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ABSTRACT

The ability to group stimuli into meaningful categories is a fundamental cognitive
process though little is known its neuronal basis. To address this issue, we trained monkeys to
perform a categorization task in which they classified visual stimuli into well defined categories
that were separated by a “category-boundary”. We recorded from neurons in the prefrontal
(PFC) and inferior temporal (ITC) cortices during task performance. This allowed the neuronal
representation of category membership and stimulus shape to be independently examined.

In the first experiment, monkeys were trained to classify the set of morphed stimuli into
two categories, “cats” and “dogs”. Recordings from the PFC of two monkeys revealed a large
population of categorically tuned neurons. Their activity made sharp distinctions between
categories, even for stimuli that were visually similar but from different classes. Likewise, these
neurons responded similarly to stimuli from the same category even if they were visually
dissimilar from one another.

In the second experiment, one of the monkeys used in the first experiment was retrained
to classify the same stimuli into three new categories. PFC recordings collected after the
monkeys were retrained revealed that the population of neurons reflected the three new
categories but not the previous (now irrelevant) two categories.

In the third experiment, we recorded from neurons in the ITC while a monkey performed
the two-category “cat” vs. “dog” task. There were several differences between ITC and PFC
neuronal properties. Firstly, a greater proportion of ITC neurons were only stimulus selective but
not category tuned. Secondly, while many PFC neurons displayed category tuning that persisted
into the memory delay, such tuning in the ITC was primarily observed during stimulus
presentation. Thirdly, whereas many PFC neurons reflected the monkeys’ decisions about
whether a stimulus indicated a behavioral response, most ITC neurons conveyed information
about the visual stimuli only, and not about the monkey’s task-related decisions.

In conclusion, our results suggest that neurons in the PFC and ITC can convey
information about the category of visual stimuli. The differences in neuronal responses between
the ITC and PFC support the hypothesis that the ITC plays an important role in object
recognition and visual learning while the PFC is more involved in cognitive functions related to
executive control.
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Title: Associate Professor of Neuroscience
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INTRODUCTION

As we interact with the world around us, the brain is faced with the challenge of making
sense of a continuous stream of sensory inputs. After constructing useful perceptions of the
physical features of our environment, the brain has to ascribe meaning to these percepts in order
to plan successful behavior. To make matters worse, many stimuli represent objects or situations
that require immediate attention such as an approaching predator or a friend’s call for help.
Hence, categorical decisions about the meaning of stimuli must be made quickly, reliably and in
the context of the current behavioral situation. Though parsing stimuli into meaningful categories
is a fundamental cognitive process, very little is known about its neuronal basis.

Categorization is not an ability limited to humans. In fact, categorical perception has
been demonstrated in a variety of species including: insects, frogs, birds and monkeys (Ehret,
1987). In its simplest form, perceptual categorization occurs when a continuous set of stimuli is
divided into two discrete subsets, separated by a sharp “category boundary”; stimuli from
different subsets would elicit different perceptual or behavioral responses while stimuli from the
same subset would evoke similar responses. For example, Wyttenbach et al., (1996) observed
that crickets are attracted to sounds with a frequency less than 16kHz but are repelled by
frequencies greater than 16kHz. A sharp “category boundary” was seen at 16kHz; the crickets
were attracted or repelled by stimuli that were slightly less or greater than 16kHz, respectively.
All crickets, regardless of their past experiences, will exhibit this behavior which suggests that
this categorical phenomenon has genetic rather than experience-dependent origins.

In more advanced animals, perceptual categories can be shaped by learning. We are not

born with knowledge of categories like “chair”, “fruit” and “vehicle”. Rather, the ability to



recognize these classes is acquired through experience. Furthermore, once we are familiar with a
perceptual category, we can correctly classify novel stimuli from that class based on their
physical features and similarity to other category members. At the other end of the spectrum are
conceptual categories usually attributed only to humans. Abstract categories such as “right” and
“wrong” are separated by “fuzzy” category boundaries which are not tied to specific stimuli but
rather, can be applied in many situations and contexts (Lakoff, 1987). Abstract categories are
shaped by learning. For example, one’s concept of “right” and “wrong” develops through one’s
personal experiences, education and culture.

Logical places to look for the neuronal mechanisms of category learning are brain areas
that are involved in object recognition and perceptual learning. Hence, the prefrontal (PFC) and
inferior temporal cortices (ITC) are likely candidates. Damage to the inferior temporal cortex in
both humans and monkeys causes profound deficits in visual discrimination, object recognition,
perceptual leaning (Kluver and Bucy, 1938, 1939; Blum et al., 1950; Mishkin, 1954; Mishkin
and Pribram, 1954; Mishkin, 1966) and even category-specific agnosias, disorders in which the
ability to recognize stimuli from a particular category (most notably for faces) is selectively
impaired (Damasio et al., 1982; De Renzi, 2000). In addition, neurons in the ITC respond to
complex visual stimuli (Gross, 1972; Desimone et al., 1984; Perret et al., 1992; Tanaka et al.,
1991; Kobatake and Tanaka 1994) and their activity can reflect stimulus associations acquired
though visual learning (Miyashita et al., 1998) . By contrast with the ITC, prefrontal cortex
damage does not typically cause deficits in visual discrimination or object recognition but
impairs more cognitive functions such as attention and working memory. PFC lesions or
reversible inactivations cause deficits in working memory, attention and response inhibition
(Mishkin, 1957; Gross and Weiskrantz, 1962; Mishkin et al., 1969; Goldman and Rosvold, 1970;

Goldman et al., 1971; Passingham, 1975; Mishkin and Manning, 1978; Funahashi et al., 1993;



Dias et al. 1996). Furthermore, the activity of prefrontal neurons during complex behavioral

paradigms often reflects the relevant information that must be kept “in mind” to successfully
solve the task at hand (Miller, 1999). The aim of the experiments described in this thesis is to
determine the respective roles of the PFC and ITC by recording the activity of single neurons

while monkeys perform a visual categorization task.

The dorsal and ventral visual streams

The results of anatomical, neuropsychological and neurophysiological studies over the
past several decades have led to the prevailing view that different types of visual information are
processed in parallel by two cortical streams (Felleman and Van Essen, 1991). A “dorsal stream”
projects from cortical layers 4Ca and 4p of the primary visual cortex through the middle
temporal (MT) and middle superior temporal (MST) areas and into the posterior parietal cortex
(LIP, VIP and 7a). A “ventral stream” proceeds from the 4Cp layer of V1 onwards to V4 and
visual areas in the posterior and anterior inferior temporal cortex. Damage to structures in the
dorsal pathway, also referred to as the “where” stream, causes pronounced perceptual deficits in
the spatial, motion and high-frequency flicker domains. However, damage to the dorsal pathway
does not markedly affect the perception of color or form nor does it cause impairments of fine
visual acuity. By contrast to the dorsal stream, damage to the ventral “what” stream impairs
visual acuity, form and color vision but spares spatial and motion perception (Maunsell, 1992).
The results of neuronal recordings have, for the most part, supported the dissociation of function
between the two streams. Dorsal stream neurons show tuning to linear motion in area MT, radial
and optic flow motion in MST and spatial location in the posterior parietal lobe (Colby and

Goldberg, 1999). Ventral stream recordings reveal selectivity to increasingly complex visual



features; optimal stimuli range from simple geometric shapes in V4 and posterior IT to complex
shapes such as faces in anterior IT (Tanaka, 1992; Logothetis and Sheinberg, 1996).

Though the concept of two independent parallel streams for visual processing is a simple
and attractive model, the dissociation between spatial and form processing in the dorsal and
ventral streams does not fully describe their importance for visual perception and visually guided
behavior. Lateral connections between areas in the dorsal and ventral streams suggest that their
processing of visual information may not be entirely independent of one-another. In fact, this
hypothesis has been supported by neuronal recordings in the parietal cortex that revealed a
population of neurons that carried information about stimulus shape (Sereno and Maunsell,
1998). Likewise, theoretical studies of inferior temporal neurons’ receptive fields have suggested
that, though they do not individually carry fine spatial information, detailed information about
objects’ spatial locations could be extracted from a population of neurons that, individually,
show only modest spatial tuning (as is the case for most IT neurons) (Logothetis et al., 1995). In
addition to its importance for spatial vision, the parietal cortex seems to be critically involved in
planning motor actions (Andersen, 1989). These shortcomings of the form vs. space explanations
of the visual streams have provoked re-evaluation of the data resulting in new models of the
visuomotor system. As such, Goodale and Milner (1992) have proposed that, instead of form and
space, the ventral and dorsal streams may in fact underlie “vision for perception” and “vision for
action” respectively.

The prefrontal cortex is directly interconnected with both dorsal and ventral stream
areas. The dorsolateral prefrontal cortex (area 46) receives direct projections from the parietal
cortex (Barbas and Mesulam, 1981) while the ventrolateral prefrontal cortex (areas 45 and 12)
receives inputs from the inferior temporal cortex (Webster et al., 1992). This pattern of

connectivity suggested to some that the separate representations of form and space in the ventral



and dorsal visual system were mirrored in the ventral and dorsal prefrontal cortex as well. In fact,
suggestive evidence for such a dissociation resulted both from neuropsychological studies and
neuronal recordings that pointed towards such an organization (Funahashi et al., 1993;Wilson et
al., 1993). However, it was subsequently shown that the majority of neurons in the dorsal and
ventral prefrontal cortex were selective for both stimulus shape and location (Rao et al., 1997;
Rainer et al., 1998) when monkeys were required to use both spatial and form information to
solve a task. These results suggest that the function of intrinsic connections within the prefrontal
cortex (Barbas and Pandya, 1989) may serve to bring together disparate types of information

when such integration is required by the cognitive demands of a behavioral task (Miller, 1999).

The ventral stream and object recognition

The earliest evidence that temporal lobe structures are important for visual recognition
came from the work of Brown and Schafer in the late nineteenth century and Kluver and Bucy in
the 1930s. They found that large bilateral lesions of the temporal lobes of monkeys (including
both cortical and subcortical structures such as the amygdala and hippocampus) produced a
“psychic blindness” or visual “agnosia” as well as the loss of emotional responses. Monkeys
were able to see and react to stimuli around them though they showed little evidence of
recognizing their meaning. Blum, Chow and Pribram in the late 1940s and early 1950s found that
the visual and emotional deficits of the Kluver-Bucy syndrome could be fractionated by
restricted lesions to the temporal cortex and medial temporal structures, respectively, suggesting
that the inferior cortical regions of the temporal lobe were important for visual recognition while
medial temporal structures such as the amygdala and hippocampus were more involved in
emotional processing (Gross, 1998). It was subsequently discovered by Iwai and Mishkin (1969)

that the inferior temporal cortex could be further subdivided into the posterior (PIT or TEO) and
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anterior regions (AIT or TE); posterior lesions caused deficits that were more perceptual in
nature while damage to anterior IT caused more mnemonic deficits such as visual agnosia.

Electrophysiological recordings have further supported the concept of a hierarchy of
increasingly complex visual functions throughout the ventral stream. Extrastriate area V4, in the
prelunate gyrus, receives direct projections from V1 and V2 and is the primary source of visual
input to the inferior temporal cortex. Neurons in V4 have larger receptive fields (~3°) than those
in V1 and V2 (< 1°) (Desimone and Ungerleider, 1989) and are preferentially activated by
stimuli that are much more complex than the oriented bars that elicit maximal responses from V1
and V2 (Hubel and Wiesel, 1977). Kobatake and Tanaka (1994) found V4 neurons that
responded preferentially to complex geometric shapes compared to simple oriented bars and
gratings. Pasupathy and Connor (1999) found robust tuning of V4 neurons to contour features,
and Gallant et al., (1993, 1996) demonstrated V4 selectivity to curvilinear gratings.

Recordings from the inferior temporal cortex were first conducted by Gross and
colleagues in the early 1970s (Gross, 1973). They found that, unlike neurons in the striate and
extrastriate cortices, receptive fields of TE neurons were very large (6° PIT, 25° AIT) and usually
included the fovea. Furthermore, robust neuronal activity was frequently elicited by complex
shapes such as faces, brushes and hands and was often invariant to changes in stimulus size,
orientation and position. Careful studies by Tanaka and colleagues (Tanaka, 1996) set out to
determine the critical stimulus features that were necessary to evoke a neuronal response from IT
neurons. Once a stimulus was found that elicited a strong response from a TE neuron, that
stimulus was systematically simplified in search of simpler geometric figures that would still
elicit strong neuronal responses. The typical simplified figures that elicited a maximal neuronal
response were often complex in shape and were not easily described by a linear combination of

the responses to their geometric components. This suggests that the generation of such complex
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stimulus selectivity is likely a more complicated process than that postulated for the
transformation of V1 orientation selectivity into direction or motion selectivity. Indeed, the
problem of understanding the mechanisms through which complex shape tuning arises remains as
one of the fundamental challenges facing visual neuroscience.

More recent studies have shown that, in addition to the representation of complex stimuli
such as faces (Perrett et al., 1992), neurons in anterior IT are involved in visual short term
memory (Miller and Desimone, 1994), visual recognition and perceptual awareness (Sheinberg
and Logothetis, 1997) and the process of identification learmning (described later in this chapter).
Hence, there is a fundamental agreement between the results of neuropsychological and neuronal
recordings, implying that the ventral stream brain areas are important for a wide range of visual
behaviors from simple discrimination and recognition in V4 and PIT to perceptual learning and

mnemonic representations in AIT.

The prefrontal cortex: working memory and executive control of behavior

The prefrontal cortex of the rhesus monkey is, phylogenetically, the newest addition to
the mammalian neocortex and is thought to be critical for executive cognitive functions such as
planning, reasoning and problem solving. Moving up the mammalian evolutionary hierarchy, one
notices that the PFC has expanded at an exaggerated pace as compared to the rest of the
neocortex (see figure 1), reaching its maximum relative size in humans where it accounts for
almost one third of the entire cortical area. This observation alone suggests that the functions of
the PFC may underlie the enhanced cognitive abilities that so dramatically differentiate humans

from other mammals (Fuster, 1995).
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Raesus monkey

More concrete evidence in support of the PFC’s role in higher cognitive functions comes
from studies of human and animal subjects with frontal lobe damage. One of the earliest, and
most famous cases of a patient with damage to the frontal lobes is that of Phineas Gage in the
mid nineteenth century, a foreman for a railroad construction company in Vermont. During a
construction accident, the detonation of an explosive charge propelled a pointed iron rod through
his jaw and destroyed much of his orbital and medial prefrontal cortices before exiting though
the top of his skull. Amazingly, Gage not only survived the accident — he never lost
consciousness. He recovered and went on to live for more than a decade after the accident,
though he did so with a host of cognitive deficits and personality changes. Having been a
respectable and responsible member of society before the accident, he spent the years following
his accident as an impulsive, childish, profane man who could not hold a job or successfully plan

his actions (Fuster, 1997).
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Patterns of deficits similar to Gage’s have been observed in a number of studies of
frontal lobe damage in both monkeys and humans. Thus, the prefrontal cortex is thought to
underlie the supra-sensory cognitive functions that control goal-directed voluntary behavior:
attention, inhibition of inappropriate actions, short-term “working” memory and the ability to
flexibly modify familiar stimulus-action associations, to name a few. Subjects with PFC damage
show profound impairments on behavioral tasks that rely on these cognitive functions. For
example, monkeys with prefrontal cortex damage can easily learn that picture ‘A’ means ‘look
rightwards to receive a reward’ while picture ‘B’ means ‘look leftwards to receive a reward.’
After leaming this scheme, if the stimulus-reward contingencies are reversed such that ‘A’ now
means ‘look left” and ‘B’ means ‘look right,” normal monkeys can quickly learn the new
associations while PFC damaged monkeys will continue to perseverate on the old rules as if they
had become hard wired to do so (Mishkin et al., 1969; Fuster, 1997).

Insights into the neuronal mechanisms underlying cognitive functions have been
achieved by recording the activity of single neurons in the prefrontal cortices of awake monkeys
while they performed complex behavioral tasks. During working memory tasks in which a
stimulus and response are separated by a delay, many PFC neurons often exhibit stimulus-
selective sustained activity during the delay period, often referred to as “delay activity” (Fuster
and Alexander, 1971; Fuster et al., 1982). Working memory is much more than just passive
maintenance of a sample stimulus; the term “working” memory implies that some active process
or transformation is applied to that memory trace. Accordingly, PFC neurons can represent much
more than retrospective information about passing stimuli: it has also been demonstrated that
PFC neurons’ activity can be modulated by shifts in attention (Rainer et al., 1998) and can carry
information about an upcoming stimulus or response (Asaad et al., 1998; Rainer et al., 1998;

Fuster et al., 2000), the currently relevant task or rule (White and Wise, 1999; Asaad et al., 2000;
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Wallis et al., 2001), or the motivational state of the monkey (Hasagawa et al., 2000). The strong
correspondence between the cognitive impairments caused by PFC damage and the kinds of
information encoded by its neurons provides strong evidence that the PFC does indeed play a
critical role in the executive control of behavior and is a likely candidate for involvement in

visual categorization and categorical learning.

Neuronal mechanisms for perceptual learning

Visual categorization and identification are closely related perceptual abilities. Often,
determining the category of a stimulus relies on first recognizing its identity. Conversely, a
prevailing view of many cognitive scientists is that the cognitive mechanisms for categorization
are separate from those of the “simpler” process of visual identification (Logothetis and
Sheinberg, 1996). Thus, it is unclear whether categorization and other types of perceptual
learning such as identification or discrimination are served by the same or different neuronal
mechanisms. Though the neuronal processes that underlie visual identification have not yet been
fully elucidated, the results of several studies provide a useful context for which to interpret our
own findings.

Most previous studies have explored one of two types of perceptual learning: visual
identification or visual discrimination learning. In visual identification tasks, subjects are
required to search for or identify familiar objects despite stimulus transformations such as
rotation, illumination or occlusion. In visual discrimination learning, subjects are extensively
trained to make fine perceptual judgments between visually similar stimuli in tasks such as
orientation discrimination. Discrimination and identification tasks share a common important

feature: task performance improves markedly with practice and experience. The primary goal of
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these studies was to illuminate the changes in neuronal activity that formed the basis for these
perceptual improvements.

A study by Logothetis et al., (1995) trained monkeys to recognize familiar 3D computer
generated wireframe objects from multiple viewpoints. Once the monkeys were able to correctly
identify objects from all viewpoints around the vertical axis, recordings from the inferior .
temporal cortex revealed a population of neurons that had become tuned to specific views of the
stimuli. Furthermore, no neurons were encountered that were tuned to views of objects that the
monkey did not recognize. In addition, a small number of neurons showed a high degree of
rotational invariance in that they fired selectively for a specific object and their firing rate was
consistent across all viewpoints. The authors concluded that the view and object-tuning observed
in IT arose as a result of experience and suggests that the brain may compute the 3D structure of
familiar objects by interpolating across neurons tuned to particular static views. View invariant
object-tuned neurons carry much more abstract information about stimuli than most other
neurons in the visual system. Their response does not carry much information about the actual
stimulus that is in view, as visually dissimilar views of the same object would elicit the same
response. Rather, they seem better suited to identifying the familiar object in view despite its
exact physical features.

Rainer and Miller (2000) explored the role of the prefrontal cortex in object
identification by training monkeys to perform a delayed match-to-sample task using both familiar
and novel sample stimuli. Varying degrees of random visual noise was parametrically added to
the sample stimuli, making the monkeys’ recognition task more difficult. Psychophysical analysis
of the monkeys’ behavior showed that recognition performance decreased more sharply for the
novel than familiar stimuli as they were degraded. Degradation of the novel and familiar stimuli

had a differential effect on their neuronal representation which was consistent with the monkeys’
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behavioral responses. There was a progressive waning of neuronal selectivity as the stimuli were
degraded that agreed well with the drop in behavioral performance. Furthermore, novel stimuli
activated a greater proportion of neurons than familiar stimuli though tuning to familiar stimuli
was sharper and less affected by degradation. These results suggest that, while novel stimuli may
selectively activate many neurons to some degree, familiar stimuli are encoded by fewer neurons
that are more robustly tuned. It is possible that though the process of visual learning, these
neurons can carry reliable information about the identity of familiar stimuli despite reductions of
stimulus quality or stimulus transformations such as rotation or occlusion.

A recent study has shown that the effects of perceptual learning are not limited to
“higher” visual and cognitive brain areas such as the inferior temporal cortex and the prefrontal
cortex. Schoups et al., (2001) have demonstrated that neurons in primary visual cortex show a
robust enhancement of orieﬁtation selectivity after monkeys are extensively trained on an
orientation discrimination task. After viewing an oriented grating (always in the same retinotopic
location), monkeys had to indicate, with an eye movement to one target or another, whether its
orientation was greater-than or less-than a reference orientation. Their results demonstrated that
V1 neurons with receptive fields in the region where the trained stimuli were presented showed
sharper orientation tuning that did those neurons with receptive fields in other parts of the visual
field suggesting that, somewhat surprisingly, even the primary sensory cortical areas are involved
in visual learning.

These and other studies have provided substantial evidence that neurons throughout the
striate, extrastriate and prefrontal cortices show changes in their tuning properties concomitant
with improvements in perceptual performance. The results of the Logothetis et al., (1995) study
of object recognition as well as the theoretical model of object recognition and categorization of

Riensenhuber and Poggio (2000), illustrated below, are of particular relevance to our studies of
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categorical learning. The invariance to size and rotation-in-depth observed for some IT neurons
suggests that learning to perform an identification task can cause IT neurons to respond similarly
to visually dissimilar views of the same object and agrees well with the predictions of the
Riesenhuber and Poggio model. Their model also suggests that categorization and identification
may share some of the same computational mechanisms that allow for invariance to object
transformation such as changes in orientation, size or illumination. A similar neuronal process
could then, in principal, serve visual categorization since visually dissimilar stimuli can belong to
the same category. Therefore, category learning could produce category-tuned neurons that
would be selective for a specific category but would not make distinctions between visually

dissimilar members of the same class.
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Previous studies of the neuronal representation of categories

In the only published study that investigated the neuronal representation of categories in
the monkey, Vogels (1999) trained monkeys to perform two visual categorization tasks and
recorded from neurons in the inferior temporal cortex. In this study, monkeys were trained to
perform a tree vs. non-tree and a fish vs. non-fish task. Vogels reported finding a subset of IT
neurons that were ‘category-specific’ in that they responded to many of the stimuli from the
trained class (photographs of trees or fish) but not to the distracter objects (photos of household
objects or scenes containing neither trees nor fish). The responses of these single neurons were
not entirely invariant in their response to all members of a category, however. Even the best
example of a neuron that preferred stimuli from the category ‘tree’ responded more strongly to
several non-‘tree’ distrator stimuli than to many ‘tree’ stimuli. In addition, the firing rates of that
neuron varied over a six-fold range depending on which stimulus from the category (trees) was
presented.

The results from this study could be explained by the physical similarity of the category
members as compared to the distracters. The trees used in this experiment were visually similar
and had many features in common (i.e. branches, same orientation, etc...) and more dissimilar
from the set of non-tree distracters. The same was true for the set of fish images. Therefore, the
apparent category tuning of these IT neurons could be explained by their being tuned to stimulus
features that were present in many of the tree stimuli but not the distracters. Hence, the degree to
which categorical learning influenced neuronal tuning in this study is not easy to determine.

A recent study by Kreiman et al., (2000) investigated the responses of human medial
temporal lobe neurons to images from nine categories. Epileptic patients were implanted with
electrodes for the purpose of localizing seizure foci. Neuronal recordings were obtained while

they performed a face detection task on images from each of the nine categories. It was
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determined that the majority of visually responsive neurons were category-specific in that they
responded more similarly to stimuli from one category than to those from different categories.
This study suffered from a similar problem as the Vogels study. The visual similarity of the
photographic stimuli from each of the categories was not controlled in a careful way. Therefore,
it is likely that stimuli from the same class (cars) would be visually more similar to members of
their class (cars) than to members of other classes (i.e. trees or faces). Again, it is hard to
determine whether neurons that responded selectively for one category reflected subjects’
category recognition or merely reflected the physical similarity of stimuli within each category

and larger differences in stimulus features between categories.

The purpose of experiments reported here

The experiments presented in this thesis were designed to determine the role of PFC and
ITC neurons in representing visual categories and, more generally, to better understand their
respective roles underlying visually guided behavior. In contrast to previous studies of
categorization, our monkeys were trained to categorize computer generated stimuli for which the
visual similarity of stimuli within a category and between-categories was parametrically
controlled and quantified. By so doing, we ensured that any signals related to the category of
stimuli were indeed a product of learning and not due to inherent properties of the stimulus set.
Recordings from the PFC revealed many neurons that were categorically tuned: their activity was
similar for members of the same category but made sharp distinctions between stimuli from
different classes.

In the second experiment, we tested the hypothesis that the apparent category tuning of
PFC neurons was a result of experience. We did so by training one of the monkeys from the first

experiment to “unlearn” the old categories and to reclassify the same stimuli into three new
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categories. Following retraining, recordings from the PFC revealed that the neuronal tuning
properties had changed: the (now irrelevant) two categories were no longer represented. Rather,
it seemed that training the monkey to lean the three new categories had caused them to be
selectively represented. Hence, we established that categorical tuning in the PFC was a product
of learning.

Past studies have established that the PFC receives direct inputs from the ITC (Webster
et al., 1994). Therefore, it is possible that the observed category tuning in the PFC could have
been due to categorical inputs from the ITC. Alternatively, the ITC may have conveyed
information only about stimulus shape to the PFC, which could then have generated categorical
representations from these inputs. In an attempt to distinguish between these possibilities, we
conducted ITC recordings in one monkey using the same behavioral paradigm. Our results from
this study demonstrate that many ITC neurons did reflect the category of visual stimuli and that
the PFC and ITC likely played different roles in solving the categorization task; the ITC seemed
primarily involved in rapid visual analysis while PFC responses appeared more suited for using

that highly processed visual information to guide behavior.
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ABSTRACT

The ability to group stimuli into meaningful categories is a fundamental cognitive
process. To explore its neural basis, we trained monkeys to categorize computer-generated
stimuli as "cats" and "dogs." A morphing system was used to systematically vary stimulus shape
and precisely define the category boundary. Neural activity in the lateral prefrontal cortex
reflected the category of visual stimuli even when a monkey was retrained with the stimuli

assigned to new categories.
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Categorization refers to the ability to react similarly to stimuli when they are physically distinct
and vice-versa (1). We consider an apple and a billiard ball to be different even though they are
similar in shape and sometimes color. Categorization is fundamental; our raw perceptions would
be useless without our classification of items as furniture or food. While a great deal is known
about the neural analysis of visual features, little is known about the neural basis of the

categorical information that gives them meaning.

In advanced animals, most categories are learned. Monkeys can learn to categorize stimuli as
animal or non-animal (2), food or non-food (3), tree or non-tree, fish or non-fish (4), and by
ordinal number (5). The neural correlate of such perceptual categories might be found in brain
areas that process visual form. The inferior temporal (IT) and prefrontal (PF) cortices are likely
candidates; their neurons are sensitive to form (6 7 8 9) and they are important for a wide range

of visual behaviors (10 11 12).

The hallmark of perceptual categorization is a sharp “boundary” (13). That is, stimuli from
different categories that are similar in appearance (e.g., apple/billiard ball) are treated as different
while distinct stimuli within the same category (e.g., apple/banana) are treated alike.

Presumably, there are neurons that also represent such sharp distinctions. This is difficult to
assess with a small subset of a large, amorphous category (e.g., food, human, etc). Because the
category boundary is unknown, it is unclear whether neural activity reflects category membership

or physical similarity.

We employed a 3D morphing system to generate stimuli that spanned two categories, “cats” and

“dogs”, by using three species of cats and three breeds of dogs as prototypes (14 15 16). The
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morphed images were linear combinations of all possible arrangements between them (Fig. 1).
By blending different amounts of “cat” and “dog” we could continuously vary shape and
precisely define the category boundary (17). Thus, stimuli that were close to but on opposite
sides of the boundary could be similar, while stimuli that belong to the same category could be

dissimilar (e.g. the “cheetah” and “housecat”) (18).

Two monkeys performed a delayed match-to-category task (DMC, Fig. 2a) that required judging
whether a sample and test stimulus were from the same category (19). Fig. 2b shows the
monkeys’ behavior. Performance was high (about 90% correct), even when the samples were
close to the category boundary; the monkeys classified dog-like cats (60:40 cat:dog) correctly

about 90% of the time, and misclassified them as dogs only 10% of the time, and vice-versa.

We recorded from 395 neurons from the lateral prefrontal cortices of two monkeys (20)(fig. 3a).
The majority of neurons were activated during the sample and/or delay interval (253/395, or
64%) (21). They often reflected the sample’s category. Nearly one third of responsive neurons
(82/253) were category-selective in that they exhibited an overall difference in activity during the
sample and/or the delay interval to cats versus dogs. Similar numbers preferred cats (sample

interval: 35/65, delay interval: 21/44) as dogs (sample: 30/65, delay: 23/44).

Fig. 3b shows a single neuron. It exhibited greater activity to dogs than cats and responded
similarly to samples from the same category regardless of their degree of dogness or catness. Its
activity was different to stimuli near the category boundary, the cat-like dogs (60:40 dog:cat)
versus the dog-like cats (60:40 cat:dog) (22), but there was no difference in activity between

these stimuli and their respective prototypes (the 100% cat or dog) (23). The inset in fig. 3b
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shows its activity to each of the 54 samples. It exhibited overall greater activity to dogs than cats
but small differences within categories. Just a few stimuli elicited activity that was similar to
that from the other category. These stimuli were not consistent across different neurons,
however. Across the population of neurons, category activity appeared at the start of neural

responses to the sample, about 100 msec after sample onset (24).

We examined all stimulus-selective neurons, irrespective of whether or not they were category-
selective per se (25). For each neuron, we computed the difference in activity between pairs of
samples at different positions along each between-category morph line (fig. 1a). In fig. 4a,b,
each neuron’s average difference to pairs of samples from the same category (within-category
difference, WCD) is plotted against its difference to samples from different categories (between-
category difference, BCD). If neurons were not sensitive to categories, these measures should be
similar (i.e., BCD/WCD ratios should equal 1 and cluster around the diagonal). Instead, the
BCD values are significantly higher than WCD values indicating greater activity differences to

samples from different categories, especially during the delay (26).

Fig. 4c,d illustrates the average activity of all stimulus-selective neurons at different morph
levels (27). There was a significant difference in activity between the categories (28), but
activity was similar at the different morph levels within each category (29), indicating greater
sensitivity to stimulus category than identity. In fact, few category-selective neurons conveyed
significant identity information (sample interval: 20/65, or 31%, delay interval: 10/44 or
23%)(30). Also, PF neural responses to the test stimulus seemed to reflect category evaluation.

Many PF neurons showed enhanced or suppressed activity when the test stimulus matched the
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category of the sample (112/395, or 28%)(31). Similar effects were reported for identity matches

in the PF and inferior temporal cortex (32).

As our monkeys had no experience with cats or dogs prior to training, it seemed likely that the
categories were learned. We thus retrained one monkey on the DMC task after defining two new
category boundaries that were orthogonal to the original boundary (Fig. 1a). This created three
new classes, each containing morphs centered around one cat prototype and one dog prototype
(e.g., the cheetah and the “doberman”). Following training, the monkey was able to perform the
new 3-category DMC task at >85% correct. We then recorded from 103 PF neurons from the
same depths and locations in the PF cortex and using the same samples as the original 2-category

task.

Neural responsiveness (58% or 60/103)(33) and stimulus-selectivity (35%, or 21/60)(34) during
the 3-category task was similar to that during the 2-category task (64%, or 253/395 and 28%, or
73/253, respectively), but the original categories were no longer reflected in activity (35).
Instead, the three new categories were evident in delay activity (36). As during the 2-category
task, category information was stronger during the delay (37). This may be because it is relevant
for the judgment after the delay. “Prospective activity” is stronger nearer the relevant event (38
39) and appears earlier within a trial as task proficiency increases (40). The monkey was not as

proficient at the 3-category task and its reaction times were significantly longer (41).

Categorization of sensory inputs is the nexus between perception and cognition; thoughts and

behaviors depend on knowledge of the types of things around us. The sharp transition in neural

activity we observed is consistent with a “classical,” perceptual category boundary. More
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conceptual categories can have “fuzzy” boundaries and are unlikely to exhibit such properties
(42). Perceptual categorization relies on extraction of the combinations of features defining a
category. They were not explicitly instructed, were acquired by training, and were necessarily
multivariate abstractions; the categories differed by more than a few simple features. PF activity
could have reflected, and/or resulted in, a shifting of attention to those features (43). These
results fit well with studies suggesting that PF neural circuitry is malleable. Experience has been
shown to induce and modify the sensitivity of PF neurons to specific stimuli (44 45), and PF

activity reflects learned associations and rules (40 46 47).

Of course, the PF cortex is not likely to be the only brain area involved in categorization. The PF
cortex is interconnected with temporal lobe structures important for long-term memory (48),
including the inferior temporal cortex whose neurons have stimulus specificities that could
contribute to categorization (49 50). Interactions between the PF and IT cortices underlie the
storage and/or recall of visual memories and associations (51 52 53), but not necessarily visual
short-term memory (54). The storage and recall of categories may also require such

collaboration.
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Figure Legends

Fig, 1 The stimuli. A. Monkeys leamed to categorize randomly generated “morphs” from the vast
number of possible blends of six prototypes. For neurophysiological recording, 54 sample
stimuli were constructed along the 15 morph lines illustrated here. The placement of the

prototypes on this figure does not reflect their similarity. B. Morphs along the C1-D1 line.

Fig. 2 Task design and behavior. A. A sample was followed by a delay and a test stimulus. If the
sample and test stimulus were the same category (a match), monkeys were required to release a
lever before the test disappeared. If they were not, there was another delay followed by a match.
Equal numbers of match and non-match trials were randomly interleaved. B. Average
performance of both monkeys. Red bars indicate the percent of samples classified as “cat” and

blue bars the percent classified as “dog”.

Fig. 3 Recording locations and single neuron example. A. Recording locations in both monkeys.
A-anterior, P-Posterior, D-dorsal, V-ventral. There was no obvious topography to task-related
neurons. B. The average activity of a single neuron to stimuli at the six morph blends. The
vertical lines correspond (from left to right) to sample onset, offset and test stimulus onset. The
inset shows the neuron’s delay activity to stimuli along each of the 9 between-class morph lines
(see fig. 1). The prototypes (C1, C2, C3, D1, D2, D3) are represented in the outermost columns;

each appears in three morph lines. A color scale indicates the activity level.
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Figure 4 Category effects in a neural population. A and B show the average differences in
activity to samples from the same (WCD) and different (BCD) categories for the sample (A) and
delay interval (B). Each point represents one neuron. The dotted line indicates equal differences
irrespective of category. The solid line indicates the regression line. C and D show average
activity of the population (and standard error) to stimuli at different morph levels of their

preferred and non-preferred categories for the sample (C) and delay (D) intervals.
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presented at the center of gaze.

' For neurophysiological recording, morphs were six levels of blends of cat and dog (100:0,
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movements were monitored using an eye tracking system (ISCAN Cambridge, MA). We
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information. To prevent memorization of sample—test pairs, the test stimuli were a set of 200
randomly generated morphs that were at least 70% of a category. All main effects were observed
in both monkeys. For brevity, we summarize their data.

20130 neurons from one monkey, 265 from the other. Sample interval activity was summed over
800 ms beginning 100 ms after stimulus onset. The delay interval activity was summed from 300
ms after sample offset to 100 ms after the end of the delay. Baseline activity was from the 500
ms of fixation before sample onset.

I T_Test versus baseline activity, P < 0.01. Parametric statistics such as T-Tests assume normal
distributions. Because neuronal activity is sometimes not normally distributed, we also
computed non-parametric statistics for all main effects. They yielded a virtually identical pattern
of results.

*2 T-Tests on activity from the sample and delay intervals, both P < 0.001.
2P>06

* Paired T-Tests between activity of all stimulus-selective neurons to the two categories
computed in successive 100 msec time bins. A significant difference (P < 0.01) began 100-200
msec after sample onset, when the earliest PF neurons began responding. The immediate
appearance of category information was also evident in average histograms across the neuron
population.

%> One-way ANOVA on the 54 sample stimuli. Sample interval: 62 neurons, delay interval: 33
neurons, P < 0.01.

26 T-Test that BCD/WCD ratios were significantly different from 1. Sample interval: BCD/WCD
mean = 1.30; delay interval: BCD/WCD mean = 1.49, both P < 0.001. Category information was
significantly stronger during the delay, one-tailed T-Test, P = 0.04. An index of (BCD —
WCD)/(BCD+WCD) yielded similar results.
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* Excluding neurons with firing rates below 2 Hz (which produce spurious values when
normalized) yielded 55 and 29 neurons with selectivity in the sample and delay intervals,
respectively. We normalized each neuron’s activity as a proportion of its activity to the most
effective single stimulus. Preferred and non-preferred category was determined by only this
stimulus to ensure analyses were not biased toward a category effect.

? Two-way ANOVA of category membership and level of category (60%, 80%, 100%), test of
the category factor. P <0.01 for both intervals.

» Two-way ANOVA, test of the level factor, P>0.6 for both intervals.
** ANOVAs on the 27 samples from the preferred or non-preferred category, either P < 0.01.
31 T_Test on all match vs. all non-match test stimuli, P < 0.01

2 E. K. Miller, C. A. Erickson, R. Desimone. Neural mechanisms of visual working memory in
prefrontal cortex of the macaque. J Neurosci. 16, 5154 (1996).

33 T-Test vs baseline for the sample and/or delay intervals, P<0.01.
** One-way ANOVA on all 54 samples for the sample and/or delay intervals, P < 0.01.

% Sample interval: mean 2-category BCD/WCD = 1.13, T-Test P = 0.22; delay interval: 2-
category BCD/WCD mean = 0.96, T-Test p = 0.58. This analysis was limited to morphs between
corresponding cat and dog prototypes (i.e., C1-D1, C2-D2, C3-D3, the vertical morph lines in
figure 1a) because the other morph lines crossed both the 2-category and 3-category boundaries.
We confirmed that this test could detect 2-category information by applying it to the data from
the 2-category task. The results were virtually identical to the 2-category test described above
(sample interval: BCD/WCD ratio = 1.33, T-Test, P < 0.001; delay interval: BCD/WCD ratio =
1.57, T-Test, P < 0.001).

% 3_category BCD/WCD mean = 1.51, T-Test P<0.01. As for the 2-category test, we compared
samples at equivalent distances along between-category morph lines but now using morph lines
that crossed the 3-category boundaries, but not the 2-category boundary. The early appearance of
category information in PF activity also suggested that training had altered neuronal selectivity.

*" 1t was not evident during the sample interval, 3-category BCD/WCD mean = 1.03, T-Test, p=
0.79.

* J. Quintana, J. M. Fuster. Mnemonic and predictive functions of cortical neurons in a memory
task. Neuroreport. 3, 721 (1992).

** G. Rainer, S. C. Rao, E. K. Miller. Prospective coding for objects in primate prefrontal cortex.
J.Neurosci. 19, 5493 (1999).
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ABSTRACT

The ability to group stimuli into meaningful categories is a fundamental cognitive process. To
explore its neural basis, we trained monkeys to categorize computer-generated stimuli as “cats”
and “dogs”. A morphing system was used to systematically vary stimulus shape and precisely
define a category boundary. Psychophysical testing and analysis of eye movements suggested
that the monkeys categorized the stimuli by attending to multiple stimulus features. Neuronal
activity in the lateral prefrontal cortex reflected the category of visual stimuli and changed with
learning when a monkey was retrained with the same stimuli assigned to new categories.
Further, many neurons showed activity that appeared to reflect the monkey’s decision about
whether two stimuli were from the same category or not. These results suggest that the lateral
PFC is an important part of the neuronal circuitry underlying category learning and category-

based behaviors.
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INTRODUCTION

Our perception of the environment is not a faithful registration of its physical attributes. Instead,
we carve the world into meaningful groupings, or categories. This process of abstracting and
storing the commonalities among like-themed individuals is fundamental to cognitive processing
because it imparts knowledge. For example, knowing that a new gadget is a "camera" instantly
and effortlessly provides a great deal of information about its relevant parts and functions and
spares us from having to learn anew each time we encounter a new individual. The usefulness of
storing categories is likely to be related to their ubiquity. They are evident in all sensory
modalities and range from relatively simple (e.g., color perception) to the most abstract human

concepts.

Because perceptual categories often group together very different-looking things, their
representation must involve something beyond the sort of neuronal tuning that typifies encoding
of physical appearance: gradual changes in neuronal activity as features gradually change (e.g.,
shape, orientation, direction). In fact, evidence that a human or animal has stored a category is
that behavior does not track smoothly with changes in physical appearance: categories have sharp
boundaries (not gradual transitions) between them and members of the same category are treated
as equivalent even though their physical appearances may vary widely. A simple example is
crickets sharply dividing a continuum of pure tones into “mate” versus “bat” (a predator); their
degree of approach or avoidance is virtually identical across a wide range of frequencies that are
to one side or the other of the boundary, but flips suddenly at 16 kHz (Wyttenbach et al., 1996).
It is advantageous to represent this information categorically because it optimizes reproductive

behavior while minimizing fatal mistakes. Similar effects are evident in humans’ perception of
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the phonemes “b” versus “p” (Lieberman et al., 1967) and the facial expressions of emotion

(Beale and Keil, 1995).

The elaborate behavioral repertoire of advanced animals naturally depends on more elaborate
categorization abilities. Their mental lexicon includes categories that are characterized along
multiple dimensions and are often difficult to precisely define. In addition, advanced animals
have an enormous capacity to learn and adapt. Monkeys, for example, have been taught
categories such as animal versus non-animal (Roberts and Mazmanian, 1988), food versus non-
food (Fabre-Thorpe et al., 1998), tree versus non-tree, fish versus non-fish (Vogels, 1999) and

ordinal numbers (Orlov et al., 2000).

Where such categories are encoded in the brain has not been clear. In primates, they could be
represented and stored in the same areas of the visual cortex involved in form analysis and object
recognition, such as the inferior temporal cortex (ITC) (Gross, 1973; Desimone et al, 1984;
Tanaka, 1996; Logothetis and Sheinberg, 1996). They might also be evident in the brain regions,
such as the prefrontal cortex (PFC) that receive direct projections from the ITC (Ungerleider et
al., 1989; Webster et al., 1994) and are involved in a variety of higher cognitive functions
(Goldman-Rakic, 1987; Fuster, 1997; Miller, 2000; Miller and Cohen, 2001). Both the ITC and
PFC contain neurons that often exhibit highly specific responses to complex stimuli such as
trees, fishes, faces, brushes, etc. (Gross et al., 1972; Bruce et al., 1981; Perrett et al., 1982;
Desimone et al., 1984; Tanaka et al., 1991; Miller et al., 1996; Scalaidhe et al., 1999) and are
influenced by experience (Logothetis et al., 1995; Booth and Rolls, 1998; Kobatake et al., 1998;
Miyashita, 1988; Rainer and Miller, 2000). Whether or not their activity reflects stimulus

categories has not been clear. These neurons have not been tested for the diagnostic
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characteristics of categories, (e.g., sharp boundaries and within-category generalization); their
specificity might reflect similarities and differences in physical appearance of the stimuli, not

necessarily their category membership.

To test for neuronal correlates of visual categories, we trained monkeys to categorize computer-
generated stimuli into two categories, cats and dogs. A novel 3D morphing system was used to
create a large set of parametric blends of six prototype images (three species of cats and three
breeds of dogs) (Beymer and Poggio, 1996; Shelton, 2000). This allowed us to establish a sharp
category boundary between stimuli that were physically similar, yet include in the same category
stimuli that were visually dissimilar. A brief report of these results appeared previously

(Freedman et al., 2001).

MATERIALS AND METHODS

Subjects. Two female adult rhesus monkeys (Macacca mulatta) weighing 6.0 and 7.5 kg were
used in this study. Using previously described methods (Miller et al., 1993), they were implanted
with a head bolt to immobilize the head during recording and with recording chambers. Eye
movements were monitored and stored using an infrared eye tracking system (Iscan, Cambridge,
MA). All surgeries were performed under sterile conditions while the animals were anesthetized
with isoflurane. The animals received postoperative antibiotics and analgesics and were handled
in accord with National Institutes of Health guidelines and the recommendations of the

Massachusetts Institute of Technology Animal Care and Use Committee.

Recording Techniques: Electrode penetration sites were determined using magnetic resonance

imaging scans obtained prior to surgery. The recording chambers were positioned stereotactically
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over the lateral prefrontal cortex such that the principal sulcus and ventrolateral prefrontal cortex
were readily accessible. Neuronal activity was isolated using arrays of four to eight
independently moveable tungsten microelectrodes (FHC Instruments, Bowdoinham, ME). The
electrodes were advanced using custom made screw-driven mini-microdrives (Nichols et al.,
1998) mounted on a plastic grid (Crist Instruments, Damascus, MD). Neuronal activity was
amplified, filtered, and stored for off-line sorting into individual neuron records (Plexon
Systems, Dallas, TX). This allowed us to isolate, on average, nearly two neurons per electrode.
We did not prescreen neurons for task-related activity such as visual responsiveness or stimulus
selectivity. Rather, we randomly selected neurons for study by advancing each electrode until the
activity of one or more neurons was well isolated and then began data collection. This procedure

was used to ensure an unbiased estimate of prefrontal activity.

Stimuli: A large continuous set of images was generated from three prototype cats and three
prototype dogs (Figure 1) with a novel algorithm (Shelton, 2000). It found corresponding points
between one of the prototypes and the others and then computed their differences as vectors.
Morphs were created by linear combinations of these vectors added to that prototype. For more
information see http://www.ai.mit.edu/people/cshelton/cort/. By morphing different amounts of
the prototypes we could generate thousands of unique images, continuously vary shape and
precisely define one or more arbitrary category boundaries. For most of the experiments, the
images were divided into two groups, cats and dogs, with the boundary at an equal blend of cat
and dog. Thus category membership was defined by whichever category contributed more
(>50%) to a given morph. As a result, stimuli that were close to but on opposite sides of the
boundary were visually similar, while stimuli that belonged to the same category could be

visually dissimilar (e.g. the “housecat” (C1) and “cheetah”(C2) prototypes). The stimuli differed
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along multiple features and were smoothly morphed, i.e., without sudden appearance or
disappearance of any feature. They were 4.2 degrees in diameter, had identical color, shading

and orientation and scale and were presented at the center of gaze.

We confirmed that the morphs did indeed vary smoothly and at a constant rate over different
parts of morph space by using an image correlation analysis. A 2D correlation coefficient was
calculated for neighboring images at six levels of blends of cat and dog (cat:dog: 100:0, 80:20,
60:40, 40:60, 20:80, 0:100) along each of the nine between-category morph lines. The
correlation was calculated by computing the 2D correlation coefficient separately for each color
plane and then averaging across planes. The correlation coefficient between neighbors remained
constant and high (about 0.9) across the entire morph space. The coefficients between stimuli
directly across the cat/dog boundary did not differ from the other coefficients from equal

distance in morph space that did not cross the boundary (one-way ANOVA, P = 0.44).

Behavioral Tasks: The monkeys performed a delayed match-to-category task that required them
to judge whether two successive stimuli were from the same category (Figure 2). The trial began
when the monkey grasped a metal bar and fixated a small (0.3 deg) white spot at the center of a
CRT screen. They were required to maintain gaze within a +2 deg window around the fixation
spot for the entire trial. Following the initial 500 ms of fixation, a sample image was presented
at the center of the screen for 600 ms, followed by a 1000 ms delay. Then, a choice image
appeared. If the sample and choice stimuli were from the same category (a category match), the
monkeys were required to release the lever before the stimulus disappeared 600 ms after its
onset, to receive a juice reward. If the choice image was from a different category (a category

non-match), there was an additional brief delay (600 ms) followed by another image that was
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always a match and thus required a lever release. As a result, a category judgment was only
required for the first choice image. The second delay and match image were used so that a
behavioral response would be required on every trial. This ensures that the monkeys were
always paying attention. Because a decision was only required for the first choice image and the
forthcoming behavioral response was predictable from the second delay onwards, that delay and
subsequent match image will not be considered further. Note that with this design, the
behavioral response (lever release) is not uniquely associated with a category (it was used to
signal “match”, not cat or dog) and, further, the monkeys could not predict whether the first
choice stimulus would require a response. Thus, any differential activity to the sample
categories could not be related to the behavioral response. A 2000 ms to 3000 ms inter-trial
interval followed correct trials. An error was defined as a lever release to a non-match or failure
to release to a match; breaks of fixation were not counted among the error rates in behavioral
analyses. An additional 3000 ms “timeout” was added to the inter-trial interval following an

error. Monkeys typically performed over 700 correct trials per day.

The monkeys were gradually trained to categorize the images as cats and dogs by beginning with
a delayed match-to-sample task in which the prototypes were used as samples, the match was
always identical to it, and the non-matches were a prototype from the other category. We then
gradually included more and more morphs as samples by choosing images at increasing distances
from the prototypes. In parallel, matches were chosen from an increasingly greater distance of
morph space around the sample while respecting the category boundary. Non-matches were

always from the other category.
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During the course of training, over 1000 sample stimuli were used from all over the morph space.
This prevented monkeys from solving the task by simply remembering specific stimulus—
response contingencies. Neurophysiological recording, however, requires that a limited number
of stimuli be used so that each can be repeated multiple times and neuronal variability can be
assessed. Thus, for recording experiments we limited the samples to 54 images. This included
the six prototype images and morphs from equally spaced intervals across each of the nine morph
lines that connected each cat prototype to each dog prototype (Figure 1a). There were six levels
of blends of cat and dog (cat:dog) (100:0, 80:20, 60:40, 40:60, 20:80, 0:100) along the nine
morph lines that crossed the two-category boundary (the red lines in Figure 1a) and two levels
along the six within-category morph lines (60:40, 40:60) (the blue lines in Figure 1a). To
prevent monkeys from learning to memorize specific stimulus-response contingencies during the
recording experiments, the choice stimuli were 100 randomly generated morphs from each
category that were randomly paired with sample stimuli of the appropriate category. To ensure
that category judgment errors were due to confusion over the sample category, the choice stimuli
unambiguously belonged to a given category: they were always chosen to be at a distance of at

least 20% from the boundary.

The monkeys’ categorization abilities were further examined with separate psychophysical tests
employing an additional 14 morphs that were equally and tightly spaced (6.67% intra-stimulus
distance) along each of the morph lines that crossed a category boundary. This allowed for a
more precise description of the monkeys' ability to categorize stimuli near the category boundary.
This task was identical in all timing and behavioral events except that the monkeys were
randomly rewarded on trials in which the sample stimulus was very close to the category

boundary (less than 10% difference). This was done to ensure that reward history did not
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influence a monkey’s choices on trials in which the samples were near the boundary and more

likely to elicit guessing.

To test the effects of learning on neuronal activity, we trained a monkey to re-categorize the cat
and dog images into three new categories. Two new category boundaries were defined 'that were
orthogonal to the original two-category boundary (figure 1a). This resulted in three new classes
that each contained morphs centered around one cat prototype and one dog prototype. The same
54 sample stimuli were used for neurophysiological recording under the two and three-category
schemes. As in the two-category experiment, the choice stimulus set consisted of 100 randomly
generated morphs from each category that had a maximum component of 20% from each of the

other two categories.

Data Analysis: Neuronal activity level was calculated in four time epochs: baseline, sample
presentation, first delay and first choice stimulus presentation. Baseline neuronal activity was
averaged over the 500 ms of fixation preceding sample presentation. Sample period activity was
averaged over an 800 ms epoch beginning 100 ms after sample onset to account for the latency of
PFC neuronal responses and included the first 300 ms following sample offset to include any
activity related to that event. Delay activity was assessed over an 800 ms epoch beginning 300
ms after sample offset and ending 100 ms after first choice stimulus onset. Activity to that
choice stimulus was averaged over an epoch that began 100 ms after its onset and ended two
standard deviations before the monkeys’ average reaction time during each recording session to

exclude any effects related to the execution of the behavioral response.
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Category information in neuronal activity was assessed using several methods. We computed an
index of category tuning by calculating each neuron’s average firing rate difference to pairs of
sample morphs from the same category (within-category difference, WCD) and its average
difference to samples from different categories (between-category difference, BCD) using
images from the morph lines that crossed the category boundary. The WCD was defined by
computing the absolute difference between the 100% and 80% morphs and between the 80% and
60% morphs for both categories and averaging these values. The BCD was computed by
averaging the across-boundary differences between the 60% cats and 60% dogs. As a result, the
distance between stimuli in morph space was identical (20%) for the BCD and WCD
comparisons. A standard index was computed for each neuron by dividing the difference
between its BCD and WCD values by their sum. This index can have values ranging from -1 to
1. Positive values indicate a larger difference between categories while negative values reflect
larger differences within a category than between categories. BCD and WCD values were
computed for neurons recorded during the three-category task in a similar fashion, by
determining differences in activity to samples that differed by 20% along the morph lines that
crossed the three-category boundaries (Figure 1). To ensure that the previously leamned two-
category scheme did not contribute to the values obtained when calculating category effects in
the three category scheme, we excluded from this analysis the morph lines that crossed both the
two and three-category boundaries (e.g., the morph line connecting cat prototype #1 and dog

prototype #2).

In addition to computing an index, we also compared between and within category differences by

using a receiver-operating characteristics (ROC) analysis (Green and Swets 1966; Tolhurst et al.,

1983; Vogels and Orban, 1990). The ROC analysis measures the degree of overlap between two
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distributions of values. It has several advantages. First, it makes no assumptions about the two
distributions, A and B, and thus returns an unbiased estimation of overlap. Second, it can be
interpreted as the performance of an ideal observer in a two-way forced choice task; values of 0.5
indicate 50% correct classification (guessing) while values of 0 or 1 indicate error-free
classification. Third, it is independent of neuronal firing rate and number of observations. While
the category index described above explicitly tests for sharp tuning across the category boundary,

the ROC value gives a general measure of the degree of category selectivity.

To determine the time-course of category information in neuronal activity, we computed the
ROC area within a time bin of 200 ms that was slid in 10 ms steps. We began 500 ms prior to
sample stimulus onset and ended 100 ms following the first choice stimulus onset. This was
computed for all neurons that were category selective (according to a t-test evaluated at P < 0.01)

during the sample and/or delay epochs.

The latency for neuronal activation (irrespective of category information) was determined by
compiling the average histogram of firing rate values for all responsive neurons (i.e. neurons that
showed significantly different activity during the sample and/or delay periods compared to
baseline, evaluated by two-tailed t-test at P < 0.01.) This average histogram was smoothed with a
30 ms gaussian window and the latency was defined as the point of maximum inflection
(determined by computing the second derivative at all points along the histogram) of this curve

following sample onset.

To account for the wide range of firing rates across different neurons, individual neurons’ firing

rates were normalized when computing population average histograms of neural activity. For
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each neuron, the mean firing rates at each of the six steps from the cat to dog prototypes were
computed. Then, the range of firing rates for each neuron were rescaled according to the
minimum and maximum values across those six groups such that each neuron’s minimum and
maximum rate was 0.0 and 1.0, respectively. This allowed each neuron’s range of modulation to

contribute equally to the population average.

RESULTS
Behavioral Data

Category judgments

The monkeys were very accurate at the two-category judgments. During the recording sessions,
performance was high (about 90% correct), even when the samples were close to the category
boundary; the monkeys classified dog-like cats (60:40 cat:dog) correctly about 90% of the time,
and misclassified them as dogs only 10% of the time, and vice-versa (Figure 3). The results of
psychophysical tests with more closely spaced morphs are shown in Figure 4a. Even very near
the boundary, when stimuli were very similar to (only 3% different from) the other category (i.e.,
a 53.3% cat or dog), the monkeys still performed significantly above chance (~65%, chance =
50%). Thus even with closely spaced morph images, the sudden change in behavior

characteristic of category representations were evident in behavior.

Figure 4b shows the performance of monkey A after it had been trained to re-categorize the same
images under the three-category scheme. Performance here was somewhat lower than during the
two-category task. This is presumably because there were two boundaries in the three-category
task and thus a higher percentage of stimuli were close to the border (the data in the figure are

collapsed across the boundaries). Still, the sharp drop-off in performance indicative of a
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category representation was evident; monkeys continued to perform above chance for morphs
that were only about 3% different from the boundary. The greater difficulty of the three-category
task was also evident in the monkey’s behavioral reaction times. They were significantly longer
during the three-category task (average = 307 ms) than the two-category task (264 ms, t-test at P

<0.01).

Stimulus features used for categorization

To explore which features the monkeys were using to categorize the images into cats and dogs,
we conducted further psychophysical testing. In one set of experiments, we removed the
requirement to maintain central fixation (by removing the fixation point) and allowed the
monkeys to freely gaze at the images. Given the close link between attention and gaze during
unconstrained viewing, the assumption was that monkeys would spend more time gazing at the

features that they were using to define the categories.

It was apparent that the monkeys were not focusing on a single feature to categorize the images.
Even though the sample presentation was brief (600 ms), they typically made several saccades
while viewing the stimulus. One monkey made an average of 3.45 saccades and the other monkey
averaged 2.25 saccades during sample presentation (defined as the number eye movements
exceeding 50 degrees/second, equivalent to 0.5 degrees of movement in adjacent 10 ms time
bins). Interestingly, the two monkeys seemed to use different combinations of features to
categorize the images. One monkey tended to look toward the tail of the sample images; its gaze
was on average 1.46 deg to the left and 0.60 deg below the center of the screen. The other
monkey tended to direct its gaze toward the head region; on average, its gaze was 0.57 deg to the

right and 1.16 deg above central fixation. Figure 5a shows representative traces from one trial
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for each monkey. The gaze patterns for the two monkeys were significantly different from one

another (along both the horizontal and vertical axes, t-tests, P < 0.01).

We also tested the monkeys’ ability to categorize the images after removing the 'heads' or 'tails'
of the morph stimuli and then interleaving them with non-degraded samples. The assumption
here was that if the monkey was relying on a single feature at the front or back of the image, its
removal should decrease categorization performance to chance. This was not the case. As
shown in Figure 5b, we found that the monkeys' performance remained high (~80% correct)
when either the head or tail was absent. This pattern of results suggests that monkeys each used

a unique combination of features to categorize the images.

Neuronal Data

Basic properties

A total of 395 lateral prefrontal cortex neurons were recorded from three hemispheres of two
monkeys during performance of the two-category DMC task (130 from monkey A, 265 from
monkey B, figure 6). Visual responsiveness was evaluated by comparing the activity in the
sample and delay intervals to baseline activity using paired t-tests (evaluated at P < 0.01). Based
on this criterion, 259/395 (66%, 113 from monkey A, 146 from monkey B) of neurons were
activated during one or more task intervals. The onset of neuronal responsiveness across the
population of responsive PFC neurons occurred at approximately 100 ms following sample

stimulus onset (Methods).

An initial assessment of neuronal category selectivity was made with a t-test of the activity to all

cat stimuli versus all dog stimuli (evaluated at P < 0.01). This revealed that nearly a quarter of
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all (randomly selected) neurons (96/395, 24%, 60 and 36 in monkeys A and B, respectively)
showed a significant difference in their overall activity to cats versus dogs in the sample and/or
delay intervals (74 sample, 51 delay). Many neurons (78/395, or 20%; 67 sample, 32 delay) also
showed a significant effect of the individual samples (i.e., were stimulus-selective) according to a
one-way ANOVA (with the 54 sample stimuli as the factor; evaluated at P < 0.01). A majority of
these stimulus-selective neurons also showed an overall effect of category (56/78, or 72%; 46
sample, 21 delay, t-test, P < 0.01). Similar numbers of category selective neurons preferred cats
(39/74 sample, 27/51 delay) as dogs (35/74 sample, 24/51 delay). In both monkeys, there was a
greater incidence of category selective neurons in the sample than the delay interval (monkey A:

48 sample, 31 delay; monkey B: 26 sample, 20 delay).

The activity of many neurons showed a sharp differentiation between the two categories that
mirrored the monkeys’ behavior. That is, they showed relatively large differences in activity to
samples from different categories and relatively similar activity to samples from the same
category. Two examples of single neurons are shown in figure 7a and 7b. They show each
neuron’s average activity to all samples at different blends of cats and dogs. Both seem to
encode category membership rather than relative physical similarity. Note that their activity was
significantly different to dog-like (60%) cats and cat-like (60%) dogs (t-test, P < 0.001) but there

was no difference in activity between these stimuli and their respective prototypes (P > 0.1).

These effects were also evident in the average activity across the population of all stimulus-
selective neurons. For this analysis, we chose neurons that were stimulus-selective, not category-
selective per se (ANOVA with the individual samples as a factor, P < 0.01, N = 55 for the sample

interval, 29 for the delay, excluding neurons with mean firing rates below 2 Hz, as they can
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produce spurious results when normalized). Figure 8 shows the mean normalized firing rates for
the six levels of morphs. Each neuron's preferred category was determined by the category of the
single sample stimulus (of 54) that evoked the maximal firing rate, computed separately for the
sample and delay intervals. By determining the preferred category by a single stimulus instead of
the average across all category members, we ensured that this test was not biased towards finding
a category effect. During both time epochs, there was a significant difference between the
categories (P < 0.01) but no differences between the different morph levels within each category

(P> 0.6, two-way ANOVA with category and distance from the category boundary as factors).

Quantification of category effect

To quantify the effect of category membership on the neuronal population, we computed a
category index that reflected each neuron's average difference in activity to samples across the
category boundary versus its difference to samples that were from the same category (see
Methods). Positive values indicate greater differences across the category boundary than within

each category and negative index values indicate the opposite.

We examined all stimulus-selective neurons, irrespective of whether they were category-selective
per se (N =78, 67 sample, 32 delay). The distributions of category index values for the sample
and delay periods are shown in figure 9. During both epochs, mean category index values were
significantly greater than zero, i.e., the distribution was shifted toward category tuning (sample:
0.08, delay: 0.14, one-tailed t-test, P <0.001). The indices were significantly larger (more
shifted toward category tuning) during the delay than the sample interval (one tailed t-test, P =
0.04). Similar comparisons were also made by computing ROC values, which reflect how well

an ideal observer would do at categorization using each neuron’s firing rate (see Methods).
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Across the population of stimulus selective neurons, the average ROC value was 0.59 (range =

0.50 to 0.75) in the sample interval and 0.59 in the delay (range: 0.50 to 0.82).

These analyses demonstrate that a significant degree of category information is evident even
across the entire population of stimulus-selective neurons. The average index or ROC values
obtained were somewhat modest because activity was averaged across an entire trial epoch and
across all stimulus-selective neurons. As will be shown next, the strength of category signals
varied widely with individual neurons and with time; individual neurons could convey very

strong category signals at particular points in the trial.

Temporal characteristics of category information

To examine the temporal dynamics of the representation of category information in PFC activity,
we used a sliding ROC analysis (see Methods). For this analysis, we included neurons whose
average activity in the sample and/or delay intervals was significantly category-selective (t-test

on activity to all cats versus all dogs, evaluated at P < 0.01, N = 96 neurons).

Figure 10a shows the ROC values for each neuron in 10 millisecond time steps. The ROC values
are sorted by their magnitude separately for each time bin in order to better illustrate the number
of neurons exhibiting ROC values above 0.5 (chance) at each moment in time. This revealed
that, in general, more neurons conveyed category signals late in the sample epoch than during the
delay interval, but that the strongest category signals occurred in the late delay and early choice
presentation epoch. Figure 10 indicates that there were a greater number of neurons with

moderate or small ROC values for the time bins during the sample epoch (i.e., there are more
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“foothills” leading up the “peaks”) but that the highest ROC values occurred during the late

delay/choice presentation (the “peaks” are highest then).

Effects of learning on category representations

As our monkeys had no prior experience with cats and dogs, it seemed likely that the category
information in the PFC was acquired through learning. To test the effects of learning on
category representations, we retrained one monkey with the samples reassigned to three new
categories (see Figure 1 and Methods). We then recorded from 103 neurons at similar depths
and locations as those recorded during the two-category task. The incidence of neuronal
responsiveness and stimulus selectivity during the three-category task was similar to that during
the two-category task: about 63% (65/103) of neurons were visually responsive (t-test vs.
baseline, as above, P < 0.01) and about 23% (24/103, 14 sample, 14 delay) were stimulus

selective (ANOVA with stimulus as factor, P < 0.01).

An example of a neuron recorded during the three-category task is shown in Figure 11. Tt
showed a significant effect of category during the delay period when the data was sorted
according to the new, currently relevant, three-category scheme (ANOVA, P < 0.001); it
distinguished one of the categories from the other two. By contrast, when the data was sorted
according the old (now irrelevant) cats and dogs category scheme, there was no significant effect

(ANOVA, P =0.74).

To test for these effects in this population of neurons, we first examined all those that were

stimulus-selective (N = 13, ANOVA, P < 0.01). When the category index was computed using

the old (now irrelevant) cat and dog categories, there was no evidence of category effects; the
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two-category index was not significantly greater than zero for the sample interval (two-category
index = 0.01, one-tailed t-test P = 0.5) nor the delay (two-category index = -0.10, one-tailed t-test
P =0.9). However, when the category index was computed using the new (relevant) three
category boundaries, a significant category effect was observed in the delay (three-category
index = 0.16, one-tailed t-test P = 0.008). As we found for the two-category task, three-category
tuning was stronger during the delay than the sample interval (one-tailed t-test, P = 0.02). In fact,
we did not detect significant category tuning across the population of stimulus selective neurons
during the sample interval (three-category index = -0.01, P = 0.5), although it was detected when
we computed the index for all neurons recorded during the three-category task (N = 103, see

below).

The same pattern of effects was observed across the entire population of neurons. Figure 12
shows the distribution of the category indices for all 103 (randomly sampled) cells recorded
during the three-category task. The indices computed using the three-category scheme revealed
significant category information (i.e., the distribution was shifted to the right) for both the sample
interval (Figure 12a, three-category index = 0.065, one tailed T-test P = 0.0007) and for the delay
(Figure 12b, three-category index = 0.08, one tailed t-test, P = 0.0005). By contrast, when the
indices were computed using the two-category scheme, there were no significant category effects
during the sample (Figure 12¢, two-category index = -0.02, one tailed t-test, P = 0.83) nor the
delay interval (Figure 12d, two-category index = -0.03, one tailed t-test, P= 0.82). Thus, while
information about the three-category scheme was evident in the population of PFC neurons, we
could no longer detect information about the previously-learned, now-irrelevant, cat and dog

categories.
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Category match/non-match effects

When the choice stimulus was presented, the monkeys needed to categorize it and then decide
whether or not its category matched that of the sample. Both signals were present in neuronal
responses to the choice stimulus. We evaluated activity in this interval with a two-way ANOVA
(factor one: choice stimulus category, factor two: match vs. non-match, evaluated at P < 0.01).
Just over 9% (37/395) of the entire population of PFC neurons reflected the category of the
choice stimulus while 11% (43/395) reflected its match/non-match status. Over two thirds of the
latter neurons (29/43) showed an effect of matching/non-matching that was similar regardless of
whether the choice stimulus was a cat or dog (main effect of match/non-match, no interaction
with choice stimulus category). An example of a neuron that exhibited greater activity to
matches is shown in Figure 13a and an example of a neuron showing greater activity to non-
matches is shown in Figure 13b. The remaining third of these neurons (14/43) showed an
interaction between the match/non-match status and the category of the choice stimulus (P <
0.01). In other words, they showed match/non-match effects that were limited, or much stronger,
to one of the categories. An example of a “cat match” neuron is shown in Figure 13c. For
match/non-match selective neurons, a similar number preferred matches (22/43 or 51%) as non-

matches (21/43 or 49%).

Analysis of Error Trials

For insight into neuronal correlates of the monkey’s errors, we compared category effects and
match/non-match effects on correctly performed trials versus those in which monkeys made
errors in category judgments. For these analyses, we included neurons that showed significant

effects on correct trials. Figure 14 shows the results of these comparisons. Category information
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was evident during the sample interval on both correct and error trials; the average activity to the
preferred versus non-preferred category was significantly different for both types of trials (t-test,
P<0.001, Figure 14a). But category information seemed to be lost in the delay. A significant
difference between the average activity to the two categories was evident on correct trials (P <
0.001), but not on error trials (P = 0.79, Figure 14b). Match/non-match effects also depended on
whether the trial was correctly performed or not. For these analyses, the choice stimulus status
(match or non-match) that elicited the greater activity on correct trials was termed the “preferred
condition.” For all neurons that showed pure match vs. non-match effects (N = 25, i.e. match vs.
non-match factor: P < 0.01, choice-category and interaction factors: P > 0.01), there was a
significant difference (P < 0.001) in average activity to the preferred and non-preferred
conditions on correct trials. On error trials, however, the pattern reversed; there was an increase
in activity to non-preferred over preferred conditions that reached significance at P < 0.05
(Figure 14c). This is presumably because the monkeys mistakenly responded to non-matches as

if they were matches.

DISCUSSION

We report that neurons in the PFC, a brain region central to many visual behaviors, exhibited
properties that mirrored the behavioral characteristics of peréeptual categories. They made
sharper distinctions between stimuli from different categories than between stimuli from the
same category, irrespective of their relative physical similarity. This explicit encoding of
category membership in the activity of single neurons did not have to be the case. In principle,
categories might have only been reflected on the ensemble level, as an emergent property of
neurons encoding different defining features. Our results illustrate instead that familiar

categories are reflected on the single-neuron level, much as physical attributes of stimuli are.
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This ability to carve category membership into the tuning of single neurons might allow for the
quick and effortless classification of familiar objects. We also observed neuronal correlates of
category match/non-match effects, suggesting a role for the PFC in these judgments, and that
neuronal correlates of categories and category judgments waned or changed on error trials,

suggesting that PFC activity was directly related to task performance.

Category information in the PFC is likely to depend on inputs to the PFC from the ITC; the
traditional roles of the PFC and ITC are in cognitive functions versus object vision and
recognition, respectively (Robbins, 1998; Baddely, 1998; Gross, 1973; Miyashita 1993). PFC
lesions or reversible inactivations in monkeys cause deficits in attention, working memory and
response inhibition (Mishkin, 1957; Gross and Weiskrantz, 1962; Mishkin et al., 1969; Goldman
and Rosvold, 1970; Goldman et al., 1971; Passingham, 1975; Mishkin and Manning, 1978;
Funahashi et al., 1993; Dias et al. 1996) but usually spares object recognition, long term memory
and "high level" visual analysis. By contrast, ITC damage causes deficits in visual
discrimination, recognition and learning (Kluver and Bucy, 1938, 1939; Blum et al., 1950;
Mishkin, 1954; Mishkin and Pribram, 1954; Mishkin, 1966) and category-specific agnosias (e.g.

for faces) in humans (Damasio et al., 1982).

Indeed, studies of ITC and PFC neuronal properties support their respective roles in object
recognition and executive functions (Logothetis and Sheinberg, 1996; Miller and Cohen, 2001).
Since the seminal work of Gross and coworkers in ITC, who reported a small population of ITC
“face cells”, numerous studies have shown that ITC neurons show selectivity for objects that
cannot be explained by sensitivity to low-level features, such as orientation or color (Gross,

1972; Desimone et al., 1984; Perret et al., 1992; Tanaka et al., 1991; Kobatake and Tanaka
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1994). There has been some recent evidence that suggests that these neurons play a direct role in
categorization. Vogels (1999) recorded from ITC in monkeys trained to categorize stimuli as
tree vs. non-tree or fish vs. non-fish and found that many neurons were selectively activated by
the trained class (photographs of trees or fish) but not by distracter objects (photos of household
objects or scenes containing neither trees nor fish). Kreiman et al. (2000) recorded from medial
temporal lobe neurons in epileptic human patients while they classified stimuli into nine
categories (e.g. faces, cars, food) and found neurons that selectively responded to stimuli from

one of the categories.

However, it has not been clear whether these neurons encode the category membership of stimuli
or, rather, their physical appearance. With a large, amorphous set of stimuli (such as trees or
food), the category boundaries are unknown and the sharp transitions that are diagnostic of
categories cannot be evaluated independently of stimulus similarity. Hence, neuronal selectivity
for, say, trees could reflect the fact that trees look more like one another than other stimuli. Our
results indicate that PFC neurons can convey the category of stimuli irrespective of their physical

appearance.

Our results might reflect a relative specialization of the PFC in encoding category membership;
because categories are defined by their functional relevance, they might be preferentially
represented in the PFC, a cortical region specialized for behaviorally-related functions. Indeed, a
recent theory of object recognition, suggests that category tuning in the PFC could arise from
converging inputs from ITC neurons that are stimulus, but not category, tuned (Riesenhuber and
Poggio, 2000). On the other hand, a recent study by Tomita et al. (1999) suggested that recall of

long-term visual memories involved top-down signals from the PFC that activate representations
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stored in the ITC. Similar mechanisms might underlie the retrieval of category information
stored in the ITC. This may be discerned by directly comparing the relative timing and the

tuning properties of PFC and ITC neurons.

From a computational point of view, the categorization task learned by the monkeys, while
subjectively not easy, is also not intrinsically difficult. Artificial classifiers, including a
biologically plausible model of recognition in cortex (Riesenhuber & Poggio, 1999), can easily
be trained to do the task using the same training and choice images employed in our experiments.
An interesting question is to study the categorization performance of a monkey and of its PFC
neurons if only a limited set of training examples were used. Examining their ability to
generalize to the new images in comparison with model performance may give us clues about

underlying mechanisms.

In sum, our results have provided insight into how perceptual categories are encoded in the PFC,
a brain area that receives the outputs of sensory cortex and uses them to guide goal-directed
behaviors. How and whether category membership is encoded in sensory systems and the
respective roles of the PFC and visual areas like the ITC in representing and storing category

information remains to be determined.
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FIGURE LEGENDS

Figure 1 Organization of stimulus set. A. The 6 prototype images and 12 morph lines. The
sample stimulus set was composed of 54 unique images: 6 prototypes (as shown), 4 images
evenly placed (20%, 40%, 60%, 80%) along the 9 lines (in red) connecting each cat to each dog
prototype, and 2 images (at 40% and 60%) along each of the 6 lines (in blue) between profotypes
of the same category (with respect to the 2-class boundary). B. An example of the morphs

generated between the C1 and D1 prototypes.

Figure 2 Task design and behavioral performance. The trial began with central fixation (500 ms)
after which a sample stimulus appeared at the center of gaze for 600 ms. This was followed by a
one second delay and then by a choice stimulus (600 ms). If the category of the choice matched
that of the sample, monkeys had to release a lever to the choice stimulus within 600 ms of its
presentation to obtain a fruit juice reward. If the choice was a non-match, there was another
delay interval (600 ms) followed by a presentation of a match, which required a lever release for
areward. There were an equal number of match and non-match trials and they were randomly

interleaved.
Figure 3 Average performance of both monkeys during neurophysiological recordings for the
two-category task. Red bars indicate the percent of samples classified as cat and blue bars the

percent classified as dog.

Figure 4 Psychophysical performance for the two and three-category tasks. For both the two-

category (A) and three-category (B) tasks, the monkeys' error rates did not increase linearly as
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stimuli approached the category boundary, but changed more sharply at the category boundary.
The sigmoidal shape for classification in both tasks indicates that the monkeys responded to the

stimuli categorically.

Figure 5 Eye movements and degraded stimuli during behavioral testing. A. An example of
monkey A's (left) and monkey B’s (right) eye movements during the sample period of a single
trial superimposed upon the sample stimulus shown on that trial. Monkeys were allowed to gaze
freely at the stimuli during behavioral testing as fixation was not required. During
neurophysiological recordings, monkeys were always required to maintain fixation within a £2°

window. B. Behavioral performance to degraded stimuli.

Figure 6 Anatomical location of recording sites and category selective neurons in both monkeys.
A-anterior, P-Posterior, D-dorsal, V-ventral. The recording sites at which cat or dog selective
neurons were found are indicated with an “X” or “O”, respectively. Each location at which no
category selective neurons were encountered is marked by a black dot. There was no obvious

topography to task-related neurons.

Figure 7 Single neuron examples (two-category task). A. The average activity of a single neuron
that showed greater activity to dogs during the memory delay. Each histogram trace represents
the neuron's average activity to stimuli at each of the six morph levels. B. The average activity of

a single neuron that showed greater activity to cats during the late sample and early delay period.
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Figure 8 Average neuronal response to preferred and non-preferred categories during the sample
(A) and delay (B). Each bar represents the population's average normalized response to stimuli at

each of the six morph levels. The error bars represent the standard error of the mean.

Figure 9 Distribution of two-category index values across the population of 67 and 32 stimulus
selective neurons during the sample (A) and delay (B) epochs, respectively. Positive values
indicate larger differences in neuronal firing to samples across the category boundary than within

a category. Negative values indicate larger differences within category than between categories.

Figure 10 Time course of category selectivity. A. Category selectivity across the population of
96 category selective neurons was computed using a sliding ROC analysis (see Methods). The
ROC values for all 96 neurons were sorted from minimum to maximum for each time bin
independently. Higher ROC values indicating stronger category tuning. Time is aligned to the
end of the 200 ms sliding window (i.e. the values at time = 0 indicates the ROC values during the

—200 to 0 time epoch relative to sample onset).

Figure 11 An example of a single neuron recorded during the three-category task that showed
selectivity for the newly learned three categories (A) but not the old (now irrelevant) two

categories (B).

Figure 12 Distribution of three-category (A: sample, B: delay) and two-category (C: sample, D:
delay) index values across the entire population of 103 neurons recorded during the three-
category task. The index can range from -1 to 1. Positive values indicate larger differences in

neuronal firing between categories than within categories. Negative values indicate larger
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differences within categories than between categories. The two asterisks superimposed on figures

A and B indicate significantly positive values of the category index (one tailed t-test, P < 0.001).

Figure 13 Single neuron examples of match/non-match effects. Neuronal activity is grouped
according to the category of the choice stimulus and whether or not the category of the choice
stimulus matched the category of the sample. A. An example of a neuron that showed enhanced
activity to category matches. B. Enhanced activity to category non-matches. C. A neuron that
showed enhanced activity to a cat choice stimulus when it was a match and a suppressed
response to a cat non-match. It did not differentiate between match and non-match trials when the

choice stimulus was a dog.

Figure 14 Comparison of neuronal selectivity on correct and error trials. Two asterisks indicate
significance (evaluated by a t-test) at P < 0.001. One asterisk indicates significance at P < 0.05.
The average response of all category selective neurons during the sample (N = 74) (A) and delay
(N =51) (B) phases is shown for correct and incorrect trials. Each neuron's preferred category
was determined by the category that evoked greater average firing rates during correct trials. (c)
The average activity to choice stimuli for all match/non-match selective neurons (N = 25) for
correct and incorrect trials. Each neuron's preferred response (match or non-match) was
determined according to the group that elicited greater average firing rates during correctly

executed trials.
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ABSTRACT

The ability to group stimuli into meaningful categories is a fundamental cognitive
process. However, very little is known about how the brain solves this computationally difficult
problem. To explore the neuronal basis of categorical perception, we trained monkeys to
categorize computer-generated stimuli as “cats” and “dogs”. A morphing system was used to
systematically vary stimulus shape and precisely define a category boundary. We have previously
shown that neuronal activity in the prefrontal cortex (PFC) reflected the category of visual
stimuli. In this study, we recorded from 286 neurons in the inferior temporal cortex (ITC) and
found many that were categorically tuned. A comparison of the pattern of results from the PFC
and ITC suggest that the ITC is primarily involved in high-level visual analysis while the PFC

may be more involved in using categorical information to guide behavior.
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INTRODUCTION

The results of many physiological and neuropsychological studies have demonstrated
that the inferior temporal cortex (IT) plays a critical role in high-level visual analysis and
awareness (Gross, 1994; Tanaka, 1996; Sheinberg and Logothetis, 1997; Perrett et al., 1998)
Damage to these cortical areas in monkeys and humans can result in impaired visual recognition
and learning (Gross, 1973) and even category-specific agnosia in which a subject has a selective
impairment for recognizing stimuli from a specific category (i.e. faces) (Nachson, 1995).
Electrophysiological recordings from the temporal lobe have revealed neurons that are
selectively activated by specific stimuli with invariance for scale, position and rotation
(Logothetis, 1998) and have demonstrated that their responses are affected by visual learning and
experience (Erickson et al., 2000; Booth and Rolls, 1998; Logothetis et al., 1995). The goal of
this study is to determine whether the activity of IT neurons is strictly stimulus-specific or
whether it can convey more abstract information about stimuli such as their category
membership.

To address this question, we trained monkeys to categorize stimuli into two categories,
“cats” and “dogs”. A large continuous set of stimuli was parametrically generated from six
prototype images (three species of cats and three breeds of dogs) using a 3D morphing system
(Beymer and Poggio, 1996; Shelton, 2000). Through training, an arbitrary category boundary
was introduced that separated the two categories such that stimuli from the same category could
be visually dissimilar (i.e. cheetah and tiger prototypes) while stimuli from different categories
could be physically similar (i.e. morphs that are very close to, but on opposite sides of the

category boundary).
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In a previous study (Freedman et. al, 2001) using the same behavioral paradigm, we
found that neurons in the lateral prefrontal cortex (PFC) reflected stimulus category. It is well
established that the PFC receives direct inputs from IT cortex. Therefore, it is possible that the
observed category tuning in the PFC could be due to categorical inputs from IT. To explore this
possibility, we have conducted IT recordings in one of the monkeys used in our PFC study using
the same ‘cat’ vs. ‘dog’ task. There were two primary goals of this study. The first was to
determine whether IT neurons can become categorically tuned as a result of experience.
Secondly, we wanted to compare the neuronal tuning properties between IT and PFC in order to
elucidate their respective roles in the context of this behavioral paradigm. Our results from this
study demonstrate that many IT neurons do reflect the category of visual stimuli and that the PFC
and IT cortex likely play different roles in solving the categorization task: IT seems primarily
involved in the rapid analysis of visual stimuli while PFC responses appear more suited for using

this highly processed visual information to guide behavior.

MATERIALS AND METHODS

Subjects: One female adult rhesus monkey (Macacca mulatta) weighing 7.5 kg, was used in this
study. This monkey was one of two monkeys used in our previous study of prefrontal cortex
(Freedman et al., 2001). Using previously described methods (Miller et al., 1993), the monkey
was implanted with a head bolt to immobilize the head during recording and a recording
chamber. Eye movements were monitored and stored at rates of 60-120 frames per second using
an infrared eye tracking system (IScan, Cambridge, MA). Electrode penetration sites were

determined using structural magnetic resonance imaging scans obtained prior to surgery. The
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recording chamber was positioned stereotactically over the inferior temporal cortex such that the
superior temporal sulcus and lateral convexity were readily accessible. All surgeries were
performed under sterile conditions while the animal was anesthetized with isoflurane. The animal
received postoperative antibiotics and analgesics and was always handled in accord with
National Institutes of Health guidelines and the recommendations of the Massachusetts Institute

of Technology Animal Care and Use Committee.

Recording Techniques: A stainless steel recording chamber (Crist Instruments. Damascus, MD.)
was stereotaxically placed over the anterior inferior temporal cortex using coordinates obtained
from structural MRI scans. The location of recording sites was estimated from the MRI scans and
from the characteristic white/gray matter transitions encountered while lowering electrodes. The
20 mm. diameter recording chamber was centered over the right anterior medial temporal sulcus
15 mm. anterior to the ear canal. Neuronal recordings were conducted in the region between 14-
19 mm lateral to the midline and 14-19 mm anterior from the intra-aural line. According to
electrode track estimation using structural MRI scans, recordings were concentrated in lower
bank of the superior temporal sulcus (areas TEa and TEm) and the ventrolateral surface of the
temporal lobe between the superior temporal and anterior medial temporal sulci (areas TE1 and
TE2). We utilized a hydraulic multielectrode manifold (FHC Engineering. Bowdoin, ME) that
enabled independent delivery of four insulated tungsten microelectrodes into IT cortex through a
single 23 gauge guide tube. This allowed us to isolate, on average, nearly two neurons per
electrode. Neurons were not prescreened for task-related activity such as visual responsiveness or
stimulus selectivity. Rather, we advanced each electrode until the activity of one or more neurons
was well isolated and then began data collection. This procedure was used to ensure an unbiased

estimate of neuronal activity.
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Behavioral Task: The monkey was trained to perform a delayed match-to-category task in which
it released a lever when the category of a test stimulus matched the category (“cat” or “dog”) of a
previously presented sample stimulus (FIGURE 1). This task was identical in all respects to the
task used in our previously reported study of prefrontal cortex (Freedman et al., 2001).

The trial began when the monkey grasped a metal bar and fixated a small (0.3°) white spot at the
center of a CRT screen. The monkey needed to maintain its gaze within a +2° window around the
fixation spot, which was presented for the entire duration of the trial. Following 500 ms of
fixation, a sample stimulus was presented at the center of the screen for 600 ms, followed by a
1000 ms delay. Following the delay, a test stimulus was presented for 600 ms that was either a
categorical match or non-match. In the event that the test stimulus was a non-match to the
sample, a second delay (600 ms) followed, after which a second test stimulus (always matching
the category of the sample) was presented. To receive a juice reward, the monkeys had to release
the lever during the presentation of a test stimulus that matched the category of the previously
presented sample stimulus. A 2000 ms to 3000 ms inter-trial interval followed correct trials. In
the event of an incorrect trial due to an erroneous bar release or lapse in fixation, the monkey
received no reward and waited an additional 3000 ms before beginning the next trial. Match and
non-match trials were randomly interleaved. Monkeys often performed over 1000 correct trials
per day. This balanced task design allows a decoupling of information about stimulus category
from that related to the monkey’s motor response; following onset of the sample stimulus, the
monkey could do no better than guess at whether the upcoming test stimulus would be a

categorical match or non-match.
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Stimuli: Stimuli in the experiments were generated using a 3D object morphing system. A large
continuous set of images was generated from six prototypes objects that spanned two natural
categories, "cats" and "dogs" (FIGURE 2). From these three "cat" and three "dog" prototypes,
novel images or "morphs" were generated whose identity was determined by the relative
contribution of each of the six prototypes. The category boundary during the 2-category task was
arbitrarily defined at the 50% cat/dog level so that the category membership of a morph was
determined by which prototype class (“cat” or “dog”) contributed most. Images that belonged to
different categories were visually similar if they were close to but on opposite sides of the
category boundary. Likewise, images that belonged to the same category could be visually
dissimilar (i.e. the cheetah and housecat prototypes). Corresponding features on each of the
prototypes were defined to ensure that images changed smoothly across a morph line without a
sudden appearance, disappearance or distortion of features. Images were approximately 4 X 3
degrees of visual angle in size, had identical color, shading, orientation and were appropriately
centered and scaled.

The sample stimulus set consisted of 54 unique images generated by the morphing
system. In addition to the 6 prototype images, 4 morphs were generated at equally spaced
intervals across each of the 9 morph lines that connect each “cat” prototype to each “dog”
prototype. Along each of the within-class class lines that connect the “cat” prototypes to one
another and likewise for the “dogs”, one stimulus was generated at both the 40% and 60%
positions. The set of choice stimuli consisted of 100 randomly generated morphs from each
category. To ensure that errors during task performance were due to misclassification of the
sample stimulus rather than the test stimulus, each choice stimulus was a minimum distance of

15% from the category boundary. The choice stimuli were randomly paired with sample stimuli
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of the appropriate categories to ensure that the monkeys could not solve the categorization tasks

using a paired associate strategy.

Data Analysis: 1T neurons’ firing rates were calculated in four time epochs: baseline (fixation),
sample, delay and test. These time epochs are identical to those used for the analysis of data
collected from the PFC during our previous studies (Freedman et al., 2001). Henée, the results
from the PFC and IT cortex can be directly compared. Neuronal activity during the baseline
period was calculated over the 500 ms of fixation preceding sample presentation. Sample period
activity was calculated over an 800 ms epoch beginning 100 ms after sample onset to account for
the latency of IT neuronal responses. We included the first 300 ms following sample offset in the
calculation of sample evoked activity as some IT neuronal responses occurred several hundred
ms after stimulus onset and persisted several hundred ms after sample offset but not for the
remainder of the delay. For the analysis of delay period activity, we calculated the average firing
rate over an 800 ms epoch beginning 300 ms after sample offset. Analysis of neuronal responses
to the first choice stimulus (when the monkey must decide whether or not to make a behavioral
response) was restricted to a time window beginning 100 ms after its onset and ending 2 standard
deviations before the monkeys average reaction time during each recording session. This was
done in order to exclude any effects related to the execution of the motor response. We used data
from correctly executed trials only. There were, on average, 12 correct trials per sample stimulus
during neuronal recordings. As the monkeys performed at such a high rate of accuracy during
recordings (>90% correct) there were not sufficient numbers of error trials to allow a complete
analysis of neuronal activity during erroneous categorization.

To determine the reliability of category tuning, we employed a receiver-operator

characteristics (ROC) analysis (Green and Swets 1966; Tolhurst et al., 1983; Vogels and Orban,
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1990). The ROC analysis measures the degree of overlap between two distributions of values.
Given two distributions of values A and B, we start by plotting for each possible firing rate the
proportion of distribution A that exceeded this criterion versus the proportion of distribution B
that exceeded it. Integration across the curve returns the a single number for that comparison, the
ROC area (with a range of 0 to 1). ROC area values near 0.5 indicate large overlap between A
and B. Values of 0 or 1 indication that the two distributions are entirely non-overlapping. The
ROC analysis has several advantageous over mean and variance based statistics such as T-Tests
or ANOV As. First, it makes no assumptions about the two distributions, A and B, and thus
returns an unbiased estimation of overlap. Second, it can be interpreted as the performance of an
ideal observer in a two-way forced choice task; values of 0.5 indicate 50% correct classification
(guessing) while values of 0 or 1 indicate error-free classification. Third, it is independent of
neuronal firing rate and number of observations.

For some comparisons of category selectivity, we computed an index of categorical
tuning. We computed the average within category difference (WCD) and between category
difference (BCD) at equal distances across all morph lines that crossed the category boundary.
The WCD was defined by computing the absolute difference between the 100%-80% morphs and
80%-60% morphs for both categories and averaging these four values. The BCD was computed
simply by averaging the across-boundary differences between the 60% “cats” and 60% “dogs”.
By so doing, the WCD and BCD were computed over an equal morph distance of 20% and could

be directly compared. A category index was computed according to the following equation:

C =(BCD - WCD) / (BCD + WCD)
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The category index can have values ranging from —1 to 1. Positive values indicate a larger
difference between categories while negative values reflect larger differences within a category
than between categories. As the identical set of stimuli was used for the two and three category
tasks, both the two and three-category tuning indices could be applied to the neuronal data
obtained during both the two and three-category tasks.

Neuronal selectivity following onset of the test stimulus (during which the monkey must
decide whether or not to release the lever) was evaluated using a two-way ANOVA (factor 1:

trial type (match or non-match), factor 2: category of test stimulus).

RESULTS

The results from our study of the PFC have been previously presented in great detail
(Freedman et al., 2001). Therefore, only the results from new analyses of that data and those that

are crucial for comparisons with the IT cortex data will be described here.

Single neuron analysis

A total of 286 IT cortex neurons were recorded from the right hemisphere of one monkey
during performance of the two-category DMC task. Visual responsiveness was evaluated by
independently comparing sample and delay period spike-rates for all trials to that during baseline
fixation using two paired-sample T-Tests (evaluated at p <0.01). Based on this criterion,
200/286 (70%, 178 during the sample, 99 delay) of neurons responded significantly to the sample
stimuli.

Category selectivity during the sample and delay epochs was determined by performing

one-way ANOV As (independently for each epoch) with one level for each category (evaluated at
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p < 0.01) comparing the firing rate for “dog” trials to those for “cat” trials. This revealed that
nearly a quarter of all neurons (69/286, 24%, 60 and 15 during the sample and delay,
respectively) responded selectively to the two categories. Similar numbers of categorically tuned
neurons preferred “cats” (27/60 sample, 7/15 delay) as “dogs™ (33/60 sample, 8/15 delay). Two
examples of category selective neurons are shown in figure 6a and 6b, respectively, both of
which are category selective at p<0.001.

Stimulus selectivity was determined for all neurons with a one-way ANOV A with 54
levels (evaluated at p < 0.01), one level for each unique sample stimulus. Based on this criterion,
113/286 (40%) neurons were stimulus selective during either the sample or delay (110 sample,
11 delay). Approximately half of stimulus selective neurons were also category selective
(n=57/113, 52 sample, 3 delay).

To further quantify the degree of neuronal category tuning, we employed a receiver-
operator characteristics (ROC) analysis that computed the degree to which the values from two
distributions were overlapping. This analysis returned a value indicating the accuracy with which
an ideal observer could classify values from the two distributions. Completely overlapped
distributions would yield ROC values of 0.5 (values from the two distributions cannot be reliably
discriminated from one another) while completely non-overlapping distributions would give
ROC values of 1.0 (values can be discriminated from one another with 100% accuracy). Across
the population of stimulus selective neurons, the mean delay period “cat” vs. “dog” ROC value
was 0.54 (range: 0.50 to 0.65). The mean sample period ROC value was 0.57 (range: 0.50 to
0.72). Across the population of category selective neurons, the mean delay period ROC value
was 0.58 (range: 0.56 to 0.65). The mean sample period ROC value was 0.60 (range: 0.54 to

0.72). The same analysis applied to all neurons that were neither stimulus nor category selective

101



(p>0.1) reveals a mean ROC value of 0.52 (range: 0.50 to 0.55) during the sample and 0.52

(range: 0.50 to 0.55) during the delay.

Population analysis
Master Histogram

Figures 3a and 3b illustrate the average activity across all stimulus selective neurons
from IT and PFC, respectively (113 from ITC, 78 from PFC). Note that a neuronal response
occurred approximately 100 ms following stimulus onset across both the IT and PFC
populations. The level of delay period activity in IT returns to near that prior to stimulus onset.

By contrast, persistent elevated delay activity is evident in the PFC.

Category Index

As a strict measure of tuning across the category boundary, we computed a category
index that precisely measured each neuron’s firing rate difference both within and between
categories. The within class difference (WCD) was defined as a neuron’s firing rate difference
evoked by adjacent stimuli of the same category along a morph line (i.e. 80% and 60% “cats”)
averaged over all 9 morph lines that cross the category boundary. The between class difference
(BCD) was defined as a neuron’s firing rate difference between adjacent stimuli from different
categories (i.e. 60% “cat” and 60% “dog™), again averaged over all 9 morph lined that cross the
catégory boundary. (see methods) Category tuned neurons should exhibit large differences in
firing rate to stimuli from distinct categories (BCD) and small differences in firing rate for
stimuli from the same class (WCD). The index was computed for each neuron by dividing the
difference between BCD and WCD by their sum. Thus, the index can take values with a range of

-1 to 1. Positive values indicate larger differences between categories than within (i.e. category
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tuning) while negative values indicate smaller differences between category than within (i.e. no
tuning to the category boundary).

The mean category index across the population of 60 category selective neurons during
the sample period was 0.05, and significantly greater than 0 (one tailed T-Test, p<0.001). Though
there were few category selective neurons during the delay period (n=15), we observed a mean
category index of 0.07 (one tailed T-Test, p<0.05). By contrast with our results from the PFC, we
did not observe significant category tuning across the population of stimulus selective neurons
(IT, sample: 0.015 delay: 0.00). For comparison, across the population of PFC stimulus selective
neurons, category index values were significantly greater than zero during both time epochs
(PFC, sample: 0.08, delay: 0.14) as determined by a one-tailed T-Test (p<0.001). This suggests
that most PFC neurons that responded differentially between stimuli tended to convey
information about stimulus category. In contrast, the finding that the population of stimulus
selective IT neurons did not show significant category tuning suggests that, while some stimulus
selective neurons carried categorical information, many others responded to specific stimuli
independent of their category-membership. In the PFC, category index values were significantly
greater across the population of stimulus selective neurons during the delay than during the
sample period as shown by a one tailed T-Test at p<0.05. We observed a similar, yet non-
significant (p=0.35), trend across IT category selective neurons; delay period category index
values were greater than during the sample (0.07 for the delay vs. 0.05 in the sample).

To compare the category tuning between IT and the PFC, we computed the breadth of
category tuning. This index gave a measure of the degree of overlap between the neuronal
responses to two sets of stimuli by computing the proportion of sample stimuli from the preferred
category (the category which, on average, evoked the greater response) that evoked a greater

response than the best stimulus from the non-preferred category. Index values of 0 would
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indicate that no stimulus from the preferred category evoked a larger response than the best
stimulus from the non-preferred category. An index of 1 would indicate that all sample stimuli
from the preferred class evoked larger responses than the best stimulus from the non-preferred
category. Hence, a neuron that responds strongly to every dog stimulus and weakly to every cat
stimulus will give a breadth of tuning index of 1.0. This analysis revealed that the population of
PFC sample period category selective neurons had a significantly greater breadth of tuning (PFC
mean = 0.23; range: 0.05 to 0.76) than did those from IT (IT mean = 0.16; range: 0.05 to 0.57) at
p <0.01 according to a two-tailed Wilcoxon rank-sum test. A similar pattern of results was found
during the delay where PFC index values (PFC mean = 0.24; range: 0.0 to 1.0) were significantly
greater than those from IT (IT mean = 0.15; range: 0.05 to 0.33) according to a one-tailed T-Test

at p<0.05.

Latency of Selectivity

The latency of category selectivity for both the IT cortex and PFC was determined using
a sliding version of the category index described above. Category index values were computed
using a 250 ms time window that was incremented in 25 ms steps from 150 ms before sample
onset to 50 ms before sample stimulus offset (29 steps). This analysis was applied to all neurons
that were found to be category selective at p < 0.001 during a 600 ms epoch beginning 100 ms
after sample onset. The normalized results from IT and PFC (shown individually for each
monkey in figure 7) clearly show that the onset of category selectivity in IT preceded that in the
PFC. The time at which the maximum value of the category index occurred was computed for
these groups of neurons in both IT and PFC. These values, shown in figured 8a and 8b, and
demonstrate a statistically significant difference in selectivity latency between the two

populations of neurons (Wilcoxon rank-sum test, p<0.01).
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Decision-related effects

During the presentation of the first test stimulus following the memory delay, the
monkeys decided whether or not that stimulus matched the category of the previously presented
sample stimulus and whether or not to make a motor response (lever-release). During this phase
of the task, we found that the activity from 21% of IT neurons (61/286) differentiated between
the four types of trials (“cat”-match, “cat”-non-match, “dog”-match and “dog”-non-match) as
evaluated by a one-way ANOVA at p<0.01. We then performed a two-way ANOVA (factor 1:
match or non-match trial type, factor 2: category of test stimulus) on these 61 neurons evaluated
at p<0.01 to better determine their tuning properties. According to this criterion, the vast
majority of neurons (85% or 52/61) reflected the category of the test-stimulus (that was currently
in view). An example of such a neuron is shown in figure 9. Very few neurons (5% or 3/61)
reflected whether the category of the test stimulus matched that of the sample. The activity of
approximately 21% (13/61) of neurons was memory-related in that it reflected the category of the
previously presented sample stimulus.

These results contrast sharply with our previous results from the PFC and suggest that IT
and PFC play complementary roles in solving the behavioral task. While only 5% of test-period
selective IT neurons reflected whether or not the category of the test stimulus matched the
category of the sample, this distinction was observed in nearly half of PFC neurons (47%, 37/78).
Furthermore, while most test-period selective IT neurons (85%) reflected the category of the test
stimulus, this was observed in only 32% (25/78) of test-period selective PFC cells.
Comparatively more neurons in the PFC (35/78, 45%) had memory-related test-period activity
that reflected the category of the previously presented sample stimulus than did those in the ITC

(21%). This pattern of results suggests that IT neurons are more involved in representing
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information about the stimulus currently in view while PFC may be more involved in
maintaining relevant information about previously presented stimuli in short term memory and

using that representation in the context of the behavioral task to make appropriate responses.

DISCUSSION

The purpose of this study was to examine the properties of IT neurons during visual
categorization and to compare these findings with those of our previous study of the PFC. We
report that, as in the PFC, the activity of visual neurons in IT can reflect the category of visual
stimuli during the performance of a category-matching task. There were several notable
differences in the pattern of results from IT as compared with those from PFC. Firstly, whereas
robust category tuning was detected across the entire population of stimulus selective PFC
neurons, this was not the case in the IT; a subset of stimulus selective IT neurons was category-
tuned while others responded selectively to individual stimuli but were not explicitly tuned
across the category boundary. This suggests that while some IT neurons carried signals about
stimulus category, others may have been tuned to the physical shape of the stimuli and could
have represented information useful for stimulus-specific identification. A second difference
between IT and PFC was found in the time-course of category tuning. Across the population of
category-tuned neurons, category-tuning following sample stimulus onset occurred earlier in IT
than PFC. Furthermore, IT category tuning was mostly restricted to the sample period and rarely
persisted into the delay. By contrast, comparatively more PFC neurons exhibited category
selective activity that persisted throughout the memory delay. A third difference was found
during the decision phase of the task during which the monkey decided whether a test stimulus

matched a previously presented sample. During this task phase, the vast majority of selective IT
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neurons reflected the category of the test stimulus (that was currently visible to the monkey) and
very few neurons reflected the monkey’s decision about whether that stimulus matched the prior
sample stimulus. In the PFC however, many neurons reflected the monkey’s decision about
whether the test stimulus matched the sample while fewer neurons reflected the category of the
test stimulus currently in view. This suggests that while IT neurons’ activity primarily
represented the stimuli that were currently in view, activity in the PFC reflected the conjunctions
of signals about the sample and test stimuli that were necessary for successfully solving the task.

Previous studies that have examined the properties of neurons during categorization did
not use parametrically controlled stimuli and utilized behavioral tasks that required subjects to
report whether a given stimulus (one of many photographs of objects or scenes) was a member of
the target class or not. Using this design, stimuli from the same category (i.e. trees) were, on
average, more similar to members of their own category (other trees) than to the distrator stimuli
(i.e. animals, faces, cars... etc). As a result, it is unclear whether the observed category tuning in
those studies was a result of categorical learning or rather that stimulus similarity was greater
within a category than between categories. By training our subjects to learn two distinct well
defined categories for which the visual similarity of stimuli was parametrically controlled, the
effect of category learning on neuronal stimulus representations could be more precisely
evaluated.

These results fit in well with those of other neurophysiological studies which show that
the shape tuning of IT and PFC neurons is modified by visual experience and may underlie
improvements in perceptual tasks. In a study by Logothetis et al., (1995), monkeys were trained
to recognize static images of complex 3D wireframe stimuli from multiple viewpoints. Once the
monkeys had learned to recognize objects from a wide range of viewpoints, neuronal recordings

from the IT cortex revealed a population of neurons that had become view-tuned; these neurons
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were tuned to one or more viewpoints of an object that typically corresponded with the
viewpoints for which the monkeys had been extensively trained. A smaller subset of neurons
displayed view-invariant object-tuning in that they responded robustly to all viewpoints of a
preferred object but not to other stimuli. In a similar study by Booth and Rolis (1998), monkeys
were familiarized with a number of real plastic objects. Recordings from the ITC revealed a
small population of view-invariant neurons that responded to static views of these familiar
objects from multiple viewpoints suggesting, again, that visual experience could result in an
enhanced stimulus representation. In a study of object representations in the PFC, Rainer et al.,
(2000) trained monkeys to recognize familiar and novel stimuli that had been degraded by the
addition of varying amounts of noise. It was found that, though novel stimuli activated a larger
proportion of neurons, the neuronal responses to familiar stimuli were more tightly tuned and
robust to stimulus degradation.

Taken together, the results of these previous studies from other researchers suggest that
the neuronal basis of learning to recognize complex stimuli may be in the development of
neurons robustly tuned to specific objects and with enhanced response invariance to image
transformations such as rotation and degradation. Our results are compatible with these results
and with theoretical models of object recognition and categorization (Riesenhuber and Poggio,
2000). Learning to recognize a stimulus despite changes in viewpoint, or that a group of visually
dissimilar stimuli are of the same category, may be accomplished by a neuronal representation
that is invariant across the relevant dimension: viewpoint in the case of rotated stimuli or
category-member in the case of category recognition. Hence, category learning may, in fact,
cause neurons to become category-tuned, responding with invariance—not to transformations of

individual stimuli—but, rather, to the members of a given category.
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Figure Legends

Figure 1 Task design and behavioral performance. The trial began with central fixation (500
ms.) followed by a one second delay and then by a test stimulus (600 ms.). Monkeys had to
release a lever to the match with the 600 ms. of its presentation to obtain a fruit juice reward. If
the test was a non-match, there was another delay interval (600 ms) followed by a presentation of
a match, which required a lever release. Monkeys did not need to remember anything over the
second delay interval, it was included to insure a behavioral response on each trial. There were

an equal number of match and non-match trials and they were randomly interleaved.

Figure 2 Organization of stimulus set. a, The 6 prototype images and 12 morph lines. The
sample stimulus set was composed of 54 unique images: 6 prototypes (as shown), 4 images
evenly placed (20%, 40%, 60%, 80%) along the 9 lines connecting each ‘cat’ to each ‘dog’
prototype, and 2 images (at 40% and 60%) along each of the 6 lines between prototypes of the
same category (with respect to the 2-class boundary). b, An example of the morphs generated

between the C1 and D1 prototypes.
Figure 3 Average histogram of ITC and PFC neuronal activity. a. The average activity is shown
for the population of 113 stimulus selective ITC neurons. b. The average histogram across 78

stimulus selective PFC neurons.

Figure 4 Single neuron examples (two-category task). a. The average activity of a single

category selective neuron shows greater activity to DOG stimuli at all morph levels during the
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sample period. Each histogram trace represents the neuron’s average activity to each of the six
morph levels. b. The average activity of a single category selective neuron that shows greater

activity to CAT stimuli at all morph levels during the sample period.

Figure 5 Distribution of ITC category index values. The index can take values ranging from —1
to 1. Positive values indicate larger differences in neuronal firing between categories than within
category. Negative values indicate larger differences within category than between categories. a.
The distribution of sample-period category index values across the population of 110 neurons
that showed stimulus selective sample stimulus evoked activity does not show a significant shift
towards positive values (that would have indicated a categorically tuned population). b.
Significant category tuning is observed across the populations of 60 and 15 category selective

neurons in the sample (b) and delay (c), respectively.

Figure 6 Breadth of category tuning in the ITC and PFC. The breadth, or magnitude, of category
tuning was computed across the population of category selective neurons for both the ITC (a) and
PFC (b) during the sample period. A significantly larger breadth of tuning is observed in the

PFC, indicating an enhanced representation of stimulus category there than in the ITC.

Figure 7 Time course of category selectivity in the ITC and PFC. CAT vs. DOG category
selectivity across the population of category selective (p<0.001) neurons was computed for the
ITC and PFC. a. Normalized values of the sliding category index are shown for 45 ITC neurons
from monkey A (blue), 10 PFC neurons from monkey A, and 31 PFC neurons from monkey B.
Increased category index values in the ITC occurred with a significantly shorter latency

following sample onset than in the PFC.
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Figure 8 Histograms of PFC and ITC category selectivity latency. Figures a and b show
histograms of the time at which each ITC (a) and PFC (b) neuron reaches its maximum category

index value.

Figure 9 Single neuron example of decision-phase selectivity. In this peri-stimulus time
histograms, neuronal activity is grouped according to the category of the test stimulus and
whether or not the category of the test stimulus matched the category of the sample stimulus
(four groups: CAT-match, DOG-match, CAT-non-match, and DOG-non-match). The single
neuron in figure 8a differentiates between the two categories during both the sample and test
period. Following onset of either the sample or test stimuli, this neuron responds preferentially to

stimuli from the ‘cat’ category.

Table 1 Incidence of test-phase selectivity in the PFC and ITC. Note that in the ITC, the majority
of selective neurons reflected the category of the test stimulus. The population of PFC test period
selective neurons was more heterogeneous; substantial proportions of the test-period selective
neurons represented the category of the sample stimulus, test stimulus or whether or not the test

stimulus was the same category as the sample.
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Table 1

ITC PFC
# selective # selective
neurons neurons
Total selective |61 Total selective |78
Match/Nmatch |3/61 (5%) Match/Nmatch |37/78 (47%)
Test category  [52/61 (85%) Test category  |25/78 (32%)
Sample category|13/61 (21%) Sample category [35/78 (45%)

Main effect +
interaction

7/61  (11%)

Main effect +
interaction

16/78 (21%)
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DISCUSSION AND CONCLUSIONS

Results summary

In the first experiment, examining the responses of prefrontal cortex neurons during
visual categorization, we found two primary results. Firstly, many prefrontal neurons reflected
the category membership of stimuli—neuronal activity made sharp distinctions between visually
similar stimuli from different categories and, likewise, responded similarly to physically different
stimuli that belonged to the same category. Tuning to the two categories was evident both while
the sample stimulus was in view and while the monkey maintained information about the sample
stimulus in short term memory. Secondly, many prefrontal cortex neurons reflected the monkeys’
decisions about whether a test stimulus matched the category of a previously presented sample
stimulus.

The second experiment was designed to further test that the categorical tuning observed
in the first experiment was a product of learning. After a monkey was trained to reclassify the
same stimuli from the first experiment into three new categories, we no longer found neurons
that were tuned to the old two-categories. Rather, the population showed tuning to the newly-
learned three-categories during both the sample and memory-delay periods suggesting that the
category tuning observed in the first experiment was most likely a result of learning and could
not be explained by the inherent visual properties of the stimuli.

The third experiment examined the properties of inferior temporal cortex neurons during
the same categorization paradigm used for the first experiment. This allowed for a direct
comparison of neuronal properties in the prefrontal and inferior temporal cortices, yielding three
primary results. Firstly, as in the prefrontal cortex, many temporal lobe neurons reflected

stimulus category. However, there was a greater proportion of temporal lobe neurons that were
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only stimulus selective—their activity conveyed information about stimulus-identity and not
category. Secondly, following the onset of a stimulus, category tuning was apparent with a
shorter latency in the temporal lobe as compared with the prefrontal cortex. Furthermore,
comparatively fewer temporal lobe neurons exhibited category tuning that persisted into the
memory delay. Thirdly, whereas many prefrontal cortex neurons reflected the monkeys’
decisions about whether a test stimulus matched a previously presented sample stimulus, the vast
majority of temporal lobe neurons reflected the category of the test-stimulus that was currently in
view and did not carry a representation of the monkeys’ upcoming motor response.

Taken together, these results suggest that, through the process of learning, neurons in the
prefrontal and inferior temporal cortex can convey information about the category of visual
stimuli. The differences in neuronal responses between the ITC and PFC support the hypothesis
that the temporal lobe cortex is primarily involved in the rapid processing of visual information
while the prefrontal cortex underlies high-level cognitive functions related to the executive

control of behavior.

Open questions for further research

The results from these experiments represent only the first step in understanding the
neuronal mechanisms that form the basis of categorical perception and learning. As is true for
most promising lines of research, these studies have provided several new insights but at least as
many new questions for further investigation. To address these questions, we have already begun
to think about the next generation of experiments to further investigate the mechanisms of

category learning.
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Neuronal representations of multiple category schemes

An obvious question is raised by the second (three-category) experiment. Namely, did
training the monkey to reclassify the stimuli (that had been grouped into two categories) into
three new categories cause the population of two-category neurons to become tuned to the three
new categories or were the three new categories represented by a separate population of neurons?
The finding that very few (if any) neurons reflected the old two-categories while the monkey
performed the three-category task can be taken as weak evidence suggesting that, in the
prefrontal cortex, multiple category schemes may be encoded by the same population of neurons.
Subsequent behavioral testing of that monkey revealed that it was quickly able to relearn the two-
category task with a small amount of practice after the three-category recordings were complete.
Therefore, the monkey still maintained some long-term knowledge about the old categories
though they were not reflected in the prefrontal cortex when the three new categories were
currently relevant. Where, then, was this information about the old two-categories represented?

One possibility is that different category schemes may be stored by separate populations
of inferior temporal cortex neurons and retrieved, when needed, by the prefrontal cortex. In this
model, separate populations of inferior temporal neurons, each dedicated to a specific category
scheme, would arise through learning the two and three-category tasks. The prefrontal cortex is
known to be critical for the ability to switch between one task and another and its neurons show
task related modulation concomitant with this capacity. Hence, a single population of task-related
prefrontal cortex neurons might select their inputs from either the two or three-category
populations of temporal lobe neurons depending on the task that was currently in effect. In fact,
our results provide preliminary support for this model; Categorical information was expressed
earlier in the inferior temporal than in prefrontal cortex. Furthermore, a greater proportion of

stimulus selective prefrontal neurons were category-selective and showed sharper category-
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tuning than did those in the inferior temporal cortex; while some inferior temporal neurons
carried categorical information, others carried stimulus specific information independent of
category. That the majority of stimulus selective prefrontal cortex neurons were category
selective suggests that they may have been driven primarily by inputs from category selective
inferior temporal neurons.

In theory, this hypothesis could be investigated by recording simultaneously from a large
group of neurons in both the prefrontal and inferior temporal cortices for numerous consecutive
days while a monkey learned a new category scheme. This would reveal whether individual
neurons changed their stimulus tuning properties during learning or whether new groups of
neurons came to encode new categories. Furthermore, neuronal correlations with the monkeys’
behavioral improvements would give great insights into the precise changes in
electrophysiological activity that accompany perceptual leaming. Unfortunately, such an
experiment is not currently feasible due to the technical limitations of chronic extra-cellular
recordings. Once it is possible to reliably isolate and hold individual neurons for extended
periods of time, great strides will be made in understanding the changes in neuronal activity that
accompany long-term learning.

As a technically feasible alternative, we propose to teach monkeys both the two and
three-category tasks simultaneously and, furthermore, to flexibly switch between the two tasks
within a single recording session. Recordings from the prefrontal and inferior temporal cortices
while monkeys switch between one categorization task and another could test the above
hypotheses: Firstly, whether different category schemes were indeed encoded by separate
populations of inferior temporal cortex neurons and, secondly, whether the tuning of individual
prefrontal cortex neurons changed flexibly to reflect the categories that were currently relevant

for solving the task.
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Common Neuronal Mechanisms for Categorization and Identification

Neurons that are perfectly category-tuned, that respond identically to all members of a
category and not to stimuli from other classes, make the task of classifying stimuli extremely
easy—they convey all the information need to make a categorical judgment. However, this seems
to be a computationally expensive solution as these neurons would be good for nothing else
besides categorizing their preferred stimuli. If a task required specific identification of individual
category members, these neurons would carry no useful information. Conversely, neurons tuned
exclusively to single stimuli, or specific views of single stimuli, make simple the task of stimulus
specific identification but give rise to the ‘grandmother cell’ dilemma: the brain is not big
enough to contain a neuron specifically tuned to every stimulus that we can recognize.
Furthermore, neurons with such specific tuning make the task of recognizing stimuli despite
various transformations (i.e. changes in rotation, illumination or scale) very difficult. How then
does the brain arrive at such a fine balance between specificity and invariance? The category
tuning that we have observed in the prefrontal and inferior temporal cortices was, save for a few
outstanding examples, far from perfect. Though there was a sharp distinction between categories
In many neurons, some information was often conveyed about individual stimuli within a
category as well. In principal then, the same neurons could be used for both categorization and
identification; reliable information about the category and identity of a stimulus could be
conveyed by a population of imperfectly tuned category selective neurons.

The neuronal mechanisms underlying categorization and identification could be
simultaneously investigated by training monkeys to alternately categorize and identify the same
set of stimuli by during a single recording session. Neuronal recordings while monkeys

performed the two distinct tasks would indicate whether the same population of neurons was
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active during both tasks and could reveal whether their stimulus tuning properties changed
according to the perceptual demands of the task. One possibility, commensurate with the above
hypothesis, is that the same neurons would be active during both tasks and show similar tuning
properties. This would suggest that categorization and identification can be served by the same
neuronal mechanisms. Alternatively, different populations of neurons, each with tuning
properties specifically suited to their respective tasks, could alternately become active as the
monkey switched from one task to the other. This would suggest that learning to categorize and
identify stimuli is served by distinct neuronal populations. A third possibility is that the same
neurons may be active during both categorization and identification but that their response
properties would change, for example, from broad category-tuning to sharper stimulus-specific
tuning when the monkey switched from categorization to identification, respectively. This result
would suggest that neuronal stimulus tuning, though acquired through learning, can be modified
rapidly and dynamically according to the current perceptual demands and, furthermore, that
single stimulus-selective neurons are likely involved in encoding multiple tasks or different
category-groupings of stimuli. Any differences observed in the pattern results from different
brain areas would, once again, further dissociate the respective roles that they play in solving

complex perceptual tasks.
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Concluding remarks

The results of the studies presented here suggest that learning new perceptual categories
can cause neurons in the inferior temporal and prefrontal cortices to become categorically tuned.
While monkeys categorized visual stimuli into previously learned classes, neurons responded
more similarly to stimuli from the same category and make sharp distinctions between stimuli
from different categories. Furthermore, our results suggest that the prefrontal and inferior
temporal cortex may play different, though complementary roles, in visually guided behavior.
While the inferior temporal cortex seemed to be primarily involved in the rapid analysis of visual
stimuli currently in view, responses of neurons in the prefrontal cortex appeared more suited for
using that highly processed visual information to guide behavior in the context of the currently

relevant task.
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