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ABSTRACT

Studies in the past decade have established gene expression as an inherently variable process.

Accompanying this exciting finding is a fundamental question: how do physiological events,

such as cell fate specification, proceed so robustly in the face of gene expression variability? In

this thesis, I took a fresh attack at this question by examining the control of variability in the

context of the stereotyped development of the nematode C. elegans.

Specifically, I focused on the regulation of a Hox gene by the Wnt signaling pathway in a

single C. elegans neuroblast. Analogous to vertebrate neural crest cells, Hox gene expression

determines the migratory direction and the subsequent fate choices of cells that descend from the

original neuroblast. Intrigued by the earlier observation that perturbation to Wnt signaling

disrupts the wild-type stereotypy in migratory decision, I speculated that variable gene

expression may underlie the partial penetrance in the mutants and subsequently questioned what

mechanism safeguards against variability in the wild type.

Combining single-cell transcript counting with genetic manipulation, I quantified the

variability in Hox gene expression in the Q neuroblasts in both the wild type and a series of Wnt

signaling mutants. Interestingly, I observed increased expression variability in a number of

mutants and an overall complex relationship between expression variability and mean expression
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level. Distinct features in the gene expression profile embarked me on a search for network

interactions, leading to the discovery of multiple novel feedback loops within the Wnt pathway.

Applying computational network inference, I revealed a network of interlocking positive and

negative feedback loops, which I subsequently show to have a topological advantage in

dampening stochastic noise in gene expression.

Thesis Supervisor: Alexander van Oudenaarden

Title: Professor of Physics and Biology
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Chapter 1

INTRODUCTION

Even in the age of Shakespeare, the question of why individuals of the same species differ from

one another has been put forward (Shakespeare, The Tempest 4:1). The idea of nature versus

nurture has been around for perhaps just as long. With the advent of modem biology, our eyes

are opened to the precise molecular substrates on which nature and nurture act on. As scientists

attempt to explain and predict biological variations with greater precision, they have also

uncovered along the way that there is yet a third factor to account for-that is probability, or

more precisely, stochastic variation in biochemical reactions.

Over half a century ago, Novick and Weiner first reported all-or-none induction of the

enzyme p-galactosidase among clonal Escherichia coliform cells cultured in the same

environment (Novick and Weiner, 1957). In this seminal study, they noted that the cell-to-cell

heterogeneity was unlikely to result from inhomogeneous inducer concentration-because the

bacteria culture is continuously well-stirred. With great foresight, they speculated that some key

event in the p-galactosidase synthesis pathway may occur at random upon induction, leading to

full enzyme synthesis in some cells and none in other cells. Further support for the idea that

cellular events can be random or stochastic came some twenty years later, when Spudich and

Koshland (1976) discovered nongenetic variability in the chemotactic behavior of bacteria. After

ruling out the influence of cell cycle and random environmental fluctuations, the authors

postulated that the observed stochasticity might have stemmed from reactions involving low

numbers of molecules. Statistically, this makes sense, as the random birth, death, and union of a

small number of molecules would indeed produce large fluctuations in the downstream processes
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they control. Indeed, the authors noted that the mRNA products of several chemotaxis pathway

genes are present at merely tens of copies per cell. Years later, computational modeling of the

chemotaxis pathway brought forth theoretical support for the original hypothesis of Spudich and

Koshland (Levin et al., 1998). The next step was to obtain evidence experimentally.

At the time of Spudich and Koshland, it was technically challenging to assess the abundance

of molecules in single cells. Over the past decade, technical advance have allowed direct

measurement and visualization of macromolecules, such as protein and mRNA, at the single cell

level (Newman et al., 2006; Yu et al., 2006; Boeger et al., 2008). A series of pioneering work

have not only confirmed that gene expression is inherently stochastic, but moreover revealed

cellular mechanisms that influence the degree of stochasticity. The work in this thesis builds

upon these invaluable findings, and attempts to extend our understanding of stochastic gene

expression to the context of animal development.

1.1 Origins and Consequences of Stochastic Noise in Gene Expression

Intrinsic Origins

To understand the origin of stochastic fluctuations in the expression of a single gene, Elowitz

and colleagues (2002) proposed to classify the source of stochasticity into two categories,

namely intrinsic noise and extrinsic noise. Intrinsic noise refers to stochastic fluctuations

originating from the transcription and translation of the gene itself. Microscopically, the

biochemical reactions leading up to transcription and translation frequently involve a small

number of molecules (e.g. the number of DNA molecules is typically 2 for a eukaryotic gene).

Thus, uncertainty in the thermodynamic motion of individual molecules in turn leads to

uncertainty in their collective outcome, i.e. the birth and death of mRNA and protein. Theoretical
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models building on these ideas have successfully captured many aspects of the observed non-

genetic variability in gene expression. They have further inspired the discovery of molecular

mechanisms that control the magnitude of intrinsic noise in gene expression.

Among the mechanisms discovered to date, chromatin state figures prominently in the

regulation of intrinsic noise. Specific nucleotide sequences at the promoter region have been

shown to encode the affinity for DNA-binding proteins such as those of the pre-initiation

complex, thereby influencing the frequency and duration of transcription initiation. Nucleosomes,

consisting of segments of DNA wound around the histone proteins, restrict the access of DNA-

binding protein to their cognate sequence (Weinberger et al., 2005; Blake et al., 2006; Boeger et

al., 2008; Sanchez et al., 2011). The occupancy of nucleosomes at the promoter region thereby

sets the threshold of transcription activation. As nucleosomes are removed and reformed at a

dynamic equilibrium, stochasticity is introduced to the transcriptional machinery. On a similar

notion, chromatin remodeling, marked by the enzymatic addition or removal of chemical groups,

is stochastic in nature and also adds noise to the transcriptional output. In addition to regulation

at the chromatin level, transcriptional pausing of polymerase (Lagha et al., 2012) as well as

regulation of translation rates and mRNA and protein degradation rates (Chalancon et al., 2012)

have also been shown to influence the level of intrinsic noise in gene expression (Figure 1-1).

Extrinsic Origins

While intrinsic noise stems from the transcription and translation of a gene itself, extrinsic

noise arises from the intra- or inter- cellular environment (Figure 1-1). Global fluctuation in

cellular environment may lead to small but significant differences in the temperature, osmolality,

or nutrient concentration experienced by individual cells, thereby resulting in difference in gene

expression. The environment within the cell is also hardly constant. Proteins that make up the
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transcription and translation machinery (e.g. ribosomes) are themselves subject to stochastic

noise in gene expression. Fluctuations in their abundance would globally affect gene expression

levels across the genome. Furthermore, as genes in a genome interact extensively in a densely

connected network, fluctuations in a few regulatory genes can propagate through the network

causing widespread changes in gene expression (Pedraza and Van Oudenaarden, 2005).

Interestingly, emerging evidence indicates that the structure of a network may critically influence

its ability to dampen, amplify or transmit noise (Hasty et al., 2000; Austin et al., 2006; Eldar and

Elowitz, 2010). As discussed in detail in the section 1.2, understanding how various network

architectures influence noise propagation may prompt us to understand how stochasticity in gene

expression is tolerated, controlled, or exploited in nature.
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Figure 1-1. Intrinsic and extrinsic sources contribute to stochasticity in gene expression. Intrinsic

sources of variability (left) and extrinsic fluctuations (right) together influence the level of noise

in gene expression. Image courtesy of Chalancon et al., 2012.

1.2 Interplay between Network Architecture and Gene Expression Noise

As genes do not function in isolation but rather constitute parts of a densely interconnected

network, the inherent noise in the expression of individual genes could in principle propagate

through the network causing global effects on the physiological state of the organism. In parallel,

studies have revealed that biological networks have distinct features from other types of

14
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networks (e.g. social network, electrical circuit) (Barabisi and Oltvai, 2004). Namely, biological

networks tend to be characterized with a few highly connected nodes and many sparsely

connected nodes ("scale-free"); it also exhibit strong "small-world effect", which means any two

nodes in the network are only a few connections away from one another (Shen-Orr et al., 2002).

Moreover, certain network structures, or motifs, are significantly enriched in biological networks

(Milo et al., 2002). These structural features draw attention to the functional properties of

biological networks. In the study of gene expression noise, researchers have begun to ask: do the

structural properties of a network influence its sensitivity to noise? And if so, how?

The first answer to this question came from synthetic biology. Synthetic biology utilizes

known open reading frames (ORFs) and regulatory sequences to build gene expression systems.

Choosing from a repertoire of ORFs and regulatory sequences, one could flexibly build gene

regulatory networks with a wide array of topologies. A key advantage of synthetic biology is

that small scale gene networks can be constructed and manipulated in relative isolation from the

rest of the genome, thus minimizing complicating factors from genes not directly studied. One of

the pioneering study using synthetic gene circuit to understand expression noise was performed

by Becskei and Serrano (2000). By building a synthetic construct where the protein product of a

gene represses its own transcription, the authors asked how negative feedback affects noise in

gene expression (Figure 1-2). Comparing to control circuit without feedback, the circuit with

negative feedback exhibited less cell-to-cell variability in gene expression levels. This study

demonstrated the effectiveness of synthetic biology approaches and fueled wide-spread interest

in using synthetic circuits to understand biological networks.
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Figure 1-2. The use of synthetic gene circuit to probe the role of negative feedback on noise in

gene expression. A) An autoregulated negative-feedback network in which a tetR-EGFP fusion

protein binds to tetO operator sites in the promoter that drives its production (top panel). The

levels of GFP expression in single cells show a narrow distribution of fluorescence intensity

(bottom panel). B) An unregulated network constructed by mutating the DNA-binding domain of

the tetR protein (top panel). Cells expressing GFP from this construct exhibits a wider

distribution of GFP fluorescent intensity. Image courtesy of Hasty et al., 2001.

Following up on their initial study, Becskei and colleagues (2001) further explored the effect

of positive autoregulation on stochastic gene expression. Consistent with their theoretical

prediction, they found that positive feedback could convert an otherwise unimodal distribution of

gene expression to a bimodal one. In other words, positive feedback could allow two distinct

states of gene expression, one corresponding to high transcriptional activity and the other low

levels of transcription, to coexist in the same isogenic cell population. Other researchers

extended the initial studies on positive and negative feedback to provide more mechanistic

understanding. For example, Austin and colleagues discovered a mapping between network

16
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topology and the noise frequency. Importantly, they found that negative feedback shifts the noise

spectra to higher frequencies, thus reducing the magnitude of noise at low frequencies. Since

high frequency is often filtered out by the relative slow dynamics of transcription and translation,

one would observe a net reduction in noise level as was the case in Becskei and Serrano (2000).

Pedraza and van Oudenaarden (2005) elucidated how noise in gene expression propagates

through a gene network. Using a combination of experimental and theoretical approaches, they

ingeniously teased apart the relative contribution of intrinsic, pathway-specific, and global noise

on the abundance of individual genes as well as the dynamic correlation between genes. In a

complementary study, Hooshangi and colleagues (2005) also explored the propagation of noise

through a cascade and found that increase in cascade length seemed to promote sharper

transcriptional response to input signals.

Results from synthetic gene circuits have provided strong evidence that network topology can

influence both the magnitude and the detailed distribution of gene expression noise. However,

few studies exist to address whether network architecture influences gene expression noise

endogenously. The recent study by (Cagatay et al., 2009) provides a positive answer to this

question. The authors focused on the regulatory circuit regulating the differentiation of Bacillus

subtilis into the competence state. By comparing the endogenous circuit to an engineered circuit

with the same regulatory logic but different topological detail, the authors found that the two

circuits differed in the distributions of competence durations. In this case, the endogenous circuit

exhibited more stochastic variability than the engineered circuit, which appeared to endow the

cell population with greater adaptability to a wide range of environment conditions. The finding

of this study implicates that evolution may operate on network architecture to tune the amount of

stochasticity in a genetic system. While this notion is likely to be true in eukaryotic multicellular
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organisms as well, it awaits direct experimental evidence. This thesis work finds support for this

notion in a developmental event of C. elegans. Future studies are likely to reveal more

endogenous examples in which network architecture is adapted to amplify or minimize noise

depending on the desired function.

1.3 Consequences and Control of Gene Expression Noise in Multicellular

Organisms

In single-cell organisms, ample evidence has indicated the noise in gene expression could

give rise to phenotypic diversity among isogenic individuals (Kaern et al., 2005; Mantzaris, 2007;

Lidstrom and Konopka, 2010). Such phenotypic heterogeneity is sometimes viewed as beneficial,

in that it serves as a bet-hedging strategy to ensure population survival in the face of fluctuating

environments. Such reasoning may not generally apply to the control of gene expression in

multicellular organisms. The complex physiology of multicellular organisms dictates that not all

things can be left to chance. For example, the proper function of an organ depends on a balanced

cooperation among multiple cell types; interruption of such balance often leads to disease

(Komili and Silver, 2008). Furthermore, in both plants and animals, developmental events are

often highly stereotyped and remarkably resistant to environmental fluctuations (Hornstein and

Shomron, 2006; Geisen et al., 2008). Such phenotypic invariance suggests that noise in gene

expression is either controlled or tolerated to render the physiological outcome deterministic.

As in single-cell organisms, gene expression noise is ubiquitously present in multicellular

organisms and can induce profound functional consequences. In the development of the retina in

Drosophila, stochastic expression of the gene Spineless gives rise to the mosaic distribution of

two types of ommatidial cells across the retina (Figure 1-3, Wernet et al., 2006). The ratio of
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between the two cell types, a parameter relevant to visual function, depends on the probability at

which Spineless is turned on. In the Caenorhabditis elegans (C. elegans) embryo, cell-to-cell

variability in the expression of end-i, the master regulator for the intestinal cell fate, is normally

low but increase dramatically upon mutation of its upstream regulators. Interestingly, the highly

variable end-1 expression also appeared to correlate with the partially penetrant phenotype in the

mutants. In addition to transcriptional networks, cellular response to external signals is also

subject to stochastic noise (Raj et al., 2010). Upon application of an apoptosis-inducing agent,

human tumor cells exhibit great variability in the timing and probability of apoptosis initiation

(Spencer et al., 2009). This variability was attributed to the variable abundance of several key

proteins that regulate apoptosis, implicating a role of stochastic gene expression. Of interest also

is the finding that the expression of multiple house-keeping and cell-type specific genes in the

murine heart and muscle appeared to become increasingly stochastic with aging. Together, these

studies highlight the functional significance of gene expression noise in multicellular organisms

and implicate the existence of active mechanisms to keep noise under control.
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Figure 1-3. Examples of stochastic gene expression in endogenous systems. A)-D) Stochastic

spineless expression in the Drosophila photoreceptor cells. A) Three subtypes of R7 ommatidia:

"pale" (blue),"yellow" (yellow) and DRA (pink) together form the wild type retinal mosaic.

Dorsal is up. B) Schematic representation of the spineless phenotype in R7 cells. C) Left:

Transverse section through a wild type adult eye (dorsal is to the left). The arrow denotes the

DRA. Right: Wild type whole-mount adult retina stained for Rh3 (red) and Rh4 (cyan) showing

comparable proportions of opsins. D) Left: Transverse section through a spineless mutant adult

eye. Rh3 (red) is expanded and Rh4 (cyan) is completely lost. Right: Opsin expression in the
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mutant whole-mount adult retia. A)-D) Image courtesy of Wernet et al., 2006. E)-F) Stochastic

gene expression underlies partial penetrance in C. elegans mutants. E) Summary of the genetic

cascade governing intestinal cell specification in C. elegans. In the wild type, skn-i is maternally

deposited and contributes to the activation of transcription factors end-3 and end-1. end-3 and

end-i in turn activate elt-2, the key regulatory of intestine differentiation. F) In end-3 mutants,

end-i expression becomes significantly more variable, resulting in erratic expression of elt-2 and

abnormal intestine differentiation in a fraction of individuals. Image courtesy of Lagha et al.,

2012.

1.4 Analytical Methods for Studying Noise in Gene Expression

Essential to both synthetic biology and theoretical approaches is the modeling analysis of

gene expression noise. Mathematical modeling plays a crucial role in both the initial motivation

as well as the final interpretation of the experiments. The mathematical tools used come from a

variety of disciplines, including statistical physics, signal processing, control theory, and more

(Friedman et al., 2006; Shahrezaei and Swain, 2008a). Among various approaches, the master

equation provides the most accurate description of the microscopic molecular events underlying

transcription and translation. From the master equation, one could in principle derive the exact

distributions of mRNA and protein abundance at any point in time (as a function of the initial

condition and parameter values). However, the master equation is difficult to solve analytically,

especially when the network topology is complex (e.g. involving feedback) or the number of

genes involved is large (Walczak et al., 2011). Such limitation has motivated the use of the

Langevin and the Fokker-Planck equations, both are second-order approximations of the master

equation (Walczak et al., 2011). The approximation builds on the assumption that the molecule

of interest is relatively large numbers so that the system dynamics can be viewed as continuous

(as opposed to discrete). These two approaches allow more complex network to be modeled
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while allowing precise calculation of the gene expression distributions. The linear noise

approximation (LNA) is another commonly used method (Elf and Ehrenberg, 2003). It further

reduces the master equation by linearizing it around the steady state values of the system. Rather

than the entire distribution, the LNA method provides estimates of the mean and variance values

at steady state. The key advantage of the LNA method is that it remains analytically tractable for

arbitrary network size and complexity.

1.5 General Overview of the Wnt Signaling Pathway

The Wnt signaling pathway is an evolutionarily conserved signal transduction cascade with

wide-ranging roles in animal development and adult tissue maintenance. Disruption of normal

Wnt signaling functions can lead to developmental anomalies as well as acquired diseases such

as cancer, neurodegeneration, and diabetes (Katoh and Katoh, 2007; Liu et al., 2008; Schulte,

2010). The Wnt signaling pathway is typically activated through the binding of Wnt ligands to its

receptors (e.g. the Frizzled, Ror, or Derailed families of receptors) and co-receptors (e.g. the

Low-density lipoprotein receptor-related proteins (LRPs)) (Ling et al., 2009; van Amerongen

and Nusse, 2009). The formation of the ligand-receptor complex modulates the interactions

among an array of cytoplasmic signaling components, some directly affecting the cellular

physiology by altering cytoskeletal dynamics or intracellular calcium flow, and others acting on

transcription factors or co-factors to ultimately influence transcription. As the biochemical

process downstream of ligand-receptor interaction is remarkably diverse, researchers have

broadly grouped Wnt signaling into canonical and noncanonical pathways. The canonical Wnt

pathway control transcription by regulating the subcellular localization of p-catenin (Korswagen,

2002; van Amerongen and Nusse, 2009, Figure 1-4). In the absence of Wnt ligands, cytoplasmic

p-catenin interacts with member of the so-called "destruction complex", which include the APC
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and Axin scaffold proteins and the kinases CKI and GSK3p. Interaction with the "destruction

complex" leads to the phosphorylation of p-catenin and its subsequent ubiquitination and

degradation by the proteosome. When Wnt ligands are bound to the Frizzled type receptors and

coreceptors of the LRP-5/6/arrow family, the formation of the destruction complex is interrupted,

which allows p-catenin to remain stabilized and translocate into the nucleus. Within the nucleus,

the TCF/LEF transcription factors are bound at regulatory regions of Wnt-responsive genes.

Without p-catenin, TCF/LEF factors interact with factors such as Groucho and histone

deacetylase (HDAC) to repress transcription. Binding of TCF/LEF by p-catenin relieves the

repression allowing transcription to proceed.

Compared to the canonical pathway, the noncanonical Wnt pathways utilize largely non-

overlapping sets of intracellular components. At the ligand-receptor level, however, multiple

Wnt ligands, Frizzled type receptors, and the disheveled family of cytoplasmic phosphoproteins

have been shown to function in both canonical and noncanonical Wnt pathways (Cadigan et al.,

1998; Rulifson et al., 2000; van Amerongen and Nusse, 2009). How individual pathways are

activated to achieve signaling specificity is a question not yet fully understood.
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Figure 1-4. Schematic representation of the canonical and noncanonical Wnt signaling pathways.

Shown are core components of the canonical (middle and right) and noncanonical (left) Wnt

pathways. Note that noncanonical Wnt signaling encompasses other types of pathways (e.g. the

Wnt asymmetry pathway in C. elegans) in addition to those outlined here. Image courtsey of

Ling et al., 2009.

Compared to higher vertebrates, the C. elegans genome contains a small number of Wnt

ligands and receptors. These include five Wnt ligands (cwn-1, cwn-2, mom-2, egl-20, and lin-44),

four Frizzled type Wnt receptors (mig-1, lin-i 7, mom-5, and cfz-2), as well as the Ror/RTK type

receptor cam-i and the Ryk/Derailed type receptor lin-18. As observed in other organisms, there

seem to be no fixed one-to-one correspondence between Wnt ligands, receptors, and their

downstream signaling cascades (Pan et al., 2006; Green et al., 2008; Zinovyeva et al., 2008).

Rather, individual ligands and receptors often function in multiple Wnt pathways. Conversely,
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multiple ligands or receptor often contribute redundantly to the same pathway (Pan et al., 2006;

Silhankova and Korswagen, 2007; Green et al., 2008; Zinovyeva et al., 2008). In addition to the

ligands and the receptors, the C. elegans genome also contains close homologs of many other

Wnt signaling components found in higher organisms (Herman, 2003). The conserved features of

the C. elegans Wnt pathway, together with the anatomical simplicity and genetic tractability of

the organism, makes it a great model to study Wnt signaling.

1.6 Control of C. elegans Q Neuroblast Migration by Wnt Signaling

The QL and QR neuroblasts are two groups of lineally equivalent cells present at similar

positions on the left and right side of the animal (Sulston and Horvitz, 1977). During the first

stage of larval development, the Q mother cells, QL and QR, each generate a set of descendants

that migrate in opposite directions: the QL descendants migrate a short distance towards the

posterior, whereas the QR descendants migrate towards the anterior (Figure 1-5 A and B). The

different migratory routes undertaken by the two Q lineages is specified by Wnt signaling

(Whangbo and Kenyon, 1999). Specifically, migration towards the posterior is regulated by the

Wnt ligand EGL-20, which activates a canonical Wnt pathway in QL to induce the expression of

the homeobox gene mab-5, a key regulator of posterior migration (Salser and Kenyon, 1992).

Two Frizzled receptors, MIG-1 and LIN-17, are required for mab-5 expression to reach its wild

type level (Whangbo and Kenyon, 1999, Figure 1-5 C). The regulatory mechanism underlying

the anterior migration of the QR descendants is less well-characterized, but involves the joint

action of multiple Wnt ligands (egl-20, cwn-1 and cwn-2) and receptors (mig-1, lin-I 7, and mom-

5) (Zinovyeva et al., 2008).
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Figure 1-5. Control of Hox gene expression by the Wnt signaling pathway in the Q lineage of

neuroblasts. A-B) Schematic overview of the Q neuroblast migration (top) and Q descendant

migration (bottom). A) Left: Migratory trajectories of the left Q lineage. Right: Diagram of the

left Q lineage. Each branch point corresponds to one cell division and each black cross indicates

one apoptotic event. B) Left: Migratory trajectories of the right Q lineage. Right: Diagram of the

right Q lineage, presented in the same format as in A. Image courtesy of Middelkoop et al., 2012.

C) Components of the canonical Wnt pathway that activates mab-5 expression in the wild type

QL. Image courtesy Silhankova and Korswagen, 2007.

1.7 Thesis Overview

The thesis work presented here revolves around one central question: How do endogenous

networks control noise in gene expression to ensure robust biological function? To answer this

question, I chose to study the regulation of a Hox gene by the Wnt signaling pathway in the C.

elegans Q neuroblasts. Analogous to vertebrate neural crest cells, the pattern of Hox gene
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expression determines the migratory direction of the Q neuroblasts and the subsequent fate

choices of their descendants. Intrigued by the earlier observation that perturbation to Wnt

signaling disrupts the wild-type stereotypy in migratory decision, we speculated that variable

gene expression may underlie the partial penetrance in the mutants and subsequently questioned

what mechanism safeguards against variability in the wild type.

In Chapter 2, I focus on the control of Hox gene expression in the earliest cells of the Q

lineage, QL and QR (for convenience, we refer to these two cells as the Q mother cells).

Combining single-molecule fluorescent in situ hybridization (smFISH), high-throughput

fluorescent imaging and mutant analysis, I quantified the degree of variability in the expression

of a key Wnt target gene, mab-5, across the wild type and Wnt pathway mutants. Interestingly,

Wnt pathway mutants exhibited increased cell-to-cell variability in gene expression, suggesting

that a mechanism that normally controls gene expression variability was perturbed. To uncover

such mechanism, I combined mutant analysis with computational network inference to uncover a

novel set of interlocked positive and negative feedbacks in the Wnt pathway. I then constructed a

network model to test the hypothesis that changes in network topology underlie the increased

gene expression variability in the mutants. By systematic sampling the parameter space, I found

that the interlocked feedback topology had a marked advantage in suppressing the stochastic

variability in gene expression. I further validated this finding by analytically deriving the

expected gene expression distribution under different mutant conditions and showing that the

model prediction closely matched our experimental observation. Together, these findings

revealed an endogenous network-based mechanism that dampens variability in gene expression.

Experimental methods and materials, including a list of mutant alleles used in the study, are

presented in the last section of the Chapter (section 2.4).
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In Chapter 3, I extend the analysis of the Wnt pathway genes to the immediate descendants of

QL and QR (from here on, we refer to these four cells as the Q daughter cells). Specifically, I ask

three related questions: First, how does gene expression pattern change from the Q mother cells

to the daughters? Second, whether and how does Wnt signaling and mab-5 expression in the QL

mother cell influence signaling and gene expression in the QL daughters? Third, do the genetic

interactions found in the Q mother cells continue to exist in the daughter cells? The ultimate goal

behind these questions is to understand the control of gene expression in the context of cell

differentiation and cell cycle progression. The results reveal that lineage history and cellular

context can act together to influence the transcriptional regulatory program of a given cell.

Furthermore, since regulatory interactions affecting progenitor cells could exert long-lasting

impact on the daughter cells, control of gene expression in the daughter cells may require the

same regulatory program to switch on early in the mother cell. Experimental methods and

materials, including a list of mutant alleles used in the study, are presented in the last section of

the Chapter (section 3.7).

In the Appendix, I present a detailed review of the smFISH protocol optimized for fixed

samples of C. elegans larvae. Since our approach is highly quantitative, it is crucial to ensure the

sensitivity and specificity of our measuring technique. The protocol also serves as a useful

resource that I hope will be of general interest to the C. elegans community.

1.8 Notes on the Genetic Nomenclature for C. elegans

C. elegans gene names typically consist of three italicized letters, a hyphen, and an Arabic

number, e.g. mab-5 or lin-I 7. The mRNA product of a gene is referred to by the gene name (e.g.

mab-5 transcript level), while the protein product must be capitalized and not italicized (e.g.

MAB-5). For mutations, the name of the mutant allele usually consists of one or two letters
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followed by several digits (e.g. n671, el 787); when used together with the name of the gene that

is mutated, it is placed in a bracket after the gene name (e.g. lin-1 7(n671)). Transgenes can be

described by listing the relevant components of the sequence (i.e. promoter, coding sequence,

3'UTR) interspaced by double colon, e.g. Pegl-17::mig-1::unc-54 3'utr. If the site of integration

is known, the linkage group (I, II, III, IV, V and X corresponding to the six chromosomes) where

the transgene is located can also be indicated along with the transgene. A strain carrying

mutations and/or transgenes can be described to by the name of the mutant allele and/or the

transgenes (i.e. mig-1(el 787) or Pegl-1 7::gfp). For strains carrying multiple mutations, the

mutant alleles should be listed in the order of their chromosomal location, alleles residing on

different chromosomes shall be separated by a semicolon (e.g. lin-1 7(n671) or mig-1(e1 787) lin-

17(n671)).
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Chapter 2

FEEDBACK CONTROL OF GENE EXPRESSION

VARIABILITY IN THE CAENORHABDITIS ELEGANS

WNT PATHWAY

2.1 INTRODUCTION

Gene expression is inherently variable even among isogenic cells situated in identical

environments (Raj and van Oudenaarden, 2008; Raj et al., 2008; Eldar and Elowitz, 2010;

Balizsi et al., 2011; Li and Xie, 2011). On the one hand, variability in gene expression may

confer beneficial phenotypic diversity. For example, it may serve as a "bet-hedging" strategy for

isogenic microbial populations to ensure survival in fluctuating environments (Thattai and van

Oudenaarden, 2004; Kussell and Leibler, 2005; Acar et al., 2008; Eldar et al., 2009), or as a

"symmetry breaking" mechanism to induce multiple cell fates from a single progenitor cell type

(Wernet et al., 2006; Chang et al., 2008; Kalmar et al., 2009). On the other hand, excessive

variability in gene expression could disrupt normal development and tissue maintenance, leading

to aberrant phenotypes (Aranda-Anzaldo and Dent, 2003; Chung and Levens, 2005; Henrichsen

et al., 2009; Raj et al., 2010). The remarkable robustness of numerous physiological events

implicates that endogenous mechanisms must exist to effectively control variability in gene

expression (Nijhout, 2002; Felix and Wagner, 2008).

In a simple model of constitutive gene expression, the equilibrium level of mRNA transcripts

is expected to follow a Poisson probability distribution. A distinct feature of the Poisson
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distribution is that the ratio between the variance and the mean, termed the Fano factor, equals

exactly one, regardless of the detailed parameters. For genes under transcriptional regulation,

substantial deviations from the Poisson behavior have been theoretically proposed (Kepler and

Elston, 2001; Friedman et al., 2006; Shahrezaei and Swain, 2008b) and experimentally observed

in a series of seminal studies (see references below). Such deviation has often been attributed to

transcriptional bursting, where the promoter transitions stochastically between its active and

inactive states (Golding et al., 2005; Cai et al., 2006; Raj et al., 2006; Zenklusen et al., 2008). In

addition, fluctuation in the abundance of the upstream regulators can also propagate to increase

the variability of the target gene expression (Hooshangi et al., 2005; Pedraza and van

Oudenaarden, 2005; Rosenfeld et al., 2005; Dunlop et al., 2008).

Pioneering theoretical and synthetic biology studies have highlighted the potential of

regulatory networks in controlling gene expression variability. Negative feedback, a common

mode of regulation, has been shown to suppress variability in synthetic gene expression systems

(Becskei and Serrano, 2000; Austin et al., 2006). Positive feedback has been extensively studied

for its ability to induce multimodal or "switch-like" behavior in both synthetic (Becskei and

Serrano, 2000; To and Maheshri, 2010) and endogenous systems (Xiong and Ferrell Jr, 2003;

Ozbudak et al., 2004; Acar et al., 2005; Weinberger et al., 2005; Cao et al., 2010). Whether

positive feedback amplifies or dampens transcriptional variability, however, has not been

established conclusively. In contrast to the simplicity of synthetic circuits, endogenous genes are

embedded in densely connected networks with mixed feedback loops and multi-layered cascades

(Milo et al., 2002; Davidson, 2010; Hirsch et al., 2010). Whether and how regulatory networks

regulate gene expression variability endogenously remains to be explored.

31



C. elegans provides an excellent model for studying the endogenous control of gene

expression variability. Its highly stereotyped development (Sulston and Horvitz, 1977) implicates

underlying mechanisms that robustly control transcriptional variability. Here, we study

specifically the stereotyped migratory decision of the C. elegans Q neuroblast. Two Q

neuroblasts, QL and QR are born at bilaterally symmetrical positions in the C. elegans embryo,

but migrate oppositely along the anterior-posterior axis upon hatching (Figure 1-5A and B and

Figure 2-1A). In the left Q neuroblast (QL), expression of the Hox gene mab-5/Antennapedia is

necessary and sufficient to ensure the posterior migration of the QL descendants ( Salser and

Kenyon, 1992; Harris et al., 1996). In the wild type, mab-5 expression in QL is dependent on the

canonical Wnt signal transduced through the posteriorly produced Wnt ligand, EGL-20 (Figure

2-1A and IB, Whangbo and Kenyon, 1999; Coudreuse et al., 2006). Two out of the four C.

elegans Frizzled type Wnt receptors, MIG- 1, and LIN-1 7, are required for mab-5 expression in

QL (Harris et al., 1996). The other Frizzled homologs, mom-5 and cfz-2, have also been

implicated in the regulation of QL descendant migration (Zinovyeva et al., 2008). Interestingly,

Frizzled mutants exhibit varying degrees of partially penetrant migratory defects, where a

fraction of QL descendants reverse to migrate anteriorly (Zinovyeva et al., 2008; Figure 2-1C

and SlA). Whether this phenotypic heterogeneity originates at or downstream from mab-5

expression is unclear.

By combining single-cell transcript counting with genetic manipulation, we identified a strong

link between the variability in mab-5 expression and the penetrance of the migratory phenotype.

We observed a complex relationship between the variability and the mean levels of mab-5

expression, implicating feedback regulation. A systematic search for regulatory interactions

revealed a network of novel positive and negative feedback loops between the Frizzled receptors
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and the Wnt signaling pathway. A minimal computational model could reproduce the changes in

variability in the mutants and provide mechanistic insights on how the wild type network

achieves robustness. Our results demonstrate, in a developmentally relevant context, the

contribution of a regulatory network to controlling gene expression variability.

2.2 RESULTS

Wnt signaling activates mab-5 expression to a stable range in wild type QL

To probe the putative relation between mab-5 expression and the phenotypic heterogeneity in the

Wnt pathway mutants, it is necessary to quantitatively compare mab-5 expression among wild

type and mutants. We started by characterizing mab-5 expression in the wild type QL

neuroblasts (Figure 2-1D-E). Using single molecule fluorescent in situ hybridization (smFISH,

Raj et al., 2008), we counted mab-5 transcripts at various stages of QL migration (Figure 2-1D).

We used the total distance migrated by QL and QR (MD), a quantity increasing monotonically

with time (Figure 2-1E upper panel and Figure 2-S IB), as an indicator of migratory stage. We

then combined data from many cells to obtain a population profile of mab-5 expression dynamics

(Figure 2-1E, lower panel).

Before the onset of migration, mab-5 transcripts were present at low levels in QL (Figure 2-

ID and E, MD=0-2). Thereafter, QL began to polarize and mab-5 transcripts started to

accumulate in the cytoplasm. Concurrently, nascent transcripts began to accumulate in the

nucleus in the form of bright transcription sites (Figure 2-1D and SiC). The frequent appearance

of paired transcription sites likely indicates heightened transcriptional activity on both alleles

(Raj et al., 2006).
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After a period of initial variability, mab-5 expression converged to around 50-60 transcripts

per cell towards the end of QL migration (MD>8, Figure 2-1E). The variability in mab-5

expression stabilized to a Fano factor value (variance/mean) of 2.4. This value is greater than the

average measurement of 1.6 in Escherichia coli (Taniguchi et al., 2010), yet more than 10 fold

lower than those reported for mammalian mRNAs (Raj et al., 2006).

While Wnt signaling has been suggested as the main activator of mab-5 transcription

(Korswagen, 2002), whether it acts directly within QL remains uncertain. We tested the cell-

autonomous requirement of Wnt signaling by blocking EGL-20 mediated Wnt signaling either

globally (via loss-of-function mutation of egl-20) or Q cell specifically (by expressing a

dominant-negative form of POP-1/TCF (DN-pop-1) under the control of the Q cell specific

promoter, Pegl-1 7) . With both manipulations, we observed more than 95% reduction in mab-5

transcripts in QL (Figure 2-S lD). These findings confirm that Wnt signaling is required within

QL to activate mab-5 expression.

Based on the above finding, we speculated that mab-5 expression may be used to assess Wnt

pathway activity in QL. To explore this possibility, we compared the expression dynamics of

mab-5 to a transgenic reporter with seven POP-1 binding sites fused to apes-10 minimal

promoter driving mCherry (POPTOP, POP-1 and TCF Optimal Promoter; Green et al., 2008).

The dynamics of mCherry transcripts closely resembled those of mab-5 (Figure 2-1E and IF).

This observation supports mab-5 transcript level as an endogenous readout of Wnt signaling in

QL.
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Figure 2-1. Using single-cell transcript counting to study the control of mab-5 expression.

(A) Cartoon showing activation of MAB-5 expression in QL in response to the posterior-to-

anterior gradient of EGL-20/Wnt.

(B) Model of Wnt signaling based on published studies. Question marks and grey edges indicate

lack of definitive evidence.

(C) Final position of QL descendants in wild type and various Frizzled loss-of-function mutants.

Unless otherwise noted, compound mutants carry the same alleles as single mutants.

(D) Detection of mab-5 transcripts using smFISH over the course of QL migration. Upper row:

The migrating QL neuroblast at different stages of its migration. A membrane-bound GFP

marker demarcates the outline of QL and its non-migratory neighbor cell, V5. Lower row:

smFISH staining of mab-5 transcripts in the same cells as shown above. smFISH staining

(red) is overlaid with DAPI staining (blue). Yellow arrowheads: single mab-5 transcripts;

white arrows: transcription centers in the nucleus of QL. While not easily discernible in a

colored image, transcription centers often stain much brighter than individual transcripts in

the cytoplasm. Scale bar represents 2.5 pim.

(E) mab-5 mRNA levels in QL in wild type animals. Upper: Normalized total migratory

distance (MD) for worms collected at different time points after hatching. Black dots mark

the mean and blue bars span 2.5-97.5 percentiles. Lower: Number of mab-5 transcripts per

cell plotted against MD. Each blue data point corresponds to the number of mab-5 smFISH

spots measured in a single QL cell from a single animal. The histogram to the right is

generated using data points to the left with MD>8.

(F) mCherry mRNA levels in QL in animals carrying the Wnt signaling reporter transgene,

POPTOP.
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Figure 2- S1. A) Final position of QL descendants in additional Frizzled mutants. B) Upper left

clockwise to lower right: mab-5 transcript counts plotted against other parameters associated

with Q cell migration. Lower left: Squared correlation coefficients between mab-5 transcript

count and various migration-related parameters. C) Mean number of transcription centers (TCs)

per cell at different stages of migration. D) Final (MD>8) mab-5 transcript counts in wild type
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compared to mutants with global or QL-specific blockade of EGL-20 dependent Wnt signaling.

N>40 for each data set. All error bars in this figure denote 95% confidence intervals (95% CI).

Three Frizzled receptors are expressed in QL and exhibit distinct expression dynamics

Following our observation that different Frizzled mutants exhibit different penetrance in the

migratory phenotype of the QL descendant (Figure 2-1C and SlA), we speculated that different

Frizzled receptor may differ in their expression pattern. To test this hypothesis, we characterized

the expression of the four C. elegans Frizzled paralogs. Using paralog-specific smFISH, we

detected QL-specific expression of mig-1/Fz, lin-I 7/Fz and mom-5/Fz, but not cfz-2/Fz (Figure

2-2A and S2A). In addition to a difference in the average abundance, the Frizzled paralogs also

exhibited diverse expression dynamics. mig-1 transcripts were initially enriched (average 27

copies per cell) but decreased to less than 10 copies per cell over the course of migration. lin-i 7

exhibited the opposite dynamics, rising from less than 10 copies per cell to an average of 34.

mom-5 in contrast was expressed at low levels (on average 4 copies per cell) throughout QL

migration (Figure 2-S2A). Outside QL, the four Frizzleds also exhibited distinct global

expression patterns (Figure 2-S2B).

The dynamics of mig-1 and lin-i 7 transcripts suggest they may exhibit single-cell level

correlation with mab-5. While a positive correlation may be intuitively expected between

receptor and target gene abundance, mig-i instead exhibited a significant negative correlation

with mab-5 (Figure 2-2B, Pearson's R=-0.67, p<0.00 1). lin-17, while causing a weaker

migration defect when mutated (Figure 2-1C), exhibited a strong positive correlation with mab-5

(Pearson's R = 0.91, p<0.001). No significant correlation was observed between mom-5 and

mab-5 (Pearson's R= 0.02, p>0.5). Together, the distinct transcriptional and correlation profiles
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suggest that divergent transcriptional regulatory programs exist upstream of the Frizzled

receptors.
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Figure 2-2. Three Frizzled paralogs are dynamically transcribed in QL. A) smFISH staining and

single-cell transcript counts for the four C. elegans Frizzled paralogs over the course of QL
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migration. B) Single-cell correlation between Frizzled and mab-5 transcript counts. Shades of

dots indicate corresponding MD value.
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Figure 2-S2. A) Average transcript abundance over the course of migration for the four Frizzled

paralogs. Error bars are 95% confidence intervals. N>40 for each data set. B) smFISH staining
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and quantification of transcript abundance along the anterior-posterior axes for the four Frizzled

genes. Error bars (light blue patches) are 95% CI.

Frizzled mutants exhibit different levels of variability in mab-5 expression

Having assessed mab-5 and Frizzled gene expression in the wild type, we next asked whether

and how mab-5 expression is altered in a series of mutants carrying single or compound Frizzled

loss-of-function mutations.

MAB-5 antibody staining was previously shown to be reduced in mig-1 and lin-1 7 single

mutants (Harris et al., 1996). In agreement, we observed a strong reduction in mab-5 transcripts

(less than 10 transcripts per cell) in the majority of mig-1 (e1 787) single mutant (Figure 2-3A). A

small fraction of QLs, however, retained significant levels of mab-5 expression (20 transcripts

per cell or higher). Cell-to-cell heterogeneity was also evident in the lin-1 7(n671) single mutant.

Individual QLs exhibited between very low to near wild type amount of mab-5 transcripts. The

mom-5(gk812) mutant, unlike the wild type, exhibited high variability in mab-5 expression

beyond the initial phase of QL migration (MD>5, note the existence of cells with < 25 copies of

mab-5). In comparison, mab-5 levels in the cfz-2(ok1201) mutant were indistinguishable from

the wild type.

While mutations in more than one of the three Frizzleds (mig-1, lin-17 or mom-5) nearly

completely abolished mab-5 expression in QL, heterozygotes of these mutants exhibited near

wild type levels of mab-5. Interestingly, heterozygotes of the Frizzled triple mutant (triple het)

exhibited increased cell-to-cell variability in mab-5 expression. While the majority of QLs

exhibited wild type levels of mab-5, a small fraction of the late stage QLs contained less than 20

mab-5 transcripts (Figure 2-3A). Thus, heterozygous mutations in the three Frizzleds appeared to

41



have perturbed Wnt signaling to a level sufficient to reduce mab-5 expression in some cells.

Taken together, increased variability appeared to accompany the decrease in mab-5 expression

across the Frizzled mutants.

Motivated by the recent discovery that variability in gene expression underlies partial

penetrance (Raj et al., 2010), we questioned whether variability in mab-5 transcript abundance

could predict the phenotypic penetrance of different mutants. We hypothesized that mab-5

expression must exceed a certain threshold level; otherwise the QL descendants would migrate

anteriorly (i.e. become defective in posterior migration). Under this hypothesis, we searched

(Figure 2-S3C) and found threshold values of around 25 transcripts per cell (Figure 2-3C) to

yield accurate predictions of phenotypic penetrance. mom-5 single and compound mutants were

not included in this analysis due to the mab-5-independent requirement of mom-5 for anterior

migration (Zinovyeva et al., 2008). Thus, upregulating mab-5 expression above a certain

threshold may be critically in driving a robust migratory decision of QL descendants.
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Figure 2-3. Wnt signaling mutants exhibit different variability in mab-5 expression. A) Dynamic

and steady state mab-5 expression in Frizzled single and compound mutants. Black lines are

guide to the eye generated by fitting to a sigmoidal function. Red curves are fits using two

Gaussian distributions. B) Dynamic and steady state mab-5 expression in mutants with altered

EGL-20/Wnt gradient or loss of MAB-5 function. C) Correlation between mab-5 transcript

levels and the migratory phenotype of the QL descendants in various Wnt pathway mutants.

Same mutant alleles as listed in (A) and (B). D) Fano factor versus the steady state mean of mab-

5 in various Wnt pathway mutants. Red indicates wild type. Grey broken line indicates expected

Fano factor value for Poisson distribution. Error bars are 95% confidence intervals (CI).
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B) mab-5 transcript levels in the egl-20 (n585); hs::egl-20 strain in response to various durations

of 33*C heat shock. Note QR in the wild type does not express mab-5. Extended heat shock

activated mab-5 expression to wild-type levels in both QL and QR. Error bars are standard

deviations of the mean. C) Correlation coefficients for the analysis in Figure 3C calculated for a

full range of hypothetical thresholds in transcript abundance. D) Upper: Evolution of Fano factor

values over the course of QL migration for wild type and various mutant strains. Lower:
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Evolution of the relation between Fano factor and mean transcript abundance throughout QL

migration. lf: loss of function.

Perturbing EGL-20 and MAB-5 function increase variability in mab-5 expression

To test whether the increase in mab-5 variability is unique to the Frizzled mutants, we next

perturbed the input to the Wnt pathway, the EGL-20/Wnt gradient, using the vps-29 (tm1320)

mutant. Loss of function of vps-29 destabilizes the retromer complex, leading to a shortened and

reduced EGL-20 gradient (Coudreuse et al., 2006). In these mutants, we found that mab-5

expression was reduced to below 25 transcripts per cell in around 10% of QLs (Figure 2-3B).

The cell-to-cell variability in mab-5 expression again predicted the phenotypic penetrance; about

13% of the QL descendants were misplaced anteriorly (Figure 2-3C).

Conversely, we tested the effect of EGL-20 overexpression. Using an EGL-20 transgene

under the control of a heat-shock promoter (Whangbo and Kenyon, 1999), we were able to drive

EGL-20 concentration to a level higher than the wild type (see data in Figure 2-S3B). Increased

EGL-20 concentration, however, did not significantly increase the average level of mab-5

transcripts (Figure 2-3A, Mann-Whitney test, p> 0 . 1). Rather, mab-5 expression in late-stage QLs

appeared less variable than the wild type, as indicated by a significant reduction in variance (F

testp<0.05, Figure 2-3 B).

The transcriptional response to altered EGL-20 concentration may be explained by a "ceiling

effect" whereby mab-5 expression cannot exceed its wild type level. This possibility was,

however, overturned by the observation of increased mab-5 transcription in the smg-1(e1228);

mab-5(e1239) double mutant (see Supplemental Information for the rationale of using the smg-1

mutation background). While mab-5 expression is essentially wild type in the smg-1 single

mutant (Figure 2-4B), significant increase in mab-5 transcripts was observed in the smg-1; mab-
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5 double mutant (Mann-Whitney test, p<0.00 1), indicating potential feedback regulation of mab-

5 on its own transcription. This increase in average mab-5 level was further accompanied by an

increase in cell-cell variability (F testp<0.001). These observations suggest that low variability

in gene expression cannot be simply attributed to saturation in mab-5 transcription.

A complex relationship exists between mab-5 variability and average expression level

To systematically compare the variability in mab-5 expression across different genetic

backgrounds, we calculated the Fano factors for both wild type and mutants over the course of

QL migration.

In most strains, Fano factors were initially high and decreased over the course of migration to

settle down at a stable value (Figure 2-S3D). Plotting the steady state Fano factors against the

final transcript levels revealed several interesting features (Figure 2-3D). First, the Fano factors

varied greatly across strains (range: 0.95-11.5). Thus a model of constitutive transcription with

Poisson dynamics is insufficient to explain our observations. Alternatively, a model of bursty

transcription would predict the Fano factor to increase (if burst size is modulated) or decrease (if

burst frequency is modulated) monotonically with the mean (Raser and O'Shea, 2004). However,

the observed relation between the Fano factor and the mean could not be summarized in a simple

monotonic function. Mutants sharing similar average mab-5 expression (e.g. the wild type and

the triple heterozygotes) displayed up to 3 fold difference in Fano factor value. Additionally, the

lowest Fano factor values were found in the wild type and the EGL-20 over-expression strains,

which showed high but not the highest mean expression level. Taken together, the mode of

transcription alone could not account for the observed variability in gene expression. Other
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mechanisms, possibly upstream of mab-5 transcription, may thus be at play to influence gene

expression variability.

All three Frizzleds are transcriptional targets of the Wnt pathway

As mab-5 expression consisted of distinct high and low subpopulations in a number of mutants

(e.g. the mig-1single mutant and the triple heterozygotes), a feature attainable in systems with

positive feedback (Becskei et al., 2001), we wondered whether feedback regulation exist within

the Wnt pathway in QL. While Wnt signaling is conventionally viewed as a feedforward cascade,

evidence from non-C. elegans species suggest that feedback regulation exists and may play a

role in Wnt pathway regulation (Cadigan et al., 1998; Sato et al., 1999; Willert et al., 2002).

Should transcriptional feedback exist between the Frizzleds and the Wnt pathway, one would

expect perturbations in Wnt signaling to induce a detectable change in the expression of the

Frizzled paralogs. Indeed, loss of Wnt signaling either globally or Q-cell-specifically led to

more than two fold difference in the expression of all three Frizzled genes (Figure 2-4A). mig-1

and mom-5 were upregulated, whereas lin-1 7 was downregulated in both the egl-20(n585) and

the Pegl-1 7::DN-pop-i strains. Interestingly, the difference in Frizzled expression between the

wild type and mutant strains became progressively enlarged over the course of QL migration,

consistent with the dynamics of Wnt signaling activation (Figure 2-iF). The observation that

mig-1 and lin-1 7 levels stayed rather constant in the mutants indicates that feedback regulation

likely underlies the dynamics of Frizzled expression in the wild type (Figure 2-4A and 2-2A).

To further understand how the Frizzleds respond transcriptionally to changes in Wnt signaling,

we made use of all the aforementioned Wnt pathway mutants by ranking them according to their

average mab-5 expression levels. Thereby, we essentially obtained a mutant series in which Wnt
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signaling activity was varied in a graded manner (Figure 2-4B, left panel). Notably, Frizzled

transcript levels varied in a consistent manner across the strains. Strains with low mab-5

expression carried low levels of lin-17 and high levels of mig-1 and mom-5, and the opposite

were true for strains with high mab-5 levels.

Intuitively, the increase in mab-5 expression in the smg-1; mab-5 mutants should predict a

concomitant increase in lin-i 7 and a decrease in mom-5. Our results however indicated otherwise

(Figure 2-4B, right panel). This conflict is reconciled if we recognize lin-i 7 and mom-5 as

downstream targets of mab-5. Loss of functional MAB-5, regardless of upstream Wnt signaling

level, would then predict a decrease in lin-1 7 and an increase in mom-5. The observation that

mig-i levels were unaltered in the mab-5 mutants suggests that the feedback to mig-i is likely

mab-5-independent. These results suggest the existence of both mab-3-dependent and mab-5-

independent feedback in the Wnt pathway.
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Figure 2-4. Frizzled paralogs, mig-1, lin-17 and mom-5 are transcriptional targets of the Wnt

pathway. A) Dynamic (left of each panel) and final average (right of each panel, corresponding

to data on the left with MD>8) Frizzled transcript levels in mutants with global or QL-specific

blockade of EGL-20 dependent Wnt signaling. Same wild type data as Figure 2-2A.
****p<0.0001. B) Normalized expression levels of Frizzleds and mab-5 in various genetic

backgrounds. Only values significantly different from the wild type (FDR corrected p<0.05)

were colored. Genotypes of strains are indicated above the bar graph with same mutant alleles as

indicated previously. Error bars are 95% CI of the mean.

51



Interlocked positive and negative feedback loops exist within the Wnt pathway

We next sought to incorporate the novel feedback interactions into a network model of the Wnt

pathway. With feedback, perturbation to a single gene can propagate to affect many genes in the

network, making it difficult to deduce the immediate targets of the perturbed gene. We tackle

this general challenge in network inference by employing the Modular Response Analysis (MRA,

Kholodenko et al., 2002). By iteratively perturbing every component of the network (a

"component" could consists of one or multiple interacting genes) and measuring the response of

the unperturbed components, MRA could uniquely infer the most probable network topology

(Figure 2-5A). The inferred topology consists of only interactions between the "closest

neighbors", thus avoiding redundant reference to the same network structure. Additionally, the

inferred topology continues to hold true with the discovery of new network components

(Kholodenko et al., 2002; Andrec et al., 2005).

The inferred topology consisted of a complex network of interlocked feedback loops (Figure

2-5C and 2-S4A-C). At the receptor level, the positive feedback targeting lin-1 7 and the negative

feedback targeting mig-1 and mom-5 intersect at the output end of the Wnt pathway. Such

interlocked feedback topology may allow the Frizzled paralogs to cross-regulate each other's

expression, as observed in the Frizzled mutants (Figure 2-4B). Downstream of the Wnt pathway,

mab-5 not only mediates feedback to the Frizzleds, but also negatively regulates its own

transcription.

With multiple interlocked feedback loops, mutations in Wnt pathway components would not

only perturb their protein function, but also alter the topology of the network. Supporting this is

the preservation of strong single-cell correlation between lin-1 7 and mab-5 transcript levels in all

strains with intact LIN-] 7 and MAB-5 function (Figure 2-5D). In contrast, in the smg-1; mab-5
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double mutant, where MAB-5 function was abolished and all mab-5-mediated feedback lost, the

correlation between lin-i 7 and mab-5 was both altered and weakened. Thus, mutations in

individual components of the Wnt pathway may also induce specific changes in the network

topology.
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Figure 2-5. Inferring the regulatory network within the Wnt pathway using the MRA algorithm.

A) Schematic of the work flow for implementing the MRA algorithm. B) Inferred connectivity

matrix. Only significant (p-value with Bonferroni correction <0.05) interactions are colored

based on the inferred interaction strengths. C) Revised Wnt pathway model based on the

inference results.

Strong correlation between lin-1 7 and mab-5 was preserved in strains with intact positive

feedback from mab-5 to lin-1 7, but was altered and reduced in the smg-1; mab-5 mutant where

the positive feedback was disrupted. All correlation coefficients (R) are withp<0.001.
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Figure 2-S4. A) The inferred network interactions are labeled 1-9 to correspond to the references

in (B)-(D). B) Bootstrap distributions of inferred connectivity strengths. C) Akaike Information

Criterion (AIC) values for the inferred network (red) and alternative topologies (black). Numbers

on the data points indicate the network interactions that were forced to be zero. D) Network

interaction strengths inferred using data from different ranges of MD values (sliding window # 1-
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12, see Experimental Procedures). Colors correspond to individual network interactions as listed

to the right.

Positive and negative feedback cooperate to minimize variability

To probe whether and how network topology influences variability in gene expression, we

constructed an ordinary differential equation (ODE) model of the inferred network. Starting from

the full 5 component network, we first obtained model parameters by fitting to both the steady

state and the dynamic gene expression data (Figure 2-S5A and Supplemental Information). The

full model was then reduced to a one-dimensional (lD) model by exploiting time scale

differences between individual reactions (Figure 2-S5B and Supplemental Information).

The ID model enabled us to directly calculate the Fano factor and mean output level for four

classes of networks: those with no feedback, with negative feedback only, with positive feedback

only, and with interlocked positive and negative feedback (Figure 2-6B). To explore general

features of the four network classes, we varied the strengths of the feedback randomly between 0

to 10 times the wild type values while keeping other parameters fixed (Experimental Procedures).

As illustrated in Figure 2-6B, different classes of networks occupied distinct domains of the

Fano factor -mean output space. Among the networks with no or a single type of feedback, there

was a general trade-off between the Fano factor and the mean expression level. Specifically,

negative feedback generally led to low output variability at the expense of the mean; positive

feedback, while increasing the expression level, also made it more variable. Interestingly, this

trade-off was alleviated in networks with interlocked positive and negative feedback. Many of

the randomly sampled networks (blue circles) occupied the lower right quadrant (i.e. low

variability and high mean), which was inaccessible by networks with no or a single type of

feedback (see also Figure 2-S5C). Thus, with the same set of components, a network with
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interlocked positive and negative feedback may more readily achieve low variability without

compromising the mean expression level.

Since positive and negative feedback by themselves exhibited opposite effects on mean and

variability, it is intriguing how the two types of feedback when combined can promote both high

mean and low variability. We thus systematically examined the dependence of the mean and

variability on feedback strength. As shown in Figure 2-6C, the mean expression level

consistently decreased with increasing negative feedback strength, and increased with increasing

positive feedback strength. The effect of negative feedback was essentially compensated by the

positive feedback, resulting in intermediate mean values when both feedback loops are strong

(Figure 2-6C, lower panel).

As for the Fano factor, increasing negative feedback generally led to a decrease in the Fano

factor (Figure 2-6D; see also Figure 2-S5E), consistent with observations from synthetic circuits

(Becskei and Serrano, 2000; Austin et al., 2006). The extent to which the Fano factor value

decreases, however, depended strongly on the strength of the positive feedback. While the Fano

factor decreased to around 0.8 at low positive feedback strength, it rapidly dropped to less than

0.5 at high positive feedback strength (Figure 2-6D, lower panel). As a result, the lowest Fano

factor values were found when both the positive and the negative feedback were strong. This

observation is surprising given that networks with positive feedback only showed increased

output variability (Figure 2-6B). An intuitive explanation was found by recognizing that the

"dampening" effect of the negative feedback is stronger at high mean expression levels (Figure

2-S5D). Thus, positive feedback indirectly contributes to the dampening of variability by

promoting high mean expression levels.
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Figure 2-6. Modeling reveals synergistic contribution of positive and negative feedback in

reducing variability. A) Schematic of the reduced ID model. B) Analytically derived Fano factor

versus mean output values for networks with interlocked feedback (IFB), negative feedback

(NFB) only, positive feedback (PFB) only, and no feedback. "Wild type" indicates that the

model parameters were obtained by fitting to the wild type data. C) Upper: Mean output value of

the interlocked feedback network as a function of feedback strengths. Lower: Re-plotting of the

broken and dotted lines in the upper panel. D) Upper: Fano factor value of the interlocked

feedback network as a function of feedback strengths. Lower: Re-plotting of the broken and

dotted lines in the upper panel. Note difference in Fano factor value at high PFB strength.
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Figure 2-S5. A) Simulation of gene expression dynamics with the fitted 5-component model

(full model). Colored patches represent experimentally measured gene expression levels whose

boundaries indicate 95% CI of the mean. B) Simulation with the ID model (red triangles) and

the full model (blue circles) produced identical steady state mab-5 expression values. Error bars

are 95% CI of the mean. C) Dependence of the Fano factor value on the feedback activation

thresholds and Hill coefficient values. Kp: activation threshold of the positive feedback (blue

circles), Kn: activation threshold of the negative feedback (blue triangles), n: Hill coefficient of
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the positive feedback (black circles, clustered around the intersection), m: Hill coefficient of the

negative feedback (red triangles). D) Dependence of the Fano factor value on average gene

expression level in a network with negative feedback. In comparison to a network with no

feedback (black), negative feedback always reduces the Fano factor value, and does so more

dramatically when the average gene expression level is high. E) Dependence of the coefficient of

variation (standard deviation/mean) on the feedback strength. Same analysis as in Figure 2-

6C&D.

Model predicts mab-5 variability in the mutants

Since the network model was inferred and parameterized based on average transcript levels, we

wondered whether it could predict the observed variability in various strains. In principle,

variability in mab-5 expression could result from multiple sources, including stochasticity in its

own transcription as well as fluctuations internal and external to the Wnt pathway. We thus

combined the effect of all unmodeled fluctuation into a single term (D) and determined the

magnitude of this "extrinsic fluctuation" by fitting to the wild type mab-5 distribution (see

Supplemental Information). Remarkably, the revised model not only captured the distribution of

mab-5 levels in the wild type, but also predicted the direction of changes in mab-5 variability in

various Wnt pathway mutants (Figure 2-7 A, 2-7 B and 2-S6A)*. Thus, alterations in network

topology likely underlie the changes in mab-5 variability across the mutants. Conversely, the

intact network in wild type may contribute strongly to the observed low variability in mab-5

expression.

*Note that the goal of the model is to predict qualitative changes (i.e. increase or decrease) in the level of
gene expression variability, rather than to produce perfect matching in the shape of the distribution. The
shape of the distributions predicted by the model is influenced by the assumption on the distribution of
the extrinsic noise (e.g. white noise, or Poisson-distributed noise), which can not be inferred from the
current measurements.
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Together, our results support a model in which variability in gene expression is controlled

through an intricate network of feedback regulation between the Wnt pathway and its own

components. Specifically, the signal amplifying effect of the positive feedback appears to be co-

opted to ensure a strong negative feedback, one which is needed to effectively dampen

fluctuations in gene expression (Figure 2-7C). Increasing evidence of feedback regulation

challenges the conventional notion of signaling pathways as linear, unidirectional cascades. It is

likely the rule rather than the exception that feedback regulation is widely exploited as a flexible

mechanism to achieve phenotypic stereotypy when desired.
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for the strains shown in (A). Error bars are 95% CI of the mean. C) Conceptual explanation of

the interplay between the positive and the negative feedback in reducing variability.
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Figure 2-S6. A) Comparison of the theoretical (red curves) and measured (blue histograms)

steady state mab-5 distribution in mutants not listed in Figure 7A. Note for the heterozygote

mutants, functional mig-l and mom-5 transcripts were assumed to be 70% of their wild-type

levels, and functional lin-1 7 transcript was modeled to be at 80% of its wild-type level. The exact

amounts of these transcripts could not be measured due to the presence of residual transcripts

from the mutant allele.

2.3. DISCUSSION

Regulatory network as an endogenous mechanism to control variability
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A major effort in biology has been to understand how biological events such as animal

development proceed so robustly and how this robustness is disrupted in the face of disease. As

gene expression critically drives the phenotypic outcome, understanding how endogenous gene

expression is controlled to ensure robustness is of great interest. Our results underscore the

importance of regulatory networks in controlling transcriptional variability in a multicellular

organism. We show how two common regulatory modules, positive and negative feedback, can

cooperate to yield tightly regulated gene expression in a single cell. While individual properties

of each feedback motif have been examined in detail, the joint action of the two appears more

complex (Acar et al., 2005; Brandman et al., 2005). In fact, the interlocked feedback motif was

mainly explored for its role in generating oscillations (reviewed in Ferrell et al., 2011). Our

findings suggest that the same motif can be adapted to ensure stable gene expression even at

elevated levels. The versatility of the interlocked feedback motif exemplifies the rich potential of

regulatory networks in implementing robust gene expression control.

Sources of variability in mab-5 expression

While wild type mab-5 expression is less variable compared to the Wnt signaling mutants

examined in this study, its steady-state Fano factor is well above the theoretical expectation of 1.

What are the sources of variability in addition to stochastic transcription? Studies in mammals

and yeast suggest the infrequent bursts in transcript production (transcription bursting) as a

dominant source of variability. Bursty transcription, however, does not seem to apply to mab-5

expression in the wild type QL. This is because bright transcription sites (Figure 2-lD and SlC)

and high mab-5 expression were observed for all QLs at the end of migration.

Given the dependence of mab-5 expression on Wnt signaling, it is plausible that fluctuations

in the levels of the Wnt ligand or receptors led to the heightened variability in mab-5. For
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example, the stochastic diffusion of a morphogen molecule may lead to fluctuations in its local

concentration (Gregor et al., 2007). Variable expression of the receptors, which was observed for

the three Frizzleds (Figure 2-2B), could also affect the transcriptional output of the Wnt pathway.

Fluctuations in downstream components of the Wnt pathway could also propagate to affect the

transcription of mab-5. As multi-layered cascades, signaling pathways are subject to many

sources of fluctuations and thus in strong need to control variability in their output.

Variability in gene expression carries signatures of the network topology

An emerging view in the study of stochastic gene expression argues that variability, or noise, can

inform about the underlying mechanism of regulation (Cagatay et al., 2009; Chalancon et al.,

2012; Munsky et al., 2012). In this study, we used the average gene expression to infer network

topology, and found a surprising link between network topology and the variability in gene

expression. In retrospect, signatures of the inferred network topology may be readily present in

the gene expression distributions. For example, low variability in the wild type and the inability

to increase mab-5 level by EGL-20/Wnt overexpression suggest the existence of a negative

feedback loop (Figure 2-3B and D). A perturbation experiment that eliminates the putative

negative feedback loop was thus carried out to test this possibility (Figure 2-3B). Similarly, the

distinct subpopulations of mab-5 ON and OFF cells in strains such as the mig-1 single mutant

implicate the existence of positive feedback. Further, the strong single-cell correlation between

lin-1 7 and mab-5 indicates a strong positive coupling which could arise either through a common

upstream activator or a strong positive feedback. Both mechanisms turned out to exist in the

network (Figure 2-5C). Taken together, variability in gene expression may carry distinct

signatures of the underlying network and can serve as a useful guide to network identification.
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2.4 EXPERIMENTAL PROCEDURES

C. elegans strains and culture

C. elegans strains were grown at 20*C using standard culture conditions and techniques. The

Bristol N2 strain was used as wild type. Mutant alleles and transgenes used in the study are:

Linkage Group I (LGI): mig-1(eJ 787), lin-1 7(n671), smg-1(e1228), mom-5(gk812), mom-

5(or57), mom-5(ne12);

LGIII: mab-5(e1239), vps-29(tm1320);

LGIV: egl-20(n585);

LGV: heIs63[Pwrt-2::gfp-ph; Pwrt-2::h2b-gfp; Plin-48::tomato], muIs53[hs::egl-20; unc-

22(dn)] (Whangbo and Kenyon, 1999);

LG unknown: syIs187[POPTOP];

Extra-chromosomal array: huEx2 78[Pegl-1 7::DNpop-1;Pmyo-2::tomato].

Note on the smg-1(e1228); mab-5(e1239) strain: The smg-1 (e1228) background was used to

allow visualization of mab-5 transcripts in the mab-5(e1239) mutants. Normally, transcripts from

nonsense mutant alleles (as in the case of mab-5(e1239)) are subject to nonsense-mediated RNA

decay (Pulak and Anderson, 1993), which abolishes the majority of the mutant transcripts. We

circumvented this problem using the smg-1(e1228) mutation which compromises the nonsense

mediated decay pathway (Denning et al., 2001; Grimson et al., 2004).

Scoring QL descendent migration

The precise positions of the Q descendants QL.pap/QL.paa were scored by DIC microscopy in

late Li stage larvae as described (Coudreuse et al., 2006).

Single molecule fluorescence in situ hybridization
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SmFISH was performed as described (Raj et al. 2008). Manual segmentation of GFP-marked QL

periphery was performed, followed by automated spot counting in MATLAB-based custom-

written software. Total migratory distance (MD) was assayed by manually marking the nuclear

position of QL and QR, tracing the A-P axis of the worm, and automatically computing the

distance between QL and QR along the A-P axis.

Heat shock activation of hsp::egl-20

Heat shock experiments were performed on animals carrying muIs53 [hsp::egl-20 ; unc-22(dn)]

as described (Whangbo and Kenyon, 1999). Briefly, heat shock treatment was given to 0-0.5

hour synchronized LI larvae in a total volume of 50 pl at 33*C for a desired length of time. Heat

shock was terminated by chilling tubes on ice for 10 seconds and worms were then grown on

fresh plates at 20*C for an additional 2-2.5 hours.

Network inference

Following procedures outlined in Kholodenko et al. 2002, the raw transcript count for a given

gene in a given strain is transformed into the central fraction difference (CFD) value using the

following formula:

Alnx; = 2 (x(1) -
1 (1) + x.(O)xi j

where x(0) denotes the transcript count of gene j in the wild type, and x;(1) the transcript count

in the strain of interest (e.g. all wild type measurements would yield a CFD value of 0). Based on

the transformed CFD value, a 5x5 matrix was assembled by bootstrap sampling for each gene in

each mutant background. This "gene expression matrix" was then substituted into the following

inference algorithm (Van Kampen, 1983):
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r = -[diag(R-)]-1 * R-1

Where r stands for the connectivity matrix, R represents the gene expression matrix, and "diag"

denotes the matrix diagonal. Bootstrapping followed by the inference routine was repeated

10,000 times and the resulting connectivity matrices were pooled to obtain the probability

distribution and FDR adjusted p-value for each connectivity strength.

Computational validation of the inferred topology

To control for network complexity, we compared the Akaike Information Criterion (AIC) value

(Akaike, 1974) of the wild-type network to a series of 9 alternative networks using the following

equation (Burnham and Anderson, 2002):

AIC = n ln(RSS/n) + 2k + C

Where RSS is the residual sum of squares from model fitting, n denotes the size of the data set

used for model fitting, k denotes the number of model parameters, and C is a constant

independent of the model (which we set to zero for simplicity). Given a set of candidate models

for the data, the preferred model is the one with the minimum AIC value. The alternative

networks were constructed by eliminating one at a time of the inferred network interactions.

Specifically, this was done by forcing the corresponding model parameter to be zero and proceed

with least-squares parameter fitting. The AIC value allows for a fair comparison between models

with different number of parameters (model complexity). As shown in Figure 2-S4C, the

inferred model yielded a much lower AIC value than all the alternative models tested, which

validates the inferred model as the most likely model given the gene expression data set.

We next tested the sensitivity of inferred topology to the definition window of steady state

gene expression. Briefly, a sliding window that spans MD=X-1 to MD=X+3, where X varied
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from 1 to 12, were used to selected data points for network inference. Following the same data

transformation as outlined in Methods, the MRA algorithm was applied and the resulting average

interaction strengths were reported in Figure 2-S4D. The inferred values varied greatly for X=1

to 6, but stabilized for X>6. The initial fluctuation in interaction strengths reflected the initial

variation in transcript abundance, and the stabilization of inferred interaction strengths validate

the use of MD>8 as a window for steady state gene expression.

Statistical analysis

The Mann-Whitney test was used to compare mean expression levels and the F test was used to

test equal variance between the wild type and mutants. Non-parametric bootstrap was used to

derive confidence intervals on the mean transcript counts and the Fano factors values. To control

for multiple comparisons, the Benjamini-Hochberg procedure was used to achieve a false

discovery rate (FDR) of less than 0.04 for comparison of transcript abundance; the Bonferroni

correction with n=20 was applied to the bootstrap p values of the inferred network interactions.

Corrected p-value of less than 0.05 was considered significant.

Modeling

1. Model construction

Based on the inferred network topology (Figure 2-5C),
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we constructed the following ordinary differential equation (ODE) model. As listed below, the

variables R1-3, W and T denote the per-cell abundance of each of the five network components.

RI: mig-1 11=y1* (V1* ( Kin) + 1-R1) (1)

R2: lin-17 R2 = y2 * (V2 * (K 2- R2) (2)

R3: mom-5 R3 = y3 * (V 3 * (K33 ) R3) (3)

W: Intracellular Wnt signal V yw *(Vw * L * +s * * R2 + s2 * R 3

Kw 4 W) (4)

T: mab-5 =yt *(W - T) (5)

Note 1: L denotes the amount of EGL-20 ligand available. Since egl-20 was expressed at similar

levels across strains (data not shown), we assumed the local EGL-20 level to be unaltered in all

strains except for mutants directly affecting the function or the secretion of EGL-20 (i.e. egl-20

(n585) and vps-29 (tm1320)). The value of L denotes the local concentration of L relative to the

wild type. To minimize the number of free parameters, we assumed L to stay constant in all

genetic backgrounds and assigned L with an arbitrary value of 1. Potential interactions between
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the Frizzleds and the Wnt ligand, while not explored in the current study, can be incorporated

into the model by modeling L as a function of the R1-3 (i.e. L=L(Ri)).

Note 2: To model the non-additive relation between Frizzled single mutants and compound

mutants (e.g. the reduction in mab-5 in the lin-1 7 mom-5 double mutant is much greater than the

summed loss in the two single mutants (Figure 2-3A)), it was necessary to include the interaction

terms (i.e. s * Ri * Rj) in (4). This way the near complete loss of mab-5 expression in Frizzled

compound mutants can be recapitulated by the model.

2. Parameter estimation

We next fitted the above model to the gene expression profile of wild-type and mutant strains.

To constrain the number of parameters and facilitate fitting, we manually tested Hill coefficient

values of 1, 3, 6 and 9. We only accepted higher Hill coefficients when the increase in Hill

coefficient led to considerable decrease in the mean squared error (MSE) without a compromise

in the p-values. We used similar criteria to determine whether to include the basal transcription

rates (fli) in a given equation. In general, keeping the minimal number of parameters yielded

close approximation of the experimental data. The following parameter estimates were obtained

from the least squares fitting routines in MATLAB (MathWorks, Natick, MA):
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Standard
Parameter Estimated value p-Value RMSE

Error

VI 11.1 0.9 6.40E-26

KJ 0.2 0.2 0.043
2.8

betal 9.8 0.4 2.58E-57

n1 1.0 -

V2 34.0 1.4 1.30E-56

c 7.9 1.9 6.OOE-05
1.6

K2 58.4 12.0 2.50E-06

n2 3.0 -

V3 6.1 0.3 9.80E-53

K3 42.8 7.9 1.80E-07 1.1

n3 1.0 -

Vw 3.6 0.2 5.62E-21

sI 0.4 0.1 8.90E-09

s2 0.27 0.1 0.015

s3 0.0014 3E-4 2.6E-5 17.7

s4 0.13 0.02 3.8E-5

Kw 62.1 8.9 8.80E-17

n4 6.0 -

VI 0.4
7.5

v2 1.1
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y3 10.0 -

yw 0.06 - -

yt 5.7 -

Note the parameters VI through n4 were fit using steady state gene expression data using the

NonLinearModel.fit routine in MATLAB. The degradation rates were fit using time series gene

expression data using the lsqnonlin function in MATLAB.

3. Model reduction

With the fit parameters, the model exhibits temporal dynamics that approximates the wild-type

expression profile (Fig S5A). Next, by observing that yw is much smaller than the other time

scales (yl-3, and yt), we reduce the model down to a deterministically equivalent ID model by

setting equations (1)-(3) and (5) to zero and substituting the resulting equalities into equation (4):

S= yw* (Vw*L*Rtot* (Kw 4  
n W (6)

where Rtot = R1 + sl * R2 + s2 * R3 + s3 * R1 * R2 + s4 * R1 * R3 with Ri-3 defined as in

(1)-(3).

4. Analytical calculation of the Fano factor

To obtain the theoretical Fano factor values, we first rewrite the ID model in the following

format:

* =f(x) - g(x) (7)
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where f (x) = yw * Vw * L * Rtot ( (Kwn + , g(x) = yw * W, and Rtot defined the samewher f~) =yw Vw L Rtt *Kwn
4 +Wn4)

as in (6).

To model the effect of stochastic fluctuations, we construct the following Langevin model:

=f(x)-g(x)+ f+g+D*F (8)

where the magnitude of the intrinsic and extrinsic fluctuations are defined by the their

autocorrelation functions:

Intrinsic fluctuation ei: < ei(t)Ei(t') >= 2 * (f + g) * 6(t - t')

Extrinsic fluctuation ee: < ee(t)ee(t') >= 2 * D * 6(t - t')

Here we assume the intrinsic and the extrinsic fluctuations are uncorrelated. The stationary

probability distribution of x can then be analytically calculated using the Fokker-Planck

formalism. The drift (A(x)) and diffusion ( B(x)) terms in a corresponding Fokker-Planck model

can thus be represented as (Van Kampen, 1983):

A(x) = f - g and B(x) =f + g + D

The value of D was set to 0 for the computational analysis on the effect of network topology on

output variability (Figure 2-6 and S5) and determined by fitting to the wild-type mab-5

distribution to allow the prediction of mab-5 variability in the Wnt signaling mutants (Figure 2-7

and S6).

It follows that the probability density of the stochastic model is:

p(x) = co * exp[2 * )]dy (9)
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The mean and variance then follow from the probability density, with the ratio of the two leading

to the expression of the Fano factor v:

i f[xz * p(x)] dx - (f [x * p(x)]dx})2

f [x * p(x)]dx}

5. Predicting mab-5 variability in the mutants:

Following the derivation of the probability density function, the distribution of mab-5 expression

can be directly calculated for different network topologies. As the exact level of the extrinsic

fluctuations (D) is unknown, we first fit the wild-type mab-5 distribution, D was varied

incrementally from 0 up and a value of 450 was found to well approximate the wild-type

distribution. The same value of D was then kept fixed while the topology of the model network

was varied to mimic the altered network topology in the mutants. The probability density

function was then derived and the Fano factor value calculated for each "mutant" network.
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Chapter 3

TRANSCRIPTIONAL REGULATION OF WNT

PATHWAY GENES IN THE Q DAUGHTER CELLS

3.1 Introduction

While past studies have convincingly established the requirement of wild type mab-5 in the

posterior migration of the QL descendants, an outstanding question remains. Namely, is mab-5

expression in QL required for its continued expression in the QL daughter cells? Past studies

have shown that forced activation of mab-5 expression in the Q descendants (through laser

activation of a transgene containing heat shock promoter driven mab-5 cDNA specifically in the

Q descendants) can induce posterior migration even in cells already migrating towards the

anterior (Figure 3-1, Salser and Kenyon, 1992). This result demonstrates that mab-5 expression

in QL is not absolutely required for its continued expression in the QL descendants. However, it

does not exclude the possibility that the expression of mab-5 in QL contributes to the posterior

migration of the QL descendants. The goal of this chapter is thus to characterize how Wnt

signaling and the expression of mab-5 in QL influences the gene expression dynamics of its

daughters. Addressing this question would not only further our understanding of the genetic basis

of Q neuroblast migration, but also provide general insights into how transcriptional regulation is

coordinated with cell cycle and lineage progression.

To test the requirement of QL-specific mab-5 expression in the posterior migration of the

QL daughter cells, one would ideally like to block Wnt signaling or disrupt mab-5 function in the

76



QL neuroblast but not its daughters. To proceed with such experimental manipulation, two

conditions need to be satisfied. First, one needs to identify a promoter that is active selectively in

the QL but not its descendants. Second, even with the use of a QL-specific promoter, one still

needs to ensure that the effect of the experimental manipulation is confined within the lifetime of

QL. This is because the expression of a transgene or an siRNA in QL could easily affect the state

of the daughter cells via direct transfer of cytoplasmic and nuclear materials during cell division.

As I show later in this chapter, while the first condition can be met, the second is more difficult

to satisfy with existing technology. Taken into account this technical difficulty, I present here

evidence from quantitative gene expression assay and genetic manipulation that the QL

neuroblast may play a positive role in promoting the posterior migration of its daughters.

A
Late expression of heat-shock-mab-5:

B
Two pulses of heat-shock-mab-5:

C
Early expression of heat-shock-mab-5:

D
mab-5(el 752gf)

-- VI C2 V3 V
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Figure 3-1. Laser activation of a heat shock promoter driven mab-5 transgene in the Q daughter

cells is sufficient to drive posterior migration. Shown here are combined results from

experiments on both QL and QR descendants, all in a mab-5(e2088f) background. Black traces

mark the combined migratory trajectory of Q , Q.a and Q.ap cells, with the trajectory of Q.ap

cells marked in bold. Open arrowheads indicate the positions and inferred migratory directions of

Q descendants when individual data points are taken. Thick arrows indicate timing and duration

at which heat shock is given. Image courtesy Salser and Kenyon, 1992.

3.2 Transcript Abundance in the Q Daughter Cells Is Influenced by Both

Direct Inheritance through Cell Division and Cell Type Specific

Transcriptional Regulation

Using smFISH and semi-automated image analysis as outlined in the previous Chapter, we

quantified the transcript level of five Wnt receptor and two Hox genes in the Q mother cells and

Q daughter cells in both the QL and, as a comparison, the QR lineages. In addition to the five

genes analyzed for QL (mig-1/Fz, lin-1 7/Fz, mom-5/Fz, cfz-2/Fz, mab-5/Hox) in Chapter 2, I

additionally included cam-1, a Ror receptor tyrosine kinase family member found to inhibit

canonical Wnt signaling in the left Q lineage (Forrester et al., 2004, Figure 3-2), and lin-39,

another C. elegans Hox homolog involved in regulating the long-distance anterior migration of

the Q descendants (Maloof et al., 1999, Figure 3-3).
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Figure 3-2. Q neuroblast migration in wild type, cam-1(gm122) and other Wnt signaling mutants.

Top panel is a schematic of the lateral view of a late Li animal. Anterior is to the left and dorsal

is up. Histograms below the schematic indicate the final positions of the cell bodies of the Q
descendants, QL. paa and QL.pap. The long tick marks on the x-axis indicate the location of

Vn.p nuclei and the short tick marks indicate the location of Vn.a nulcei. The tick mark on the y-

axis denotes 100%. Image courtesy Forrester et al., 2004.

79



A-

..............

3 4 10

Figure 3-3. Function and expression pattern of lin-39. A) Summary of P cell lineages and Q cell

migrations (Sulston and Horvitz, 1977) in wild type and lin-39 mutants. Diamonds and arrow-

heads denote cell fate dependent on Hox gene function. Closed diamonds denote lin-39-

dependent cell fates. Open arrowheads indicate cell deaths (x) that require mab-5 activity

(Kenyon, 1986). Q neuroblast migration on the left is indicated by a solid arrow, while the

migration on the right is marked by a dashed arrow. B) and C) Expression of an integrated lin-

39::lacZ fusion transgene in an Ll larva. The two panels show the right (B) and the left (C) sides

of the animal. LacZ staining is present in the Q daughters of both the right and the left lineages,

as well as in the P lineage of ectoblasts. Image courtesy of Wang et al., 1993.
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Figure 3-4 summarizes the transcription dynamics of all seven genes in QL/R and their

daughters. Immediately prior to QL/R division, QL expresses high levels (>20 transcripts per

cell) of lin-17 and mab-5 and low levels (<10 transcripts per cell) of mig-1, lin-39, mom-5 and

cam-i; QR expresses intermediate levels (between 10-20 transcripts per cell) of mig-1 and low

levels of lin-1 7, mom-5 and cam-1(Figure 3-4 A and B). Immediately after division, the

transcript levels for each of the aforementioned genes in the Q daughter cells are about half of

those in the mother cell. Later on, as the Q daughter cells continue to migrate, their gene

expression patterns change as well. In particular, mig-1, lin-1 7, mom-5 and mab-5 levels rise

over time in one or both of the QL descendants, whereas lin-1 7, mom-5, cam-i and lin-39

increases in both QR descendants. The increase in transcript levels for both the receptor and the

Hox genes indicates active transcription of these genes in the Q daughter cells. Thus, the Q

daughter cells are not only inheriting the transcription profile of their mothers, but also

selectively transcribing a subset of the Wnt receptor and Hox genes. It is also noteworthy that the

transcriptional states of the daughter cells are not entirely identical to that of the mothers. For

example, while mig-1 level decreases over time in QL, it is upregulated in QL.p shortly post QL

division (Figure 3-4 A). Furthermore, the transcriptional state also differ between pairs of sister

cells. In fact, except for cfz-2 which is absent in both Q lineages, the other four Wnt receptor

genes (mig-1, lin-17, mom-5, cam-i) and both Hox genes (mab-5 and lin-39) exhibit sister cell

asymmetry in either the QL or QR lineage (Figure 3-4 and 3-5). Thus, two mechanisms together

influence the transcription profiles of the Q daughter cells: the inheritance of transcripts from the

mother cells and the activation of transcriptional regulatory programs specifically in the daughter

cells.
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Figure 3-4: Transcription dynamics of the four Frizzled paralogs, cam-1/Ror and the Wnt target

gene mab-5/Hox in the migrating Q neuroblasts. A) Single cell transcript counts acquired at

different time points for QL (blue), QR (blue), and their daughter cells (green and red). As a

proxy for time, we used the total distance migrated by cells of the QL and QR lineage as it is

expected to increase monotonously with time. B) Comparison of transcript abundance between

the QL and QR lineage, for the six genes mentioned above. Note distinct asymmetry in the

transcript levels of lin-i 7, mom-5, cam-i, and mab-5. Errorbars are 95% confidence intervals of

the mean. The asterisks denote p-values from the Mann-Whitney U test.
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QL division

QL a U L.p QLUa Q

Figure 3-5. Downregulation of mab-5 transcripts selectively in QL.a. The top arrow marks the

passage of time (or increase in worm age) since QL division. (Middle) Membrane bound GFP

(expressed from the transgene Pegl-1 7::gfp) demarcate the boundaries of the Q daughter cells.

DAP. (Bottom) mab-5 smFISH staining demonstrates the distribution of mab-5 mRNA shortly

after QL division (left) and the subsequent downregulation of mab-5 mRNA in QL.a.

3.3 Loss or Restoration of Wnt signaling in QL Respectively Abolish or

Rescue mab-5 Expression and Posterior Migration in the QL Daughter Cells

To probe how Wnt signaling and mab-5 expression in QL affects signaling and gene

expression in the QL daughters (i.e. QL.a and QL.p), I first searched for known promoters that

are active selectively in the Q mother cells but not their daughters. The egl-17 promoter is known

to be active specifically in the Q lineage and have been commonly used to drive transgene

expression in the migrating Q neuroblasts (Blelloch et al., 1999; Ou and Vale, 2009; Middelkoop

et al., 2012). In animals expressing GFP driven by the egl-1 7 promoter (egl-1 I7p), GFP

fluorescence can be detected in both the Q mother cells and all their descendants (Ou and Vale,
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2009). While this observation implys continuous activity of egl-1 7p throughout the Q lineage, it

is likely confounded by the long life time of the GFP protein (Esposito et al., 2007). To directly

assay the activity of the endogenous egl-1 7 promoter, I used smFISH to stain the endogenous

egl-1 7 mRNA. Consistent with previous reports (Ou and Vale, 2009), egl-1 7 mRNA is enriched

in the Q lineages while present at very low levels elsewhere. However, unlike GFP protein

expressed from an egl-1 7 transcriptional reporter, endogenous egl-1 7 mRNA is present at

appreciable levels only in the Q mother cells (Figure 3-6 A). In both QL and QR, egl-1 7

transcripts are present at around 20 copies/cell at the onset of Q cell migration, and drop to less

than 5 copies/cell just prior to the 1 st round of cell division. egl-17 transcripts are further

downregulated in the Q daughter cells to rapidly reach an average of less than 1 copy per cell (i.e.

most observed Q daughter cells express no egl-1 7 mRNA, Figure 3-6 A). The endogenous

dynamics of egl-1 7p is closely recapitulated by a transgene driven by the same promoter. Using

the same egl-1 7 promoter (Ou and Vale, 2009) to drive the expression of mig-1/Fz cDNA in a

mig-1(n1 787) background, I observed the mig-1 mRNA to be enriched mainly in the Q mother

cells but rarely in the Q daughter cells (Figure 3-6 B). The lack of egl-1 7p (both endogenous and

transgenic) activity in the Q descendants strongly indicates that egl-1 7p is a promoter active

specifically in the Q mother cells.
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Figure 3-6. Endogenous and transgenic egl-1 7 promoter activity in the left and right Q lineages.

A) Endogenous egl-1 7 transcript levels in the left and right Q lineages in wild type animals. B)

Top panels: Endogenous mig-ltranscript levels in the mig-1 (e1 787) mutants; bottom panels:

Endogenous and transgenic mig-1 transcript levels in mig-1(e1 787) mutants carrying the Pegl-

17::mig-1cDNA transgene The large variability in mig-1 mRNA level is likely a result of the

variable copy numbers of the extra-chromosomally located transgene.

Having established egl-1 7p as a promoter specifically active in the Q mother cells, I next

utilized transgenes driven by this promoter to manipulate Wnt signaling specifically in the Q

mother cells. First, I used a transgene expressing a dominant negative form of POP-I/TCF from

the egl- 17 promoter (Peg!-1 7:DNpop-1, also used in Chapter 2). Expression of the dominant

negative POP-I disrupts Wnt signaling and leads to complete loss of mab-5 transcripts in QL

(Chapter 2, Figure 2-SI D). Should the lifetime of the dominant negative POP-I be relatively
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short, Wnt signaling should ultimately resume in the QL daughter cells. However, low levels of

mab-5 transcripts (<10 copies per cell for both QL.p and QL.a, Figure 3-7) were consistently

observed in both QL daughters. The inability of the QL daughters to resume mab-5 transcription

may be due to a combination of the following reasons: First, a substantial amount of dominant

negative POP-I protein was transferred from QL to its daughters, which continues to inhibit Wnt

signaling in the QL daughters. Second, as described in Chapter 2 (Figure 2-4), loss of Wnt

signaling and mab-5 expression in QL would lead to a decrease in lin-I 7/Fz transcripts in QL.

Since lin-i 7 transcripts in QL is inherited by both QL daughters (Figure 3-4 A), the reduced lin-

17 level in the mother cell would lead to a decrease in lin-17 level in the newly generated QL

daughters (which was indeed observed, Figure 3-8). Reduced Frizzled receptor expression may

thus prevent the QL daughters from effectively activating Wnt signaling and mab-5 expression.

Thirdly, without sufficient MAB-5 expression, the QL daughters would soon start migrating to

the anterior. Migration away from the posteriorly localized source of the Wnt ligand, EGL-20,

may also attenuate Wnt signaling in the QL daughters, further preventing mab-5 from

transcribing. While the first reason is attributed an experimental caveat, the other two point to a

critical role of QL-specific mab-5 expression in priming the daughter cells for robust Wnt

signaling and posterior migration.

To further test whether Wnt signaling and mab-5 expression in QL could promote the

posterior migration of the QL daughters, I then attempted to restore Wnt signaling in QL in

animals carrying loss-of-function mutation of the Frizzled receptor gene mig-1. mab-5

expression is strongly reduced in both QL (Chapter 2, Figure 2-4) and the QL daughters (Figure

3-6) in the mig-1(el 787) mutants. Expression of the mig-1 cDNA under the control of the egl-17

promoter restores mab-5 expression in both QL (data not shown) and the QL daughters (Figure
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3-7). As shown in Figure 3-6 B, mig-1 transcripts synthesized from the Pegl-1 7::mig-1

transgene is specifically enriched in QL but not its daughters. The fact that transcription of mig-1

only in QL is sufficient to rescue Wnt signaling and mab-5 expression the QL daughters suggest

that the activation of Wnt signaling and mab-5 expression in QL can effectively promote Wnt

signaling and mab-5 expression in the QL daughters. Thus, while the posterior migration of QL

does not depend on Wnt signaling or the expression of mab-5 (Salser and Kenyon, 1992),

activation of Wnt signaling and mab-5 transcription early on in the mother cell may be a

endogenous mechanism to ensure the robust posterior migration of the QL daughter cells.

30 QL.p

25 QL.a
U.
a 20

Z 15

E' 10-
-)

0

Figure 3-7. Loss or restoration of Wnt signaling in QL respectively abolishes or rescues mab-5

expression in the QL daughters. Colored bars represent numbers of mab-5 transcripts in QL.p

(blue) and QL.a (brown). Genetic backgrounds of individual strains are indicated on the x-axis.

Errorbars denote standard deviation of the mean.
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3.4 mab-5 Is Transcribed in the QL Daughters in a Position Dependent

Manner

In Wnt signaling or mab-5 mutants, the QL daughter cells start migrating towards the

anterior shortly after their birth from cell division (Harris et al., 1996; Maloof et al., 1999). Since

anterior migration quickly distances the Q daughter cell from the source of the EGL-20 ligand,

there may be a critical time window for MAB-5 expression to reach a sufficient level to initiate

posterior migration. In other words, sustained Wnt signaling and mab-5 expression may critically

depend on the posterior location of the QL daughters. To test this hypothesis, I examined the

dynamics of mab-5 transcription in the QL daughter cells in the mab-5(e1239); smg-1(e1228)

mutants. As described in Chapter 2, this mutant fails to generate functional MAB-5 protein but

spares the mutant mab-5 transcripts from nonsense mediated transcript degradation. In this

mutant, the QL daughters are fated to migrate to the anterior due to the lack of functional MAB-5.

They however should in principle remain capable of Wnt signaling as no Wnt signaling

components are directly perturbed. If the expression of mab-5 in the QL daughters does not

require the cells to remain in the posterior, continued mab-5 transcription should be observed in

QL daughter cells located anterior to their wild type positions. This was however not the case. As

shown in Figure 3-8, while mab-5 transcript levels continued to increase in newly generated QL

daughters (lower panel, data points corresponding to X > 0), transcript levels began to decrease

as QL daughters migrate anteriorly past their birth positions (marked by red and green arrows;

note the initial posterior-ward displacement is likely not a result of active migration, but a result

of changes in cell morphology, i.e. rounded to elongated, after cell division). In QL.p especially,

there is a strong dependence of mab-5 transcript levels on cell position (Pearson's R=-0.79),

compared to lack of significant correlation in the wild type (Pearson's R=-0.01; note that QL.p
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exhibits little active migration in the wild type). Taken together, the observation that mab-5

transcription in the QL daughters depend strongly on cell position supports the model where

mab-5 activation early in the QL stage serves to ensure sufficient MAB-5 expression in newly

divided QL daughters.
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Figure 3-8. mab-5 transcripts in QL.p exhibit strong position dependence in QL daughter cells in

the mab-5 (e1239) mutant. (Top) mab-5 transcript levels in wild type QL and QL daughter cells

plotted against cell position relative to the stationary cell V5. (Bottom) mab-5 transcript levels in

the left Q neuroblasts in a mab-5(e1239);smg-1(e1228) mutant background. Shaded arrows

indicate typical positions at which newly generated QL .a (red arrow) and QL.p (green arrow)

are found. Zero on the x-axis marks the position of the stationary cell V5. All positions are

normalized to the body lengths of the animals. Left is anterior and right is posterior.

3.5 Multiple Genetic Interactions Found in the Q Mother Cells Are Shared by

the Q Daughter Cells

As both similar and distinct transcriptional regulatory programs exist among the Q mother

cells and their daughters (see results in section 3.2), I next questioned whether regulatory
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interactions found in the Q mother cells continue to be active in the Q daughter cells. To address

this question, I measured the transcript levels of the four Wnt receptor and two Hox genes in QL,

QR and their daughters in both the wild type and strains harboring single mutations of the six

genes (i.e. mig-i/Fz, lin-i 7/Fz, mom-5/Fz, mab-5/Hox, lin-39/Hox, and cam-1/Ror).

Figure 3-9 summarizes the transcriptional profiles for the above six genes in various Wnt

signaling mutants. The expression level of each gene is normalized to its wild type level, and any

significant increase (red) or decrease (blue) from the wild type is colored accordingly. Across

the six cell types, differential expression in the above six genes was mainly observed in the left Q

lineage. This is consistent with the observation that canonical Wnt signaling is strongly activated

in QL but is inactive or only weakly active in QR (Korswagen, 2002). Perturbations that weaken

the canonical Wnt signal, such as mig-1 (el 787) and lin-i 7(n671) may have little effect on the

level of canonical Wnt signaling in QR. Meanwhile, mutation in mab-5, a canonical Wnt

signaling target already lowly expressed in QR, would have relatively little effect on downstream

genes. Thus, the difference between the left and right Q lineages in their transcriptional response

can be explained by their asymmetrical Wnt signaling level.

Within the QL lineage, many of the transcriptional changes found in QL were also detected

in the QL daughters (Figure 3-9). A number of these changes appear more prominent in the

daughter cells. One example is the increase of lin-39 and cam-i expression following mutations

in mig-1, mab-5 or egl-20. This increase in transcriptional response may reflect a change in

regulatory environment in the daughter cells. For example, MAB-5 and/or Wnt signaling may

assume a dominant role in regulating some of their targets (e.g. lin-39 and cam-i) in the QL

daughters, whereas additional regulators may act in parallel to MAB-5 and Wnt signaling in the

QL cell. Similar explanation can be applied to a number of changes observed only in QL or only
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in its daughters (highlighted in yellow, Figure 3-9). For example, the invariant expression of

mab-5 in the cam-i (gm122) mutant may be attributed to the negative feedback of mab-5 on its

own transcription (see Chapter 2). The strong negative auto-regulation of mab-5 may have

effectively attenuated the effect of cam-i(gm122) mutation on mab-5 transcription.

91



1.2 1.1 09 1.1 1.1

n9 nn 09

1.2-

1.0

0.8

0.8

0.9

0.8 1.0

iKs 1.2

1.8 1.2

1.6 0.8 1.0

QL

1.0 11 1.3

1.2 1.0

1.0 1A 1.0

1.0 1. 1 1.3

QL.p

0.9 1.1 0.9 1.5 1.1 1.2 0.9 1.1

1.1 1.2 1.0 01 1.0

1.4 1.5 1.1 1.2 11

8

0

0

9

>100 fold increase

mig-i 1.0

lin-1 7 1.2

mom-5 1.6 1.1

mab-5 1.2 0.8

1.1 0.9

1.6 1.0

1.2 0.8

1.1

1.1

1.2

1.1

1.1

_1_2

0,9 0.9

0.9 0.9

1.0

1.1

1.2

1.2

1.2

1.5

0.8

0.9

1.0 1.

0.8

1.1

1.2

1.7

1.8

1.1 0.9 1.1 16

111.1 1 2 1.2- 1.1 1.1",

1.1 0.9 0.9 0.9 1.1 1.0

1.1 1.0 1.0 1.0 1h2 1.1

1.1 1 1.2 1.2 1.1 1

1.1 0.9

1.1 1.0

11 1.1 1.1

1.3

1.9

1.0 1.1 0.9 1.2 1.1

1. 091.1 0.6 1.0 1.1

1.4 1.0 0.9 1.2 1.1 1.1

1.0 1.0 1.0 1. 1 1 1

1.1 0.9 1.2 1.1 .0.7- 11

1.0 1.0 1.0 1.1 1.0 1.1

QR QR.p QR.a >100 fold reduction

Figure 3-9: Summary of differential gene expression in various Wnt pathway mutants compared to the wild type. Each colored
matrix correspond to the transcription profile of one cell type (e.g. QL, QL.a, QR). Each small square inside the block correspond
to the abundance of a particular mRNA species (as labeled to the left) in a specific mutant background (as labeled above). The
color of the square corresponds to the fold change in transcript abundance compared to the wild type. The color bar to the far
right details the correspondence between color intensity and fold change values. Yellow squares denote differential gene
expressions found only in the QL daughters, but not the QL mother cell.

mig-i

lin-i 7

mom-5

mab-5

lin-39

com-1

mab-5 mRNA

wNJ

11 1.0-

10

1.1 1.1 1.4

QL.a

lin-39

cam-1

mab-5 mRNA

no change
, 1.0



3.6 Conclusions

In this Chapter, we report the expression pattern of various Wnt receptor and target genes in

the Q daughter cells. Comparing the expression profiles between mother and daughter cells, I

reveal a role of the mother cells in influencing the transcriptional profiles of the daughter cells.

By assaying the transcriptional changes in the daughter cells in various Wnt pathway mutants, I

show that some but not all of the genetic interactions observed in the mother cells were also

present in the daughter cells. Additionally, new transcriptional regulatory programs become

active in the Q daughters giving rise to distinct and asymmetric expression profiles in pairs of Q

daughter cells. To the regulatory program that controls Wnt signaling activity and gene

expression in the Q lineage, there is both history-dependence but also dynamic cell-specific

modulation. A lesson from these findings is that controlling of gene expression in a developing

multicellular tissue may be complicated by both the transcriptional history of the cell lineage as

well as the dynamically evolving cellular context.

3.7 Experimental Procedures

C. elegans strains and culture

C. elegans strains were grown at 20*C using standard culture conditions and techniques. The

Bristol N2 strain was used as wild type. Mutant alleles and transgenes used in the study are:

Linkage Group I (LGI): mig-1(e1787), lin-17(n671), smg-1(e1228), mom-5(gk812), mom-

5(or57), mom-5(ne12);

LGII: cam-i(gm122);

LGIII: mab-5(e1239), lin-39(n1760);

LGIV: egl-20(n585);
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LGV: heIs63[Pwrt-2::gfp-ph; Pwrt-2::h2b-gfp; Plin-48::tomato];

Extra-chromosomal array: huEx278[Pegl-17::DNpop-1;Pmyo-2::tomato].

Scoring QL descendent migration

The precise positions of the Q descendants QL.pap/QL.paa were scored by DIC microscopy in

late LI stage larvae as described (Coudreuse et al., 2006).

Single molecule fluorescence in situ hybridization

SmFISH was performed as described (Raj et al. 2008). Manual segmentation of GFP-marked QL

periphery was performed, followed by automated spot counting in MATLAB-based custom-

written software. Total migratory distance (MD) was assayed by manually marking the nuclear

position of QL and QR, tracing the A-P axis of the worm, and automatically computing the

distance between QL and QR along the A-P axis.

Statistical analysis

The Mann-Whitney test was used to compare average gene expression levels between the wild

type and the mutant strains. To control for multiple comparisons, the Benjamini-Hochberg

procedure was used to achieve an FDR of less than 0.04 for comparison of transcript abundance.

Corrected p-value of less than 0.05 was considered significant.
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Chapter 4

EPILOGUE

4.1 Summary of Results

The work presented in this thesis stems from a central question: How is noise in gene

expression handled by endogenous biological systems? To address this question, we focused on a

stereotyped event in C. elegans development, the migration of the Q neuroblast. Building on

previous study showing that the canonical Wnt pathway drives the posterior migration of the QL

neuroblast by activating the Hox gene mab-5, we set out to uncover the mechanisms that ensure

robust activation of mab-5 in QL. We first quantified the level of mab-5 transcripts in QL in the

wild type. Unexpectedly, not only is mab-5 consistently expressed at a high level across animals,

but its steady state expression levels are tightly distributed within a narrow range. In comparison,

multiple Wnt signaling mutants exhibited markedly more variable mab-5 expression levels,

reminiscent of their partially penetrant migratory phenotype,.

As the degree of transcriptional variability cannot be simply predicted by mean transcript

level, we embarked on a search for the mechanistic cause of the increased variability. Building

on the observation that the transcript levels of the three Frizzled receptors, mig-1, lin-1 7, and

mom-5, are dynamically modulated during QL migration, we asked whether their levels are

additionally affected by perturbation of the Wnt signaling pathway. By systematically profiling

the levels of Frizzled receptor and mab-5 expression in a series of Wnt pathway mutants, we

found extensive feedback interaction between the Frizzled receptors, mab-5 and the intracellular

Wnt signal. Using computational network inference, we obtained a single most probable network
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topology, which we then used to construct a mathematical model. Using theoretical approaches,

we demonstrated a link between alterations in network topology and the observed increase in

gene expression variability.

Extending our gene expression analysis to the Q daughter cells, we found that mRNA

transcripts present at the point of Q cell division are effectively transferred to the daughter cells

in a largely symmetric fashion. Thereafter, the Q daughter cells turn on transcriptional regulatory

programs not entirely identical to their mothers. It is clear, however, that the transcription

profiles and the regulatory interactions in the mother cells prominently influence the

transcriptional profiles of the daughter cells. When a perturbation to the Wnt pathway alters the

transcript abundances in the mother cells, similar changes tend to be observed in the daughter

cells as well. These findings suggest that lineage history and cellular context are important

factors that influence the transcription profile of a given cell.

Together, our results highlight the role of regulatory network topology in controlling the

variability in gene expression. These results also provide some initial evidence that network

topology may indeed be an adaptive trait employed endogenously to ensure the robust control of

gene expression.

4.2 Implications and Future Directions

Controlling gene expression in a multicellular organism is a challenging task. Compared to

single-cell organisms, the survival of a multicellular organism requires careful orchestration

between many cells of different types and with different needs (Komili and Silver, 2008). In the

system studied here, the genetic program that controls mab-5 expression may have to ensure not

only a sufficient level of mab-5 expression for posterior migration, but also an accurate level of
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mab-5 expression to drive particular cell fates. The existence of multiple regulatory goals may

explain why mab-5 transcription is not simply activated to the max, but rather precisely kept

within a narrow range. Since simple network motifs, such as single positive or negative feedback

loops, may be insufficient to simultaneously satisfy multiple regulatory goals, more complex

networks may have evolved to serve such purpose. Understanding the regulatory goals of a

network may thus help us decipher design principles of complex biological networks.

The work in this thesis also highlights the emergent functions of complex networks. Many

genome-wide network inference studies have revealed highly complex "interactomes" at

essentially all levels of a living organism (Esposito et al., 2007). Understanding the complex

interactions among genes, proteins, and cells is crucial both to understanding the fundamental

principles of life, but also to develop ways to improve physiological function and battle disease.

To understand the structure-function relationship of biological networks, many researchers have

chosen to take the "modular" approach, namely to work with small sub-network, or motifs, that

constitutes building blocks of larger networks (Shen-Orr et al., 2002; Doyle and Csete, 2005;

Carlson et al., 2006; Davidson, 2010). The question then is whether larger networks are simply

the sum of small sub-networks or possess emergent functions not attainable in the sub-networks.

The work in Chapter 2 presents one such example where positive feedback and negative

feedback, two well-characterized network motifs, synergize to more efficiently reduce variability

in gene expression than negative feedback alone. There are likely more examples of this nature

in the complex endogenous regulatory networks within living organisms. Discovering and

dissecting endogenous regulatory networks may thus prove a fruitful avenue for generating new

insights into the structure-function relationship of complex networks.
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APPENDIX

Protocol of smFISH Optimized for Study in C. elegans

Introduction

In C. elegans, the expression pattern of a gene provides important clues to understanding its

biological function. To accurately depict endogenous transcriptional activity, a highly sensitive

method is required to measure transcript levels in the intact tissue across various developmental

stages. Conventional RNA in situ hybridization methods using hapten- (biotin or digoxygenin)

labeled RNA probes rely on antibody binding for visualization, and are thus only semi-

quantitative at best (Raap et al. 1995, Levsky et al. 2003). Additionally, hapten-labeled probes

are prone to diffuse localization (when conjugated with alkaline phosphatase), low sensitivity

(when conjugated with fluorescent molecules), and non-specific probe binding. Here, we

introduce a recently developed mRNA in situ hybridization method (Raj et al. 2008) that

circumvents the above difficulties to give single molecule resolution of transcript detection.

The single molecule fluorescent in situ hybridization (smFISH) method differs from

conventional approaches by using many short (about 20 base pairs long) oligonucleotide probes

to target different regions of the same mRNA transcript (Raj et al. 2008, Femino et al. 1998).

Each oligo is conjugated with only one fluorophore and thus faintly visible by itself. Binding of

multiple oligos to the same transcript yields a bright spot, indicative of a single mRNA transcript.

Since mis-bound probes are unlikely to co-localize, this method effectively reduces false-positive

signal from non-specific probe binding. The small oligo size allows the probes to efficiently

penetrate through target tissue, yielding robust detection of even lowly abundant transcripts.
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Subsequently, the total number of fluorescent spots within a single cell or region can be

unambiguously counted and compared across different developmental stages and genetic

backgrounds.

Given its many advantages, the smFISH method is a powerful tool to study transcriptional

regulation. Its high sensitivity allows accurate characterization of the spatio-temporal patterns of

endogenous gene expression. Its single-molecule resolution enables precise quantification of

gene expression levels. Such quantitative information can in turn be used to assess, for example:

1) tissue-specific correlations in gene expression, 2) similarity and difference in gene expression

across strains, 3) variability in gene expression, 4) tissue-specific signaling dynamics. To date,

smFISH has been successfully applied to study a variety of questions in C. elegans biology (Raj

et al. 2010, Harterink et al. 2011, Korzelius et al. 2011, Middelkoop et al. 2012, Saffer et al.

2011, Seidel et al. 2011, Topalidou et al. 2011). Here we provide the necessary technical details

to set up and perform smFISH, from sample preparation to data analysis.
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A MAB-5 immunostaining

Maloof et al. 1999
B mab-5 smFISH

Figure A-1. Comparison of immunohistochemistry and smFISH results detecting mab-5 expression in the

QL neuroblasts. A. (Adapted from Maloof et al. 1999) MAB-5 immunostaining of a wild-type LI larva.

MAB-5 expression is seen in the two QL daughters above V5. B. mab-5 mRNA detected by smFISH in

LI larva around the same age. Note the asymmetry in mab-5 mRNA abundance between the two QL

daughters.

Protocols

The following protocol covers the 5 major steps of smFISH: A. Probe design and synthesis;

B. Fixation of C. elegans worms and embryos; C. Hybridization; D. Image acquisition; E. Data

analysis. This protocol is largely adapted from the general smFISH protocol detailed in Raj and

Tyagi (2010), with notes and modifications specific to C. elegans. Unless otherwise noted, all

reagents listed can be made in bulk ahead of time and stored at room temperature (RT).
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A. Probe design and synthesis

1. Design.

smFISH probes are DNA oligonucleotide probes designed according to the follow criteria:

1. Probe length: 17-22 base pairs

2. Probe spacing: no less than 2 base pairs

3. Probe GC content: ideally around 45% to ensure uniform binding efficiency

4. Number of probes: ideally between 30 and 96 depending on target transcript

length. Typically 48 probes are used to ensure good signal quality, while as few

as 20 have yielded satisfactory signal (e.g. Figure A-I illustrates the result from

27 probes designed to target mab-5 mRNA). To increase effective target length,

part or all of the 3'UTR sequences can be combined with the cDNA sequence for

probe design.

A web-based probe design software developed by Raj et al. (2008) is available free of

charge at: http://www.biosearchtech.com/stellarisdesigner/. By supplying the target RNA

sequence and the above criteria, one obtains a list of probe sequences with optimized GC

contents. These sequences can then be directly submitted for probe synthesis.

2. Synthesis, coupling and purification.

Synthesis: Based on the designed oligonucleotide sequences, smFISH probes are generated

en masse using a 96-well DNA synthesizer. Biosearch Technologies (Novato, CA) offers

synthesizing service for custom-designed smFISH probes. The probes can be ordered in both

101



coupled and uncoupled forms. While ordering coupled probes minimizes the work involved

in probe preparation, obtaining uncoupled probes allows the flexibility to choose

fluorophores that are optimally compatible with the researcher's optical set-up and other

experimental needs. Furthermore, coupled probes are delivered as a mix, which precludes

the option of using subsets of the probe library to 1) selectively target different parts of the

transcript, or 2) perform negative controls using deletion mutants (see additional comment in

the following section and details of suggested controls in the Controls and Troubleshooting

section). In the following section, we further suggest a list of factors to consider when

deciding whether to pursue in-house coupling.

Given the small amount of probes needed for each hybridization experiment, synthesis can be

carried out at a small scale (Biosearch now delivers 5nmol of each probe per custom order.

This amount is typically sufficient for hundreds of experiments). When ordering uncoupled

probes, the oligonucleotide probes should be synthesized with a 3'amine group to allow

subsequent oligo-fluorophore conjugation. Additionally the oligos should be desalted and

resuspended in water as opposed to Tris EDTA (TE).

Coupling:

* Note: When deciding whether to perform in-house coupling or order readily coupled probes, we

suggest considering the following: 1) Is it clear whichfluorophore to choose? This could vary

depending on probe set and the optical setup. 2) Is it desirable to have the same probes coupled to

multiple fluorophores? This is of concern when performing multiplex assays among three or more

genes. 3) Is it necessary to split the probe sets to target different parts of a transcript? Pre-coupling

require mixing of all probes in a library, thus excluding the possibility of alternative probe

combinations. 4) Is in-house coupling feasible? Is there access to a nearby HPLC facility? 5) Does
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experimental schedule allow an additional 3-4 days ofprobe preparation? 6) Is budget a concern? A

single probe set can be coupled to multiple fluorophores (up to 3-4 coupling per probe set is possible),

avoiding the need to purchase multiple libraries.

Prior to coupling, one needs to decide on the desired type of fluorophore. The current

protocol uses succinimidyl ester derivatives to couple to the 3' end of the oligonucleotide

probes. Three types of commercially available fluorophores are commonly used: Cy5 (GE

Amersham), Alexa 594 (Molecular Probes, Invitrogen), and tetramethylrhodamine (TMR)

(Molecular Probes, Invitrogen). Biosearch also offers equivalent fluorophore (Quasar 670,

and CAL Fluor 610 and 590) for their couple probe sets. In general we have found that using

fluorophores with shorter emission wavelengths (such as Alexa 488) do not yield reliable

signal due to high cellular autofluorescence. Table A-I summarizes the strengths and

weaknesses of each of the fluorophores as observed in our hands.

Table A-1. Strengths and weaknesses of fluorophores commonly used in smFISH.

Peak Photostability Autofluorescence RFP GFP compatible

Excitation/Emission level compatible

Wavelength

Cy5 649/670 nm Low Low Yes Yes

Alexa 594 590/617 nm High Medium Affected Yes

TMR 564/570 nm High High No Yes

For multiplexing assays, we have obtained good results with combinations of all three dyes

(provided that each probe set works well when assayed on its own). We generally prefer to
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pair Cy5 with Alexa 594, as the two fluorophores tend to give better signal quality than TMR.

For initial testing, it is important to compare results from multiplex and single-fluorophore

assays to ensure consistency. Also keep an eye out for "suspiciously similar" spot patterns,

which is indicative of cross-talk between fluorescent channels.

Reagents for coupling:

DMSO (if coupling to TMR)

*0.1 M Sodium Bicarbonate (in RNase free water, pH 8.0)

*1 M Sodium Bicarbonate (in RNase free water, pH 8.0)

Ethanol (>95% pure)

3 M Sodium Acetate, pH 5.2

Fluorophore with succinimidyl ester group

* Note it is desirable to make sodium bicarbonate fresh, or check before use to make sure

the pH level is correct.

Day 1:

1. From the uncoupled probe stock, combine 1 nmol (e.g. 10 ul from a 100 pM stock) of

each probe into a single microcentrifuge tube.

2. Add 0.11 volumes 1 M sodium bicarbonate to give a final concentration of 0.1 M. If the

total volume at this stage is < 0.3 mL, add some 0.1 M sodium bicarbonate to bring total

volume to 0.3 mL.

3. Dissolve a small amount (roughly 0.2 mg) of dye into 50 pl of 0.1 M sodium bicarbonate.
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a. Note: TMR can be hard to dissolve in aqueous solution, so one must first dissolve

it in a small volume (<5 pl) of DMSO before adding 50 pl of 0.1 M sodium

bicarbonate.

4. Add the dissolved fluorophore to the oligos.

5. Cover the tube in foil to prevent photo-bleaching and let the reaction proceed overnight at

room temperature with gentle rocking.

Day 2:

6. In the morning, precipitate the oligos by adding 10% volume/volume of 3M sodium

acetate and then adding 2.5 volumes of 100% EtOH. Store at -70'C for at least 1 hour

(up to overnight).

7. Spin down the sample in a 4C microcentrifuge for at least 15 minutes at maximum speed

(~16K RCF).

8. After centrifugation, one should see a small colored pellet at the bottom of the tube.

Aspirate away the fluorescent supernatant (containing uncoupled dye molecules) as

completely as possible. If purification is not performed right away, the pellet is stable and

can be stored at -20'C.

Purification: The pellet obtained from the coupling steps contains a mixture of coupled and

uncoupled oligonucleotides. To separate the two species, we take advantage of the fact that

coupled probes experience a large increase in hydrophobicity compared to the uncoupled ones.

High-pressure liquid chromatography (HPLC) can thus be used to enrich for coupled probes.

Reagents and eciuipments for purification:
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0.1 M Triethylammonium acetate, pH 6.5, filtered and degassed (Buffer A)

Acetonitrile for HPLC (Buffer B)

HPLC with a dual wavelength detector to measure both DNA and fluorophore absorbtion

C18 Column for HPLC, 218TP104

Speedvac rated for acetonitrile

Day 2 (if continued immediately after coupling step 8):

1. Resuspend pellet in appropriate volume (0.1-0.5 mL nuclease free water, depending on

your HPLC)

2. Inject coupled probe into HPLC and run a program in which the percentage of buffer B

varies from 7% to 30% over the course of around 30 minutes with a flow rate of 1

mL/minute.

a. Note: Set the detector to monitor DNA absorption (260 nm) and the absorption of

the coupled fluorophore (e.g., 555 nm for TMR).

3. One will observe two broad peaks. The first contains uncoupled probes and will only

show a peak in the 260 nm channel. The second contains pure coupled probes and will

show peaks in both channels. The two peaks will typically be separated by a few minutes

of time or longer, with TMR having narrowly separated peaks and Cy5 having broadly

separated peaks. With a series of microcentrifuge tubes, collect the entire second peak as

soon as the signal begins rise and until it drops back to baseline.

Day 3:

4. Dry the purified probes in a speedvac (- 3-5 hours for 0.5 mL).
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a. Note: Be sure to prevent any light from hitting the probes during the drying

process to prevent photobleaching, especially for photolabile dyes such as Cy5.

5. Resuspend all tubes together in a total of 50-100 pl of TE, pH 8.0 (equivalent to roughly

0.1-1 pM). This is the concentrated probe stock.

6. (Optional) Dilute this probe 1:10, 1:20, 1:50 and 1:100 in TE to make working stocks for

testing probe concentration.

At this point, probe synthesis is complete. Probes can be stored in TE at -20'C for years.

B. Fixation of C. elegans worms and embryos

Reagents for fixation:

1. Fixation solution: 4% paraformaldehyde (PFA) in lx PBS

2. Bleaching solution for embryos (per 40 mL, store at 4'C):

40 mL distilled water

7.2 mL 5 N NaOH

4.5 mL 6% NaHOCi

3. M9 buffer (per IL):

5.8 g Na 2HPO4

3.0 g KH2PO4

0.5 g NaCl

1.0 g NH4 Cl

Dissolve in distilled water (dH 20) to 1 L final volume

Fixation protocol for worms (larvae and adult):
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1. Grow worms on plates seeded with OP50. Synchronize worms to the desired stage if

needed.

a. Note: The appropriate number of plates may vary depending on need, with the

minimum requirements that 1) there will be enough worms to form a visible pellet

in a microcentrifuge tube, 2) each plate is not too crowded.

2. Add 3-5 mL M9 buffer to the plate and swirl to release worms from surface, then transfer

worms to a 15 mL conical centrifuge tube.

a. Note: Distilled or deionized water may be used instead of M9 in this and

subsequent steps.

3. Spin down to form a pellet and aspirate the supernatant.

4. Wash and spin down with 3-5 mL M9 buffer to rinse away bacteria and other debris.

5. Resuspend in 1 mL fixation solution and transfer to microcentrifuge tube. Keep rotating

at room temperature for 45 min.

a. Note: Since autofluorescence levels increase with fixation time, incubation in

fixation solution should be kept short. This is especially important for older

worms where tissue autofluorescence is relatively strong.

6. Wash twice with 1 mL lx PBS.

7. Resuspend in 1 mL of 70% EtOH. Keep rotating for overnight (or longer) at 4'C. Store at

4'C for up to a month.

Fixation protocol for embryos:

1. Grow worms on OP50 plates till there are plenty of gravid hermaphrodites.

2. Wash worms off the plates with M9 into a 15 mL Falcon tube.
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a. Note: Distilled or deionized water may be used instead of M9 in this and

subsequent steps.

3. Spin down and resuspend in bleaching solution. Vortex or shake rigorously for 4-8

minutes until worms disappear and only embryos remain.

4. Spin down and aspirate. Then wash twice with M9 buffer.

5. Resuspend in 1 mL fixation solution and transfer to a microcentrifuge tube. Keep rotating

at room temperature for 15 minutes.

6. Vortex and then immediately submerge tube in liquid nitrogen for 1 minute to freeze

crack the eggshells.

7. Thaw in water at room temperature.

8. Once thawed, vortex and place on ice for 20 minutes.

9. Wash twice with 1 mL of lx PBS.

10. Resuspend in 1 mL of 70% EtOH and keep rotating for overnight or longer at 4'C.

Embryos can be hybridized up to a week following fixation.

C. Hybridization protocol

Reagents for hybridization:

1. Hybridization buffer (per 1OmL, store at -20'C freezer):

*1 g dextran sulfate

10 mg Escherichia coli tRNA

100 gl 200 mM vanadyl ribonucleoside complex (NEB)

40 p] 50 mg/mL RNase free BSA (Ambion)

**Formamide (deionized, Ambion)
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Add nuclease free (NF) water (Ambion) to 10 mL final volume

* Note: Dextran sulfate is viscous and hard to dissolve at room temperature. One solution

is to mix dextran sulfate with 4 mL NF water, then sonicate till no clumps are visible.

** Note: Determine the amount based on the desired formamide concentration, e.g. 1 mL

for 10% final concentration. Higher concentration yields higher probe binding stringency.

2. Wash buffer (per 50 mL):

Formamide (deionized, Ambion), use same concentration as determined for

hybridization buffer

5 mL 20x SSC (RNase free, Ambion)

Add NF water (Ambion) to 50 mL final volume

3. DAPI stain: Prepare working stock of 5 ng/mL in RNase free water, store in the

freezer.

4. 2x SSC: Prepare from 20x SSC (RNase free, Ambion) in RNase free water (Ambion).

5. Antifade buffer (to be made fresh)

1. Glox buffer (per 50 mL):

2 mL 10% glucose in NF water

250 [1 2M Tris-HCl, pH 8.0

5 mL 20x SSC (RNase free, Ambion)

2. Glycosidase stock: Dilute commercial Glox (Sigma) in 50 mM sodium acetate to

working stock of 3.7 mg/mL, adjust to pH 5.0. Aliquot to 100 pl units and store at

-20 0C.

3. Catalase (Sigma): store at 4'C.
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Prior to imaging, mix 1 pl each of the glycosidase stock and catalase to 100 g1 of

Glox buffer. Each 100 Rl antifade mix is enough for 1-2 hybridization samples.

Day 1:

1. Prepare the hybridization solution: to 100 pl of hybridization buffer, add 1 g1 of each

probe at the appropriate concentration, then vortex and centrifuge.

a. Note: For the initial test of probe concentration, one may perform four parallel

hybridizations with probes diluted at 1:10, 1:20, 1:50 and 1:100 in TE. In our

hands, 1:20 works well for Cy5 coupled probes and 1:50 appears sufficient for

Alexa594 coupled probes.

2. Centrifuge the fixed sample and aspirate away the ethanol.

3. Resuspend in 1 mL wash buffer that contains the same concentration of formamide as

the hybridization buffer. Let stand for 2-5 min.

4. Centrifuge sample and aspirate away the wash buffer.

5. Add the hybridization solution prepared in step 1. Incubate overnight at 30'C in the

dark.

a. Note: The modified protocol on the Biosearch website now recommends 4

hour incubation at 37'C. We plan to try out this modification and compare

carefully with our existing data sets. The result will be included in a future

edition of this protocol.

Day 2:

1. In the morning, add 1 mL wash buffer to the sample. Vortex, spin down and aspirate.

2. Resuspend in another lmL wash buffer and incubate at 30'C for 30 min.
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3. Spin down and aspirate. Resuspend in ImL wash buffer

4. Add 1.5 pl DAPI stain (5 ng/mL) for nuclear counterstaining. Vortex and incubate at

30'C for 30 min.

5. Spin down and aspirate the wash buffer. Resuspend in 2x SSC, vortex, spin down and

aspirate.

6. If imaging without glox antifade solution (possible for Alexa594 and TMR), resuspend in

a small amount (enough the cover the samples) of 2x SSC and proceed to imaging.

7. If imaging with the antifade solution, resuspend in a small amount of glox buffer and

proceed to imaging.

a. Note: While hybridized samples can be stored temporarily in 2x SSC at 4'C.

Prolonged storage increases the risk of signal degradation. It is thus advisable to

image immediately following hybridization.

* Note: The hybridization protocol posted by Biosearch

(http://www.biosearchtech.com/assets/bti custom stellaris celegans protocol.pdf) differs from ours

in the following: 1) omission of the blocking reagents (tRNA and BSA) from the hybridization

buffer; 2) hybridize at 37'C (instead of 30C) for 4 hours (instead of overnight). At the moment,

we have not tried or systematically compared their protocol with our results. We plan to do so

and will report our results in a future edition of this protocol.

D. Imaging

Microscopy equipment:

1. Microscope: Standard wide-field fluorescence microscope (e.g., Nikon TE2000 or Ti,

Zeiss Axiovert).

112



a. Note: Confocal microscopes, while excellent in spatial precision, use high

light intensity and cause rapid bleaching of smFISH signals. They are

especially problematic when taking multiple z sections and are thus not

recommended for smFISH imaging.

2. Light source: A strong light source is essential for spot detection. Mercury or metal-

halide lamp (e.g., ExFo Excite, Prior Lumen 200) are both good candidates. The

metal-halide lamps are generally brighter and thus ideally suited for far red dyes such

as Cy5.

a. Note: With a metal-halide lamp, the exposure time we use for smFISH signal

detection is generally around 1-2s, while only 100-200 ms is needed for GFP

and DAPI.

3. Filter sets: Three filters, excitation, dichroic, and emission filters, are needed for each

fluorescent channel. Choice of filters should be made based on the optical features of

the corresponding fluorophores used (see Table 2 for a list of the filters we use).

4. Camera: Standard cooled CCD camera optimized for low-light level imaging rather

than speed (preferably with 13 mm pixel size or less; e.g. CoolSNAP HQ from Pixis,

Princeton Instruments).

5. High numerical aperture (NA> 1.3) 1 00x DIC objective (be sure to check

transmission properties when using far red dyes such as Cy5 or Cy5.5). We have also

seen spots using an oil-immersion 60x objective, but the reduced spatial resolution

makes the spots somewhat more difficult to identify computationally.
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Table A-2. Examples of optical filter sets compatible with multiplex mRNA detection

Excitation Dichroic Emission Supplier

Cy5 HQ620/60x Q660LP HQ700/75m Chroma

Alexa 594 590DF10 610DRLP 620DF30 Omega

TMR 546DF10 555DRLP 580DF30 Omega

Software: Standard microscopy software capable of memorizing sample positions and

imaging through z optical stacks. We currently use MetaMorph (Molecular Devices), which

offers easily programmable user interface.

Imaging chamber: There are two purposes of the imaging chamber: 1. To affix the sample

in a small region and prevent drying; 2. To minimize the thickness of the sample by

flattening, thereby reducing out of focus light. To assemble the chamber:

1. Pipette 2-5 ptl of the sample in antifade solution onto a clean 8mm round cover glass

(Electron Microscopy Sciences, #1.5 thickness).

2. Gently tap a clean 22x22 mm square cover glass (VWR, #1 thickness) onto the drop

of sample solution. This will cause the round cover glass to quickly adhere to the

square glass.

a. Optional: Clean cover glasses before hand by rinsing with 70% EtOH and let

dry.

3. Immediately flip the square glass so that the round glass is on top. Let sit for half a

minute or so while covered in dark.
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4. While waiting, adhere a square Silicone Isolator (Grace Biolabs, 20 mm diameter x

0.5 depth) to a regular microscope slide.

5. Gently remove excess antifade solution from the rim of the round cover glass with

Kimwipe.

6. Adhere the square cover glass to the Silicone Isolator with the round cover glass

facing towards the microscope slide. Press down on the edges of the square glass to

create a tight seal. This constitutes the imaging chamber.

7. Affix the imaging chamber to the microscope stage. Make sure to position the

microscope slide correctly so that the imaging chamber faces the objective. Proceed

to locate individual worms or embryos.

What to expect: A successful hybridization and sample preparation should yield clear

fluorescent spots roughly 200-500 nm in size. These spots are so called "diffraction limited

spots" based on the fact that the size of an mRNA molecule (nm) is far below the optical

limit of the widefield microscope (pm). On a digitally acquired smFISH image, spot

intensities usually vary within 2 fold of one another (for the same gene detected in the same

fluorescent channel), with the exception of transcription centers in the nuclei (where large

amounts of nascent transcripts accumulate), which can be much brighter. Optimal smFISH

signal should be more than 1.5 times in intensity above the tissue background. When viewed

on an image, the spots should be distinct in shape (i.e. not blurred) and readily identifiable by

eye. Figure A-2 illustrates two smFISH experiments, one probing elt-2 (a transcription factor

involved in specifying the future intestine, Fukushige et al. 1998) in embryos (from Raj et al.

2010), the other staining three Wnt ligands expressed in the posterior body of the LI larvae

(from Harterink et al. 2011).
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A B

Figure A-2. Examples of smFISH staining from embryos and LI larvae. A. (Adapted from Raj et al. 2010)

Detection of elt-2 mRNA (cyan spots) in mixed stage embryos. Scale bar is 5 gm long. B. (Adapted from

Harterink et al. 2011) Detection of three Wnt ligands, cwn-1, egl-20 and lin-44, in the posterior body of

staged LI larvae. Scale bar is 10 pm long.

E. Data analysis

Successful smFISH experiments can simultaneously provide high quality information on the

location, abundance, and transcriptional states of multiple mRNA species. To extract this

wealth of information in an efficient and unbiased way, we recommend analyzing smFISH

data using custom written computer software. While the exact analysis procedure may vary

depending on experimental goals, we suggest the following analysis streamline (Fig. A-3)

and briefly outline its implementation.

SThreshold picking &
Segmntation Image sharpening [ spot detection

Spot counting Data output & storage

Figure A-3. Recommended steps to computationally analyze smFISH data.
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1. Image conversion: Common imaging softwares such as MetaMorph and NIH-image

save images in .tiff or .stk format. These files are not directly analyzable in computing

software such as MATLAB, and must be converted to a readable format.

a. Note: A MATLAB code that reads data from tiff files is available online at

MATLAB Central: http://www.mathworks.com/matlabcentral/fileexchange/10298

2. Image segmentation: Image segmentation is a useful step in localizing mRNA

expression to specific cell or tissue-types. Oftentimes, it is possible to take advantage of

DAPI staining (for demarcating the body axes and major tissue groups, i.e. body wall

muscles, ventral nerve cord, intestinal cells, etc.), GFP reporter systems, as well as

smFISH signals (by staining for genes previously known to be expressed in a given cell

or tissue) to accurately assign smFISH spots to its tissue of origin. Computational

software can facilitate this process by overlaying images from multiple channels (e.g.

Cy5, Alexa594, GFP and DAPI), followed by manual or automatic annotation of the

relevant spatial landmarks. These annotations can later be overlaid onto the smFISH

images to allow tissue-specific transcript quantification. Additional analysis, such as

measurement of tissue length or size, can also be performed computationally at this step.

If performing segmentation using computational software (e.g. MATLAB), the resulting

traces and annotations can be saved as a standalone data file and used for region-specific

spot counting (step 5) later.

3. Image sharpening: To facilitate subsequent automatic spot detection, it is useful to first

enhance the signal-to-noise contrast of the smFISH images. This can be done by

convolving each image file (i.e. a matrix consisting of individual pixel values) with two
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mathematical functions (kernels), a Gaussian followed by a Laplacian. In practice the two

functions can be convolved first to form a computational filter called the Laplacian of

Gaussian (LoG). As shown in Figure A-4, the effect of convolving the original image

with the LoG filter is twofold: a. the Gaussian filter smoothens the background to reduce

small speckles that could be confused with real spots; b. the Laplacian filter then

performs edge detection by amplifying the contrast between adjacent dim and bright

pixels. The width of the Gaussian filter should be picked to resemble the size of a typical

spot. Alternatively this can be done by trial and error (we recommend starting around 1.5)

by visually comparing the filtered and original images. The following is an example of

MATLAB code used for image sharpening:

H = -fspecial('log',15,1.2);

g = imfilter(im,H); %

A

% H is the LoG filter with a

standard deviation of 1.2

and width around 5

im is the converted smFISH image

Channel: Cy5 Cell #2

B

Figure A-4. Effects of LoG filtering on smFISH images. A. Raw image data staining lin-17 mRNA in an

LI larva (shown is a single image from a stack). B. The same image after processing by a LoG filter with

the above MATLAB commands. Note dramatic reduction in background and enhancement in spot signal.
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4. Spot detection and semi-automated threshold picking: Since smFISH signals are

significantly brighter than the background, individual spots are detected by identifying

regions in the image with pixel values higher than a pre-specified threshold. One way of

determining this threshold is to systematically screen threshold values in incremental

steps from the minimum to the maximum pixel intensities. For each threshold value

tested, the software identifies filled regions (or "connected objects") wherein all pixel

values are above threshold. The total number of filled regions is then summed up to yield

the total spot count corresponding to the given threshold.

After spot detection and counting has been carried out for all thresholds, a plot can be

generated showing total spot counts as a function of different threshold values. With high

quality imaging data, this curve is expected to start high and drop rapidly to reach a brief

plateau, before it finally approaches zero (Fig. A-5). The observed plateau corresponds to

all threshold values above the background auto-fluorescence and below the real signal

intensity. The total spot count is approximately constant in this range and corresponds

reliably to the number of actual smFISH spots. Seemingly convenient, automatic

detection of this plateau is sometimes difficult (since the size and flatness of this plateau

varies from image to image). Especially during initial testing of the software, we

recommend to manually pick the threshold, and plot the computationally detected spots

over the original image to ensure that no over- or under-counting has occurred.
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Figure A-5. Threshold picking and automatic detection of smFISH spots. A. Total spot counts as a

function of pixel intensity threshold. The correct threshold should be placed where the spot count is

insensitive to threshold value (where the "plateau" is). B. Spot detection when correct threshold (solid

vertical line in A) is chosen. Red circles indicate computationally identified spots for a single image from

a stack. Note out-of-focus spots are not counted. C. Spot detection when threshold is chosen too low

(dotted line in A). Note many out-of-focus spots and background speckles are mistakenly included as

spots.

5. Region-specific spot counting: Spot quantification within a specific cell or tissue can be

conveniently achieved by aligning the results from image segmentation and spot

detection. Computationally this can be done by generating a binary map for the region of

interest (ROI) and using this map to filter out detected spots that are outside the ROI.

MATLAB's Image Processing Toolbox provides many built-in functions that can greatly

facilitate the image analysis steps described here. A sample of such MATLAB based

software is available at the Raj lab website

http://railab.seas.upenn.edu/pdfs/rai nat meth 2008 software.zip. More details of using

MATLAB to perform image processing and single-molecule identification can be found

in a recent paper by Scott Rifkin (2011). Other programming platforms, e.g. Python and

Image J, also hold great promise in generating fast and accurate analysis software.
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Controls and troubleshooting

As the power of smFISH method lies in the accurate detection of single mRNA molecules, it

is important to perform proper controls for each new smFISH probe library generated. Here

we outline a number of control experiments that address common concerns regarding

smFISH results. Additionally, while the smFISH protocols described here worked robustly

for many C. elegans genes (including Wnt and Notch pathway genes, endoderm specification

genes, etc. in both worms and embryos), we did notice a number of technical factors that can

affect data quality. We thus provide a list of troubleshooting tips below to facilitate further

optimization of the protocols.

Recommended controls:

1. Does a single smFISH spot represent a single mRNA molecule?

Solution 1: To confirm single molecule resolution, one may randomly sample the peak

pixel intensities of individual smFISH molecules within a given series of images (a

process automatable by computer software). The spot intensities shall then be plotted on a

histogram. The resulting distribution is expected to be unimodal with one narrow peak

(this would not be the case if mRNA molecules frequently occur as groups of two or

more) (Vargas et al. 2005). Large mRNA aggregates in the nucleus or specialized

organelles (as in the case of transcription centers, P bodies and stress granules) are often

many fold brighter and can be easily excluded from analysis by pixel thresholding. To

control for the rare case where mRNA of the same species dimmerize (an example being
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the Drosophila bicoid, Wagner et al. 2004), one may proceed to perform quantitative

reverse-transcription PCR (qRT-PCR) as described below.

Solution 2: To independently check mRNA level, a control qRT-PCR experiment can be

performed on bulk collected C. elegans tissue. As it is currently difficult to enrich for

particular tissue or cell types in a bulk collection (with the exception of dissected gonads),

this approach would only apply to whole worm or embryo measurement. qRT-PCR

measurement from bulk collected tissue then needs to be normalized to by the estimated

total number of worms or embryos. The obtained average expression level per animal can

then be compared to average smFISH measurements, and the two are expected to be

largely consistent.

2. Are we robustly detecting all mRAA transcripts of a given species? (Positive control)

Solution 1: Separate the uncoupled probe library into two halves containing non-

overlapping sets of probes. Couple these two probe sets respectively with two different

fluorophores and hybridize both probe sets to the same sample. If the majority of mRNA

transcripts are reliably detected, most spots should appear double-labeled, and the overall

degree of co-localization should be high. We have consistently detected around 85% co-

localization, suggesting the majority of the mRNA transcripts are being detected by

smFISH. Additionally, it is recommended to partition the probe library in such a way

that allows probes with one fluorophore to interleave probes with the other fluorophore.

Compared with having the two sets of probes targeting two different regions of the

endogenous mRNA, this approach avoids difference in probe binding efficiency along

different parts of the mRNA. A potential weakness is that this approach is non-robust to
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mRNAs that are inaccessible by the smFISH protocol (e.g. mRNAs that are localized in

specialized organelles or embodied by protein complexes). The following approach

provides an independent and complementary assessment of total mRNA quantity.

Solution 2: To determine whether the number of transcripts detected by smFISH is

accurate, one may perform, in parallel, quantitative reverse-transcription PCR (qRT-PCR)

on a known number of synchronized worms. The total and average number of transcripts

should agree between the two approaches. However this approach may not work well

when transcript number within a specific tissue or region is of interest. qRT-PCR

measurement is also subject to imperfect worm synchronization and may yield average

counts that are lower or higher than the smFISH result (Vargas et al. 2005, Raj et al.

2008).

3. Are we detecting mRNA transcripts other than the species of interest? (Negative control)

Solution: If possible, obtain a mutant strain with either a large deletion in the coding

sequence. Design probes that specifically target the deleted region, and hybridize the

same probe set to both the wild-type strain and the mutant. While the probe should yield

detectable signal in wild-type worms, no spots should be detected for the mutant. If a

deletion allele is not available or the deletion is too short, consider using a strain

harboring nonsense mutation. Confirm first by RT-PCR that the mRNA is greatly

reduced compared to the wild-type (likely resulting from nonsense-mediated decay).

Then perform smFISH to confirm that similar reduction in transcripts is observed in the

mutant.
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General note: When designing probes, it is good practice to blast the probe library against

the C. elegans genome to ensure that majority of the targeted sequences are unique (esp.

important when multiple paralogs exist in the genome). It is also important to keep the

GC content of the probes around below 70% as GC rich probes are more prone to non-

specific binding.

4. How do we differentiate smFISH spots from auto-fluorescent speckles? (Negative control)

Solution 1: Auto-fluorescent speckles tend to show up in multiple fluorescent channels

while smFISH spots light up only in the channel determined by the coupled fluorophore.

Overlay images from different fluorescent channels to differentiate auto-fluorescence

from the real signal.

Solution 2: If auto-fluorescence is a strong concern, one may perform the hybridization

procedure without adding the coupled probes. In the unlikely case that many fluorescent

spots show up in the image, we know for sure that there is significant interfering signal

from auto-fluorescence.

5. Are there bleed-through between channels (in the case of multi-color smFISH)?

Solution: Bleed through between channels can happen when a signal in one channel is

extremely strong. This is the case with intra-nuclear transcription centers, densely-

packed transcripts (sometimes localized in organelles), and highly-over-expressed

transgenes. To check for bleed-through, one may check if the spots detected in different

channels (expected to represent two different transcript species) are highly co-localized.

Alternatively, one may perform single-color FISH to see if spots are detected outside the

expected channel. To avoid bleed-through choose channels that are as far apart in
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emission wavelength as possible and choose optical filters that separate well between the

channels (Table 2).

Troubleshooting tips:

1. Low signal intensity or no signal.

Whenever possible, use a previously tested probe set (coupled to the same fluorophore)

as positive control to make sure all equipments (light source, camera, software, etc.) are

working properly. For issues specific to the particular probe set, consider checking the

following: 1) Probe concentration. Test higher concentrations (e.g. start with one order

of magnitude higher) to see if the signal quality improves. Based on experience, we

recommend diluting in TE 1:20 for Cy5 coupled probes, 1:50 for Alexa, and 1:10 for

TMR, followed by 1:100 dilution in hybridization buffer. 2) Tissue penetration. Make

sure the sample has been incubated in EtOH for ample amount of time (e.g. 24 hours). 3)

Hybridization stringency. Formamide concentration of the hybridization buffer directly

controls binding efficiency. While 10% formamide generally works well for all C.

elegans stages, one may try decreasing the concentration to see if signal improves. One

should be cautious with this approach as low formamide concentration also ups the

chance of non-specific binding.

2. Highfluorescent background

Multiple causes are likely: 1) Unhealthy worms. Starvation and over-crowded culture

lead to high auto-fluorescence in the worm tissue. This is the most common cause of

high background and should be avoided by proper worm culture maintenance. 2) Over-

fixation. The second common cause and especially problematic for older worms. Keep
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fixation time under an hour and adjust fixation duration to troubleshoot. Also make sure

to thoroughly wash off the fixative with 1x PBS to terminate fixation. 3) High probe

concentration or insufficient washing. This can be checked by testing lower dilutions and

incubate longer during the two wash steps. 4) Low probe binding stringency. This could

be a result of either low formamide concentration or high probe GC content. In both cases,

probes bind non-specifically leading to increased background fluorescence. Unlike tissue

auto-fluorescence, this phenomenon should be specific to the channel of the fluorophore

whereas auto-fluorescence affects all channels. 5) Out-of-focus light. Real FISH signals

that are outside the focal plane appear as diffuse background fluorescence in the focal

plane. This problem is often dramatically improved by sucking away any excess fluid in

the imaging chamber and maximally flattening the sample.

3. Nonspecific signal (due to auto-fluorescence or bleed-through)

First make sure that the sample is collected from a clean, healthy batch of worms to

reduce overall background. Sometimes, signal in the Alexa594 channel can bleed into the

Cy5 channel if the two optical filters are not optimally separated in spectrum. Extremely

high signal intensity (often in the case of over-expressed transgenes) in one channel can

also broadly show up as "pseudo-spots" in multiple other channels. To check, test each

probe set in a separate hybridization to see if problem persists.

4. Irregular or diffuse spot morphology interfering with spot identification and counting

Successful smFISH experiment should yield spots circular in 2D and with sizes similar to

one another. However liquid between the sample and the objective can obscure the

expected optical properties of the spots. In such case, try to maximally flatten the sample
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to reduce sample thickness and out-of-focus light. Additionally, highly local spot density

(which occurs with highly expressed genes or transgenes) can lead to inevitable difficulty

in resolving individual spots. When processing through computational software, try to

identify local maxima in addition to "connected regions". This allows sub-diffraction

detection of the (in principal) exact location of the mRNA transcript and thereby

enhances the resolution of the smFISH signal.
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