is coherent and stable, 

but at the same time, malleable. One prominent approach has likened children’s naïve 

theories to scientific theories (Carey, 1985; Keil, 1989; Gopnik & Wellman, 1992). Such 

an analogy has been extremely fruitful in characterizing the content and the structure of 

knowledge in young children as well as their developmental trajectories. Through their 

interactions with the external environment and interventions on its causal structure, 
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children develop abstract concepts such as weight, gravity, birth, interference, or hope, and 

construct a system of beliefs (naïve theories) about various domains such as the 

physical (Baillargeon, 1993), biological (Gelman & Wellman, 1991; Hatano & Inagaki, 

1994; Kalish, 1996), and psychological worlds (Flavell, 1999; Perner, 1991; Gopnik & 

Wellman, 1992). Just like scientists, children not only use their existing knowledge to 

predict and explain their experience, but in the face of new evidence, they revise and 

update their theories (Gopnik & Meltzoff, 1998; Carey & Spelke, 1994). Importantly, 

these revisions are not just tweaks or refinements to existing concepts and theories, but 

involve fundamental shifts in the child’s conceptual repertoire that result in genuine 

discontinuities in children’s understanding of the world (Carey, 1985, 2009).  

All these enterprises – discovering the initial representational capacities and their 

signature limits in core domains, investigating the structure and the content of 

children’s conceptual knowledge about the world, and describing how children’s 

representational resources go through changes in the course of development – have 

transformed our understandings about what we know (and don’t know) about the 

world, as well as what we learn (and don’t learn) about the world. However, even a full 

description of what infants know and how their knowledge changes would not make a 

complete picture of learning. The domain-specific core systems of knowledge, 

grounded in distinct evolutionary origins, might help characterize the initial state but 

don’t address the inferential processes that guide learning. The approach to 

understanding conceptual development as a process akin to theory acquisition has 

focused on the content and structure of representations, but there has been little 

empirical support for the claim that even very young human learners are equipped with 

rational inferential capacities that allows these representations to change and grow. To 
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fully capture the faculty for learning in a complex, social environment, we need an 

account of the inferential processes themselves that support learning from both the 

social and the physical world in the ordinary course of everyday life.  

 

1.2  Hierarchical Bayesian models: A formal learning principle 

 The history of cognitive science has provided many different proposals for 

domain-general learning mechanisms, including operant or classical conditioning, 

associative learning principles, simple behavioral mirroring, or genetically programmed 

changes in our perceptual system that occur with relevant input. None of these, 

however, can fully account for our remarkable ability to develop rich, abstract theories 

from sparse data. Throughout this thesis, when I refer to a domain-general learning 

mechanism1, I am referring to the capacity to engage in inductive reasoning based on 

observed evidence and rich prior hypotheses about how the world works, for which 

principles of Bayesian inference provide a very good formalization.   

Consider again the example of the baby who flips the switch on her toy. In order 

to learn, the child has to assimilate new data into existing representations (schemas, in 

Piaget’s terms) and change her representations to accommodate new data (Piaget, 1929; 

1954). Developmental researchers took a less formal approach to qualitatively 

characterize the learner’s representations and to describe the process by which they 

change through learning. Recent advances in computational approaches to 
                                                

1 In this thesis, I make no theoretical commitments about whether this process should be 

consciously accessible or not, and discussions about the extent to which this capacity is 

fundamental for human cognition is beyond the scope of this thesis. 
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understanding human cognition have offered a way to capture both the representations 

and the process by which they change in probabilistic models of inference. In particular, 

hierarchical Bayesian models of human learning have provided elegant formalizations 

of how abstract knowledge can be learned by updating the learner’s degree of belief in 

hypotheses to account for novel evidence (Tenenbaum, Griffiths, & Kemp, 2006; 

Tenenbaum et al., 2011).  

Bayes’ rule expresses how we can infer the probability of a hypothesis given 

observed data (the posterior probability of a hypothesis) by assessing the prior probability 

of the hypothesis given the learner’s current theories (P(h)), and the degree to which the 

data are expected under a given hypothesis (likelihood, P(d|h)). More formally, the 

posterior probability of a hypothesis is proportional to the product of the prior 

probability P(h) and the likelihood P(d|h), relative to the all other hypotheses h’ in the 

learner’s hypothesis space H.   

𝑃 ℎ 𝑑 =
𝑃 𝑑 ℎ 𝑃(ℎ)
𝑃 𝑑 ℎ! 𝑃(ℎ!)!"∈!

∝ 𝑃(𝑑|ℎ)𝑃(ℎ) 

Imagine you just sneezed. Given this piece of evidence, you might entertain a 

few possible hypotheses: perhaps you have a cold (h1), a stomach flu (h2), or a pollen 

allergy (h3). If you live in Massachusetts and it’s January, your assessment of the prior 

might quickly rule out h3 as an explanation; a pollen-induced allergy in January is quite 

unlikely in Massachusetts. Likelihood P(d|h), in contrast, favors h1 and h3 over h2; both 

cold and allergy are likely to induce sneezing whereas a stomach flu is not. Because 

Bayes’ rule scores hypotheses on both their priors and likelihoods, you can easily infer 

that the most likely explanation for your symptom is h1, cold, which scores high on both 

terms.  
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Of course, the learner’s inference may change with additional data. Suppose 

you’ve been sneezing for two weeks straight, with no other symptom. The evidence 

now seems quite surprising under h1, as two weeks of sneezing in the absence of fever is 

quite unlikely given the hypothesis that the underlying cause is a cold. And if you 

notice that your orchid plant has been in full bloom for a while, you might now 

consider h3 (allergy) as much more plausible than h1 (cold).  

The learner’s prior knowledge about the world also plays an important role by 

providing a rich repertoire of priors over which this inference engine can operate. These 

priors act as powerful constraints (both for the good and the bad) to quickly eliminate 

some hypotheses while weighting others more, to allow accurate, robust inference even 

from sparse data. For example, you could easily rule out h3 (allergy) because your prior 

knowledge about the climate of Massachusetts (among many other things) suggested 

the probability of having pollen-induced allergy in January is quite low; your 

knowledge about orchid plants provided reasons to consider h3 despite the season2.  

As illustrated above, Bayes’ rule can capture a variety of inferential practices we 

exercise every day, formalizing our intuitions about why some hypotheses seem like 

better explanations for observed evidence than others, how a previously endorsed 

explanation might become less plausible, or why a piece of evidence appears quite 

surprising under the currently favored hypothesis. Hierarchical Bayesian models also 

offer an account for how such theory-like constraints can emerge from data (Kemp & 

Tenenbaum, 2008; Kemp, Perfors, & Tenenbaum, 2007; Goodman, Ullman, & 
                                                

2 If you sought even more information to confirm your suspicion, you might have 

discovered that orchid flowers are actually quite an unlikely cause for a pollen-induced allergy! 
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Tenenbaum, 2011). As the name ‘hierarchical’ Bayesian model suggests, these inferences 

not only use acquired data to update local belief representations but operate at multiple 

levels of knowledge to allow patterns of data to be abstracted further up, ultimately 

deriving fundamental principles that shape our most abstract theories of how the world 

works; at the same time, such abstract knowledge constrains inferences at lower levels 

to facilitate learning. Such simultaneous learning at multiple levels of abstraction 

(Tenenbaum et al., 2011) provide a powerful account for how learning at so many levels 

occur from a learner’s limited experience with the world. 

 

1.3 Rational learning from data: Evidence in early childhood  

One of the hallmarks of cognitive development is the emergence of coherent, 

abstract, large-scale systems of knowledge within just a few years of life. Understanding 

the origins and changes in the content and structure of a child’s representations is 

critical for revealing how we achieve such a feat; the current conceptual repertoire of 

the learner guides her interaction with the world, and her abstract theories about the 

world interact with her interpretion of new data. However, a full account of learning 

must also address the properties of the learning processes themselves: their speed, 

robustness, flexibility, malleability, and ability to deal with incompleteness and 

uncertainty. By marrying decades of empirical, theoretical endeavors to characterize 

children’s knowledge and the formal framework for understanding human learning as 

probabilistic inferences at multiple levels of abstraction, researchers have begun to 

capture early learning as an interaction between systems of rich priors and the 

operations of a powerful inference engine that perform computations over observed 

evidence. Such advances have not only added rigor and precision to expressing ideas 
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like domain-specific knowledge and domain-general learning mechanisms, but have 

also spawned an interdisciplinary approach to studying early learning in more precise, 

quantitative, and formal terms. In particular, recent studies have begun to show that 

children do indeed draw rational inferences from patterns of data, suggesting that 

abstract knowledge can be acquired from formal properties of input such as statistical 

information embedded in everyday events (see Schulz, 2012; Gopnik & Wellman, in 

press; Xu & Tenebaum, 2007, for reviews). 

 

1.3.1 Causal learning from patterns of data 

Recently, a new field of research inspired by the principles of Bayesian inference 

has begun to reveal children’s impressive abilities to draw abstract causal inferences 

from sparse data. For example, studies have shown that children as young as two years 

old can use conditional dependencies across objects and their outcomes to make 

accurate judgments about what causes a machine to activate (Gopnik, Sobel, Schulz, & 

Glymour, 2001). Along with formal analyses of learning from evidence, studies 

provided evidence that children’s inferences operate across content domains and are 

rationally influenced by both the evidence and their own prior knowledge about the 

world (Schulz & Gopnik, 2004; Schulz, Bonawitz, & Griffiths, 2007a). Impressively, 

based on just a few pieces of evidence, preschoolers inferred abstract physical causal 

laws behind interactions between novel physical objects, and based on these laws they 

even inferred the existence of a hidden object (Schulz, Goodman, Tenenbaum, & Jenkins, 

2008a).  

The data available for learning are not limited to things and events that just 

happen; children also learn from their own interventions. Schulz, Gopnik, and Glymour 
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(2007b) looked at preschoolers’ ability to distinguish different possible causal structures 

of a toy from observed evidence. In addition to showing that children correctly infer the 

correct causal structures from evidence offered by an experimenter, they showed that 

children’s spontaneous free play with the toy, albeit noisy, generates useful evidence 

that supports accurate learning. For example, after playing with a toy themselves, 

children were more likely to choose the correct causal chain structure if the toy actually 

had causal chain structure than when it had common cause structure.   

Additionally, children are sensitive to certain formal properties of evidence that 

can systematically guide their own exploration and intervention, including a sensitivity 

to confounding (Kushnir & Gopnik, 2005; Schulz & Bonawitz, 2007; Sodian, Zaitchik, & 

Carey, 1991). For instance, children explore more when evidence is consistent with 

multiple hypotheses. Schulz and Bonawitz (2007) showed that preschoolers are more 

likely to override their novelty preference to explore a familiar toy when the toy offers 

confounded evidence (e.g., two levers pressed together make two toys pop up) than 

when it offers unambiguous evidence (e.g., two levers pressed separately make each toy 

pop up). Gweon and Schulz (2008) showed that preschoolers play with a toy more 

variably upon observing confounded evidence, and that those who generated useful 

evidence in the course of free play were in fact much more likely to learn the correct 

causal structure of the toy than children who observed unambiguous evidence from the 

beginning. Furthermore, children don’t simply play more when evidence is ambiguous; 

they also design effective interventions that offer useful information (Cook, Goodman, 

& Schulz, 2011). These studies, along with others, have begun to draw attention to the 

underlying principle that guides children’s actions. 
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 1.3.2 Learning from statistical information 

One of many exciting aspects of these studies is that they show how children can 

keep track of events they observe to infer the underlying structure of the world. About a 

decade ago, a body of infant research had begun to reveal that an impressive sensitivity 

to statistical information is already present early in life. For example, infants can use 

transitional probability embedded in a continuous stream of artificial speech for word 

segmentation (Saffran, Aslin, & Newport, 1996). Numerous reports have corroborated 

and extended these findings to show that infants reliably represent, extract, and 

generalize abstract structure of the underlying input across different modalities 

(Kirkham, Slemmer, & Johnson, 2002; Marcus, Vijayan, Rao, & Vishton, 1999; Marcus, 

Fernandes, & Johnson, 2007; Johnson et al., 2009; Frank, Slemmer, Marcus, & Johnson, 

2009).  

Impressively, infants do not require lots of accumulated experience to extract the 

underlying structure. Xu and Garcia (2008) showed that infants as young as 8 months 

can form expectations about the properties of a sample (e.g., five ping-pong balls) from 

a population (e.g., a box full of ping-pong balls) and about a population from a sample. 

This ability to make generalizations from just a few samples to the whole population is 

at the core of the ability to draw inductive inference from minimal data. Furthermore, a 

recent study reports that 12–month-olds can form graded, probabilistic expectations of 

future events from minimal data, using their abstract understanding of object motion 

and space (Teglas, Girotto, Gonzalez, & Bonatti, 2007; Téglás et al., 2011). These results 

are exemplary cases where infants’ inferential capacities and the rich constraints work 

together to reason about events without previous exposure to its elements, and to form 
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probabilistic representations that reflect the degree to which the observed events are 

surprising. 

In sum, human learners, even before their first birthday, show impressive 

abilities to (1) extract useful structure embedded in a stream of events they experience, 

and (2) make predictions about single events from observed statistical properties of the 

environment. Taken together, the studies reviewed here provide evidence that learning 

can occur without heavy reliance on accumulated experiences within a content domain;  

a powerful learning mechanism (along with rich, innate constraints) allows rapid, yet 

robust, acquisition of abstract knowledge across content domains even from sparse 

evidence.   

While the term ‘statistical learning’ might imply that such formal properties of 

data are independent of our conceptual understandings of agents and objects, it should 

be noted that there are no theory-neutral statistical data. Statistics are always about 

something, and the representations children do statistics over are saturated with 

theories throughout. Nevertheless, the flexibility of this learning mechanism with 

respect to its input as well as its output suggests that learning need not be constrained 

either by the content domain to which the information belongs, or by from where the 

information originates, as is the case with some perceptual processes (e.g., see Scholl & 

Tremoulet, 2000).  

Until recently, evidence for these domain-general inferential capacities in early 

childhood has been provided almost exclusively in the context of simple physical 

reasoning. As a result, the rich social environment in which real-world learning actually 

occurs has received relatively little attention. However, research has begun to show that 

principles of Bayesian learning can account for inferences in social contexts. Xu and 



 

 

 24 

Tenenbaum (2007a) showed that preschoolers generalize a label for a novel object more 

conservatively when the exemplars are sampled by a knowledgeable teacher than when 

they are chosen by the learners themselves. Furthermore, children draw accurate 

inferences about other people’s preferences given apparent violations of the random 

sampling process. For example, when an agent (i.e., a squirrel puppet) deliberately 

draws a non- representative sample of toys from the population, preschoolers infer that 

the agent has a preference for the sampled objects (Kushnir, Xu, & Wellman, 2008). 

More recently, studies have shown evidence that even infants can use people’s 

preferences to constrain their inferences from population to sample (Denison & Xu, 

2009) and use sampling information to infer people’s preferences (Ma & Xu, 2011). 

 These studies, however, only touch the tip of an iceberg; decades of developmental 

research have documented how social contexts affect what and how children learn.  

They learn from people’s goal-directed actions (Woodward, 1998; Sommerville & 

Woodward, 2005), and they selectively imitate goal-directed behaviors (Gergely, 

Bekkering, & Kiraly, 2002; Meltzoff & Brooks, 2001; Lyons, Young, & Keil, 2007). 

Preschoolers even use information about others’ epistemic states (Sabbagh & Baldwin, 

2001; Koenig, Clément, & Harris, 2004) to decide whether to accept or reject information 

provided by others. The scope of behaviors studied in this body of research exemplifies 

the variety of sources of input a learner must face to learn about the world. This calls for 

not only empirical endeavors to study core inferential processes that underlie learning 

from different sources, but also a theoretical account of many phenomena that have 

been widely considered the results of ‘constraints’ or ‘assumptions’ applied specifically 

to social contexts. How can we use formal inferential principles, as well as our rich, 

abstract understanding of people, things, events, and their relations, to better 
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understand how we learn from our environment? In the next section, I present my 

approach to address some of these questions. 

 

1.4 Towards a unified account of learning from rational inference 

Theories of social learning have largely focused on domain-specific processes 

involved in our ability to attend to others’ behaviors. By contrast, work on our early-

developing sensitivity to statistical information and the capacity to draw inductive 

inferences from data has been relatively agnostic about the social context in which 

learning occurs, and the ways in which data are sought after, evaluated, and filtered by 

the learner.  

Motivated and inspired by the idea that humans are rational learners equipped 

with a powerful inferential mechanism, the studies I present in the following chapters 

offer empirical support for the central claim of my thesis: human learners engage in 

core inferential practices via fundamental principles of learning, whether they are 

engaging in socially learning from others, exploring on their own, generalizing 

properties of objects, or evaluating information provided by others.    

In my approach to understand learning in social contexts, I discuss the following 

three ideas: 

(1) Selection: how learners navigate between different sources of information by 

carefully monitoring their relative informativeness, 

(2) Integration: how learners flexibly utilize information acquired from various 

sources with different representational format,  

(3) Construction: how learners construct a coherent system of knowledge across 

content domains that, in turn, can support (1) and (2).  
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There is nothing fundamental or exhaustive about the distinction between these ideas. 

As in the example of the switch-flipping toddler, each of these aspects of learning are 

tightly linked to one another, presumably share common representational resources, 

often operate simultaneously, and affect the learner’s behaviors on-line. Nevertheless, 

the list above provides a useful way to separate out the processes that may serve 

distinct purposes but together constitute what we call learning: searching for 

information, integrating information from different sources, and generating robust, 

abstract representations that guide the learner’s behaviors in the world.  

 In the chapters that follow, I introduce studies that test different populations using 

different tasks in different contexts. Despite their differences, all these studies ask about 

selection, integration, and construction by addressing the following aspects of our 

inferential capacities. First, what is the input to this mechanism? That is, what kinds 

information do learners make use of? Second, do learners make rational use of this 

information, drawing accurate inferences with respect to their goals that are consistent 

with predictions of formal models of human cognition? Finally, what is the output of 

this mechanism? How does it affect the learners’ real-world behavior, and how do these 

behaviors contribute to their knowledge? These questions form a useful template that 

brings together the next three chapters.  

 The studies I present here are just the beginning steps towards providing a full 

account of the three ideas above (see Chapter 5 for a discussion about how the studies 

bear on each of these ideas). Building on prior work showing that learning involves 

both the operation of a domain-general inference mechanism and rich, structured 

domain-specific representations, my work extends the idea of rational learning 

conceptually, developmentally, and methodologically. Conceptually, I extend the scope 
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of rational inference mechanism to cases where we learn socially from others; 

developmentally, I provide evidence for some of the earliest signatures of these 

inferential capacities in late infancy as well as the sophisticated abilities in older 

children; methodologically, I use computational models to formally characterize 

children’s inferences from data, and present novel ways to measure children’s 

inferential processes that lend themselves well to be compared with predictions of these 

models.   

 The next chapter, Chapter 2, will investigate infants’ ability to use statistical 

information embedded in their own and others’ interventions. I look at how infants use 

this information to make accurate causal attributions to themselves versus the external 

world. Importantly, the study does not stop with showing infants’ ability to draw 

inferences from observed statistical information. The results demonstrate that such 

attributions also affect their real-world behavior as well as opportunities for subsequent 

learning.  

 Chapter 3 shows how statistical information in the environment can be combined 

with an agent’s action to inform infants’ inferences about the sampling process 

underlying the agent’s behavior. In this study I look at how inferences about samples 

and the sampling process by which the samples are generated affect infants’ decision 

about how far to generalize object properties. A simple Bayesian model captures the 

results across five experiments, and also provides important insights about how to re-

evaluate the role of constraints in guiding learning. 

 Chapter 4 looks at a more explicit case of learning in social contexts. Even in 

contexts where information is provided by other agents, learners face a problem of 

figuring out who is helpful and who is not. Two experiments in this chapter reveal 



 

 

 28 

children’s ability to actively evaluate other agents based on an abstract understanding 

of what it means to be helpful, and to flexibly adjust what they learn from these agents 

based on their evaluation. Even in cases where children are provided with equivalent 

behavioral information about others’ epistemic status, they can reason about how the 

evidence were sampled and rationally update their beliefs. Importantly, these beliefs 

are not just about object properties but also about the informants, and they affect how 

children subsequently learn from these informants.  

 Chapter 5 summarizes the main findings of the studies, and discusses how they 

bear onto the three ideas presented in this chapter. Along with a brief review of their 

methodological contributions, I conclude with the implications of these studies for how 

we ought to think of our amazing capacity to learn, and what needs to be done to 

further advance our understanding of it. 
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Chapter 2 

16-month-olds rationally infer causes of failed 

actions from statistical information to seek help or 

to explore  

 

 

 Across two experiments, this study shows that sixteen-month-olds use sparse 

data about the distribution of outcomes among agents and objects to solve a 

fundamental inference problem: deciding whether event outcomes are due to 

themselves or the world. Faced with a failed attempt to activate a toy, infants’ 

subsequent actions were guided by their causal attributions. When statistical data 

suggested that infants themselves are the likely cause of the outcome, infants 

approached their parent seeking for help; when the data favored the possibility that the 

object may be the culprit, infants approached another object to explore.  

 Infants’ responses to simple events in this study reflect three different aspects of 

learning: selection, integration, and construction. They suggest that infants extracted the 

hidden structure embedded in simple events that involve people and their goal-directed 
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actions on objects. Notably, the representations over which infants could tabulate the 

dependencies (and independencies) incorporated not only those between objects and 

their outcomes but also those of agents and the efficacy of her actions, including the 

child herself. Using minimal evidence from diverse sources, infants made accurate 

causal attributions, and critically, such attributions affected the course of infants’ real-

world actions.  

 

 An abbreviated version of the results was presented in Gweon & Schulz, 

SCIENCE 332:1524 (2011). This chapter is a modification/extension of this article and a 

conference proceeding Conference Proceeding (Gweon & Schulz, 2010). 
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2.1 Introduction 

Philosophers have long observed that everything we know about the world is a 

product of our interaction with it; we cannot have unmediated experience of the outside 

world. In fact, the result of any goal-directed action we perform in the world is 

determined by not just the causal structure of the world but also our ability to intervene 

on it. This fundamental inference problem of distinguishing our influence on event 

outcomes from the impact of the outside world is pervasive in every aspect of our life. 

Indeed, such distinction has been critical in disciplines ranging from social psychology 

(Rotter, 1954; Kelley & Michela, 1980) to artificial intelligence (Russell & Norvig, 2009).  

This problem becomes especially urgent when our actions fail to achieve 

expected outcomes. For example, when we try to turn a light and are left in the dark, 

did we do something wrong (e.g., flip the wrong switch), or is something wrong in the 

world (e.g., a bulb burned out)?  These attributions are important not only because of 

our desire to find the cause but also because they have different implications for our 

subsequent actions.  If we are the problem, we should change something about the 

agent (e.g., vary our actions or ask for help finding the switch); if the problem is 

external, we should try to change the world (or at least the light bulb).  

Consistent with previous empirical work showing that children draw accurate 

inductive inferences from minimal data (Gopnik & Schulz, 2004; Gweon, Tenenbaum, & 

Schulz, 2010; Xu & Garcia, 2008), we show that much younger children, 13 to 20-month-

old infants, can use sparse evidence about the distribution of failed outcomes to 

attribute the cause of failed actions to either themselves versus the world. 

To assess the locus of infants’ causal attribution, we looked at the variable on 

which they intervene. Imagine a situation where a child tries a novel toy and fails to 
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make it work; the child needs to understand that other people (‘the agent’ variable), and 

other toys of the same kind (‘the world’ variable), can both serve as useful sources of 

information. A large body of literature on social referencing in infancy suggests that 

infants readily treat their caregivers as sources of information about the emotional 

valence of events (Sorce, Emde, Campos, & Klinnert, 1985; Walden & Ogan, 1988) and 

the referent of adults’ attention (Baldwin, 1993; Carpenter et al., 1998). Moreover, 

infants use the information to regulate their own behavior. In particular, O’Neill (1996) 

showed that two- year-olds will request help from a knowledgeable (but not ignorant) 

parent in retrieving a hidden object, suggesting that toddlers not only look to parents 

for the information they might provide but also actively solicit such information. 

Children’s imitation of object-directed actions is also often interpreted as an indication 

that children perceive others as agents like themselves (the ‘like me’ hypothesis, 

(Meltzoff & Brooks, 2001) and use adult actions for information about how to interact 

with an object (Gergely et al., 2002; Gopnik & Meltzoff, 1994). Notably, children are 

more likely to imitate an adult’s goal- directed action if they themselves have 

previously failed to generate a target outcome than if they have succeeded (Williamson, 

Meltzoff, & Markman, 2008). 

Such studies speak to children’s understanding of other agents as potential 

sources of information about objects in the world. What about children’s understanding 

that one object can be informative about other members of the object kind? Previous 

research has shown that preschoolers generalize non-obvious properties (like squeaking 

or magnetism) from one member of a kind to others (Gopnik & Sobel, 2000; Nazzi & 

Gopnik, 2000). Moreover, children maintain this expectation even when one exemplar 

fails to function as expected (Schulz, Standing, & Bonawitz, 2008b). Indeed, 9-month-
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old infants can generalize a property of an object to other identical-looking object after a 

single exposure (Baldwin, Markman, & Melartin, 1993), and by 15 months infants can 

even integrate information about how the exemplars are sampled in their inferences 

about object properties (Gweon et al., 2010). These studies establish that children expect 

object properties to generalize across similar-looking objects, and maintain that 

expectation even when they themselves fail to elicit the expected property.  

This study shows that infants can use minimal statistical information to infer the 

cause of their failed actions, and that they rationally plan actions directed towards 

agents and actions directed towards objects based on their causal attributions. This 

provides evidence for the youngest age shown to infer causes of events based on co-

variation data (Schulz & Gopnik, 2004). Furthermore, this study goes beyond showing 

that infants consider other agents and objects as useful sources of information; they 

flexibly choose the potentially more informative source, depending on whether the 

more likely cause of failure is themselves or the world.  

In order to make one cause more likely than the other, we manipulated the 

statistical information in the demonstration; specifically, we changed the distribution of 

success and failure within and between objects and agents. We predict that infants 

should be more likely to direct their actions towards another agent when they 

themselves are the more probable source of failure and to another object when the more 

probable culprit is the toy. In Experiment 1, we manipulated whether the outcome of 

activating a toy co-varied with agents and/or the object.  
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2.2 Experiment 1 

2.2.1 Method 

Participants Thirty infants (mean: 16 months, 10 days; range: 14 – 20 months; 47% girls) 

were recruited from a local children’s museum; infants were randomly assigned to an 

Within-Object condition (N=15) or a Between-Objects condition (N=15). Nine infants 

were dropped and replaced due to parental interference, fussing out, experimental error, 

or failing to pull the cloth to retrieve a toy during the warm-up procedure. (See 

Procedure.) Two infants (one in each condition) were excluded from analyses because 

they never showed any of the target behaviors. (See Results) 

Materials One commercially available toy (a plastic fish) was used during the warm-up 

period. Three similar-looking novel toys were built by attaching a wooden stick (10 cm 

in length) to a round plastic container (4 inches in diameter). The toys resembled small 

hand drums with handles. A square-shaped button (2 x 2 x 1 cm) was attached to the 

top of the container. This button was inert. Each object was covered with green, red, or 

yellow electrical tape and felt that was operated by a hidden switch at the bottom of the 

container: when the toy was laid flat on a hard surface and the fake button was pressed 

down, the real switch depressed and the toy played a musical tune (creating the 

appearance that pushing the fake button activated the toy). Children sat in a highchair. 

The tray on the high chair was covered with white felt, creating a surface that was too 

soft to activate the real switch at the bottom of the Green toy. The Green toy never 

worked on this tray when the fake button was pressed. The Red and Yellow toys did 

not have a musical mechanism inside, but contained play-dough so that all three toys 

were matched in approximate weight. 
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Procedure All children were tested individually in a quiet room inside the museum. The 

children sat in the highchair and the parents sat next to them on a chair. (See Figure 2-1 

for experimental setup and stimuli.) Parents were instructed not to interact with the 

toys and only to smile and nod if the child addressed them. They were given a brochure 

about the study and asked to read it during the experimental procedure. Once the child 

was positioned in the highchair, the experimenter put a piece of orange felt cloth 

(approx. 20 x 75 cm) on the table and placed the warm-up toy on one end of the cloth. 

She pulled the cloth towards herself and retrieved the toy. Then she encouraged the 

infant to pull the cloth. Infants who did not pull the cloth and retrieve the toy after two 

demonstrations were excluded from analysis and replaced. 

The experimenter removed the warm-up toy and introduced the child to a basket 

containing the Green, Red, and Yellow toys. She took the Green toy out, put it on the 

table, and pressed the button on top of the toy to play the music. She demonstrated this 

three times. Then she showed the child the basket containing the other two toys. She 

took out the Red toy and placed it on one end of the felt cloth. The toy was 

approximately 70 centimeters away from the child and was not within direct reach of 

the child’s hands. She placed the other end of the felt cloth on the child’s tray within 

easy reach of the child. Then, the experimenter handed the child either the Green toy 

(Within-Object condition) or the Yellow toy (Between-Objects condition) and said, 

“Here you go, you can go ahead and play!” She took the basket with the remaining toy 

(the Yellow toy in the Within-Objects condition; the Green toy in the Between-Objects 

condition) out of the child’s line of sight.  
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2.2.2 Results and Discussion 

Preliminary Analyses We first looked at whether all the children imitated the 

experimenter’s action on the toy and whether they were equally persistent in the Agent 

condition (where they were given the same toy on which the action had been modeled) 

and the Object condition (where they had to make an inductive generalization from the 

Green toy to the Yellow toy). Given previous research suggesting that even 9-month-

olds readily make such generalizations (Baldwin et al., 1993), we did not expect any 

difference in their button-pushing behavior. Indeed, all but one infant immediately 

(within two seconds) pressed the inert button on the toy in front of them. There was no 

difference in the frequency of children’s button-pushing attempts in the two conditions 

(Within-Object: mean 3.0 times; Between-Objects: mean 3.2 times, p = ns). 

Figure 2- 1. Experimental setup and results from Experiment 1. (A) Within-Object condition, (B) 
Between-Objects condition. Graphs show the proportion of infants whose first action was agent-
directed and object-directed. 
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Main Results    To decide whether the problem lies with the agent or the object, infants 

should consider both the relative plausibility of the two hypotheses and the statistical 

evidence for each (Griffiths & Tenenbaum, 2009).   

In the Within-Object condition, neither hypothesis initially appears very 

probable: the infant might be doing something subtly wrong (e.g., not pressing hard 

enough), or something non-obvious might be wrong with the toy (e.g., it might have 

broken during the transfer). However, the statistical evidence favors the agent 

hypothesis: the outcome co-varies with the agent independent of the object.  

By contrast, in the Between-Objects condition, the statistical evidence is 

uninformative: the outcome co-varies with both the agent and object.  Here however, 

the object hypothesis is the more plausible on prior grounds: while the infant’s actions 

are not obviously different from the experimenter’s, the toy clearly is.  Moreover, there 

are now many ways the toy might have failed (e.g., the yellow toy might have broken at 

any point, or yellow toys might never work).  

As predicted, infants were more likely to try to change the agent (by handing the 

toy to their parents) than the object (by pulling the cloth or pointing to get the red toy) 

in the Within than Between-Objects condition (Change Agent vs. Change Object, 

Within-Object: 64.3% vs. 35.7%; Between-Objects: 21.4% vs. 78.6%, p < 0.05 by Fisher’s 

Exact). 

These results confirm that infants rationally use sparse data to make causal 

attributions.  However, other interpretations are possible.  Infants who received the 

experimenter’s toy might have been less likely to want a new toy than those who did 

not.  Alternatively, infants in the Within-Object condition might have asked for help not 

because they attributed failure to themselves but because they inferred that the toy was 
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broken and wanted the parent to fix it.  Therefore, in Experiment 2, we manipulated the 

relative probability of the two hypotheses without varying the object with which infants 

experienced failure. 

 

2.3 Experiment 2 

2.3.1 Method 

Subjects  Fifty-eight infants (mean: 16 months, 15 days; range: 13 – 20 months; 58% girls) 

were recruited from a local children’s museum; infants were randomly assigned to an 

Within-Agent 1 condition (N=20), Within-Agent 2 condition (N=18), or Between-Agents 

condition (N=20). Using the same criteria as in Experiment 1, twenty-one infants were 

dropped and replaced due to parental interference, fussing out, experimental error, or 

failing to pull the cloth to retrieve a toy during the warm-up procedure. Three infants 

(one in each condition) were excluded from analyses for not showing any of the target 

behaviors.  

Procedure  Infants were assigned to one of three conditions, identical to the Within-

Object condition in Experiment 1 except as follows: Within-Agent 1: a single 

experimenter successfully activated the Green Toy twice and failed twice; Within-Agent 

2: two experimenters each activated the Green Toy once and failed once, or Between-

Agents: one experimenter activated the Green Toy twice and another experimenter 

failed twice. The experimenter then gave the Green Toy to the infants, which never 

activated for them. 
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3.3.2 Results and Discussion 

Consistent with the results in Experiment 1, preliminary analyses showed that 

infants pressed the button equally often across conditions (F(2,51) = 0.59, p = ns).  

Because all infants received the Green Toy, the three conditions in Experiment 2 differ 

only with respect to the covariation between the outcome and the agents who 

performed the action. The outcomes in the Within-Agent 1 and 2 conditions 

(considering also the infant’s failure) vary independent of the agent, suggesting the 

failure is due to the object; the outcomes in the Between-Agents condition co-vary with 

the agent, independent of the object, suggesting the failure is due to the agent. As 

predicted, infants were more likely to first change the agent than the object in the 

Between-Agents than Within-Agent conditions. (Change Agent vs. Change Object, 

Within-Agent 1: 31.6% vs. 68.4%; Within-Agent 2: 29.4% vs. 71.6%; Between-Agents: 

68.4% vs. 31.6%, both comparisons p ≤ 0.05 by Fisher’s Exact). See Fig. 2-2. 

Figure 2- 2. Experiment 2 setup and results. (A) Within-Agent 1, (B) Wthin-Agent 2, (C) Between-
Agents. Graphs represent proportion of infants who changed the agent first (gray bars) and the object 
first (black bars) 

0" 20" 40" 60" 80" 100"

E2# E2#E1# E1#
succeeds&&&&fails&&&&&fails&&&&succeeds&

succeeds&&&&fails&&&&&fails&&&&succeeds&
E1# E1# E1# E1#

G#

A.#

B.#

C.#

E1# E1# E2# E2#
succeeds&&&&fails&&&&&fails&&&&succeeds&&

G#

G#

N=6&

N=13&

N=5&

N=12&

N=13&

N=6&

%&

Change&Agent&

Change&Object&



 

 

 40 

 

2.4 General Discussion 

These results suggest that infants track the statistical dependence between agents, 

objects, and outcomes and can use minimal data to draw inferences that support 

rational action. When the infants inferred that they were the source of failure, they 

sought help; when they believed the failure was due to their object, they explored 

others. Infants’ responses are consistent with formal models of causal induction 

(Griffiths & Tenenbaum, 2009), suggesting that human learners readily draw rational 

causal inferences from data even early in life.  

There is abundant evidence that young children both ask adults for help 

(Dunham, Dunham, & O'Keefe, 2000; O'Neill, 1996) and explore objects in the world 

(Piaget, 1930; Baldwin, Markman, & Melartin, 1993; Bonawitz, Shafto, Gweon, 

Goodman, Spelke, & Schulz, 2011; Gweon, Tenenbaum, & Schulz, 2010). This study 

goes beyond previous work in suggesting that infants actively trade-off these two 

alternatives. Infants not only show rational use of statistical information to attribute the 

cause of failure to themselves versus the external world, but also choose to approach 

different sources of information depending on their causal attribution.  

Indeed, the purpose of infants’ subsequent actions remains an open question for 

further investigation. Note that although we manipulated the statistical evidence to 

render either the agent or the object hypothesis much more likely than the other, there 

was still some ambiguity between the two hypotheses. Therefore, one possibility is that 

infants in these experiments simultaneously considered both hypotheses and 

approached different sources to actually deconfound the evidence. However, it is also 
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possible that children only considered one of the two hypotheses, and wanted to 

confirm their inference by intervening on the inferred cause. Lastly, it is also possible 

that infants merely wanted the toy to work and rationally chose the best way to achieve 

the desired outcome. The current results do not distinguish between the three 

possibilities.  

Nevertheless, these results show that in the face of failure to achieve a goal, 

children well before their second birthday do not simply look to their parents nor do 

they simply move on to a new toy. Instead, they are able to infer the likely cause for 

their failure, and flexibly and rationally adjust their behavior. In solving the problem of 

assigning causal responsibility to themselves or the world, infants might lay the earliest 

foundations for scientific inquiry. Furthermore, seeking instruction from others and 

engaging in exploration are both potentially effective strategies for learning. Infants’ 

differential response to failure depending on the evidence for its causes presents an 

exemplary case of seamless navigation between social and non-social sources for 

acquiring useful data.  
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Chapter 3 

Infants consider both the sample and the sampling 

process in inductive generalization 

 

 In the experiments in Chapter 2, infants were situated in a naturally social context 

where experimenters were involved in their own goal-directed actions while still 

acknowledging the presence of the learner. The question was whether they could figure 

out the cause of their own failure from interactions between people (others as well as 

themselves) and objects. The study in this chapter also looks at learning in such social 

contexts, but in cases in which the experimenters’ actions are arguably more directed to 

the child. One might imagine there would be less inferential burden on the learner in 

learning from simple goal-directed actions (e.g., squeezing dog toys) that are obviously 

directed to the child. However, even in such contexts, what is to be inferred from these 

actions often remains ambiguous; for example, which toys squeak, and which do not? 

The agent’s actions themselves do not specify the sampling process or the properties of 

an undemonstrated toy, and the output of learning depends on the learner’s inferential 

capacity. The Bayesian model in this chapter offers an exciting possibility that infants 
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use statistical information, (e.g., distribution of objects in a box and the sample drawn 

from the box) to infer the sampling process, rather than uniformly apply an assumption 

about how agents sample objects. 

 Experiments in this chapter again provide compelling evidence for a learning 

mechanism that permeates different aspects of learning. The results show that infants 

combine representations of relative numerosity of objects and people’s goal-directed 

action, and use this to inform their inferences about both the reason behind the agent’s 

action and the property of a novel object. Specifically,their inferences about the object 

properties affected the degree to which infants expected their actions to generate an 

outcome. Notably, these representations are graded with respect to their strength of 

belief in the hypothesis that the objects are squeaky (Experiment 3). Indeed, the exact 

format of the infants’ representations of probability, ratio, and the sampling process 

need further investigations. Nevertheless, this study shows an impressive ability to 

jointly infer “something about people” and “something about objects” from brief 

exposure to people’s actions executed on varying distributions of objects.  

 Experiments 1 and 2 in this chapter were first presented in a conference 

proceeding (Gweon, Tenenbaum, & Schulz, 2009) and all results have been published in 

Gweon, Tenenbaum, & Schulz, PNAS 107:9067 (2010).  

  

 



 

 

 45 

 

Abstract 

The ability to make inductive inferences from sparse data is a critical aspect of 

human learning. However, the properties observed in a sample of evidence depend not 

only on the true extension of those properties but also on the process by which evidence 

is sampled. Since neither the property extension nor the sampling process is directly 

observable, the learner’s ability to make accurate generalizations depends on what is 

known or can be inferred about both variables. In particular, different inferences are 

licensed if samples are drawn randomly from the whole population (weak sampling) 

than if they are drawn only from the property’s extension (strong sampling). Given a few 

positive examples of a concept, only strong sampling supports flexible inferences about 

how far to generalize as a function of the size and composition of the sample. Here we 

present a Bayesian model of the joint dependence between observed evidence, the 

sampling process and the property extension and test the model behaviorally with 

human infants (mean age: 15 months). Across five experiments, we show that in the 

absence of behavioral cues to the sampling process, infants make inferences consistent 

with the use of strong sampling; given explicit cues to weak or strong sampling, they 

constrain their inferences accordingly. Finally, consistent with quantitative predictions 

of the model, we provide suggestive evidence that infants’ inferences are graded with 

respect to the strength of the evidence they observe. 
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3.1 Introduction 

Human learners can draw rich, abstract inferences from sparse data (Carey, 1985, 

2009; Wellman & Gelman, 1992; Gopnik et al., 2004; Keil, 1989; Schulz et al., 2008a). One 

of the enduring mysteries of cognitive science is why such inferences should be so 

accurate. The simplest answer is that induction can be accurate as long as the sample is 

representative of the population. But how do learners know whether a sample is 

representative? If learners already knew the properties of the population and could see 

that they were reflected in the sample, they could be confident that the sample was 

representative. However, it is precisely this information (i.e., the properties of the 

population) that is in question. Induction is a puzzle because it can hinge on the 

solution to such chicken-and-egg problems: inferences about the extension of object 

properties depend on the relationship between the sample and the population, but 

knowing that may depend on knowing the extension of the object properties.  

The problem of how to infer the extension of object properties from small 

samples of data bedevils much of scientific inquiry. Rock samples from Mars have a 

high concentration of silica. Is this true for all Martian rocks or just the (dusty) rocks on 

the surface? Evergreen needles in a forest lie flat along the branch.  Is this true for all 

needles or only those from low-hanging branches? Scientists could use the appearance 

of the sample (rocky, needle-like) and/or known category labels (“rocks”, “evergreen 

needles”) to generalize properties within but not across kinds (to other rocks and 

evergreen needles but not from rocks to evergreen needles). Indeed, even young 

children can use such cues to constrain their inferences (e.g., children infer that entities 

that share observable properties and/or category labels with a sample are likely to 

share other properties as well; (Gelman & Markman, 1986; Gopnik & Sobel, 2000). 
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However, these cues may not suffice. Whether all Martian rocks have silica or all 

needles lie flat might depend also on the sampling process.  

In scientific inquiry, we can usually either control the sampling process or 

recognize its biases. If for instance, we know that the objects’ properties are not 

independent of the sampling process (because rocks on the surface are both more likely 

to be dusty and to be sampled; because trees low in the canopy have flat needles to 

maximize sun exposure), we can use this to restrict our generalizations (in both 

instances, to the population on or near the ground).  

However, the problem becomes more complicated when the nature of the 

sampling process is unknown. This is often the case in social contexts. When a person 

chooses a sample, she could randomly sample from the whole population or selectively 

from any subset of the population, for any number of reasons: because of her 

preferences, because some objects are easier to reach, because she was told what to do, 

etc. If the person’s goals are not made explicit by linguistic or pragmatic cues, the 

sampling process may not be obvious. Suppose for instance, a child sees her mother 

pull a few blue toys from a box of blue and yellow toys. The blue toys squeak. Do all the 

toys squeak or just the blue ones? How, short of testing all the toys, could the child tell?  

As in many problems of induction, the problem of generalization from a sample 

can be solved either by assuming more constraints on the learner, allowing for 

relatively simple inferences, or by assuming fewer constraints and more sophisticated 

inferential abilities. Thus one possibility is that there are early constraints on what 

infants assume about agents’ sampling processes. Infants might for instance assume 

weak sampling (i.e., agents choose items at random from the population, independent of 

the properties they have) or strong sampling (agents sample items selectively, depending 

on the properties they have) (Tenenbaum, 1999). Alternatively, infants might not have 
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expectations about sampling processes; rather, they might simultaneously infer both the 

sampling process and the extension of object properties from data. That is, infants might 

make joint inferences about the subset of the population that was sampled and the 

subset to which the property extends, given both the possibility that the subset sampled 

might be independent of the property’s extension and the possibility that it might be 

coextensive with it.  

Whether assumed or inferred, the key question is whether infants consider the 

sampling process and use it to make accurate generalizations. As the names indicate, 

weak sampling is a less powerful constraint on induction than strong sampling 

(Tenenbaum, 1999). If the learner thinks the evidence was sampled from the population 

as a whole, then both positive and negative evidence (these toys squeak; those toys do 

not) are needed to constrain inferences to sub-populations (only this kind of toy 

squeaks). By contrast, under the strong sampling assumption, even a few samples of 

positive evidence (these toys squeak) can constrain inductive generalizations to sub-

populations or kinds (only this kind of toy squeaks). Here we propose a formal model 

that captures the relationship between the sampling process, the observed data, and the 

extension of object properties. We present evidence suggesting that infants can flexibly 

constrain their predictions about the extension of an object property given the assumed, 

or inferred, sampling process. In particular, we show that in the absence of behavioral 

cues to the sampling process, infants make inferences consistent with the use of strong 

sampling. Critically, this is not because infants cannot consider other alternatives; given 

explicit behavioral cues to weak or strong sampling, infants constrain their 

generalizations accordingly.  

Our studies build on previous work suggesting that infants may be sensitive to 

each component of the problem in isolation: that is, infants are capable both of inductive 
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generalization and sensitivity to sampling processes. Young children project properties 

across entities that share labels and/or perceptual features (Gelman & Markman, 1986; 

Gopnik & Sobel, 2000), and infants as young as 9-months can generalize otherwise 

hidden properties of objects (e.g., rattling, squeaking) to identical-looking objects after a 

single exposure (Baldwin et al., 1993). Infants in their first year can form expectations 

about the properties of a sample from a population and about a population from a 

sample (Xu & Garcia, 2008), and these expectations are sensitive to how samples are 

generated: 11-month-olds expect randomly generated samples to be representative of 

the population from which they are drawn, but suspend this inference if the sample is 

clearly generated selectively (e.g., by an experimenter who expresses a preference for 

particular objects (Xu & Denison, 2009). Older children can make analogous inferences 

in reverse: they assume that an agent who pulls a non-representative sample from a 

population must have a preference for members of that sample but they do not make 

this inference if the agent pulls a representative sample (Kushnir, Xu, & Wellman, 2010). 

Finally, the scope of preschoolers’ generalization about word meanings has been shown 

to depend on both the sample of evidence provided and the nature of the sampling 

process, in ways predicted by rational Bayesian models of generalization (Xu & 

Tenenbaum, 2007a, 2007b): given three labeled examples of a novel object category, 

preschoolers restricted their generalizations about the label to the tightest category 

containing the examples, but only when given explicit cues that the examples were 

generated by strong sampling rather than weak sampling.  

Collectively, these results suggest that infants can project properties from 

samples to populations, recognize when samples are and are not representative of 

target populations, and recognize that different sampling processes generate different 

samples. However, in most previous work the sampling process was specified by 
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explicit social/pragmatic cues (e.g., choosing blindfolded vs. choosing with open eyes 

and smiling at the chosen items).  No previous work has looked at what inferences 

infants draw when the sampling process is not explicitly cued. Moreover, no previous 

work has looked at whether infants’ generalization of object properties depends on the 

sampling process. What happens when the probability of drawing a sample and the 

determination of objects’ properties mutually constrain one another? Do infants vary 

their inferences depending on the relationship between the sample and the population? 

And can they modulate their generalizations in proportion to how much evidence they 

have? 

Both our model and our experiment follow from the toy box example we 

outlined above. In the current study, we vary the ratio of blue to yellow balls in a box 

and the number of blue balls the experimenter pulls from the box. The experimenter 

squeezes each blue ball in the sample so it squeaks. In all conditions, the question is 

whether, consistent with different compositions of the sample relative to the population, 

infants will generalize the squeaking property to the yellow balls. Because the infancy 

research suggests that babies have abilities presumably prerequisite to such inferences 

(property projection and sensitivity to sampling processes) by the end of the first year, 

we look to the beginning of the second year (mean: 15 months) for children’s ability to 

use information about the sample and population to constrain their inferences about the 

property extension. 
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3.2 A Bayesian Model 

Our predictions are informed by a Bayesian inference model that formalizes the 

claim that inductive inferences about object properties depend on both the sampling 

process (S) and the true extension of the object properties (T). This joint dependence can 

be described in terms of a simple graphical model (Figure 3-1). For simplicity, we 

consider just three possible property extensions (t1: the property applies only to blue 

balls; t2: only to yellow balls; t3: to all balls) and two possible sampling processes (s1: 

selectively sampling from just the squeaking set of balls, or strong sampling; s2: 

Figure 3- 1. Graphical model of the relationship between the sample, the sampling process, and 
the true extension of the object properties. Whether or not the yellow balls squeak depends only 
on the extension of the target property. However, that can only be inferred from the observable 

data (the ratio β of blue/yellow balls in the box and the n in the sample), which depends also on 
the sampling process. Thus to decide whether or not the yellow ball will squeak, children must 
either assume a particular sampling process, or make a joint inference about both the sampling 
process and property extension.  
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randomly sampling from the whole box, or weak sampling).3 The learner observes data 

D = n examples of blue balls that squeak, drawn from a box that appears to contain a 

fraction β of blue balls and 1-β yellow balls. The learner’s goal is to predict Y, the 

proposition that yellow balls squeak. Note that Y depends directly on T, not S or D; 

given that we know the set of balls that squeak, the observed data or the process by 

which the data were sampled is irrelevant to predicting whether the yellow balls squeak. 

However, inferences about T from D must take into account the different possible 

values of S; formally, our Bayesian analysis must integrate out S in scoring each value of T. 

Because the learner’s data are inconsistent with the hypothesis that only yellow balls 

squeak (t2), only two hypotheses for T are relevant to Y and they make opposite 

predictions: t1 predicts that yellow balls do not squeak; t3 predicts that they do. 

Following Tenenbaum and Griffiths (2001a), the evidence for one of these hypotheses over the 

other can be measured by the likelihood ratio,:  
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We posit that children's exploratory behavior - how much they squeeze the 

yellow ball, expecting a squeak - will be monotonically related to L.  This analysis 

makes predictions that are independent of the prior probabilities children assign to t1 or 

                                                

3 It is possible to generate more complex hypotheses for both the sampling process (see General 
Discussion) and the property extension (e.g., the three blue balls in the sample plus one other 
ball might squeak, the three balls in the sample plus two other balls might squeak, etc.). Here 
we model the simplest set of hypotheses needed to explain the range of evidence presented to 
infants across all five experiments.  
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t3, removing a degree of freedom that would otherwise need to be measured or fit 

empirically to their behavior. These likelihoods can be computed by integrating out the 

sampling process: 

 ( | , ) ( | , , ) ( ).
is S

P n t P n t s P sβ β
∈

=∑  

To evaluate these likelihoods we need the following four conditional 

probabilities: 
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Let α denote the prior probability P (s1), that the experimenter is sampling from 

just the squeaky balls: P (s2) = 1 - α. We then have: 
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The likelihood ratio, measuring the evidence in favor of the proposition that 

yellow balls squeak, is then: 
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Parameter ! describes the learner’s prior probability (degree of belief independent of 

the data D) for selective (or strong) sampling (S = s1). By setting this parameter 

appropriately, the model can express different possibilities for how infants might take 

into account sampling in their inductive generalizations. Setting α to either 0 or 1 

encodes a definite assumption about the sampling process. By setting the parameter α 

to 0, we can model the possibility that infants expect that evidence is sampled randomly; 

by setting the parameter α to 1, we can model the possibility that infants expect that 

evidence is sampled selectively. Setting α = 0.5 means that the learner has no initial bias 

for either sampling process and must make a joint inference about sampling and the 

property’s extension from the observed data.  

3.3 Behavioral Studies and Comparison with Model Predictions 

In our behavioral experiments, infants saw an experimenter draw blue ball(s) 

from a box and were then given the inert yellow ball.4 In Experiments 1 – 3, we varied 

the number of balls drawn from the box (n) and the ratio of blue to yellow balls in the 

box (β) to provide a sample of balls that was either probable or not probable given the 

                                                

4 The model mirrors the task design in distinguishing the sampling phase from the test phase. 
Because the yellow ball was treated differently from the blue ball(s) (i.e., given directly to the 
children and not manipulated by the experimenter) we do not treat the yellow ball as part of the 
sample in the model.  
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population. Since there is no evidence that infants have initial expectations about the 

sampling process, we present our data with respect to the joint inference account (α = 

0.5). We then discuss the relationship of the data to the model predictions under 

definite assumptions of either random (weak) or selective (strong) sampling (α = 0 or 1, 

respectively). In Experiments 4 and 5, we provide behavioral cues suggesting that the 

balls are sampled randomly (Experiment 4) or selectively (Experiment 5) to look at how 

infants’ inferences are affected by explicit evidence about the sampling processes. 

Figure 4-3 shows the different strengths of evidence (L) predicted by our Bayesian 

analysis in these different experimental conditions.  

 

3.3.1 Experiment 1 

 

3.3.1.1 Methods 

Subjects. Thirty infants (mean: 15 months, 24 days; range: 13 to 18 months; 53% girls) 

were recruited from a local children’s museum, and randomly assigned to a Blue3balls5 

condition or a Yellow3balls condition. Two participants were dropped and replaced 

due to (1) fussing out, (2) refusal to touch the stimuli or (3) parental interference.  

                                                

5 The color in the condition name refers to the majority of objects in the box; the number refers 
to the number of blue balls drawn. 
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Materials Two foam-board boxes were constructed (30 x 45cm x 30 cm). Each box had a 

hidden compartment in the back. One box contained 12 blue balls and 4 yellow balls 

(henceforth the Blue Box), and the other contained 4 blue balls and 12 yellow balls 

(henceforth the Yellow Box). The front side of the boxes was transparent, and all 16 balls 

were visible through the transparent window. The blue balls had a squeaking 

mechanism inside. The squeaking mechanism was removed from the yellow balls so 

that they were inert. Additionally, the yellow balls had a wooden handle with a bell-

shaped object at the end (providing an additional “banging” affordance so the child 

could readily engage in a behavior other than squeezing the balls). Thus the objects 

were perceptually similar (an adult would categorize them all as “dog toys” but not 

identical. The boxes had a small opening at the top, allowing the experimenter to pull 

Figure 3- 2. Schematic of design in Experiments 1-5. See text for details. 
 

Blue3balls 
Exp. 1

Yellow1ball
Exp. 2

Exp. 4

Yellow3balls
Exp. 1 & 2

Yellow2balls 
Exp. 3

Exp. 5
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( ... )
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out the balls from the hidden compartment. Thus even when the balls were pulled from 

the box, the view from the front of the box (showing all 16 balls) stayed constant. 

Procedure Each participant was tested individually in a quiet lab room at a children’s 

museum. The child sat on a highchair or on a small stool; the parent sat behind the child, 

out of the child’s line of sight. In both conditions, children saw a box with a transparent 

front. In the Blue3Balls condition, 12 blue balls and 4 yellow balls were visible (β = 0.75); 

in the Yellow3balls condition, 12 yellow and 4 blue balls were visible (β = 0.25). The 

experimenter first drew the child’s attention by pointing to the transparent window and 

the contents of the box. Then the experimenter took three blue balls from the box, one at 

a time. Each time she said “Look!” squeezed the ball so that it squeaked, and then set it 

on the table. Her actions were identical across conditions, so there were no cues to 

indicate whether she was sampling from a specific subset of balls or from all the balls.  

Finally, the experimenter paused, then pulled out a (inert) yellow ball and put it 

in front of the child saying, “Here you go, you can go ahead and play”. The child was 

allowed to play with the yellow ball for 30 seconds. If the child did not touch the ball, 

she encouraged them again. We coded the number of children who squeezed the yellow 

ball and the number of times each child squeezed the yellow ball. An additional coder, 

blind to condition, recoded all data in Experiments 1 – 5, and inter-coder reliability 

averaged 94.7%. Parents provided informed consent; the MIT IRB approved the 

research.  

 

3.3.1.2 Results and Discussion 

Under the Bayesian framework, children might consider four joint hypotheses 

about the sampling process and property extension: H1: sampling = squeaking set (s1), 
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property = blue (t1); H2: sampling = whole box (s2), property = blue (t1); H3: sampling = 

squeaking set (s1), property = all (t3); H4: sampling = whole box (s2), property = all (t3). 

In both conditions, three blue balls are removed from the box (n = 3). In the 

Blue3balls condition, the data (given that ¾ of the balls in the Blue box are blue; β = 0.75) 

fail to distinguish the possibility that the experimenter is sampling from only the 

squeaky balls (s1) from the possibility that she is randomly sampling from the whole 

box (s2). Because the inference about the sampling process is tightly coupled to the 

inference about the property extension, the data also fail to distinguish the inference 

that only blue balls squeak (t1) from the inference that all balls squeak (t3). Thus all four 

hypotheses are consistent with the evidence and the status of the yellow toy is 

unknown. Since the perceptual similarity between the objects supports the property 

generalization (Baldwin et al., 1993), and the statistical data does not weigh against it, 

we expected children to squeeze the yellow ball.  

By contrast, in the Yellow3balls condition, three blue balls (n = 3) are pulled from 

a box containing only ¼ blue balls (β = 0.25). The sample is unlikely if the experimenter 

were randomly sampling from the whole box; it is more probable as a sample from just 

the squeaky balls. Again, this inference is coupled to the inference about the property 

extension: given that the balls were most likely sampled from the squeaky balls, the 

evidence that three blue balls squeak is more likely under the hypothesis that only the 

blue balls squeak than under the hypothesis that all balls squeak. Thus the data support 

inference s1 and t1: the joint hypothesis H1 makes the observed sequence of data more 

probable than any of the other alternatives. In this condition, children should assume 

that the yellow ball does not squeak and thus should be unlikely to squeeze it. 

Assuming that two sampling hypotheses (s1 and s2) are equal a priori (α = 0.5), the 
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likelihood ratio (L; see Supporting Information) is 0.59 for Blue3balls condition and 0.03 

for Yellow3balls condition. (See Figure 3-3 for model predictions and results 

throughout.) 

 The experimental results confirmed the model predictions: fewer children 

squeezed the ball in the Yellow3balls than in the Blue3balls condition (33% vs. 80%; χ2 

(1, N=30) = 6.65, p < 0.01) and children squeezed the yellow ball less often (0.87 vs. 2.53; 

t(28) = 2.45, p < 0.05). These results suggest that infants constrained their generalization 

of the squeaking property to the blue balls in the Yellow3balls but not the Blue3balls 

condition.  
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3.3.2 Experiment 2 

While the results of Experiment 1 are consistent with our formal analysis, it is 

possible that children simply assumed that properties true of a member of the majority 

kind could be generalized to the minority kind, but not vice versa. That is, children 

might generalize from the blue balls to the yellow ball when most balls were blue (in 

the Blue3balls condition) but not when most balls were yellow (in the Yellow3balls 

condition). In Experiment 2, we addressed this alternative explanation. 

 

3.3.2.1 Methods 

Subjects. Fifty-one infants (mean: 15 months, 16 days; range: 13 to 18 months; 47% girls) 

were recruited from a local children’s museum, and were assigned to Yellow3balls, 

Yellow1ball, or Yellow1ball Extended condition (N=17/condition). Nine participants 

were dropped and replaced due to fussing out, refusal to touch the stimuli, parental 

interference, or experimental error.  

Materials Materials used in Experiment 2 were identical to those used in Experiment 1. 

Procedure Yellow3balls condition was an exact replication of the same condition in 

Experiment 1. In Yellow1ball condition, everything was the same except that the 

experimenter drew just one blue ball out of the mostly yellow box. In Yellow1ball 

Extended condition, the experimenter drew a single blue ball drawn from the mostly 

Yellow box, and squeezed the blue ball six times, matching the number of actions and 

time of exposure to the Yellow3balls condition. See Fig. 3-2. 

 

3.3.2.2 Results and Discussion 
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Randomly drawing a single blue ball from a mostly yellow box is not particularly 

improbable and does not discriminate between s1 and s2, or t1 and t3. Although the only 

difference between the Yellow1ball and Yellow3balls conditions is the number of balls 

(n) drawn from the box, we expected that children should restrict their generalization of 

the squeaking property to the blue ball significantly more often in the Yellow3balls than 

in the Yellow1ball condition.  

Of course, when children are shown three blue balls squeaking rather than one, 

they also see more actions on the blue ball and are exposed to the blue balls for a longer 

time. Mere added experience with the blue balls (rather than the number of blue balls in 

the sample) could make children less likely to generalize the property to the yellow ball. 

Yellow1ball Extended condition was designed to address this issue. If children restrict 

their generalization to the yellow ball based on the length of exposure and number of 

actions performed on the blue ball, then children in the Yellow1Ball Extended condition 

should perform like children in the Yellow3balls condition; if instead, children are 

sensitive to the relationship between the sample and the population, children’s 

performance should mirror that of children in the Yellow1ball condition. 

With respect to the model, β was held constant (at 0.25) between the conditions 

while n was either 3 or 1. Assuming α = 0.5 as in Experiment 1, the likelihood ratio (L) is 

0.40 for the Yellow1ball conditions and 0.03 for Yellow3balls replication. Again, the 

results were consistent with the model predictions: fewer children squeezed the ball in 

the Yellow3balls than in the Yellow1ball condition (38% vs. 82%; χ2 (1, N=33) = 6.95, p < 
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0.01) and children squeezed less often (0.75 vs. 2.12; t(31) = 2.35, p < 0.05)6. The results of 

the Yellow3balls condition of Experiment 2 replicated the Yellow3balls condition of 

Experiment 1 (children squeezing: 33% vs. 38%, p = ns; mean squeezes: 0.83 vs. 0.75, p = 

ns) while the results of the Yellow1ball condition of Experiment 2 mirrored those of 

Blue3balls condition of Experiment 1 (children squeezing: 82% vs. 80%, p = ns; mean 

squeezes: 2.53 vs. 2.12, p = ns).  

These results were not due simply to children’s differential exposure to blue balls 

in the Yellow3balls and Yellow1ball condition. Children’s performance in the 

Yellow1ball Extended condition was indistinguishable from that of children in the 

Yellow1ball condition (children squeezing: 82% vs. 82%, p = ns; mean squeezes: 2.41 vs. 

2.12, p = ns) and significantly different from children’s performance in the Yellow3balls 

condition: fewer children squeezed the ball in the Yellow3balls than in the Yellow1ball 

Extended condition (38% vs. 82%; χ2 (1, N=33) = 6.95, p < 0.01) and children squeezed 

less often (0.75 vs. 2.41 ; t(31) = 2.12, p < 0.05).  

These results rule out the alternative explanations of results in Experiment 1. 

Although blue balls were the minority objects in both conditions of Experiment 2, 

children generalized the property in the Yellow1ball condition but not the Yellow3balls 

condition. Moreover, while one might assume that the more often infants see an adult 

squeezing a ball, the more likely they should be to squeeze themselves, we found the 

reverse: infants were more likely to squeeze the yellow ball in the Yellow1ball condition 

(when the experimenter squeezed only one ball) than the Yellow3balls condition (when 

she squeezed three). While this might suggest the other possibility – that the more often 

                                                

 6 One child in Yellow3balls condition in Experiment 2 was an outlier, squeezing the ball 
3 standard deviations more than the mean and was excluded from subsequent analysis. 
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infants see an action on a single object kind, the more likely they are to restrict their 

actions to this kind – this was also ruled out. Infants in the Yellow1ball Extended 

condition saw the single blue ball squeezed repeatedly but readily generalized the 

property to the yellow ball. That is children’s tendency to squeeze was unrelated to the 

number of times they saw the target action but was well predicted by our model in 

which generalization from the sample depends jointly on the sampling process and the 

property extension. 

 

3.3.3 Experiment 3 

In Experiment 3 we test the prediction that children’s inferences should be 

graded with respect to the data; that is, children should be progressively less likely to 

squeeze the yellow ball as the number of balls drawn from the yellow box increases. For 

instance, setting α = 0.5 (s1 and s2 are equally likely a priori) and α = 0.25 (¼ blue balls in 

the box), the likelihood ratios (L) are 0.40, 0.12, and 0.03 for n = 1, n = 2, and n = 3, 

respectively. The significant differences between children’s performance in the two 

Yellow1ball conditions (Experiment 2) and the Yellow3balls conditions (Experiments 1 

& 2) provide data for cases in which n = 1 and n = 3. In Experiment 3 we ran the 

intermediate case, a Yellow2balls condition, in which the experimenter sampled two 

blue balls from the box containing ¼ blue balls.  

 

3.3.3.1 Methods 

Subjects  Seventeen (mean: 15 months, 17 days; range: 13 to 18 months; 41% girls) were 

recruited from a local children’s museum. Three participants were dropped and 
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replaced due to fussing out, refusal to touch the stimuli, parental interference, or 

experimental error.  

Materials Materials were identical to those used in Experiments 1 and 2. 

Procedure Procedures were same as other conditions in Experiments 1 and 2, except 

that the experimenter drew two blue balls out of the mostly yellow box. See Fig. 3-2. 

 

3.3.3.2 Results and Discussion 

We predicted that children’s tendency to squeeze the yellow ball in this 

condition would be intermediate between the results of two Yellow1ball and 

Yellow3balls conditions. The prediction of intermediate responding means that 

although the results of the Yellow2balls condition might not differ significantly from 

either the Yellow1ball or the Yellow3balls conditions, the model estimates for the five 

conditions should predict the pattern of results. This is what we found. Numerically, 

more children squeezed in the Yellow2balls condition of Experiment 3 than either 

Yellow3balls condition (47% vs. 33%, Experiment 1; 47% vs. 38%, Experiment 2, p = ns) 

and children squeezed the yellow ball more often (1.35 vs. 0.87, Experiment  1; 1.35 vs. 

0.75, Experiment  2; p = ns). Also, fewer children squeezed the yellow ball in either 

Yellow2balls condition of Experiment 2 (47% vs. 82% (both conditions); χ2 (1, N=34) = 

4.64, p < 0.05), and children squeezed numerically less often (1.35 vs. 2.12 (Yellow1ball), 

1.35 vs. 2.41 (Yellow1ball Extended), p = ns). Critically, this pattern of results was well 

predicted by the model (Pearson r = 0.98, p < 0.005). Given that this correlation 

considers only five data points the results should be interpreted with caution. However, 

they provide suggestive evidence that children’s inferences vary in a graded manner 

with the size of the sample. 
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3.3.4 Experiment 4 

In modeling the results so far, we have assumed that the two sampling 

hypotheses (s1 and s2) were assigned equal probability a priori (α = 0.5). As noted, 

infants might instead have initial expectations that agents engage in either weak (α = 0) 

or strong sampling (α = 1); we address those possibilities in the discussion to follow. In 

Experiments 4 and 5 however, we consider the case when children are given overt 

behavioral cues indicating that the sampling process is either random or selective.  

3.3.4.1 Methods 

Subjects  Seventeen (mean: 16 months, 9 days; range: 13 to 18 months; 47% girls) were 

recruited from a local children’s museum. Four participants were dropped and replaced 

due to fussing out, refusal to touch the stimuli, parental interference, or experimental 

error.  

Materials Materials were identical to those used in Experiments 1 - 3. 

Procedure The beginning of the procedure was the same as that in other experiments. 

However, rather than pulling the balls out, the experimenter shook the box upside 

down to let the three blue balls fall out. These blue balls were placed in the secret 

compartment inside the box to allow precise control of which balls will fall out each 

time. Then she told the child, “The next one is going to be yours”. This comment was 

added to prevent the infants from anticipating that they would get the box to shake 

(rather than the balls to squeeze). She shook the box again to let a yellow ball fall out 

and gave it to the child. See Fig. 3-2. 

 

3.3.4.2 Results and Discussion 
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In Experiment 4, the experimenter drew three blue balls from the box with ¼ 

blue balls. However, instead of reaching in, she shook the box upside down and let 

three blue balls fall out. Thus, the evidence (number of balls (n) and proportion of blue 

balls (β)) was the same as in Yellow3balls condition of Experiments 1 and 2 but in this 

case, the experimenter’s action specified that, despite the improbability of the sample, 

she was sampling from the whole box. Formally, a direct cue to random sampling sets 

the parameter α to 0 and raises L  to 1.00, much higher than the L = 0.03 of the 

Yellow3balls condition. Thus we predicted that children in Experiment 4 should 

generalize the squeaking property to the yellow ball more than children in Yellow3balls 

conditions in Experiments 1 and 2. The results were consistent with this prediction: 

more children squeezed the ball in Experiment 4 than in the Yellow3balls conditions (76% 

vs. 33%, Experiment 1; χ2 (1, N=32) = 6.03, p < 0.05; 76% vs. 38%, Experiment 2; χ2 (1, 

N=33) = 5.13, p < 0.05) and children squeezed more often (3.53 vs. 0.87, Experiment 1; 

t(30) = 3.24, p < 0.005; 3.53 vs. 0.75, Experiment 2; t(31) = 3.57, p < 0.005).  

 

3.3.5 Experiment 5 

What are the predictions in the converse case, when children are given explicit 

cues to selective sampling but a sample that is also likely under random sampling (three 

blue balls from the mostly blue box)? In Experiment 5, we tested exactly such a case by 

having the experimenter reach into the mostly blue box with explicit behavioral cues 

consistent with selective sampling of a specific set of balls.  

3.3.5.1 Methods 

Subjects Fifteen (mean: 16 months, 6 days; range: 13 to 18 months; 60% girls) were 

recruited from a local children’s museum. No participant was dropped or replaced. 
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Materials Materials were identical to those used in Experiments 1 - 4. 

Procedure The procedure was the same as the Blue3balls condition in Experiment 1. 

However, when drawing the blue balls from the box, the experimenter peered into the 

box and took approximately twice as long as in Experiments 1 to pull each blue ball out. 

As she took the blue ball out, she said, “Aha, here it is, look!” and smiled. After three 

balls were removed, she said, “The next one is going to be yours” and shook the yellow 

ball out (matching Experiment 4).  

 

3.3.5.2 Results and Discussion 

As noted, our model suggests that when β and n are held constant the likelihood 

ratio (L) gradually decreases as a function of α. However, the difference in the 

likelihood between α = 0.5 and α = 1 is small. With the parameters α = 1, β = 0.75 and n 

= 3, the model predicts only a slightly lower rate of squeezing (L = 0.42) in Experiment 5 

than in the Blue3balls condition of Experiment 1 (L = 0.59) (and thus of course a higher 

rate of squeezing than in the Yellow3balls conditions of Experiment 1 and 2; L = 0.03). 

Intuitively, this is because explicit cues that the experimenter is selectively sampling 

from the box (consistent with s1) do not indicate that the yellow balls are not themselves 

part of the squeaky set that the experimenter is sampling from7; thus the inference that 

the property extends to the yellow balls continues to depend on β, the ratio of blue and 

yellow balls in the box. We thus predicted that children in Experiment 5 would 

                                                

7 One could of course, provide social/pragmatic cues that would unambiguously establish that 
the yellow balls were not being sampled (e.g., by picking the yellow ball, frowning, and 
replacing it with a blue ball).  However, in that context, infants’ failure to squeak the yellow ball 
would be over-determined (i.e., they could directly infer that the yellow ball should be avoided). 
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generalize the property to the yellow ball, squeezing more than Yellow3balls condition 

of Experiments 1 and 2 but no differently than children in the Blue3balls condition of 

Experiment 1.  

The results were consistent with our predictions: there were no differences 

between the results of Experiment 5 and the Blue3balls condition of Experiment 1 with 

respect to the number of children squeezing (73% vs. 80%, p = ns) or the mean number 

of squeezes (2.12 vs. 2.53, p = ns). By contrast, more children squeezed the ball in 

Experiment 5 than in the Yellow3balls conditions (73% vs. 33%. Experiment 1; χ2 (1, 

N=30) = 4.82, p < 0.05; 73% vs. 38%, Experiment 2; χ2 (1, N=31) = 4.01, p < 0.05), and 

children squeezed the ball more often (2.13 vs. 0.87, Experiment 1; t(28) = 2.09, p < 0.05; 

2.13 vs. 0.75, Experiment 2; t(29) = 2.47, p < 0.05)  

 

3.3.6 Joint inference vs. strong sampling assumption 

Thus far we have discussed the joint inference account; we now turn to the 

possibilitys that infants might have default assumptions about how agents sample 

evidence. Our data rule out the possibility that infants assume weak sampling (α fixed 

to 0). Under the assumption of weak sampling, the model predicts that infants should 

squeeze the yellow ball persistently in all five experiments (that is, the results of all five 

conditions should be identical to that of Experiment 4). By contrast, the likelihood ratios 

under the strong sampling account (α fixed to 1) are quite similar to those under joint 

inference account (α = 0.5): Experiment 1 Blue3balls condition α = 0.5, L = 0.59 vs. α =1, 

L = 0.42; Yellow3balls condition α = 1, L = 0.03 vs. α = 1, L = 0.02; Experiment 2 

Yellow1ball condition, α = 0.5, L = 0.40 vs. α =1, L = 0.25; Experiment 3 Yellow2balls 
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condition α = 0.5, L = 0.12 vs. α =1, L = 0.12. Thus our results are consistent with the 

possibility that infants expect agents to engage in strong sampling. Looking at the 

overall correlation between the model predictions and the data (mean number of 

squeezes) across all eight conditions, both the joint inference model and the strong 

sampling account correlate with the data (joint inference; r = 0.97, p < 0.001; strong 

sampling: r = 0.92, p < .001); the weak sampling account does not (r = -.07, p = ns). (See 

Figure 4-3.) 

Given that infants might expect agents to engage in strong sampling, why 

consider the possibility that they engage in joint inference? As noted, one could make 

assumptions about infants’ prior inductive biases allowing for simpler learning, or 

make no such assumptions and instead credit infants with relatively sophisticated 

inferential mechanisms. Both the current work (Experiment 4) and previous research 

(11, 12) establish that infants are sensitive to sampling processes in the presence of 

explicit behavioral cues. Given that infants recognize that agents can engage in weak 

sampling, and that there is as yet no evidence that infants nonetheless expect agents to 

engage in strong sampling, joint inference remains a real possibility. That said, 

considerable work suggests that infants make assumptions about rational agents with 

respect to intentional goal-directed actions (Gergely, Nádasdy, Csibra, & Bíró, 1995; 

Gergely & Csibra, 2003; Woodward, 1998). It would be very interesting if the 

assumption that agents were likely to engage in selective sampling were part of this 

repertoire. Thus distinguishing the strong sampling assumption from the joint inference 

account remains an important direction for future research.   

 

3.4 Discussion 
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We presented a formal Bayesian account of how inferences about the extension 

of object properties from a sample of evidence depend on both the true extension of the 

property and the sampling process. We showed empirically that, given identical 

samples of evidence, 15-month-old infants make different inferences about the 

extension of object properties depending on the probability of the sample. In particular, 

we showed that in the absence of behavioral cues to the sampling process, infants draw 

inferences consistent with the use of strong sampling; infants were able to draw 

normative, flexible inferences about the extension of an object property given only a 

small sample of positive evidence or the property. Additionally, we showed that infants 

recognize that agents can engage in different sampling processes; given behavioral cues 

to either weak or strong sampling, infants varied their inferences accordingly.  Across 

the eight conditions, the strength of evidence infants observed for discriminating the 

two hypotheses about the property extension (all balls squeak vs. only blue balls squeak) 

predicted their generalizations.  Finally, as predicted quantitatively by the Bayesian 

model, we provided suggestive evidence that infants’ inferences are graded with 

respect to the size of the sample.  

We found that both the number of children squeezing and the mean number of 

squeezes across conditions were consistent with the model predictions. Although the 

likelihood ratio and these dependent measures were highly correlated, the differences 

between the group means in the number of squeezes were mainly driven by the 

children who did not squeeze at all. Additionally, the all-or-none measure of whether a 

child squeezed or not showed the same qualitative pattern as the mean number of 

squeezes. Further computational and empirical research might clarify exactly which 

aspects of behavior the model predicts. 
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Throughout, we have looked at the probability that a sample might be randomly 

generated from the whole population. However, it is possible that children are also 

sensitive to a different measure of likelihood: the degree to which evidence is 

representative of the population (i.e., the degree to which the evidence in the sample 

distinguishes the target population from alternative populations). Three blue balls for 

instance, may be the most probable draw from a mostly blue box but this sample fails to 

distinguish a mostly blue box from an entirely blue box. By contrast, a sample 

consisting of two blue balls and one yellow ball may be a less probable sample but a 

more representative one (in that it distinguishes the entirely blue from the mostly blue 

box). The distinction did not arise in the current work because the samples were never 

distinctively representative (the sample always consisted of only blue balls although the 

box contained both blue and yellow balls).  However, Bayesian inference models can 

formally capture this distinction (Tenenbaum & Griffiths, 2001b), and comparing 

infants’ sensitivity to these different measures of likelihood is an intriguing area for 

future research. 

Although we have focused on the distinction between strong and weak sampling 

assumptions, a variety of more complex models might account for the current data. A 

child might infer for instance, that the agent intends to sample squeaky balls and knows 

which balls squeak, believes that all the balls squeak, or believes that some balls squeak 

but doesn’t know which ones. Alternatively, the child might assume that the agent is 

drawing the sample in order to teach the child which balls squeak. Recent work in 

computational modeling has suggested formalizations of both such intentional and 

pedagogical sampling assumptions (Goodman, Baker, & Tenenbaum, 2009; Shafto & 

Goodman, 2008). These models make different predictions in a variety of tasks; 

however in the current paradigm, the predictions are qualitatively the same. Here we 
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have opted for the simplest model that could explain our data; future research might 

assess the extent to which infants distinguish more complex sampling assumptions.  

Even the current results however, speak to the sophistication of children’s 

reasoning. These findings suggest that infants make accurate generalizations from 

sparse data, in part because their inferences are sensitive to how the sample of evidence 

reflects the population. These results are consistent with the theoretical stance than 

humans are rational learners from the earliest stages of development. Babies who have 

just learned to say “mama” and may not yet say “ball”, may know something about the 

goals of the former and infer the properties of the latter simply by attending to the rich 

statistics of everyday life. 
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Chapter 4 
Who tells the truth, but not the whole truth? 
Children modulate their inferences based on 
informant’s past omission of relevant information.   

 

In Chapters 2 and 3, I provided evidence for early signatures of rational 

inferential capacities in preverbal infants. In this chapter I present a study with older 

children that shows how children use patterns of evidence and their knowledge about 

the world to socially evaluate another agent (e.g., a teacher) in a pedagogical context, 

and how such evaluation affects the interpretation of information provided by that 

agent in subsequent encounters. If the previous two studies involved learning about the 

world while taking into account what other people do, this study is more directly about 

how children can learn about the world (i.e., what is being taught) and about other 

agents (i.e., the teacher him/herself) based on information provided by the agent and 

children’s assumptions about what is expected of a helpful teacher.  
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Abstract 

The ability to distinguish competent and incompetent informants is crucial for 

social learning. Although much is known about children’s ability to evaluate informants 

based on their accuracy, little is known about whether children understand that 

provision of partial information may constitute a ‘sin of omission’.  In Experiment 1, we 

show that children (6- and 7-year-olds) recognize omission of relevant information as a 

failure to teach effectively by asking them to evaluate informants who provided 

complete or incomplete information about a toy.  In Experiment 2 provides evidence 

from free-play data that 6-year-old children can modulate their inferences from an 

informant’s demonstration of a toy based on the informant’s past history of omitting 

information. These results show that children are adept and judicious social learners; 

they evaluate informants based on various properties of information they provide, 

flexibly adjust their inferences based on such evaluations, and show more self-guided 

exploration when there is reason to doubt the informant’s credibility.  

 

Experiment 1 in this chapter has been presented in a conference proceeding 

(Gweon, Pelton, & Schulz, 2011). 
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4.1 Introduction 

Humans rely heavily on others to acquire new information. In particular, explicit, 

direct transmission of information via instruction or teaching is one of the unique 

aspects of human social learning(Csibra & Gergely, 2009; 2011). Implicit in our 

dependence on others for knowledge, however, is the assumption that people are 

knowledgeable and helpful. 

Although the assumption holds up most of the time, a young learner whose goal 

is to learn about the world would bear a huge cost if it accepted all socially 

communicated information as true. The learner may sometimes encounter people who 

are ignorant about what she wants to learn, people who have false beliefs, or even 

people who deliberately intend to mislead the learner. For social learning to be a 

reliable and effective method for acquiring useful information in a complex 

environment filled with agents with varying degrees of trustworthiness, learners need 

to be sensitive to the quality of others as informants and selectively avoid those who 

might jeopardize accurate learning. How does a learner decide if an informant is to be 

trusted?  

Sometimes, there may be explicit cues that indicate others’ epistemic status or 

intent. Previous research suggests that preschoolers can use overt verbal and non-verbal 

expressions of an agent’s uncertainty (Birch, Akmal, & Frampton, 2010) and ignorance 

(Koenig & Harris, 2005; Sabbagh & Baldwin, 2001), as well as the agent’s tendency to 

deceive (Mascaro & Sperber, 2009) to decide whom to learn from. Furthermore, 

preschoolers can distinguish informants based on their past accuracy and choose to 

learn from those who were accurate in the past (Jaswal & Neely, 2006; Koenig & Harris, 

2005; Koenig et al., 2004). For example, children are much more likely to endorse a 
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novel label provided by a teacher who provided a correct label for a familiar object (e.g., 

calling a cup a cup), than a teacher who provided an incorrect label (e.g., calling a ball a 

shoe). 

In most pedagogical situations, however, teachers rarely express ignorance or 

uncertainty, and hardly ever provide blatantly false information. Instead, there are 

more subtle ways in which a teacher might mislead a learner. Imagine someone who 

claims to know all about an interesting novel toy, states that she wants to teach you 

how the toy works, and confidently demonstrates one function of the toy. If you were in 

a position to discover that the toy actually had four functions, would you consider her a 

“good teacher” and rely on her to learn about another novel toy? 

All the explicit cues present in this context indicate that the informant should be 

trustworthy. Furthermore, the information she provided is true of the toy. Nonetheless, 

the adult intuition about the effectiveness of teaching would be that the teacher didn’t 

do a very good job. Why is this so? 

In pedagogical contexts, information provided by a teacher can have strong 

constraints on the learner’s inferences (Bonawitz et al., 2011; Shafto & Goodman, 2008). 

For example, when a teacher shows one function of a toy, it strongly implies that the toy 

has just one function, rather than two, three, or four; if there were more, the teacher 

would have demonstrated them. This constraint can be described as a rational inductive 

bias; it is predicated on the fact that (a) functions are rare, (b) the informant is 

knowledgeable about all existing functions of the toy, and (c) that the informant selects 

the evidence in a way that is intended to help the learner to infer the correct hypothesis. 

Therefore, partial information provided by a teacher (e.g., showing one out of four 

properties of a toy) is not only insufficient to support the true hypothesis about the toy’s 

functions, but it also misleads the learner to believe in the wrong hypothesis.  
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This inductive constraint explains why we think the teacher in the example 

above isn’t helpful. The teacher’s demonstration, albeit true, is incomplete and leads the 

learner to believe that the toy has just one function; she has committed a “sin of 

omission.”  

Note that the omission of relevant information is closely related to a violation of 

the Gricean Maxim of Quantity, which states that a speaker should be as informative as 

required in communicative contexts (Grice, 1975; Horn, 1984). For instance, a speaker is 

guilty of violating this maxim if she (accurately) communicates that she ate some of the 

cookies, when she in fact ate all of them. A large body of literature documents 6-year-

olds’ failure to reject such under-informative utterances (Barner, Brooks, & Bale, 2011; 

Noveck & Reboul, 2008; Papafragou & Musolino, 2003). Even when children can 

distinguish under-informative (yet logically true) utterances from fully informative 

ones, they still consider them acceptable (Katsos & Bishop, 2011).  

Recognizing omission of information as a sin may require a more sophisticated 

inference than understanding that provision of false information constitutes a “sin of 

commission.” To detect a sin of commission, the learner only needs to recognize 

whether the presented information is true or false. For sins of omission, however, the 

information provided is true, and the learner needs to recognize that it nonetheless 

increases the learner’s belief in the wrong hypothesis.  

In the current study, we asked whether children accurately evaluate teachers 

based on their tendency to provide partial information (Experiment 1), and whether 

children’s learning is affected by the informant’s past history of committing sins of 

omission (Experiment 2).  
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4.2 Experiment 1 

In Experiment 1, we asked whether children recognize omission of relevant 

information as a failure to teach effectively by asking them to evaluate teachers who 

provided complete or incomplete information about a toy. Informed by previous 

developmental studies on Gricean implicature, and a pilot study of fourteen 5-year-

olds8, we focused on children between 6 – 7 years of age for this initial investigation.  

Previous work established that children make the same inferences from vicarious 

instruction that they make from direct instruction (Bonawitz et al., 2011).  We exploited 

this fact to create a task in which children first explored a toy to learn all its functions, 

and then observed a teacher demonstrate the toy to a naïve learner. This design allowed 

children to objectively evaluate the teacher without being affected by their interest in 

exploring the toy themselves.  

 We hypothesized that if children are sensitive to sins of omission in 

pedagogical contexts, children who saw a teacher demonstrate one of four functions of 

a multi-function toy would give lower ratings to the teacher compared to those who 

saw a teacher demonstrate the same function of a single-function toy, even though the 

behavior of the teachers were identical in both conditions.     

 

                                                

8 We recruited fourteen five -year-olds (M = 5.57 yrs, N=7 in Teach 1/1 and Teach 1/4 
conditions, respectively) as part of a pilot study using the same paradigm used in Experiment 1. 
We found that regardless of conditions, all but two (one in each condition) children gave the 
highest possible rating to the Toy Teacher. However, it was unclear whether this result was due 
to their genuine inability to detect sins of omission, or due to their strong preference for the toy 
that had cool effects. Therefore, we limited our target age range to six- and seven-year-olds in 
Experiment 1. 
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4.2.1 Method 

Participants   Fifty-two children between ages 6 and 7 were recruited from a 

local children’s museum (N=52, M(SD) = 6.93 (0.61) years, 31 girls) and were randomly 

assigned to either “Teach 1/1”(N=24) or “Teach 1/4”(N=28) conditions. Five children 

were dropped and replaced for failing to meet the inclusion criteria (see Results).  

Materials Two yellow, pyramid-shaped novel toys were constructed with foam board 

and electronic parts. The Four-Function Toy had a purple knob which, when turned, 

activated a wind-up mechanism that displayed a flapping motion. In addition, a green 

button activated a spinning mechanism in a transparent plastic globe placed on the 

apex, a yellow button played music, and an orange button activated two LED lights. 

The Single Function Toy looked almost identical but had only one functional affordance 

(purple knob). The rest of the parts did not depress nor function as buttons. This was 

important to avoid giving the impression that the toy was broken. An Elmo puppet was 

Figure 4-1. Stimuli used in Experiment 1.Left: Single-Function Toy and 
Four-Function Toy; Right: Puppet teacher, Elmo (naive learner), and 
rating scale.  
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used as the naïve learner. Three hand puppets were used as the Toy Teacher (who 

taught Elmo about the toy), and two other teachers (Correct and Incorrect Teachers) 

who taught correct or incorrect names of familiar objects (a plastic carrot and corn, a 

duck, a stuffed rabbit). The rating scale had a ceramic knob that sled from left to right of 

the scale, with tick marks from 1 - 20 and five color-coded faces (from frowny to smiley) 

that served as anchor points along the scale.  

Procedure  All children were tested individually in a quiet room inside the museum. 

The experimenter sat across the table from the child, and the parent was out of the 

child’s line of sight. All (but one by parent’s request) sessions were video-recorded. 

Before beginning the procedure, children were told that they’re going to play a “rating 

game” to see how helpful the teachers are in teaching Elmo, and received a brief 

training on how to use the sliding scale. Children were then introduced to Elmo (a 

puppet) who was described as a “silly monster” who didn’t know much about toys, and 

were told that the puppet teachers will teach Elmo about the toys. The experimenter put 

Elmo away and asked the child to play with the toy first, which indicated the beginning 

of the Explore phase of the procedure. 

1. Exploration. Children in Teach 1/1 condition briefly explored the Single-

Function Toy, those in the Teach 1/4 condition explored the Four-Function Toy. The 

functions were readily discoverable; thus all participants entered the study knowing 

whether the toy had one or four functions.  

2. Teaching. The experimenter introduced the Toy Teacher who “knew all about 

the toy”, and told the child that he will teach Elmo, a silly monster who knew nothing 

about these toys. The Toy Teacher’s action was identical in both conditions: he said, “I 

am going to teach you how my toy works”, and turned the purple knob on the toy to 

activate the wind-up mechanism.  
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3. Rating. After two demonstrations of the wind-up part, the participant was 

asked to rate the teacher on the sliding scale. Additionally, the participant rated two 

more teachers: a “Correct Teacher” who correctly named two familiar objects (i.e., 

calling a plastic carrot “a carrot”, a rubber duck “a duck”), and an “Incorrect Teacher” 

who gave wrong names (i.e., calling a stuffed rabbit “a cow”, a plastic corn “a cup”). 

These additional ratings allowed us to identify children who failed to understand the 

rating scale, and to calculate an adjusted score for the Toy Teacher calibrated to the 

child’s own ratings of Correct and Incorrect Teachers (see Results).  

 

4.2.2 Results and Discussion 

 Five children rated the Incorrect teacher as same as or higher than the 

Correct Teacher. These children were regarded as not having understood the task 

instruction or the rating scale, and were excluded from further analysis. 

Figure 4- 2. Experiment 1 results. 



 

 84 

In Teach 1/1 condition, the Toy Teacher’s demonstration of the wind-up 

mechanism provided accurate and complete information about the toy: it was the toy’s 

only function. However, an identical demonstration in Teach 1/4 condition was still 

accurate of the toy but incomplete: he left three other functions undemonstrated, 

thereby committing a ‘sin of omission’. Therefore, we predicted that children in Teach 

1/4 condition would give a lower rating to the Toy Teacher than children in Teach 1/1 

condition, but predicted no difference in children’s ratings for Correct and Incorrect 

Teachers (see Figure 4-2).  

Children in the Teach 1/1 and Teach 1/4 groups did not differ in their average 

rating of the Correct Teacher (Teach 1/1: M(SD)=14.9(4.0) vs. Teach 1/4: M(SD) = 16.4 

(4.5); t(50) = -1.33, p = ns), or the Incorrect Teacher (Teach 1/1: M(SD)=2.5(2.6) vs. Teach 

1/4: M(SD) = 3.2 (4.3); t(50) = -.71, p = ns).  

As predicted, children in Teach 1/4 condition gave lower ratings to the Toy 

Teacher than those in Teach 1/1 condition (Teach 1/1: M(SD) = 17.3 (3.5) vs. Teach 1/4: 

M (SD) = 14.0 (6.7), t(41.7) = 2.32, p = 0.025). To ensure individual differences in 

children’s own references for rating did not affect our results, we calculated adjusted 

ratings for Toy Teacher using the following formula: Adjusted Rating = (Toy - 

Incorrect)/ (Correct - Incorrect)).9 Children’s adjusted scores were significantly higher 

in Teach 1/1 than in Teach 1/4 condition (Teach 1/1: M(SD) = 1.41 (0.79) vs. Teach 1/4: 

M (SD) = 0.81 (0.39), t(50) = 3.59, p = 0.001). 

                                                

9 An adjusted score of 0 or lower indicates that the Toy Teacher was rated as low 
as, or lower than, the Incorrect Teacher. A score of 1 or higher means that the Toy 
Teacher was rated as good as, or even higher than, the Correct Teacher. 
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In fact, children in Teach 1/4 condition rated the Toy Teacher lower than the 

Correct Teacher (14.0 vs. 16.4; t(27) = 2.58, p = 0.016), whereas those in the Teach 1/1 

condition rated the Toy Teacher even higher than the Correct Teacher (17.4 vs 14.9; t(23) 

= -2.12, p = 0.045)10. This pattern also emerged in children’s rank order of the three 

teachers (Toy Teacher, Correct Teacher, and Incorrect Teacher). While 14 of 24 (58.3%) 

children in the Teach 1/1 condition rated the Toy Teacher the highest of all three, only 5 

of 28 (17.9%) children in the Teach 1/4 condition did so (p = 0.003, Fisher’s Exact). 

These results suggest that even though the Toy Teacher’s demonstrations were 

identical across conditions, children rated the teacher differently based on whether his 

demonstration constituted a sin of omission: when the toy had more than one function, 

children penalized the teacher for not showing additional functions.  

 

4.3 Experiment 2 

Experiment 1 established that by 6-7 years of age, children recognize informants 

who provide partial information and evaluate them accordingly. Do children’s ratings 

simply reflect children’s transient evaluations of the informant’s immediate past 

behavior, or do children flexibly modify their assumptions about an informant based on 

                                                

10 One might suspect a few reasons for this difference between Toy Teacher and Correct 

Teacher. One possibility is that one taught about a toy, while the other taught a word label 

(arguably less fun than a toy); perhaps children assigned extra credit for someone who shows 

something novel, as opposed to a known word; it is also possible that children valued the amount 

of effort involved in teaching (i.e., demonstrating a function of a toy versus uttering a sentence). 

However, this difference was not predicted a priori, and future studies should investigate the 

factors children might take into account in social evaluations of others in pedagogical contexts.  



 

 86 

such behaviors in a way that affects what children learn from these informants? In 

Experiment 2, we addressed this question by looking at children’s exploration of a new 

toy, to see whether children rationally adjust their inferences about the toy based on the 

Toy Teacher’s past history of committing sins of omission. In addition to testing 6-year-

olds, we also tested groups of four-year-olds and five-year-olds to see if children 

younger than six years of age show signs of such understanding. 

 

5.3.1 Methods 

Participants Seventy-five 6-year-olds (M(SD)= 6.45 (0.29) years, 32 boys), seventy-five 

5-year-olds (M(SD)=5.45 (0.26) years, 39 boys), and forty-eight 4-year-olds (M(SD) = 4.58 

(0.27) years, 24 boys) were recruited from a local children’s museum, and assigned to 

one of three conditions: Teach 1/1, Teach 1/4, and Teach 4/4. Across all age groups, a 

total of twenty-seven children (six 6-year-olds, thirteen 5-year-olds, and eight 4-year-

olds) were dropped and replaced due to: parental or sibling interference (N=12), 

experimental error (N=4), not completing the procedure (N=4), or showing little or no 

play with the final test toy (Play Time < 15 seconds, N=7).  

Stimuli   The two yellow toys (Single-Function and Four-Function Toys), Elmo puppet, 

and the Toy Teacher puppet from Experiment 1 were used. Additionally, a novel-

looking toy (henceforth the Test Toy)with four different non-obvious causal affordances 

was used (see Bonawitz et al., 2011).  

Procedure    The initial procedure was similar to that in Experiment 1. Children in all 

conditions played with the yellow toy and discovered all working parts (Teach 1/1: 

Single-Function Toy, Teach 1/4 and Teach 4/4: Four-Function Toy). Children in Teach 

1/1 and Teach 1/4 condition then observed the Toy Teacher demonstrate just one 

function (wind-up part) of the yellow toy to Elmo, as in Experiment 1. In Teach 4/4 
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condition, the Toy Teacher showed Elmo all four working parts of the toy. Therefore, 

the Toy Teacher provided complete information in Teach 1/1 and Teach 4/4 conditions, 

but omitted three functions in Teach 1/4 condition.  

After the demonstration, the experimenter introduced the new Test Toy. She told 

the participant that Elmo had never seen this toy before, and the Toy Teacher would 

teach Elmo and the child about the toy. Critically, the Toy Teacher demonstrated just 

one function in all conditions. He said, “This is my toy. I am going to show you how my 

toy works” and pulled out a yellow tube from a larger purple tube which generated a 

squeak sound. After observing this demonstration twice, children were allowed to 

freely explore the Test Toy for as long as they wanted, for up to 3 minutes.  

Coding    All data were coded initially by the experimenter and then by a trained coder 

blind to conditions. The main results reported here are coded by the blindcoder . Inter-

coder discrepancy was very low. For the number of seconds spent playing with the 

squeaker part during the first 30 seconds of free play; the average of absolute 

differences in coded data between the Experimenter and the blind coder was 1.73 (SD = 

1.79) seconds.   

 

5.3.2  Results and Discussion 

Figure 4- 3. Procedure and predicted results. All children played with the Yellow Toy first 
and observed the teacher demonstrate the Yellow Toy to Elmo. Then the Toy Teacher 
demonstrated a second toy (Test Toy). The bottom panel illustrates children’s inferences 
about the number of functions of the Test Toy based on (A) generalizing from the number of 
functions of the Yellow Toy, and (B) Toy Teacher’s past history of committing a sin of 
omission. Note that both accounts predict the same pattern of play in Teach 1/1 and Teach 
1/4  conditions, but predict different pattern of results in Teach 4/4 condition.  
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Based on a previous study (Bonawitz et al., 2011), we assumed that the extent to 

which children focused on the demonstrated function (the squeaker) of the toy would 

reflect their inference about the toy’s functions. If children consider the teacher’s past 

history of providing complete or incomplete information and adjust their inferences 

about the Test Toy accordingly, children in Teach 1/1 or Teach 4/4 conditions (in which 

the Toy Teacher provided complete information about the yellow toy) would show 

different patterns of free play with the Test Toy than children in Teach 1/4 condition 

(who observed the Toy Teacher commit a sin of omission with the yellow toy). More 

specifically, children in Teach 1/1 and Teach 4/4 conditions should infer that the 

squeaker is the only function of the Test Toy and focus on playing with that function, 

replicating the effect of pedagogical demonstration in Bonawitz et al. (2011). However, 

children in Teach 1/4 condition should avoid making strong inferences from 

information provided by the Toy Teacher and consider the possibility that the Test Toy 

has additional functions. Therefore, we predicted that children would show less play 

with the demonstrated part (squeaker) of the Test Toy in Teach 1/4 condition than in 

Teach 1/1 and Teach 4/4 conditions (see Figure 4-3 for a schematic of design and 

predictions). 

To capture children’s initial expectations about the Test Toy immediately 

following the teacher’s demonstration, we limited the scope of our analysis to the 

earliest portion of free play. We coded the amount of time (in seconds) children spent 

playing with the squeaker part of the Pipe Toy during the first 30 seconds of children’s 

free play. Because we had a priori hypothesis about the pattern of results across the 

three conditions, we used planned linear contrasts (see Bonawitz et al., 2011) by 

applying the weights 1, -2, and 1 for Teach 1/1, Teach 1/4, and Teach 4/4 conditions, 

respectively.  
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The pattern of free play in the six-year-old group was consistent with this 

prediction: children in Teach 1/4 condition spent less time playing with the squeaker 

than did children in Teach 1/1 and Teach 4/4 conditions (Teach 1/1: M(SD) = 20.1(7.7), 

Teach 1/4: M(SD) = 13.4 (8.2), Teach 4/4: M(SD) = 17.4 (6.7), t(72) = 2.87, p = 0.005). 

Further planned comparisons confirmed that children in Teach 1/4 condition spent less 

time with the squeaker than did children in Teach 1/1 condition (t(48) = 2.95, p = 0.003, 

one-tailed) and Teach 4/4 condition (t(48) = 1.88, p = 0.033, one-tailed))11. However, 

play time with squeaker did not differ between Teach 1/1 and Teach 4/4 conditions 

(t(48) = 1.29, p = ns). See Figure 4-4 for results. 

However, five-year-olds’ play with the squeaker during the first 30 seconds of 

free play showed a weak, insignificant trend in the predicted direction (Teach 1/1: 

M(SD) = 17.63(9.5), Teach 1/4: M(SD) = 13.57 (7.8), Teach 4/4: M(SD) = 16.85 (5.4), t(72) 

= 1.93, p = 0.058).  In fact, children in Teach 1/4 condition showed a trend towards 

spending less time with the squeaker than did children in Teach 1/1 condition (t(48) = 

1.65, p = 0.053, one-tailed) and significantly less than children in Teach 4/4 condition 

(t(48) = 1.72, p = 0.046, one-tailed)). However, play time with squeaker did not differ 

between Teach 1/1 and Teach 4/4 conditions (t(48) = 0.36, p = ns). 

Four-year-olds did not show the predicted pattern at all.  (Teach 1/1: M(SD) = 

17.85(7.6), Teach 1/4: M(SD) = 16.8 (6.4), Teach 4/4: M(SD) = 13.09 (6.2), t(45) = -0.65, p 

= ns). In fact, pairwise comparisons showed that there was no significant difference 

between the three conditions.  

                                                

11 All but three children played less than 30 seconds, and the statistical results 

remain the same when the percent of time spent playing with the squeaker is used.   
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These results suggest that six-year-old children rationally modulate their 

inference from socially transmitted information based on the informant’s past history of 

omitting information.  Importantly, children did not simply expect teachers to provide 

all relevant information regardless of his past behavior (which would result in no 

difference across conditions), nor did they simply generalize the number of functions 

from the first (yellow) toy to the Pipe Toy disregarding the teacher’s demonstration 

(which would result in less play with squeaker in Teach 4/4 condition as well as in 

Teach 1/4 condition). When children observed the Toy Teacher teach all working parts 

of a toy, children trusted the teacher to provide accurate and complete information 

about a new toy as well. When they saw the Toy Teacher provide accurate but 

incomplete demonstration of a toy, his demonstration of a new toy did not place a 

strong constraint on children’s inferences about the toy; instead, children explored the 

toy broadly, indicating that they suspected the toy might have other functions.   

Five-year-old children showed a similar but a nonsignificant trend. I discuss 

possible reasons for such weak trend in the general discussion. Interestingly, four-year-
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Figure 4- 4. Experiment 2 results for three age groups. 
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old children’s play did not show the predicted pattern at all; instead, children tended to 

show shorter play with the squeaker in the Teach 4/4 condition compared to the other 

conditions, but none of the difference between the conditions was significant. 

 

5.4 General Discussion 

In Experiment 1, we showed that 6-year-old children recognize provision of 

partial information as a failure to teach effectively and evaluate teachers accordingly. 

Results from Experiment 2 suggest that children’s evaluations of the teacher indicate 

more than a simple preference; they reflect the extent to which children rationally 

modify their assumptions about the informant’s quality as an effective teacher. When a 

good, trustworthy teacher tells you “X does Y”, a strong inductive bias to interpret it as 

“X only does Y” can be beneficial for learning. However, if the teacher is likely to have 

left relevant information out, the learner bears a risk for having such an inductive bias; 

in fact, children might benefit from further exploration to see if X does more than Y. 

When socially learning from others in pedagogical contexts, children not only learn 

about the target of instruction, but also judiciously learn about the quality of others as 

useful and trustworthy informants.  

Of course, not all omissions are considered undesirable. In fact, omission of 

information is ubiquitous in formal education as well as in everyday communicative 

interactions. A teacher might deliberately skip teaching what the learner already knows 

(e.g., the toy is yellow), or what is considered too complicated or unnecessary for the 

learner’s purpose (e.g., the toy is operated by two 1.5-volt alkaline batteries in parallel 

configuration). A teacher might also provide partial information when a single piece of 

evidence supports generalization (e.g., if the toy had four identical buttons that work in 
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the same way, a single demonstration would suffice). However, omission of 

information constitutes a sin when a teacher demonstrates just one function of a toy that 

has several interesting functions to a naive learner whose wants to “learn how the toy 

works.” The current experiments focus on exactly such a case where the consequence of 

omission is certainly undesirable for the learner: when it leads the learner to make the 

wrong inference.   

Note that provision of partial information may indicate either one’s epistemic 

status (e.g., the informant doesn’t know about other functions), her intent (e.g., the 

informant intends to conceal other functions), or perhaps her moral status, and the 

learner’s attribution may have different implications for the learner’s subsequent 

inference. Under what circumstances would children exonerate informants from sins of 

omission?  While we purposely created a context in which omission could hardly be 

justified in this study, it is worth noting that under-informative utterances do not 

necessarily lead to negative evaluations of the speaker in communicative contexts 

(Grice, 1975; Clark, 1996; Wilson & Sperber, 2008). We believe that future studies with 

children may provide useful insights for linking social learning in pedagogical contexts 

and pragmatic inferences in linguistic communication, and to better understand the 

cognitive processes that underlie these abilities.   

Given preschooler’s success in detecting informants who provide false 

information (sins of commission, e.g., Koenig & Harris, 2005), the current results from 

six-year-olds raise a question about the developmental trajectory of children’s 

sensitivity to others’ quality as useful informants. Arguably, detecting sins of omission 

in pedagogical contexts may require much more than reasoning about a toy’s function; 

the learner needs to reason about the teacher by using his own knowledge about the toy 

and the consequence of the inference one would make given the under-informative 
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demonstration from the teacher. In fact, we found a weak but nonsignificant data in the 

predicted direction from five-year-olds, and no sign of such pattern in the four-year-old 

group. The reason for such weak trend in five-year-olds remains to be addressed. One 

possibility is that younger children are either more likely to forget what the teacher did 

or lose track of the teachers’ behaviors, due to memory and information processing 

demands of the task.  It is also possible that five-year-olds still evaluate the teachers 

based on sins of omission but their play with a different toy (Test Toy) is much less 

influenced by such evaluations. For example, the number of functions of the previous 

toy (Yellow Toy) may interfere with their inference about the Test Toy, as this may 

require the ability to inhibit irrelevant but salient piece of information (Carlson & Moses, 

2001). Another possibility is that the ability to evaluate informants on the basis of their 

past sins of omission is still developing between five and six years of age. This is 

consistent with previous studies in pragmatic implicatures (Noveck & Reboul, 2008), 

and in fact, they may detect the omission but much more forgiving of such sins, as 

suggested by Katsos & Biship (2011). Our results do not address what it is that develops 

between four to six years of age. Whether it is due to children’s developing ability to 

reason about others’ mental states, better memory of informant’s past behavior, or 

better inhibition of the tendency to generalize the number of functions across toys, is an 

important open question. 

The power of human learning lies in our ability to make inferences from sparse 

data (Tenenbaum et al., 2011; Gopnik et al., 2004) (see also Schulz, in press). In 

particular, information selected and provided by knowledgeable, helpful agents can 

place strong inferential constraints that allow the learner to learn more about the world 

from less data (Bonawitz et al., 2011; Gweon et al., 2010; Shafto & Goodman, 2008). 

However, the efficacy of learning from others comes with a cost; the accuracy of 
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learning hinges on the quality of informants around the learner. Our results suggest 

that young human learners can successfully detect and evaluate informants who 

provide accurate but inadequate information about the world, and adjust their 

inferences accordingly. Even in childhood, social evaluation and learning depend not 

just on how attractive, friendly, or powerful other agents are, but also on a rational 

analysis of how likely they are to provide information that supports accurate learning. 

Critically, such evaluations, in turn, affect what and how we learn from these 

individuals. 
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Chapter 5 

Learning in the Social Context 

 

The studies presented in this thesis provide the groundwork for advancing a 

formal account of a rational learning mechanism that is core and fundamental to human 

reasoning and learning. In particular, Chapters 2 and 3 provide compelling evidence 

that rational inferential capacities are already in place in preverbal infants, allowing 

them to use minimal statistical information to draw rich, abstract inferences that, in turn, 

support their behavior. Chapter 4 shows the sophistication of these inferences later in 

childhood. Although children clearly go through radical developmental shifts in their 

concepts and knowledge about the world (e.g., Carey, 2009), the current studies provide 

evidence for developmental continuity in fundamental learning mechanisms. If the 

previous two studies involved learning about the world while taking into account what 

other people do, this study asks more directly whether children can learn about other 

agents based on their behaviors.  
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5.1 Summary 

 In Chapter 1, I described my approach to understand learning in social contexts as 

addressing these aspects of learning: 

(1) Selection: how learners navigate between different sources of information by 

carefully monitoring their relative informativeness, 

(2) Integration: how learners flexibly and rationally utilize information acquired 

from various sources with different representational format,  

(3) Construction: how learners construct a coherent system of knowledge across 

content domains that, in turn, can support (1) and (2). 

 

In this section, I first summarize each of the three studies within the template of three 

basic questions about the way in which statistical inference mechanisms operate in the 

minds of young learners to support the selection, integration, and construction of 

knowledge. The first question concerns the input to these inferential processes; what 

kinds information do learners make use of? The second is about the inference itself; do 

learners draw rational inferences from data, in ways that can be formally predicted by 

computational models of human cognition? The final question concerns the output of 

these inferences; how do these inferences affect the learners’ real-world behavior, and in 

what ways do they contribute to their knowledge?  

 In the first study (Chapter 2), infants were able to use a small amount of 

covariation information embedded across people and objects (input). Using such 

minimal statistical data, they were able to attribute the cause of their failed goal-

directed action to either to themselves or to an object (inference). These inferences 

affected their choices of future actions (output). When they themselves were the more 
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likely cause, they approached another agent; when the object was the likely culprit, they 

approached another object. Notably, they chose the actions that not only offered useful 

information, but also were more likely to bring about the desired outcome.  

 The second study showed infants an experimenter who sampled a set of objects 

from a box. Based on the proportion of the sampled objects in the box, the number of 

objects in the sample, and the way in which the experimenter drew the sample (input), 

infants were able to rationally generalize a property of the objects to a novel object 

(inference). These inferences affected their exploratory play with the novel object; they 

squeezed the ball more often when it was likely to generate a sound, but tried other 

actions when it was unlikely to have that property (output).  

 Finally, in the third study, children saw a teacher who demonstrated the same 

function of a toy in two different contexts; when the demonstrated function was the 

toy’s only function, and when it was just one of its four functions (input). Whether the 

teacher provided complete or partial information about the toy affected children’s 

evaluation of the teacher (inference). Critically, such evaluations modified the way in 

which children learned from that teacher in the future (output); when the teacher’s 

credibility is in doubt, they were much less likely to endorse a strong interpretation of 

the teacher’s demonstration.  

Taken together, my work provides evidence for a rational, probabilistic, domain-

general inference mechanism that is already in operation from early in life, and suggests 

that this mechanism selects (input) and integrates data from both the social and the 

physical world (inference) to construct knowledge that affect their exploration, 

generalization, and evaluation in both the physical and the social world (output). 
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5.2. Towards a unified account of learning from rational inference 

 The studies in this thesis are just the first steps towards a unified account of 

learning from rational inference. Having just considered how each study addressed 

questions of selection (input), integration (inference), and construction (output), below I 

review how each of these aspects of learning manifests across the three studies.  

5.1.1 Selection 

 Chapters 2, 3, and 4 address information selection in somewhat different ways. The 

first study (Chapter 2) shows children’s implicit evaluation of relative informativeness 

in terms of their approach to either source. Depending on whether the agent (the 

children themselves) or the object was the more likely culprit of their failures, children 

directed their actions to either another agent or another object. Chapter 3 indirectly 

shows that infants make a flexible use of the statistical information present in the 

environment (i.e., the probability of the sample). Given an explicit cue for a particular 

sampling process, considering the probability of the sample is not only unnecessary but 

can even be detrimental for accurate judgments. This study suggests that infants 

selectively use probability information only when it is useful for determining the 

population from which the agent was sampling. An interesting question is whether 

infants actually process the perceptual properties of objects or ratio of the objects to a 

lesser degree when it is unnecessary to consider the probability of samples. Previous 

studies have shown that infants are less likely to remember the visual properties of 

artifacts when they are presented in the context of communicative demonstration of 

their functions (Futó, Téglás, Csibra, & Gergely, 2010). It is possible that, in general, 

specifying the purpose of demonstration may reduce infants’ attention to information 

that is less likely to be useful in a given context. Finally, Chapter 4 shows how older 
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children evaluate other agents as sources of information. Although the task did not 

involve direct comparisons between teachers, children’s relative ratings for teachers can 

be considered a proxy for their choices. In this study, children not only evaluated 

teachers on the basis of the property of information provided by these teachers, but they 

also adjusted their interpretation of the information from the teachers based on how 

they previously evaluated these teachers. 

 

5.1.2 Integration    

 The work in my thesis attest to the domain-generality of the rational inference 

mechanisms by showing that inferences operate across domain boundaries, both with 

respect to the input to the learning mechanism as well as its output representations. First, 

all three studies show that children extract information from both the physical and the 

social world. In the first study (Chapter 2), the information was the conditional 

dependencies among objects, agents, and events; in the second study (Chapter 3), it was 

the number of samples and ratios of different populations in the box, as well as the 

process by which the sample was generated; in the third study (Chapter 4), children had 

to know about both the agent (e.g., what the Toy Teacher knows) and their own 

knowledge about the number of functions on the toy to draw rational inferences about 

sins of omission. Second, with respect to the output of the learning mechanism, I 

showed that it supports children’s approach to either a person or another object 

(Chapter 2), that it reflects the degree to which children believed that the yellow balls 

squeak (mediated by the sampling process) (Chapter 3), and that children draw 

inferences from an agent’s interventions on objects to learn about both the object and 

the agent (Chapter 4).  
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 Some of the earliest evidence for cross-domain integration comes from looking-

time studies on infants’ understanding of agents as sources of causal power (Saxe, 

Tenenbaum, & Carey, 2005; Muentener & Carey, 2010). Preschoolers can handle 

information that is arguably more arbitrary; they use prior-violating evidence that links 

causes and effects in separate domains (e.g., being scared -> tummy ache) to make 

accurate causal inferences (Schulz et al., 2007a; Schulz & Gopnik, 2004). The current 

studies go beyond both lines of literature by showing domain-generality outside the 

context of prior-violating cross-domain evidence by testing preverbal infants with 

action measures; preverbal infants’ goal-directed behaviors (e.g., approaching, 

squeezing) reflected their ability to integrate information across domains that are 

naturally present in our everyday environment, such as people and their actions, 

physical objects, and even mental states or dispositions of agents such as intent and 

helpfulness. Furthermore, data from older children (Chapter 4) suggest that the output 

of these inferences is not limited to causal relations in observed events or properties of 

physical objects; it can even inform our social evaluations of other agents.   

 

5.1.3 Construction 

 Studies in Chapters 2 and 3 address the construction aspect only in a limited sense, 

by means of showing how the output representations of children’s inferences affect 

their real-world behaviors that, in turn, affect how search for or evaluate informational 

sources and the kinds of inferences they make. In Chapter 2, their inferences resulted in 

abstract, causal representations that distinguished the child herself and the target of her 

actions and assigned causal responsibility to one of them. It remains an open question 

whether infants can actually learn about the efficacy their own actions or the toy from 

additional evidence, and is an interesting direction for future research. In Chapter 3, 
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infants’ inferences about the new toy’s property affected the extent to which children 

attempted to reproduce the property with the novel object.  

 Chapter 4 addresses the construction aspect more explicitly, by showing that 

children not only learn about properties of objects from others’ demonstrations, but 

they also can use this to learn something about the agent who provided the data. 

Children’s evaluations of the teacher were not transient, temporary impressions of his 

behavior; they became a part of their coherent, abstract knowledge about that agent 

which affected their future learning. 

 

5.2 Methodological implications 

 Cognitive scientists who take on a developmental perspective choose to study 

children and infants because of the unique insights this population offer about the 

precise nature of the human mind. In studying children, particularly preverbal infants, 

finding the right dependent measure is critical for understanding their mental 

processes. The studies here present some methodological implications for studying 

infant/child participants. Some of the most frequently used measures in studying 

children are their binary choices, answers, or actions. However, such all-or-none 

measures have fundamental limitations in studying the graded, probabilistic nature of 

their inferences from data. In Chapters 3 and 4, I’ve devised measures that can better 

capture these aspects in the course of a child’s free play with objects. Particularly in 

Chapter 3, I offer a Bayesian model to predict children’s degrees of beliefs about the 

novel toy and show that the results using these measures (i.e., number of squeezes) are 

tightly correlated with the predictions of a Bayesian model. If our cognition is 

fundamentally probabilistic in nature (e.g., Tenenbaum et al., 2011;Tenenbaum, 

Griffiths, & Kemp, 2006; Vul, 2010), measures that tap into this nature would be more 
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informative than averages across many participants. With the recent successes of using 

looking-time methods (Téglás et al., 2011; Kidd, Piantadosi, & Aslin, 2012) to get to the 

probabilistic nature of infants’ expectations, these methods offer other useful ways in 

which such aspects can be captured in the naturalistic, spontaneous actions of infants 

and children.  

 

5.3 On socially learning from others 

 As the title of the thesis suggests, all three studies look at learning that occur in 

social contexts; that is, when other agents may provide useful evidence for the learner. 

In the first study (Chapter 2), infants were situated in a naturally social context where 

experimenters addressed the child, but at the same time were primarily involved in 

their own goal-directed actions that were either successful or unsuccessful. From a 

small amount of contingency information between actions and outcomes, infants 

quickly distinguished that agents might be a relevant variable in determining the toy’s 

activation. It is possible that infants were able to draw this inference only because there 

was an agent involved; that is, infants’ prior knowledge about agents, goal-directed 

actions, and their causal power constrained their hypotheses to allow accurate 

inferences from such sparse data. In the second study (Chapter 3) the experimenter also 

addressed the child, although in this case, her action was arguably more directed more 

to the child. One might imagine there would be less inferential burden on the learner 

when something is simply ‘demonstrated’ to the learner, compared to when the learner 

herself has to search for useful information. However, even in contexts where an adult 

addresses a child and demonstrates an interesting property of an object, it often remains 

ambiguous as to what is to be inferred from these actions: e.g., what are squeaky toys, 

and what are not? In this study, the agent’s actions themselves were insufficient to 
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specify neither the sampling process nor the properties of an undemonstrated toy. The 

results suggest that even a brief exposure to base-rate information (i.e., seeing the ratio 

of objects) may be enough for preverbal infants to accurately infer object properties. 

That is, statistical information extended the scope of what the infant can infer from the 

agent’s goal directed action. In the final study, the context was unambiguously 

pedagogical; it was explicitly stated that the informant is a teacher who knows all about 

a toy, teaching a naïve learner about it. The results show that even in contexts where an 

agent is assumed to be knowledgeable and helpful, children do not simply hold onto 

this initial representation of the informant. In the absence of explicit evidence for the 

informants’ ignorance, false belief, or uncertainty, children used their own knowledge 

about the toy and the agent’s demonstration to re-evaluate this representation, and 

furthermore, use this to adjust their inferences in subsequent encounters with the same 

informant.  

The distinction between learning from one’s own exploration and learning from 

instructions of others has sometimes been misinterpreted to imply that social learning is 

a more passive process than learning from evidence generated by one’s own actions. 

The work here suggests that paraphrasing social learning as ‘learning from 

transmission of information’ vastly understates the learner’s role in learning from 

others. The learner actively searches for the most useful source for learning, whether it 

be a person or the external environment, and even intervenes on these sources to 

initiate learning and generate useful information for her goal. Even when information is 

directly provided to the learner, the learner selects, filters, interprets, and abstracts the 

information she is given to construct her own knowledge. As information doesn’t come 

readily digestible even when it originates in another person, what is acquired and how 

it is used depends on the learner.  
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One indicator of the extent to which we see social learning as passive is the fact 

that words like ‘cue’, ‘signal’, or ‘trigger’ pervade theories of social learning. For 

example, when a baby sees her mom point, smile, and make eye contact with her, she 

may assume that there is something interesting to be learned and prepare to receive 

information that is relevant for her in some way (Csibra & Gergely, 2009; 2011). 

Although human learners might be equipped with early-developing, even innate, 

mechanisms that trigger their attention under certain contexts, my work suggests that 

we may be able to break these assumptions down to products of our rich, abstract (but 

minimal) prior knowledge about agents and the capacity to draw rational, inductive 

inferences to form probabilistic representations about other people. 

On a broader note, learning from others and learning from exploration of the 

world have been traditionally distinguished as two “primary modes” of learning 

(Vygotsky, 1978; Piaget, 1929; 1952). The work here suggests that the origin of 

information may not matter as much as previously thought; learning occurs through 

navigating across both the social and the physical world, and results in learning about 

both the social and the physical world. Underlying these processes are core, 

fundamental inferential capacities, that allow us to draw rich, abstract inductive 

inferences from small amounts of data. 

 

5.4 Conclusion 

Current theories of cognitive development offer both a rich description of the 

nature, structure, and the content of knowledge in early childhood, and an explanation 

for the process by which dramatic shifts and changes in their concepts and theories take 

place. Hierarchical Bayesian framework offers formal learning principles for how such 

learning might occur. In addition, social influences have gained increasing attention in 
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studies of human cognition. While recent interdisciplinary approaches to study 

reasoning and learning in childhood within this framework have been influential in 

understanding how children learn rationally from data, the studies I presented here fill 

in some of the critical gaps. First, I provided some of the earliest hallmarks of rational, 

probabilistic inference mechanisms by showing sophisticated reasoning abilities in 

preverbal infants. Second, the studies suggest that these capacities transcend domain 

boundaries by omnivorously taking in information from both the social and the 

physical world, drawing inferences about both the social and the physical world. 

Finally, my work has implications for what has been often considered results of 

‘constraints’ or ‘assumptions’ that are specific to learning in social non-social contexts. 

 Building on the this work, I plan to further contribute to the theoretical, empirical 

endeavor in advancing the idea that social learning, as with any other kind of learning 

from observed evidence, is rationally guided by the learners’ abstract, structured 

representations in various domains. Our ability to socially learn from others reflects 

fundamental properties of a domain-general learning mechanism. It is indeed a very 

smart mechanism that extracts useful data from the environment and draws rational 

inferences to generate rich, abstract, probabilistic representations of the world. But 

precisely for this reason, social learning isn’t special – it is just part of what we do every 

day, as we go about learning about the world. 
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