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Abstract

The brain interprets ambiguous sensory information faster and more reliably than modern
computers, using neurons that are slower and less reliable than logic gates. But Bayesian
inference, which is at the heart of many models for sensory information processing and cog-
nition, as well as many machine intelligence systems, appears computationally challenging,
even given modern transistor speeds and energy budgets. The computational principles and
structures needed to narrow this gap are unknown. Here I show how to build fast Bayesian
computing machines using intentionally stochastic, digital parts, narrowing this efficiency
gap by multiple orders of magnitude.

By connecting stochastic digital components according to simple mathematical rules,
it is possible to rapidly, reliably and accurately solve many Bayesian inference problems
using massively parallel, low precision circuits. I show that our circuits can solve problems
of depth and motion perception, perceptual learning and causal reasoning via inference
over 10,000+ latent variables in real time - a 1,000x speed advantage over commodity
microprocessors - by exploiting stochasticity.

I will show how this natively stochastic approach follows naturally from the probability
algebra, giving rise to easy-to-understand rules for abstraction and composition. I have
developed a compiler that automatically generate circuits for a wide variety of problems
fixed-structure problems. I then present stochastic computing architectures for models that
are viable even when constrained by silicon area and dynamic creation and destruction
of random variables. These results thus expose a new role for randomness and Bayesian
inference in the engineering and reverse-engineering of computing machines.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor of Computational Cognitive Science
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Chapter 1

Introduction

We live in a world of uncertainty, in which intelligent agents expend vast computational

resources to understand, predict, and exploit their surroundings. We've long attempted

to engineer computing systems that can accomplish the tasks that a four-year-old human

excels at, and yet even in 2013 this dream still feels far off.
When IBM's question-and-answer system, Watson, successfully defeated the world's

best Jeopardy players (Ferrucci et al. 2010), Watson was given the questions as ASCII

text. Even after spending $100 million, engineers at IBM were still unwilling to make their

project dependent on voice recognition technology. Why are low-level perceptual tasks still

so difficult for our computing systems?

1.1 Gordon Moore's Brain

Even with the relentless pursuit of Moore's law (G. E. Moore 1965), computing systems still

come up short solving this class of perceptual problems. Yet the brain of Gordon Moore

still, after 84 years, performs these tasks effortlessly using approximately 20 watts. The

difference is staggering. Neural systems are massively parallel - the human brain has 1012

neurons with on average 1000 connections between them (Kandel, Schwartz, and Jessell

2000). Even our best multi-core GPUs today have at most 2688 cores (Tesla Kepler GPU

Accelerators 2102). Neural systems are incredibly fault-tolerant, as anyone who has ever

had a concussion or imbibed too much alcohol can attest. They are incredibly stochastic,
and fundamentally slow - interneuron communication is limited to roughly 1 kbps. And

yet Gordon Moore could understand this sentence spoken aloud, and Watson can't.

As neuroscientists, the question is, how do neurons in a brain do what supercomputers

cannot? As machine learning researchers, how can we make those supercomputers do those

tasks? And as computer architects, are there fundamentally better ways of building our

computing machines to accomplish these goals?

1.2 The Impedance Mismatch

Stochastic algorithms are among the best-known solutions to many problems of optimiza-

tion, estimation, and inference. Approximate inference methods based on drawing samples

from probability distributions have impacted every field of applied mathematics (Diaconis2008
). But even today, we run these broad stochastic algorithms on deterministic computing

machines designed to evaluate deterministic functions, not sample from distributions.
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On the hardware side, this determinism comes at a price - in terms of the millions of
device-physicist man-years, the cost of new fabrication facilities, and the resulting yield
problems. Long before we reach the quantum regime, classical silicon is quite stochastic
(Shepard and Narayanan 1996). The smallest features in a contemporary 22nm process
are only 50 silicon atoms across. And the view of "noise as the enemy" is taught at the
youngest levels - undergrads learn about Johnson noise in resistive elements and treat it as
something to be eliminated at all costs.

But what if there was a better way? What if we could eliminate the impedance mismatch
between this rich class of stochastic algorithms and the underlying stochasticity of the
substrates? Could we take inspiration from our neural systems, and build fundamentally
stochastic circuits?

This thesis argues that there may be a better way - that by embracing, not mitigating,
stochasticity as a design primitive, we can build machines that are fundamentally more
brain-like, and that close the efficiency gap between neural and man-made computation.The
secret lies in recognizing that the rules of probability, long known to be a generalization
of traditional Boolean algebra, can guide the construction of these stochastic systems the
same way Boolean algebra has for deterministic, digital systems.

We can go further - while computing systems are modeled formally on finite state ma-
chines evolving in time, computational statistics (Metropolis et al. 1953) has long recognized
that Markov chains - stochastic state machines - can solve many of the most difficult chal-
lenges in computing. We will show that by taking this stochastic architecture discipline
seriously and focusing on the construction of time-evolving Markov chains, we can further
exploit parallelism and low bft precision to solve many problems of interest in machine
learning.

1.2.1 Similar Approaches and where they are today

Engineers have been trying to build brain-like hardware since the 1980s (Lyon and Mead
1988). Neuromorphic approaches have spawned an entire cottage industry of engineers,
computational neuroscientists, and ASIC designers building more brain-like computing sys-
tems. Yet, these systems never seem to have caught on, in spite of 30 years of work. We
will review some of these efforts to build "neurons" in silicon, ranging from highly-abstract
integrate-and-fire units to more biologically-plausible multicompartmental units. Yet none
of these have had the impact that simple digital signal processors have achieved, when the
latter simply offer hardware-based convolution and zero-overhead indexing (a far simpler
engineering feat!).

We argue this lack of adoption is because these systems are fundamentally difficult to
engineer with. They lack the sound engineering rules that we use effortlessly in all other
areas of our computing stack. They are difficult to abstract, and they are difficult to glue
together. Here we argue that the probability algebra provides such a set of engineering
principles.

We are not talking about ways to build deterministic systems out of fundamentally
stochastic, unreliable parts. While von Neumann explored this extensively at the circuit
level in the middle part of the 20th century (Neumann 1956), his goal was to still make
perfectly reliable systems with probabilistic version of finite automata.

We are not talking simply about accelerating random number generation. While there
are many security applications that depend on cryptographically-secure sources of entropy,
accelerators for this domain have long existed. Indeed, even Intel's latest Ivy Bridge ar-
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chitecture has dedicated hardware to produce cryptographically-strong random bitstreams

(Taylor and Cox 2011).
And we are not simply seeking to accelerate a class of computation by hardware imple-

mentation. Various attempts have been made in the past to accelerate essentially determin-

istic algorithms for probabilistic inference, both using reconfigurable digital hardware (Lin,
Lebedev, and Wawrzynek 2010) as well as silicon-level analog hardware (Vigoda 2003).

Instead we suggest that a transition towards a fundamentally more probabilistic model
of computation, with stochasticity at the core, will let us reduce this impedance mismatch.

1.3 Organization of this thesis

The audience for this thesis is diverse. We hope electrical engineers and computer architects

will find stochastic circuits to be a useful, coherent engineering framework for building more
interesting machines. We hope machine learning researchers and computational statisticians
will start to think how their data and inference challenges can be solved at the architectural
level. And we hope those of us seeking to better understand the workings of actual neural
systems will take the role of stochasticity in computation to heart.

This diversity in audience drives our organization. David Marr (David Marr 1982)
suggested that any attempt to understand the operation of complex neural systems should
begin by analyzing the system at three complementary levels:

1. The Computational Level : What are the functions that this system is trying to
achieve?

2. The Algorithmic Level : What are the computational steps this system takes to
achieve the computational challenges?

3. The Hardware Level: What are physical neural, biological, and chemical substrates
on which this computation occurs?

To computer architects, this decomposition feels natural, and thus we attempt to orga-
nize the individual chapters along similar lines.

1. Computational Level : The inspiring computational challenge, from both cognitive
and machine-learning perspectives.

2. Probabilistic Level : The underlying probabilistic model or model class we're using to
address the computational challenge

3. Architectural Level : The ways that this probabilistic, stochastic approach impacts
existing assumptions about circuit design and computer architecture

Chapter 2 reviews the basics of probability, Markov chains, and techniques for sampling
from distributions. Exact sampling is contrasted with the use of the ergodic distributions
of Markov chains, termed Markov chain Monte Carlo (MCMC), for drawing samples from
intractable distributions. While a reader with a strong background in probability might
be able to skip this section, importance is placed on several concepts (including the role
of conditional independence). Computer architects wanting a deeper understanding may
find the references included helpful. A brief explanation is given about the parameters and
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resources present in field-programmable gate arrays (FPGAs), on which we have prototyped
all of our hardware.

In chapter 3, we will present the fundamental stochastic computing primitives and design
principles that let us build inferential systems out of intentionally stochastic parts. By
viewing the rules of probability through a lens analogous to Shannon's seminal treatment
of the Boolean algebra (Shannon 1940), we can build systems that sample from discrete
probability distributions. These systems give ample opportunities to exploit parallelism,
low-bit-precision, and stochasticity in the underlying media.

We then turn to the problem of causal reasoning and inference (chapter 4), showing how
we can build systems for inductive reasoning (Bayes networks) by using these stochastic cir-
cuits. Again taking a page from Shannon, we will present a compiler that will automatically
compile any given discrete-state factor graph down to one of these circuits, and then show
the functioning of these circuits on problems of medical diagnosis.

Vision, especially low-level vision, has been a topic of interest to the machine learning
and artificial intelligence communities for years. In chapter 5, we show how we can combine
stochastic and deterministic components to "virtualize" portions of the circuit, allowing us
to solve much larger models than before. We explore the tradeoffs between space-parallel
design and runtime, which enable the design of a stochastic video processor. We then use
the video processor to solve stereo vision and optical flow problems in real-time.

Rational models of cognition have been proposed for explaining how animals acquire
categorical knowledge. Without explicit training, we can understand the categories present
in data, instinctively grouping objects like hand-written digits. In chapter 6, we build a
system capable of category learning with a potentially unbounded number of categories, and
use it in a perceptual clustering task. Whereas previous probabilistic models required know-
ing the number of random variables at the outset, the stochastic designs here are capable
of much more dynamic behavior, creating new random variables as the data necessitate.

We conclude in chapter 7 by examining the future directions for building inductive,
probabilistic systems on stochastic substrates. There is a rich universe of theory wait-
ing to be formalized and a wide variety of novel substrates (DNA-based, spin-based, and
more) waiting to be explored. The Markov chains we've built represent only a subset of
known MCMC techniques for performing inference, many of which have direct architectural
analogs.

Stochasticity is a fundamental fact of all physical systems, even when we use them for
computation. Probabilistic inference is the ultimate goal of many neural and cognitive
systems. We hope this thesis shows how, by starting to combine the two at the lowest
levels, we can make progress on understanding, emulating, and going beyond what evolution
accomplishes in a mere 20 watts.
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Chapter 2

Probabilistic Modeling, Markov
Chains, and Hardware

The world is stochastic, leaving us awash in uncertainty. Every day, we are required to find
meaning in ambiguous, noisy, and incomplete data, both in the quantitative and qualitative

aspects of our lives.
Here we review the universal formalism for working with this uncertainty, probability

theory. We discuss how this formalism is used to model and make predictions about the
world. We then turn to the task of performing inference - drawing conclusions from data
modeled probabilistically, as well as the role of sampling from probability distributions, and

how sampling enables us to build systems for inference
We then review the basics of computer architecture design using field-programmable

gate arrays, and the various resource tradeoffs involved. Building hardware systems, espe-
cially for probabilistic inference, provides a tremendous amount of flexibility, and a basic

understanding of FPGA resource utilization will help evaluate those tradeoffs.

2.1 Probability

Probabilistic systems are now staple of undergraduate engineering curricula. Here we review

the key concepts and terminology that are often overlooked or first forgotten by undergrad-
uates. Nonetheless, this section is review, and can be skipped.

A question often omitted by by typical statistics and probabilistic curricula is : why

probability? Probability theory arises uniquely out of a reasonable set of requirements for
mathematically modeling uncertainty (Jaynes 2003), where we wish to represent degree of
uncertainty by real numbers, seek a qualitative correspondence with common sense, and
want the resulting system to posses mathematical consistency. That is to say, if we want a
mathematical formalism for uncertainty which matches our intuition, the laws of probability
are all there is.

2.1.1 Terminology

A probabilistic system consists of a state space Q of possible outcomes. For a die, the space
of outcomes are the faces of the die, Q {1,2,3, 4, 5,6}. A random variable X takes on

'What follows is a synthesis of (Liu 2008), (Kevin P Murphy 2012), and (Bishop 2006). The reader is
encouraged to seek out these excellent texts for a more thorough understanding
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a value xi in the state space Q with probability P(X = xi). Note we often speak of the
probability mass function p(x), where p(x) = P(X = x). Note p(x) E [0, 1], and the total
probability of all possible events must sum to one, ELiQ p(xi) = 1.

In the event that the state space Q is continuous (such as Q = R), the terminology
changes slightly, and p(x) is referred to the probability density function, and fQ p(x)dx = 1.
Note this density function can be greater than one, p(x) > 0. For the remainder of the text,
we will often simplify as much of this formalism as possible to focus on the main points,
often leaving the state space explicit and eliding the difference between a random variable
X and a particular value x taken by that random variable2

The joint distribution of two random variables can be written p(x, y), and is the prob-
ability P(X = x, Y = y). We say two random variables are independent if the outcome
of one does not inform us of the other; another way of expressing this is that their joint
distribution factors into the product of the two distributions

p(A, B) = p( A) -p(B) (2.1)

The marginal distribution x is the distribution p(x) when we integrate out the depen-
dence on y from the joint. That is,

p(x) = Jp(x, y) dy (2.2)

The conditional distribution p(xly) is the distribution of x when we know the value
of y. Note that any joint probability distribution can be expressed as the product of its
conditional and marginal:

p(x, y) = p(x y)p(y) (2.3)

Two variables are conditionally independent given a third if knowledge of the third, say
z, decouples the dependence between x and y. This can be expressed as

p(x,ylz) =p(xlz)p(ylz) (2.4)

This situation arises frequently in probabilistic modeling when z is the cause of both x
and y. If you know z, then knowing more information about x doesn't tell you anything
about y.

2.1.2 Bayes' Theorem

Bayes' theorem is perhaps the most talked-about and most misunderstood component of all
of probability theory. It should not have its own name, as it is simply the consequence of
the algebraic manipulation of probability distributions. But it is powerful - Bayes' rule can
be thought of as probabilistic inversion, telling us how to compute the posterior distribution
from the likelihood and the prior distributions.

When modeling probabilistic systems, we often have some set of hypotheses H and some
collection of data D, and we want to reason about the probable hypotheses given the data.
That is, we want to understand the posterior distribution, P(HID). The prior distribution

2 The field of theoretical probability is rich, diverse, and has deep connections to many aspects of prob-
abilistic modeling. Those interested in a formal treatment are highly encouraged to see chapter 2 and the
appendix of (Schervish 1996)
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on hypotheses, P(H), is how much we believe in each hypotheses before seeing the data.

The likelihood is our measurement model - how, given a particular hypothesis H, the data

D would look. We express this as a conditional probability distribution P(DIH).

Bayes theorem is simply:

P(H|D) =P(DH)P(H) (2.5)
P(D)

Note we have described in some sense a forward generative model, where we have some

beliefs about our hypotheses and we know how they give rise to data. Bayes' theorem let's

us go from our data D, and this generative model, to a distribution on possible causes

(hypotheses) of the data.
Note that the denominator is just a normalizing constant,

P(D) = P(DJH)P(H)dH

independent of any particular hypothesis. But this constant but requires us to inte-

grate/sum over all possible hypotheses. For complex probabilistic models, this is often

impossible. Dealing with this integral is one of the principle challenges of probabilistic

inference.
Note that once we have the posterior distribution, we can then run our model "forward"

- we can say "what's the probability of the next datapoint?" The posterior predictive

distribution is is the distribution on a new datapoint, given a series of existing observations

D. That is,

p(x*|D) = Jp(x*Ih)p(h|D) dh (2.6)

2.2 Probabilistic Modeling

Perhaps because they rarely venture outside, a canonical example model used by probablists

involves reasoning about why ones lawn is wet. Is the grass wet because the sprinkler was

on earlier during the day, or because it rained earlier during the day? And what does an

observation that it is cloudy out have to do with anything?
We will build a circuit to answer this question later (see section 4.4), but for now we

consider how to express the problem? An electrical engineer today who set out to build

a digital system by writing down pages of Boolean expressions would be considered quite

mad, yet unfortunately a great deal of probabilistic systems modeling begins with a lot of

symbolic math on paper.
Fortunately, the past two decades have seen an attempt to develop better formalisms

for expressing probabilistic models. Graphical models (Pearl 1988) attempted to express
complex conditional independence structure graphically, a sort of "probabilistic schematic"
of a problem. This in turn has lead to the rise of probabilistic programming languages -
domain specific languages for expressing rich probabilistic models. Increasingly, these prob-
abilistic programming languages also contain engines for performing probabilistic inference
in them (Milch et al. 2005; Goodman et al. 2008; Mccallum, Schultz, and Singh 2009).
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2.3 Inference

As Bayesians, we're often most interested in the posterior distribution, P(HID) - how
likely is a hypothesis, given the data? More generally, given data and model, we want
make inferences about various aspects of the model - hidden parameters, unobserved val-
ues, etc. In theory, Bayes' rule tells us the posterior, but often the denominator P(D) =

fH P(DjH)P(H) dH is intractable and renders the entire exercise, at first blush, impos-
sible. Sampling methods, both exact and approximate, are described below that offer an
incredible way around this problem.

2.3.1 Monte Carlo

Often we want to ask some question about a particular probability distribution p(x) like
"what is its average value?" or "what is the most likely value of x?". In the case of the
average value, or expectation, we want to compute

E[x] = xp(x) dx (2.7)

If we can draw m independent samples from the distribution p(x), we can approximate
E[x] by

1
E[x] = -(x1 + X2 + - + Xm) (2.8)

m

This is the basis of all Monte Carlo methods, and has the phenominal property that the
error of this approximation grows as O(m- 1/ 2 ), regardless of the dimensionality of x (Liui
2008).

2.3.2 Sampling

How do we obtain the samples xi needed to power the Monte Carlo machinery discussed
above? And as engineers, we should be concerned with the mechanisms of generating these
samples - their accuracy, their performance, and their complexity. We will refer to all
systems that generate samples from probability distribution as "samplers".

The simplest sampler is the classic fair coin. You can think of a fair coin as a physical
machine, a sampler constructed to give samples from the Bernoulli distribution

P(X)=( H p= 0 .5

T p 0.5

When you flip a fair coin a number of times, you are effectively generating samples from
the above probability distribution.

Other physical examples of samplers include fair and biased dice. In fact, it is often
trivial to sample from any probability distribution where we can explicitly enumerate the
probabilities associated with each outcome in the state space. Of course, this enumeration
approach does not work very well as the enumerable space grows large, or is infinite.

The prime mover

If you can draw samples from one distribution, you can often use that sampler to then
draw samples from a totally different, target distribution. Indeed, most of the sampling
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approaches we discuss in this work are built on other samplers, exploiting their controlled

stochasticity to sample from different target distributions. While we don't focus much on

this particular compositional aspect of sampling methodology, it is nonetheless incredibly

powerful.
But then where do the original random values come from - what is the prime sampler?

For all of the circuits we discuss, we assume the simplest digital source of randomness

possible : a random bit stream. This stream can be viewed as samples from a fair coin, and

is the root source of entropy for all our operations.

There are many ways to generate this randomness - computer scientists use a pseudo-

random approach, where we construct numerically-sensitive systems that evolve in time in

ways that look empirically quite random. For all the work described in this thesis, this

pseudorandomness is sufficient - higher quality randomness required for cryptography is

unnecessary.

2.3.3 Rejection Sampling

This chapter is not a detailed survey of all possible methods of generating random variables,
but we will highlight several classical approaches that we build on later in the text. Rejection

sampling is one such approach.

Say we have a sampler for one probability distribution, q(x), but wish to draw samples

from another distribution, p(x) with the same support. It often happens that we only know

p(x) up to a normalizing constant, that is we have p*(x)

p(x) = -p*(W (2.9)
Z

Von Neumann (Neumann 1951) showed that, if we can find a sampler that gives us

samples from the distribution q(x) where Mq(x) > p*(x) for some constant M, we can use

this method to draw samples from p(x) as follows:

" Draw a sample x' from q(x) and also u ~ Unif (0, 1)

" Let

r< q(2.10)

" If r < u then accept x' as an IID sample from p(x). Otherwise, repeat the procedure.

Rejection sampling says, in effect, if p(x) is under the curve of Mq(x), sample uniformly

under the area of Mq(x) and accept the values that are under the curve of p(x).

We adapt a proof from (Liu 2008) to show that this method works. If I is an indicator

function, where I = 1 when x' is accepted, then

P(I 1) P(I = I|X = x')q(x) dx = g(x) (2.11)P(I 1) lix Mq(x)(Xd M (.1

and so

p(xJI = 1) = q(x)/P(I 1) = p(x) (2.12)

Note that the closer Mq(x) is to p*(x), the closer r will be to 1 and the more likely the

draw x' will be accepted. It's also possible for this procedure to repeat virtually indefinitely

without ever producing accepting a sample.
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Figure 2-1: A Markov chain and its ergodic behavior. a.) The transition matrix for a
three-state Markov chain. b.) an example run of this markov chain, showing switching
between three states. c.) the empirical distribution on state values for the Markov chain
after 10,000 iterations.

2.4 Markov-Chain Monte Carlo

Rejection sampling is inefficient to the point of being useless in high-dimensional settings.
So what do we do when we want to sample from an unnormalized distribution which we
can evaluate analytically, p*(x), of the sort that often comes up in performing Bayesian
inference? Markov chain Monte Carlo (MCMC) tells us how to build a special type of
probabilistic model - a Markov chain - that will help us out. But before digging into
MCMC we must first review Markov Chains.

2.4.1 Markov Chains

Consider a sequence of random variables, Xo, Xi, ..- , Xr indexed by the time variable t.
Let X be defined on a finite state space x c 1. .. K. The sequence of random variables is a
Markov chain if the probability of xt+1 only depends on the value of xt

p(xt+1Ix1, x2, * ' - , Xt) = p(xt+Ilxt) (2.13)

As a Markov chain evolves in time, it will transition from one state to another. Note
that a Markov chain can quickly "forget" where it used to be. The distribution p(xt+ilxt)
can be viewed as a transition matrix or kernel, At:

At(x', x ) = p(xt+1 = x'lxt = x ) (2.14)

For the rest of this document we will only discuss homogeneous Markov chains whose
transition matrix At is the same for all t, and thus we will write simply as A.

If a Markov chain is irreducible and aperiodic, it will define a stationary distribution on
its state space. That is, after running the markov chain for a long time, when we examine
the history of visited states, we will get a probability distribution over p(x).

Continuous values

A Markov chain can also be defined over a continuous-valued state space, such as a random
walk in 2D space. Let the state variables xt = (xt, yt) with x E R, y E R.
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(a) 50 iterations (b) 500 iterations (c) 10000 iterations

Figure 2-2: Metropolis-Hastings iterations for the two-dimensional Gaussian distribu-
tion specified in the text - true distribution contours are in grey. This plot shows an
appropriately-scaled proposal distribution. (a) and (b.) connect adjacent points with lines
to further indicate the path of the Markov chain. c.) shows 10000 with each point partially
transparent.

Note the transition kernel A in this case is not an explict matrix as above. Rather, it's
simply a function mapping the state at time t to the state at time t + 1. This is a perfectly
valid way to define a Markov chain.

2.4.2 Metropolis Hastings

In 1953 Metropolis showed (Metropolis et al. 1953) that one can construct a Markov chain
with a desired stationary distribution, p(x), with an exceptionally simple procedure, The
algorithm, now know referred to as Metropolis-Hastings (after Hastings generalized it),
requires two things:

" A means of evaluating p* (x), the unnormalized version of the target density p(x), for
any point in your state space x.

" A proposal distribution, q(x'jx), defined on the same state space as p(x), from which
you can both exactly sample a new point in the state space, x' - q(x'lx) and evaluate
the probability of any particular proposal value. The proposal distribution can depend
on the current point in the state space, as indicated by the above.

Colloquially, proposal distribution q(x'jx) is used to sample a "new" value for the state,
x', and then MH tells to accept this "new" value of the state with probability a, computed
via:

p*(x/) q(x Ix')
a = min1 p(x) q(x'x)) (2.15)

Note a is closer to one the larger the ratio p*x) - that is, the more probable the new

state is, relative to the current state. There's a catch, though - the ratio q(xx') is higherq(x'jx) 1
the more likely we would be to propose the current state x if we were already at the new
state x'. Dealing with this tradeoff is at the core of designing efficient MCMC systems.

Taking an example from (Liu 2008) (and figure inspiration from (Bishop 2006), we use
Metropolis hastings to sample from a bivarite Gaussian distribution. This is a nice example
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(a) 50 iterations (b) 500 iterations (c) 10000 iterations

Figure 2-3: MH for the same distribution as figure 2-3, with a proposal distribution that's

too large (o = 4.0). Note all the jumps that are accepted are massive, and even after 10000
iterations only a few points have been accepted.

(a) 50 iterations (b) 500 iterations (c) 10000 iterations

Figure 2-4: MH for the same distribution as figure 2-3, with a proposal distribution that's
too small (o = 0.04). Proposals are almost always accepted but the chain cannot move far

enough, even after 10000 iterations, to accurately explore the space.

because we can exactly compute the contours and plot the results. Let x = (Xi, X2) and

x ~ (0 'P (2.16)

Our proposal distribution q(x'lx) is an isotropic two dimensional Gaussian, centered at

the current state value x, with standard deviation a = 0.4. Figure 2-2 shows the results of

letting the markov chain run for 50, 500, and 10000 iterations.
MH lets you construct a Markov chain guaranteed to asymptotically produce samples

from the target distribution of interest, works well in high dimensions, and is straight

forward to implement. None the less, engineering good proposal distributions is tricky, and

sometimes impossible.
Just as with rejection sampling, MCMC methods work better when you use a proposal

distribution that is closely matched to your target distribution. In our simple example, this

means using a Gaussian proposla whose size is roughly "on par" with the size of the target

distribution. If the proposal distribution a is too small, the Markov chain will accept nearly

every proposal, but not get very far - it will remain stuck in a tiny space and fail to explore

the entire distribution (figure 2-4). However, if the proposal distribution is too large, often

the chain will propose ridiculous values, and they will rarely be accepted (figure 2-3).
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(a) 50 iterations (b) 200 iterations (c) 10000 iterations

Figure 2-5: Gibbs sampling the same distribution as figure 2-3. Gibbs sampling changes one
variable a time and always accepts the proposed state, thus all the moves are axis-aligned.

Gibbs Sampling

For a high dimensional problem, if we can figure out the conditional probability distribution
for a variable and know how to sample directly from it, we can do better than basic MH.
A derivative of MH termed Gibbs sampling (S. Geman and D. Geman 1984) lets us build a
transition kernel that is always accepted.That is, maybe sampling directly from p(x 1 , x2) is
difficult, but we can sample from p(x1 Ix2) and p(x2lx1) with ease. Gibbs sampling allows
the construction of a valid transition kernel where we simply sample from each conditional
distribution over and over.

As an example, using the same bivariate Gaussian as the above, again with x = (x1, X2),

x N{(. ) ( ) (2.17)

we can analytically compute the conditional distributions

(it+l) I(t) , jq (t), 1_ 2)) (2.18)

.At+f x t+0 ~ A(pxt+ , (1 - p2)) (2.19)

(2.20)

To Gibbs sample, we first sample a new value x t+1) conditioned on xt, and then sample

a new value xt+) conditioned on the just-sampled X2 The results of this process
can be seen in figure 2-5. Note that there is no accept/reject step nor derivation of a
problem-appropriate proposal distribution! These are the benefits Gibbs sampling provides,
as long as we can exactly sample from the conditional distributions.

2.4.3 MCMC Theory

Metropolis hastings tells us how to construct a Markov chain transition kernel K on a state
space x which has two crucial properties (adopting from (Bonawitz 2008)):

" p(x) is an invariant distribution of the transition kernel K. That is, repeated appli-
cation of K to p(x)-distributed data will maintain the distribution p(x).

" K is a "nice Markov chain" - it is irreducible (any point in the state space x can be
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reached from any other point in the state space) and aperiodic (there are no cycles to
get stuck in)

MCMC transition kernels compose quite well. If Ki and K 2 are two different transition
kernels that both have p(x) as their stationary distribution, then their chained application
K 2 K 1 also has this stationary distribution. This means that we can first apply K 1 , and
then K2. In fact, we can even randomly pick which to apply, and preserve p(x).

In fact, even if K, and K2 don't have p(x) as their stationary distribution, KK 2 may.
We make extensive use of this property to design (via MH) a kernel K 1 that samples
from x1 and another kernel K 2 that samples from X2. The combined K 1K 2 (that is, the
repeated application of one after another to the joint state space (x 1 , x2) has p(x 1, x2) as
it's stationary distribution.

2.4.4 Runtimes and Asymptotics

The astute engineer should now be left with two questions: "How do I design good proposal
distributions?" and "how long do I run my chain?"

Designing good proposal distributions is a crucial part of the art of using MCMC meth-
ods, especially when you can't exactly sample from the conditional distributions (and thus
Gibbs sampling is off the table.) As seen above, even just getting the "scale" of the proposal
distribution correct in a two-dimensional problem can be a challenge. Compositionality
helps us tremendously - if K 1 is a MCMC kernel that works well in one regime, and K 2

works well in another, we can just compose them and get the best of both worlds. In the
above 2-d Gaussian example, this would mean that we could apply MH three times per
iteration, each with a different width of the isotropic gaussian proposal kernel.

The samples produced by MCMC Markov chains are not independent - there is obviously
a long-run correlation. The better the MCMC kernel, the quicker this correlation disappears
- the more efficnetly the kernel "moves" around the state space. Multimodality can be
quite challenging to deal with. When the target distribution of interest has multiple modes
(peaks) separated by very improbable regions, it is easy for an MCMC kernel to get stuck
in one mode. Diagnosing this behavior is a challenge and an active area of research.

In practice, especially for many of the applications we consider, the primary challenge

(and bulk of the computational effort) is spent finding a high-probability region from an
initial point in the state space. This initial search phase is often referred to as "burn-in" in
the literature, and it is recommended that chains be run for a long period of time initially,
and then after that burn-in period, every subsequent Nth iteration is taken as a "sample".

2.5 Hardware, Bit Precision, and FPGAs

Computer architecture is part creativity, part trade-off optimization. Those tradeoffs almost
always involve optimizing for cost, power, or performance - the old adage of "pick two" often
applies. Engineers often use "silicon area" as a proxy for cost and power - smaller designs
are both more inexpensive to manufacture arid, with fewer transistors, consume less power.

We prototype all of our circuits on reconfigurable, field-programmable gate arrays (FP-
GAs), as opposed to making them in actual silicon. A FPGA consists of a dense network
of undifferentiated flip flops and programmable look-up tables whose functionality and con-
nectivity are specified at runtime by the loading of firmware. This is vastly preferable for

22



development compared to synthesizing and fabricating actual silicon devices, as new designs

can be prototyped and evaluated in days, not months.

To better understand how our devices perform with respect to existing architectures, we

use "FPGA resources" (described below) as a proxy for silicon area. Our designs all target

the Xilinx Virtex-6 series of FPGAs (Virtex-6 Family Overview 2012) using a commercial

FPGA development board form Pico Computing (Module 2013). The FPGA consists of

hundreds of thousands of "slices" of logic, each containing four look-up tables, eight flip-

flops, various multiplexors, and fast carry logic (Virtex-6 Configruable Logic Block User

Guide 2012). We primarily measure the following when performing our resource utilization

experiments:

1. Flip Flops : stateful 1-bit synchronous logic

2. Look-up tables (LUTs): reconfigurable six input, one output purely combinational

logic blocks capable of implementing any 6:1 function

3. Block RAMs : dedicated synchronous static RAM, optionally dual-ported.

We can only compare designs to each other, measuring a rough amount of the "quantity

of stuff' needed, not true silicon area. Our task is complicated by the eagerness of the

Xilinx synthesis tools to infer BlockRAM memory units for any structure that looks like

a stateful, addressable memory. We have manually disabled this automatic inference to

get more consistent, easier-to-compare estimates for the resources utilized by a particular

design. This tends to overstate the amount "stateful logic" a design would require, resulting

in our estimates being quite conservative. Our synthesized designs do use the BlockRAM

for runtime performance, however.

2.5.1 Fixed Precision

Throughout the document we will repeatedly refer to various bit-precisions of the underlying

circuit. All numerical values are implemented in traditional fixed-width twos-complement.

An m.n bit representation expresses values c R with integers between - 2 m+n1 and

2 m+n-1 - 1, implicitly divided by 2'. The m are referred to in the text as the integer

bits, and the n as the fractional bits (see figure 2-7).
This allows us to perform very easy analysis of the impact on dynamic rage for various

bit precisions. For many circuits, we express the precision as a tuple with (mm.n, q) where

m.n is the fixed-point precision of the underlying log-probability calculation, and Q are the

number of bits in 1.Q fixed-point (non-two's-complement) format used for sampling from

the underlying discrete distribution.

23



[ - A6:A1
W6:W1

10605
CK D -i

WEN MC31

D-2
C- -A6:A l

W6:W1I

CK Di1

WEN MC31 -

D12
E.- A6:A1

W6:W1
06
05

CK DII
WEN MC31

012
C A6:AI

W6:W1
06

05 - - -
CK DiI
WEN MC31

r , _ _ _ _ _ _

COUT

-1
--

-
,

CK
-WEN

CIN

D SRLO I Reset Type

NETo IINITnc/Asft c11CKs ~ [sy

-DDMUX7D=
OFF/tAT--- - - ---Q DO

CE cSRHI

D to SRH/ -CE oSRLO
SRLO

CE-Nrj - ICMUX

jj7n oFFtAT

o NT Q - C
- D NT

CE LuSRHI
- oSRl a SRLO

D _SR
CE IcNSROITCE S

- i OBMUX

OFF/LAT
D NT O B
CE cSRHI

SI SRH /I --- - CK SRLO

CE RL SR

- - -AMUX

D o FF/AT

CE r3SRHI
4A NIoSRLO

SR

Figure 2-6: One SLICEM from a Virtex-6 FPGA (from (Virtex-6 Configruable Logic Block
User Guide 2012)) with LUTs highlighted in blue and flip-flops highlighted in red.

m bits n bits
01011 0 1 = 11.125
10 1 11 1 0 0 = -7.5

Figure 2-7: Examples of twos-complement bit precision for m = 5, n = 3 bits
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Chapter 3

Stochastic Circuits for Inference

Previous attempts to work with neuron-like computing substrates have lacked a guiding set
of principles that would enable designs to scale. In a sense, "engineering" with them has
been very difficult. Yet we'd still like to build systems that exhibit and exploit many of the
properties of neural systems - distributed, robust, low-power computation with the ability
to handle the massive uncertainty present in the world.

Natively stochastic circuits offer these advantages, while being amiable to the construc-
tion of useful large-scale systems for solving problems of probabilistic inference. Our stochas-
tic circuits produce samples from probability distributions conditioned on their inputs; this
lets them obey abstraction and composition laws that closely mirror the probability algebra.
Ultimately, this allows the construction of large-scale systems for probabilistic inference. Us-
ing these rules, we show how the conditional independence structure of many probabilistic
problems provides ample opportunities for parallelization.

In this chapter we describe several basic stochastic circuits for producing exact samples
from underlying probability distributions. We show how these circuit elements offer vari-
ous performance, silicon resource, and complexity trade-offs. Various design idioms allow
tremendous flexibility in exploring the space between larger-and-faster and slower-but-more-
area-efficient architectures.

The construction of stochastic finite state machines (Markov chains) with the above
stochastic elements result in architectures ideally suited for certain classes of approximate
inference, namely Markov-Chain Monte Carlo. Crucially, the conditional independence
structure of many probabilistic models, coupled with these sampling methods, allows for
tremendous gains via parallelism.

The uncertainty present in most probabilistic problems dwarfs any rounding error or
precision errors present in the computational substrate, allowing us to compute with very
low bit precision. Lower bit precision allows us to build smaller, denser circuits, reducing
silicon area and thus cost and power. Similarly, because our stochastic systems generally
evolve over time, transient perturbations rarely impact long-term behavior. This means
that we can work with both less reliable substrates and be more tolerant of manufacturing
errors.

3.1 Primitives

Fundamentally, stochastic circuits are circuits that produce samples from a particular prob-
ability distribution, conditioned on their inputs (figure 3-1). This stochasticity requires a
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Figure 3-1: A typical stochastic circuit element. The output is a sample from a distribution
conditioned on the input. Entropy is consumed in the process.

source of entropy, which as we show later can be extrinsic or intrinsic, and even of poor
quality. In all subsequent discussions we make this entropy external and the input port
explicit, as a reminder of its importance.

Just as a Boolean logic gate is completely characterized by its truth table, a stochastic
logic circuit can be completely characterized by its conditional probability table, specifying
the probabilities of all possible outputs given all possible combinations of inputs. This
lets us easily show that stochastic logic recovers Boolean logic in the deterministic limit.
Figure 3-2 shows a classical Boolean AND gate and the associated truth table. It also shows
a stochastic logic element which implements deterministic AND functionality by having a
conditional probability table with delta potentials on the set of accepted outputs. Thus, if
A = 1 and B = 1, the probability of observing a 1 at the output is 1.0.

Boolean logic effortlessly supports the combination of arbitrary elements to build up
more complex functions and circuits (composition) as well as the abstraction of complex
circuit functions into black boxes fully specified by their truth tables. This has allowed
the growth of circuit complexity from 7400-series quad NAND gates up through billion-
transistor microprocessors today.

Stochastic logic elements crucially support very similar processes of abstraction and
composition, which is not surprising given the deterministic reduction to Boolean logic.
Consider two stochastic circuit elements, one producing samples B ~ P(BIA) and one
samples C - P(CIB). If we chain the output from the first to the input of the second, we
obtain sample from the joint distribution of (B, C) ~ P(B, CIA) (figure 3-3).

Abstraction lets us replace the chain of stochastic logic elements with a single element,
ignoring the details of the internal implementation. By discarding the B output, the ab-
stracted unit produces samples from the marginal distribution P(CIA) = P(C, BIA).

3.1.1 Clocking, timing, iterative state

Classical combinational digital logic is characterized by the propagation delay, TpD, between
changes at the inputs and the reflection of those changes on the output. Because our outputs
are samples, we adopt an explicit clocking discipline, making all of our logic inherently
synchronous. There are many ways of controlling synchronous logic systems, but the most
common is a shared global clock and selective enable lines. We adapt this convention for
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Figure 3-2: A classical Boolean gate, in this case an AND gate, performing logical conjunc-
tion, and completely specified by its truth table. A stochastic logic gate can perform the
same deterministic function by only having probability mass on the allowed output.
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Figure 3-3: (a.) Classical Boolean logic gates f and g support effortless composition :
chaining the output of f into the input of g yields the operation g o f. The combined

unit can be abstracted into a unit h which performs g o f without regard to internal im-
plementation. (b.) Stochastic logic elements support similar abstraction and composition,
with combination resulting in samples from the joint P(B, CIA) and abstraction resulting
in samples from the marginal P(CIA).
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bits LUT LUT

2 1 1
4 2 2
8 4 4
12 11 11
16 15 15

Table 3.1: Theta gate resource utilization as a function of the number of bits in the weight
representation.

all of our stochastic gates unless otherwise noted.
For hand shaking, we also give most gates a "done" line, indicating that the sample is

ready on the output. This allows for the efficient asynchronous chaining of variable-latency
sampling systems, as well as the effortless construction of Markov chains (see below).

3.1.2 The Theta Gate

The simplest stochastic gate is the theta gate, which samples from a Bernoulli distribution
conditioned on the inputs. The input lines are thus setting the weight parameter 0 for the
flip of a biased coin.

A theta gate can be implemented using a single comparator, where the input bits set
the threshold of comparison. The theta gate produces exact samples from the indicated
distribution and can generate one sample per cycle. By varying the input bitwidth, we
can vary the encoding of the unit interval [0, 1] - more bits allow finer specification of the
weight 0. We can implement a theta gate with two possible comparison functions, < and
K, controlling which of two endpoints (0 or 1) are included in the encoding of 0.

Note that the the theta gate is the initial bridge between stochastic and determinis-
tic logic, exploiting a deterministic comparison function coupled with entropy to produce
stochastic outputs.

3.1.3 The Uniform Rejection Gate

A uniform rejection gate produces a sample uniformly from the integers [0, k] via rejection
sampling. Figure 3-5 shows one possible architecture. For the gate shown, MAX is the
maximum possible value for k. MAX sets the envelope function for rejection sampling -
the closer k is to MAX, the more efficient the sampler becomes (figure 3-5). On average
we expect 1 + (1 - k/MAX) * MAX cycles per sample.

3.1.4 The CPT Gate

The Conditional Probability Table Gate (CPT Gate) lets you exactly sample from a discrete
K-valued distribution, conditioned on the inputs Xi. This is equivalent to generating a
collection of K-sided dice, and using the inputs to switch between them. Internal precision
is specified to p bits.

Internally, the CPT Gate is implemented via a look-up table. The particular configura-
tion of Xi values indexes into a ROM which encodes the CDF of the desired distribution.
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Figure 3-4: a.) An example theta gate, showing the input conditioning values (for m = 4
and the probability of {0, 1} on the output. Two different implementation styles (b. and
c.) control the endpoints. d. Sampling from a theta gate for two different input values

29



R

X DQ DONE

EN

EN SQ Y

R

(a) Architecture

101

40 101

100
0 5 10 15 20

Sample over range (0, k)
25 30

(b) Efficiency

Figure 3-5: Uniform Rejection Gate, sampling uniformly on [0, k] for k < MAX.
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Figure 3-6: CPT Gate, which produces exact samples from a K-valued probability distri-
bution conditioned on the {XiJ inputs.

The gate samples a random internal value, and then steps through the CDF. The gate takes
an expected 1 ticks per sample.

Table 3.2 shows how the silicon area and FPGA resource utilization vary as a function
of the number of die sides (k = {2, 4, 8}), the internal bit precision p = {4, 8, 12}, and the
total number of conditioning bits bits {2, 4, 8}.

3.1.5 Stream Sampling Gate

In many problems, we do not know ahead of time the exact distribution we wish to sample
from ahead of time - sometimes we do not even know the parametric form. The stream-
sampling gate lets us sample from an arbitrary, normalized probability distribution. It does
this by taking in a sequence of normalized probability values (in 1.q format) along with
labels for each value, and generates an exact sample from the streamed-in distribution. The
gate requires that the input distribution be normalized.

The gate works by sampling a random uniform value r at reset, and then computing
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k=_2 k=4 k=8

LUT FF LUT FF LUT FF

bits=2 12 14 25 32 35 38
bits=4 12 15 23 37 40 58
bits=8 12 27 28 74 42 141
p= 8

bits=2 15 23 30 43 72 63
bits=z4 16 25 35 56 78 103
bits=8 16 49 35 128 80 268
p 12
bits=2 25 28 50 54 95 69
bits=4 27 35 57 78 109 138
bits=8 27 71 57 186 111 390

Table 3.2: FPGA resource utilization (slice
we vary the number of possible outcomes k,
conditioning bits "bits".

LUTs and flip-flops) and for the CPT Gate as
the internal bit precision p, and the number of

q=4 q =8 q= 12

LUT FF LUT FF LUT FF

2 33 16 43 30 57 46
4 41 18 49 30 65 48
6 49 20 55 30 73 50
8 57 22 61 30 81 52
10 65 24 67 30 89 54

Table 3.3: Stream Sample gate resource utilization. Resource utilization increases roughly
linearly with the number of bits q in the probability representation, and linearly in the
number of bits in the label representation.

the CDF on the fly, returning the label i when when r < >&pin (figure 3-7). The gate can
also aborts the sampling process once a value has been sampled, even if it has not seen all
values in the distribution.

The gate runs in O(N) in the number of probability values in the underlying distribution.
Note that the issue of precision-of-values and number-of-values are completely distinct - a
probability distribution with 1000 possible outcomes, but where 999 of those outcomes have
zero chance of occurring, only needs one bit to express the probability values themselves,
but log 2 1000 ~ 10 bits to label the values.
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Figure 3-7: Stream sample gate. a.) Accumulator-based architecture. b.) Timing
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Figure 3-8: Binomial sampling circuit, with two implementations -- a faster fully space-
parallel design and a slower more area-efficient bit-serial one. Both produce samples from
a binomial distribution with N possible output values and a weight of p.

3.2 Design Idioms

3.2.1 Parallelism, trade-offs

Statistical independence gives the designer tremendous flexibility in making trade-offs be-
tween silicon area and the time required to produce a sample. Consider a Bernoulli distri-
bution (figure 3-8), the distribution on the number of heads h from flipping N biased coins
with weight p. Because the coins flips are independent, we can flip them simultaneously
(via theta gates) and sum the result. Alternatively, we can accumulate the flips of a single
theta gate, generating the sample N cycles later.

3.2.2 Stochastic FSMs

Finite state machines are a common engineering idiom in digital logic systems, and are
used to control the evolution of a digital system through a series of states. The machine is
in a single state at any given time, and that state at time t (along with, optionally, some
additional inputs) determines the state of the machine at time t + 1. In what follows, our
state machines will be examined as Moore machines (E. F. Moore 1956), in which the output
of the state machine depends entirely on the current state of the system. Often such state
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machines are implemented via a combinational lookup table (the "state transition table")
and a register for storing the current state (figure 3-9).

St+ 1 ~P(St+1 I S)

-0-* 1 N OUT -0----- D Q - + IN OUT +---- D Q -
Combinational St+1 St CPT Gate St+1 StState Transition
Lookup Table R

110011010010101

(a) Deterministic Finite State Machine (b) Stochastic Finite State Machine (Markov
chain)

Figure 3-9: a.) A traditional finite state machine b.) Stochastic finite state machines
(Markov chains) can be constructed out of CPT gates by connecting the time-delayed
output to the inputs, allowing St+1 ~ P(St+1ISO).

Consider a stochastic CPT gate with an m-bit input and an m-bit output. We can
replace the combinatiorial state transition table in the above FSM with a stochastic gate,
thus making a stochastic finate state machine. At each clock period Xt - p(XtJXt_1), so
the system evolves with Markovian dynamics - a Markov chain.

Approximate sampling with Markov chains

Of course, Markov chains form the basis of the widely-used Markov chain Monte Carlo
(MCMC) approximate inference techniques. (see 2.4). MCMC tells us how to construct a
Markov chain with any desired ergodic distribution - runing that markov chain over time
will produce samples from that ergodic distribution.

Gibbs sampling is a MCMC method for producing joint samples from a distribution
p(a, b) if you can sample exactly from the conditional distributions

a p(aIb) (3.1)

b p(bla) (3.2)

(3.3)

We can do this by chaining two CPT gates together (figure 3-9). Thus we can use circuit
elements which produce exact samples to build larger systems of Markov chains, which then
give us (asymptotically) approximate samples from their ergodic (target) distribution.

3.2.3 Approximate Sampling and Parallelization

Approximate sampling schemes such as Gibbs sampling make it easy to exploit the under-
lying conditional independence structure of a particular probability distribution.

Consider the distribution

p(a, b, c) = p(aIc)p(bIc)p(c) (3.4)

To perform gibbs sampling, we must be able to sample from a ~ p(alc, b) = p(alc),
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B ~ P( B|C) C ~ P(C\ A, B) A ~ P( A|B)

-C B -A C - -C A -
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(a) Gibbs sampling
B_ C- A- B- C- A-

t=1 t=1 E

t=2 t=2W E W

t=3 t=3 E W E

t=4 t=4 MF

(b) Serial (c) Parallel

Figure 3-10: a.) A stochastic finite state machine enabling Gibbs sampling for the distribu-
tion p(a, b, c) = p(alc)p(b~c)p(c). b.) To operate the circuit, each sampler can be sequenced
in turn. c.) Because of conditional independence, we can sample a and c simultaneously.

b ~ p(b~c, a) = p(blc), c ~ p(cla, b). If we connect three CPT gates appropriately (figure
3-10) we can construct a circuit to do just that. To Gibbs sample, we sample b, then c,
then a in order.

Note that a and b are conditionally independent given c. Thus, as these two sites are
conditionally independent, once we fix c we can sample them both simultaneously. This
point bears repeating: conditional independence in the probabilistic model lets us sample

in parallel. As seen in figure 3-10, we can sample A and B simultaneously, leading to a 33%
reduction in total sampling time.

The ability to exploit parallelism like this will be a continuing theme of this thesis.

Conditional independencies show up throughout probabilistic modeling, and along with
them come opportunities for dense parallelism.

3.3 The Normalizing Multinomial Gate

If X and Y are independent random variables, then P(x, y) = p(x)p(y). We've seen above

how independence is common feature of many probabilistic models, and how it enables us
to exploit parallelism at varying granularities.

Probabilistic systems often compute the probability of many independent events, re-
sulting in the multiplication of a large number of values p E [0, 1]. To avoid overflow, and
facilitate computation, it is useful to express all these calculations logarithmically - here
we use a log 2 encoding for most of our values. This lets us replace expensive high-dynamic-
range multiplications with more-efficient additions with reduced dynamic range demands.
There's a cost, however - addition becomes more expensive, as we must first convert the
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log-space representation back into real values before performing the addition. Similarly,
if we want to sample from a (normalized) list of log values, we must exponentiate and

accumulate.
The first circuit element exploiting this encoding is the normalizing multinominial gate,

which takes an unnormalized stream of K log 2 encoded energies, normalizes them to a

probability distribution, and draws a sample from this probability distribution. Thus we

can draw exact samples from any unnormalized vector of energies. This frequently arises

when attempting to Gibbs sample over a discrete variable, where we can evaluate log 2 P* (x)
for some x E {1... K}. We can use the normalizing multinomial gate to then sample from

p(x|.).
Normalization takes place with very finite-precision arithmetic using a variety of mathe-

matical approximations that, at first glance, seem rather crude. Scores are saved internally

in a small ram, while simultaneously being accumulated via a log-sum-exp accumulator.

Once all values are seen, the unit reads out the saved values, subtracts off the normalizing

sum, exponentiates the log value, and feeds the result into the stream sampler to produce

the eventual output. The accuracy of the results is discussed in section 3.5.

3.3.1 Functional approximations within

To approximate the addition of two numbers (the log of the sum of the exponentiation of

the two values, or "log sum exp"), we use the familiar (exact) trick where Z = max(x, y)
and W = min(x, y), and then we return Z + log 2 (1.0 + 2 W-Z). This both allows increased

dynamic range and lets us work with a smaller lookup table for f(A) = log2 (1.0 + 2A).
The approximation unit compares the two inputs, computes the delta, and then returns the

larger Z plus the lookup-table-generated correction.

The resulting approximation is extremely accurate, as show by the plots of values and

errors in figure 3-13.

3.3.2 Exponentiation

We must exponentiate the resulting, normalized scores to sample from them. The similarity-

across-scales of exp makes it very easy to use a limited-size lookup table.

3.3.3 Random Starts to remove bias

Numerical errors for large energy vectors can accumulate, resulting in an underestimation of

the total probability mass of the distribution; that is, I pi < 1. As a result, we sometimes

frequently end up with too much probability mass assigned to the final state possibility k.
To remove this systematic bias we circularly permute the probability vector before com-

puting the CDF and sampling. A circular permutation can be easily implemented by
randomly sampling the starting position and taking care to wrap around at the end of the

array.

3.3.4 Resources

Figure 3-14 shows how look-up table and flip flop utilization vary as a function of both

internal bit precision and the maximum arity for the multinomial sampler. Going from the

smallest 6-bit, k = 16 unit to the largest 12-bit k = 1024 unit increases the combinational

logic requirements by four times and doubles the amount of stateful silicon logic.
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Figure 3-13: "Log Sum Exp" (log 2 (2- + 2Y)) approximation. Each curve is a parametric
varying of x for a fixed value of y, and we plot the results of the approximation unit (solid
line) and the true (floating-point-estimated, dashed line) value. The lines overlap so well
that we also plot their differences (the error) to the right. Colors are consistent across
figures. Each row is a different bit precision.
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Figure 3-14: Resource utilization for the Multinomial Sampler, for samplers configured with
several different values of K, and bit precisions varying as above. Larger circles indicate
higher bit precisions, ranging from six bits to twelve.

3.4 Entropy Sources

There are many possible sources of entropy for the stochastic logic gates. High-quality
entropy (suitable for cryptographic application) could be generated internally in silicon
implementations, the result of amplification of atomic-level phenomena, including Johnson
noise and shot noise. It could be provided externally, from other sources of natural entropy,
such as radioactive decay.

But for all of the applications and elements we've identified, cryptographic randomness is
overkill - we only need pseudorandomness. Assessing the quality of randomness from a pseu-
dorandom source is a notoriously challenging problem (see Marsaglia and Tsang (2002)).
In general, we care about both the marginal distribution of the samples from a PRNG
- for Xi, X2,... , Xn, how close is P(xi) to Uniform(0, 1) - and any possible long-running
correlations between Xt and Xt+k. Of course, any PRNG with a finite latent state space will
ultimately exhibit periodicity - the output will "wrap around", resulting in Xt = Xt+T for
a PRNG with period T.

The classic Mersenne Twister (Matsumoto and Nishimura 1998) pseudorandom gener-
ator has a phenomenally long period (219937 - 1) but pays for it by carrying a massive
"state" of nearly 20kB. This period is overkill for many applications, including those we
care about.

George Marsaglia introduced the "Xorshift" family of random number generators, which
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N p - 0.5 p = 0.50002

N = 10 5 5
N = 100 50 50
N = 1000 500 500
N = 10000 5000 5000
N = 50000 25000 25001

Table 3.4: Two coins with probability of heads specified to 16 bits, differing only in the
LSB. It takes an average of 50000 flips to even detect the differences in weightings.

use substantially fewer state bits (Marsaglia 2003) but still pass all of the known empirical
tests for PRNGs. Here we implement the 128-bit XORShift, which has a total of 128 state
bits and a period of 2128 - 1. 1 shows the pseudocode for the 128-bit RNG; the entropy is
output via the state variable w.

Algorithm 1 XORShift RNG 128

x +- SEED[0]

y +- SEED[1]

z +- SEED[2]

w +- SEED[3]

tmp +- x E LEFT-SHIFT(X, 15)
x- y
y +-z
z +- w
w <- (we RIGHT-SHIFT(w,21)) e (tmp& RIGHT-SHIFT(tmp, 4))
return w

The underlying implementation is exceptionally tiny, consuming a mere 160 slice flip
flops and 33 lookup tables on our target Virtex-6 FPGA. We have validated the output of
our PRNG exactly matches the equivalent software implementation. It can operate at up
to 200 MHz, delivering 6.4 Gbps of randomness. Note even at that phenominal rate, it will
take 5 x 1022 years to wrap around. The PRNG is free-running, and multiple independent
sources of entropy can be created by either time-division multiplexing the output of one
single PRNG or instantiating multple PRNGs with different seeds.

3.5 The effects of bit precision

Small differences in the distributions underlying samplers are difficult to resolve without a
very large collection of samples. This can be seen by considering two weighted coins whose
probability of heads agrees to the 16th least-significant bit (Table 3.4). It takes roughly 216

samples from these distributions to detect any difference in the encoded distribution.
Of course, digital signal processing engineers have been taking questions of bit precision

seriously for decades. The available dynamic range is often limited by the underlying sensor
technology -- modern high-end scientific cameras top out at 12 bits of intensity per pixel.
Professional studio-quality audio systems exceed the dynamic range of the human ear at a
mere 24 bits.
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This stands in contrast to the historic focus on linear-algebra-based methods in data
analytics, scientific computation, and machine learning, which have lead to a strong demand
for more and more IEEE-754 floating point units from hardware vendors. Purveyors of
scientific computing such as nVidia are only taken seriously once their hardware supports
64-bit floating point.

But when sampling from distributions, we can be incredibly insensitive to low bit pre-
cision. We can measure this property more precisely by using the multinomial sampling
unit. We use the multinomial sampling unit because it has the most internal arithmetic
computation, and thus should be most sensitive to bit precision errors. It also forms a core
part of subsequent circuits.

We create three samplers representing three weighted dice, with k = 10, 100, and 1000
sides, and parametrically vary the entropy of their underlying discrete distribution from 0
to log 2 K bits.

Figures 3-15, 3-16, and 3-17 shows the results as we vary the number of bits in a
representation, using m.n encoding. We encode the true distribution in the circuit, and
then compute an empirical distribution from a bag of 100000 samples generated by the
synthesized circuit. In all cases, the KL divergence from the encoded distribution to the
empirical distribution is remarkably low for all encodings with m > 6 bits.

As the representation becomes bit-starved, we see that the KL still stays low in two
regimes : very high and very low entropy distributions. This makes intuitive sense - for
maximally-entropic source distributions (that is, uniform), encoding the array of identical
values is easy. Similarly, for minimal-entropy distributions with all mass concentrated on a
single value, encoding the distribution is easy.

Figures 3-15c, 3-16c, and 3-17c show QQ plots of true versus recovered-from-hardware
distributions, for distributions with varying entropies (listed at left). Again, the distri-
butions look almost perfect, except for medium-to-high-entropy distributions in very low
bit-precision regimes.

3.6 Resource Utilization

But performing large floating-point operations consume a massive quantity of silicon re-
sources when compared to our stochastic sampling elements. As figure 3-18 shows, the area
consumption by sampling elements varies with their flexibility, the arity of their output,
and the dynamism and precision of their internal representations. We synthesized a 64-bit
IEEE-754 FPU (Lundgren 2009) with the Xilinx toolchain. Note that this is a very conser-
vative estimate for the number of silicon resources, as the Xilinx synthesis tools used some
of the embedded multiplier blocks, whereas all the comparison units were tested entirely
with slices and flipflips (no BRAMs or DSP48s were allowed).

Also note that while the XORShift RNG takes up more silicon area than some of the
other sampling elements, a single PRNG instance can supply entropy to dozens of stochastic
circuit elements.

3.7 Next Steps

We've shown that digital stochastic logic recovers Boolean digital Logic in the deterministic
limit, while preserving the principles of abstraction and composition. Various sampling
primitives, ranging from the theta gate up through the generic multinomial sampler, enable
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Figure 3-15: The effects of bit precision on KL divergence for a K = 10 multinomial
sampling gate, a.) KL vs bit precision, b.) heatmap showing regions of entropy/bit-precision
with high KL, and c.) example distribution QQ plots. Each column is a different bit

precision (labeled at top) and each row is for a different input entropy. The QQ plot itself
compares the true CDF (x-axis) with the empirical (y-axis). Perfect agreement results in

all points lying on the y = x line.
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Figure 3-16: The effects of bit precision on KL divergence for a K = 100 multinomial
sampling gate, a.) KL vs bit precision, b.) heatmap showing regions of entropy/bit-precision
with high KL, and c.) example distribution QQ plots. Each column is a different bit
precision (labeled at top) and each row is for a different input entropy. The QQ plot itself
compares the true CDF (x-axis) with the empirical (y-axis). Perfect agreement results in
all points lying on the y = x line.
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Figure 3-17: The effects of bit precision on KL divergence for a K = 1000 multinomial
sampling gate, a.) KL vs bit precision, b.) heatmap showing regions of entropy/bit-precision
with high KL, and c.) example distribution QQ plots. Each column is a different bit
precision (labeled at top) and each row is for a different input entropy. The QQ plot itself
compares the true CDF (x-axis) with the empirical (y-axis). Perfect agreement results in
all points lying on the y = x line.
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Chapter 4

Causal Reasoning, and Automatic
Circuit Construction

Causal reasoning - drawing conclusions about probable causes from their observed, am-
biguous effects -- is a hallmark capability of intelligent systems. Nowhere is this inductive
learning more impressive than in children, where young toddlers are capable of rapidly
building causal models of the world as they develop.

Developmental psychologists have argued recently that children build "causal maps" of
the world (Gopnik, Glymour, et al. 2004), and model these maps as Bayesian networks.
Bayesian networks are a formalism developed (Pearl 1988) to provide a graphical language
for describing this process of inductive causal reasoning. Indeed, Bayesian models of child
cognitive development have become something of a cottage industry in recent years (Gopnik
and Joshua B. Tenenbaum 2007). Even rats have been shown to perform causal reasoning
consistent with Bayes nets (Blaisdell et al. 2006).

4.0.1 Architectural Motivation

Because of our abstraction and composition laws, automatic transformation (compilation)
from a high-level description of a probabilistic problem, such as a Bayes net, to a synthe-
sizable circuit is possible. We built this compiler to argue that our approach is general
- probabilistic models can be synthesized down to hardware using a discrete set of rules
simple enough for a computer to implement.

Here we present a compiler for discrete-state factor graphs. At a high level, this com-
piler takes two inputs, a factor graph and a list of variables to perform inference on, and
generates an optimized circuit for inference. This compiler is capable of transforming
arbitrary-topology discrete-state factor graphs into synthesizable densely-parallel circuits
capable of performing inference at millions of samples per second. The compiler automati-
cally identifies the conditional independence structure in the model to exploit opportunities
for parallelism.

We then compile three example probabilistic models. First we compile the classic peda-
gogical "rain" model, showing how even at ridiculously-low bit precision the resulting circuit
closely approximates the results obtained by exact marginalization. We then turn our at-
tention to the much larger, highly bimodal undirected Ising model from statistical physics.
We compile multiple Ising models, at varying coupling strengths, and recover the correct
qualitative behavior. We then show compilation of a real-world Bayes network, ALARM,
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Figure 4-1: Discrete-state factor graph with factors expressed as conditional probability

tables (CPTs). The total energy of the model is E(x) summing over all factors, and the

probability of any particular state is je-E (x.

for causal medical diagnosis, and show how we can programmatically pick at compilation

time which subset of the variables are fixed.

4.1 What can we compile

Our compiler supports arbitrary-topology factor graphs with discrete-valued state variables.

The potentials must be representable as conditional probability tables (figure 4-1). Discrete-

state factor graphs were the first class of probabilistic models supported by Kevin Murphy's

excellent Bayesian Network Toolbox (Kevin P. Murphy 2001), and can be applied to a wide

range of problem domains.
Discrete-state factor graphs also provide ample opportunity to explore the viability of

automatic parallelization. Our compiler creates a dedicated stochastic circuit element for

each random variable, a choice that allows for maximal parallelization at the expense of

consuming greater silicon resources. Only limited silicon resources constrain the number of

random variables (size of the factor graph) we can support at the moment.

The resulting circuit performs massively-parallel Gibbs sampling (3.2.3) on the resulting

graph. Gibbs sampling is viable in discrete-state factor graphs as exact sampling from

p(xj Ix-) is easy - simply tabulate the scores for each possible setting of xi and then exactly

sample from the resulting table.
The dynamic nature of the compiler makes targeting a reconfigurable platform like FP-

GAs a natural fit, although all of the generated HDL is synthesizable for ASIC targets. Most

of the performance numbers in this chapter are generated by targeting a Xilinx Virtex-6

LX240T FPGA, unless otherwise indicated.

4.1.1 Discrete-output CPT-sampling gate

Ultimately, all sampling units for all nodes are compiled down into discrete-output condi-

tional probability gates, described in section3.1.4. Neighboring variables are connected to

the input lines of the CPT gate, and output samples are generated conditioned on these

values.
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Listing 4.1: Code to express a simple 3-node chain factor graph. Factor is defined in line 1,
variables are created in lines 9-11, and the factors are wired up in lines 13-14

1 def factor (xl, x2):
2 if x1 == x2:
3 return 0
4 else:
5 return 16
6

7 fg = fglib.FactorGraph()

8

9 v1 = fg.add_variable((0, 3))

10 v2 = fg.add_variable((0, 7))

11 v3 = fg.add_variable((0, 3))

12

13 fg.add__factor(factor, [vi, v2])
14 fg.addfactor(factor, [v2, v3])

4.2 The compiler passes

The compiler begins with a factor graph description in Python, where a simple graph library
allows a user to construct the graph by specifying variables, factors, and their topology.
Listing 4.1 shows the construction of a simple three-variable two-factor graph. Variables
are created in the graph and a handle is returned for further manipulation; the user specifies
the (inclusive) range of possible values for the variable. Each variable can also be created
as "observed", which causes the compiler to not target this variable for inference. Observed
variables are data - measurements about the world that we wish to condition on.

Factors are specified as python functions that return an energy (larger values are less
likely). Note that the functions can perform arbitrary computation, as they are only eval-
uated in the course of compilation, generating a lookup table for later synthesis.

The compilation steps are as follows. We color the initial factor graph to identify
parallelization opportunities. Nodes of the same color are conditionally independent, and
thus we can do inference on them simultaneously. We then annotate the variables with
the number of bits necessary to represent them, derived from their user-supplied range
information.

We then convert the factor graph into a form (Bonawitz 2008) which explicitly represents
the variables as states, the factors as densities, and includes the stochastic FSMs doing
inference (the kernels). This "State, Density, Kernel" (SDK) form allows reasoning about
the precise flow of inference and kernel structure. In the SDKs pictured, circles are state
variables, squares are densities which score those state variables, and triangles are the
kernels which perform mutation and control other kernels.

Taking the simple SDK from before, we annotate it with the "kernels" that will ulti-
mately be performing inference. The primary kernel used is an "enumerated Gibbs" kernel
which will perform Gibbs sampling of a particular target node. State variables labeled
"observed" do not have kernels attached.

A kernel inherits the coloring of its target state variable. Thus all kernels of a given
color can be executed simultaneously. All of the Gibbs kernels are driven by a single master
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Figure 4-2: Compilation passes. a.) shows the original factor graph, which we perform

graph coloring on (b.) to identify conditionally-independent random variables that are

amenable to simultaneous sampling. We (c.) convert to an SDK and add the sampling

kernels (d.) and then compile away the densities (e.) leaving a collection of interconnected

CPT gates. (f.) shows the visualized netlist in hardware.
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"mixture" kernel at the root of the SDK. The mixture kernel randomly selects one color of
kernel to execute at a time, effectively implementing "random scan gibbs" as described by
(Liu 2008).

We then perform a graph transform on the SDK to compile away the densities, and
replace the resulting kernels with CPT gates as follows (the densities are of course the
original factors in the factor graph). For a given target node we:

" Consider all possible state values of the state nodes in the target node's Markov
blanket, and build up a giant lookup table mapping from the possible input state
space to the distributions on the output state.

" We use this table to create a Conditional Probability Table Gate (as described in
section 3.1.4 with its conditioning inputs as the neighboring state variables.

" The resulting CPT Gate is a SDK kernel - it's a stochastic unit which mutates the
value of the target variable and preserves the total ergodic distribution of the markov
chain.

The compiler then simply wires up these CPT gates and connects their enable lines
appropriately.

4.3 Performance

A kernel for a state with k possible values will take k + o cycles to sample a new value,
where o is the overhead associated with handshaking. When we tell all the CPTs for a
given graph color to "sample", we schedule for worst-case performance. If kMAX is the
maximum number of possible values for a state variable, all kernels are given kMAX + 0
cycles to complete. In practice, this has limited impact on performance, for two reasons:

" the airities we're working with are generally small - 2, 3, 4 possible states

" Since all the nodes for a given color are sampled in parallel, we can only move on
when the last of these is done sampling. Even if the time to sample is E[k/2] + o, it's
likely that at least one kernel will need the full k + o cycles, stalling the completion
of the cycle.

4.3.1 10 and entropy

We enable programmatic 10 with the resulting compiled circuits by chaining all the state
variables together in a single long shift register, akin to JTAG. The shift register is latched
to allow inference to continue to occur during the readout. Compilation metadata is saved
post-compilation to allow readout from python to match the factor graph node labels in the
original source code.

Entropy is provided to each kernel via an associated XORshift RNG (see 3.4) which
is given a unique seed at compile time. Note that this is a dramatically-inefficient use of
entropy - we are using roughly one-thousandth of the entropy provided by each PRNG. it
is possible to multiplex the output of the PRNGs to share them between different subsets
of CPT gates and save silicon.
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Figure 4-3: "rain" factor graph.

4.4 Example Models

We present three compiled models. The classic Rain example Bayes network is a careful
walk-through of the possible queries we can make on such a Bayes net, and shows how even
at very low bit precision we recover the correct answers. The Ising model from statistical
physics demonstrates massively parallel execution of a very large model. We conclude with
the ALARM causal medical diagnosis network, highlighting how compilation can enable
different subsets of nodes to be "observed", and thus conditioned on.

4.4.1 Rain

We adopt Kevin Murphy's (Kevin P. Murphy 2001) modification of the classic "Rain"
example from Artificial Intelligence, A Modern Approach (Russell and Norvig 2009) as our
initial model. The Bayesian Network originally presented has four boolean nodes: cloudy
(C), rain (R), sprinker (S), and wet grass (G). When it's cloudy, it's more likely to rain,
and you're less likely to turn on the sprinkler. Both the sprinkler and rain can cause the
grass to be wet. We can trivially convert this Bayes net into a factor graph (figure 4-3) and
describe it efficiently in Python (listing 4.2).

We compile the network at three different bit precisions and generate 10,000 samples
of the full joint distribution, P(C, S, W, R), and use those samples to answer queries. We
compare our empirical results with exact results obtained via belief propagation. Based on
table 4.1, we see that even at 5 bits, we very accurately recover posterior values for queries.
Merely 5 bits are enough to accurately encode the resulting joint distribution and efficiently
sample from it.

The queries are as follows (see table 4.1):

1. P(C) : Probability of cloudy (this probability is explicitly coded in a factor, so this
serves as a sanity check)

2. P(SIW) : Given that the grass is wet, what is the probability the sprinkler was on?

3. P(SIW, R) : Given that the grass is wet and it is raining, what is the probability
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Listing 4.2: Source code for rain factor graph, defining the three potentials and wiring up
the graph
fg = fglib.FactorGraph()

cloudy = fg.add-variable((0, 1), observed=False)

sprinkler = fg.add-variable((0, 1), observed=False)

rain = fg.add-variable((0, 1), observed=False)

wet-grass = fg.add-variable((0, 1), observed=False)

assignments = ('cloudy' : cloudy,
'sprinkler' : sprinkler,
'rain' : rain,

'wet-grass' : wet-grass)

def sprinklerpot (cloud, sp):
if cloud:

if sp: return to-energy(0.1)
return to-energy(0.9)

else:
return to-energy(0.5)

fg.add-factor(sprinklerpot, [cloudy, sprinkler])

def rainpot (cloud, ra):
if cloud:

if ra: return to-energy(0.8)
return to-energy(0.2)

else:
if ra: return to-energy(0.2)
return toenergy(0.8)

fg.addjfactor(rainpot, [cloudy, rain])

def grasspot (sp, ra, wg):
if sp and ra:

if wg: return to-energy(0.99)
return to-energy(0.01)

if sp == 0 and ra -= 0:
if wg: return to-energy(0.0001)
return toenergy(0.9999)

# else:
if wg: return to-energy(0.9)
return to-energy(0.1)

fg.addjfactor(grasspot, (sprinkler, rain, wetgrass))

that the sprinker is on? Because of the rain, the posterior probability of the sprinkler
being on goes down.

4.4.2 Ising Model

The Ising model (Ising 1925) is a probabilistic model of ferromagnetism in statistical me-
chanics, and is frequently used as a benchmark model for probabilistic methods due to its
extremely bimodal nature. The model consists of binary variables which represent the spins
of magnetic domains. Each spin can be either "up" or "down", and only interacts with its
nearest neighbors.

Adjacent spin variables contribute to the total model energy only when they have differ-
ent values; that is, an "up" variable next to a "down" variable is a higher-energy state than
two "up" or two "down" juxtaposed variables. J controls the magnitude of the difference
between these two energy states.In statistical mechanics, higher-energy configurations are
less probable - nature seeks out lower-energy states.
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Query BP 5-bits 8-bits 12-bits

P(C) 0.5 0.4855 0.5065 0.4983
P(SIW) 0.4298 0.4535 0.4320 0.4309
P(SIVIR) 0.1945 0.2160 0.2045 0.1935

Table 4.1: Rain Factor Graph. Measured values for various bit-precisions of rain model

The factors are thus all homogenenous, and of the form

f(xx ') { if (4.1)

The energy of the total ising system is thus

E(X) = Y f(x, x') (4.2)

x,x'EN(x)

where x' c N(x) is the set of all nodes that are adjacent to x.
We compile nine different 256-node Ising factor graphs, systematically varying the cou-

pling strength J from 0.5 to 1.4. Figure 4-4 shows both the evolution of the sampler over
time, as well as the resulting histogram of the number of "up" vs "down" states. When
the coupling strength is very low, each binary variable is effectively independent, and as
we expect the sum of states histogram looks roughly Gaussian. As the coupling strength
increases, bimodality emerges, with the "all up" and "all down" configurations being dra-
matically preferred.

We're thus able to compile large factor graphs and perform efficient probabilistic infer-
ence programmatically. The programmatic nature of the compiler has the benefit of making
it easy to explore different points in the parameter space.

4.4.3 ALARM

ALARM ("A Logical Alarm Reduction Mechanism", (Beinlich et al. 1989)) is a Bayesian
network for patient monitoring, encoding the probabilities of a differential diagnosis with 8
possible diaagnoses based on 16 measurements.

Alarm diagnoses are mutually exclusive, but not encoded as such. Measurements are
often continuous, but for the purpose of the network they are encoded categorically, e.g.
"low, normal, high".The network also makes inferences on 13 intermediate nodes, connecting
diagnoses to measurements.

We go from the original Bayes net (figure 4-6) to a factor-graph representation (figure
4-7) which we then compile with 12-bit precision. We compile two different target networks:
One with the diagnoses observed, and one with the measurements observed.

Compilation with the diagnoses observed lets us understand the relationship between
diseases and evidence. As seen in figure 4-9, a healthy person has the majority of mea-
surements in the "normal" column, although for some variables (such as Total Peripheral
Resistance, TPR), there is a roughly uniform distribution on measurements. Hypovolemia,
pulmonary embolism, and left ventricular failure create different symptom profiles.

Compilation with the measurements observed allows us to use the network as it might
be in a clinical setting - measurements are made and diagnoses are suggested. When all
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Figure 4-5: Example samples from the compiled Ising model for four different coupling

strengths.
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Figure 4-6: The ALARM (A Logical Alarm Reduction Mechanism) Network, with 8 diag-

noses, 16 findings, and 13 intermediate variables.
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Figure 4-7: The ALARM Factor Graph generated from the Alarm Bayes Network.
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Figure 4-8: The ALARM factor graph from figure 4-7 colored for parallel execution.

56



measurements are in the "normal" range (figure 4-10, no diagnosis is suggested. Particular
settings of measurements adjust the probabilities of particular symptoms.

4.5 Future Directions

Causal reasoning is a crucial capability in systems that try and make sense of the noisy data

they observe in the world, and can be modeled as a Bayes net. Here we have shown how a

generalization of Bayes nets, discrete-state factor graphs, can be programmatically complied

into stochastic circuits. The compiler we built takes compact descriptions of factor graphs

in python, and generates synthesizable RTL. The resulting circuits enable rapid inference,
allowing for posterior exploration across a wide range of models.

We've also shown how having a compiler allows for the automatic exploration of a variety

of models an parameters in the problem space. With the rise of probabilistic programming

languages, one can imagine a day when arbitrary probabilistic programs can be compiled
down to efficient circuits.

Right now, the proof-of-concept compiler we've built leaves open the option for many
performance optimizations. As our timing is all based on the worst-case time of the slowest
sampler in a particular graph subset, future versions can adopt better handshaking to
achieve closer-to-optimal runtime. Right now we give each stochastic gate its own PRNG, a
waste of resources that could easily be ameliorated by multiplexing the output of the RNGs.

Any of our stochastic gates could be incorporated into the compilation step, as fully
blowing out the CPT table for every state variable tends to be somewhat space-inefficient.
More compact special-purpose gates would enable much larger graphs. Similarly, we could
create more runtime-configurable gates, allowing for greater runtime flexibility in the under-
lying model. The next chapter suggests a particular scheme for run-time reconfiguration,
virtualization, that allows for much larger graphs, albeit with reduced flexibility in topology.
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Chapter 5

Low-level vision, Lattice Factor
Graphs, and Virtualization

Vision is a classic problems in machine intelligence, and many animals use vision as their
primary sensory modality. Low-level vision tasks perform inference at the pixel or near-pixel
level - examples include computing the motion field (optical flow), estimating depth from
binocular images, (stereo correspondence), and removing noise in corrupted images. These
problems have a similar structure: combining per-pixel information about the outside world,
with a belief that there's some hidden (latent) cause that we need to infer, and that those
causes vary smoothly. It's not surprising that they were originally tackled via soft constraint
satisfaction (D Marr and T Poggio 1976), and more recently through probabilistic inference
(Scharstein, Szeliski, and Zabih 2001). Here we model them using a class of factor graphs
which exhibit per-pixel lattice structure, an approach which dates back to the original Gibbs
sampling work of (S. Geman and D. Geman 1984).

The circuit architectures described previously have been fully space-parallel, with topolo-
gies and resource allocations that closely mirror the underlying probabilistic model struc-
ture. As a result, state values have been colocalized with their associated stochastic ele-
ments.

This approach does not scale well to probabilistic models with thousands of state nodes
or mathematically-intensive density calculations, due to silicon area and power constraints.
Models with substantial homogeneity, however, admit the possibility of segregating state
and stochastic sampling elements. The reuse, or virtualization of particular subsets of
stochastic elements for a given model, enables the construction of architectures for solving
problems much larger than could be admitted via naive space-parallel designs.

We present a virtualized circuit for a particular class of probabilistic model : lattice
factor graphs with discrete latent state values, per-pixel external field densities, and homo-
geneous latent pairwise densities. This class of factor graphs arises frequently in problems
of low-level vision and video processing, including depth estimation from stereo images
and optical flow. This model class generalizes the previously-described Ising model (4.4.2),
which will be used as a point of architectural comparison.

First, we describe the detailed structure of the lattice Markov random field and the
associated inference scheme. Then we describe the generic architecture, and how this
architecture lends itself to model-specific stochastic circuits and a weakly-reconfigurable
probabilistic processor for inference in factor graphs. Finally, we show performance, silicon
resource, and quality results for the aforementioned problems.
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Figure 5-1: Low-level vision lattice factor graph. Some lattice of unobserved, latent state
variables Xij generate observed values Yj through an external potential fE. The relation-
ship between adjacent Xij and Xi,, is constrained by the latent, pairwise potential fLP.

Note that in this formulation, both fLP and fE are homogeneous in the graph.

5.1 Low-level Vision Factor Graph

A low-level vision factor graph (figure 5-1 ) is a probabilistic model for image processing
problems where per-pixel data Yij is used to estimate some unknown (latent) per-pixel
random variable Xij. The latent state variables are arranged in a square lattice. The
factor fE(xij i,j) dictates the probabilistic relationship between the observed variables
and the latent ones. Additionally, a "latent, pairwise" factor, fLp(x, x') constrains the
relationship between a latent state variable and its lattice neighbors. Typically, this factor
serves as a smoothness prior, favoring configurations where adjacent latent variables have
similar values. Thus

P(Xi, = x) oc fE (x, yi,j) fLP(x,x ') (5.1)
x'ENeighbor(X2 ,))

Here I am only considering the case of homogeneous densities - that is, the functional
form for all fE are the same and all fLP are the same.

5.2 Resource virtualization and parallelization

5.2.1 Virtualization

The homogeneity and regular lattice structure of the factor graphs here suggests an op-
portunity for resource sharing. Only the state values Xij and Yij differ between adjacent
pixels.

To explore the opportunity for virtualization, consider a simpler factor graph. Figure
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R- SAMPLER
c.) Stream through
relevant state:
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Figure 5-2: Virtualization example for linear-chain factor graph. a.) The model consists

of a repeating chain of variables connected pairwise by homogenenous factors. Sampling a

new value for a particular variable requires conditioning on the neighbor state values and

evaluating the connected factors. b.) We can create a virtualized stochastic circuit which

contains the factors, and allows state values to be read in and out, sampling a new value for

the center variable. c.) The vitualized circuit then can sample values for the entire factor

graph by streaming in the variable values, performing the sample, and writing the output.

5-2 shows a simple discrete-state factor graph with a chain-topology. In this factor graph,
the state variables all have the same domain, and the pairwise potentials are all identical.

Rather than creating a dedicated stochastic circuit to perform sampling at every site,
we can create a virtualized stochastic circuit. This virtualized circuit can produce a sample

for Xi ~ XjXi_1 , Xt+1 . Thus we can load the Xi_ 1 and Xi+l values from someplace else,
sample a new value for Xi.

Thus, all of the relevant structure of this factor graph has been captured in the resulting

virtualized circuit, and the relevant state variables can simply be streamed in serially, in

effect "sliding" the virtualized circuit down the graph. A similar scheme can be used in a

square-lattice factor graph (such as those we're working with here), or indeed any factor

graph with highly regularized structure. 1

'This regularity is not uncommon in models which use a great deal of data, such as image processing and
time series.
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Figure 5-3: Parallelization via conditional independence. a. Maximally parallel, derived
from the graph coloring. All red sites can be sampled simultaneously b. The naive coarsen-
ing, tiled parallel, in which inference in the same color of tile can be performed simultane-
ously c. Simultaneous tiled parallel, where we carefully time the sequential sampling within
a tile to guarantee correctness, allowing sampling on tiles to happen simultaneously.

5.2.2 Parallelization

I have previously shown that factor graphs with conditional independencies provide exten-
sive opportunities for paralellization. The granularity of that parallelization can be varied.
In 5-3a, the variables in a square lattice factor graph are shown, colored for parallelism -
sites with the same color can be sampled simultaneously. It's entirely possible to "coarsen"
this parallelism, as seen in figure 5-3b, resulting in "tiles" of sequential serial inference, where
inference can take place simultaneously in similarly-colored tiles.

I go one step further here, as shown in figure 5-3c. By carefully controlling the sequential
scan of particular random variables within a tile, we can be sure that no two adjacent sites
between tiles are the target of inference simultaneously, a condition which would result in
invalid inference. This allows serial inference to occur for all tiles simultaneously.

5.3 Circuit Architecture

Here I describe a tiled architecture for efficient inference in low-level vision factor graphs
which exploits parallelism and virtualization to make larger models practical. The resulting
"Lattice Factor Graph Engine" consists of an array of lattice-interconnected Gibbs tiles,
each of which performs Gibbs sampling (see section 2.4.2) on a subtile of the total lattice
factor graph.

Reencoding the factor graph (figure 5-4), replaces homogeneous external field potentials
and observed data states with heterogeneous external field potentials that incorporate the
per-pixel data. This enables the computation of the arbitrary external field relationships
off-line.

5.3.1 Gibbs Tile

The Gibbs Tile virtualizes a single normalizing multinomial gate stochastic element (sec-
tion 3.3 over a rectangular subregion of the factor graph (figure 5-5), performing sequential
Gibbs sampling on this region of the graph. The Gibbs tile stores the requisite state for
the variables in this portion of the graph in the Pixel State controller, which also handles
scheduling and coordinates communication with adjacent tiles. Each Gibbs Tile can be
synthesized with a particular latent pairwise density, including the above-mentioned lookup
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Figure 5-4: Re-encoding of the factor graph from using homogeneous external potentials
and heterogeneous data (a.) to just using heterogeneous external potentials (b.), without

loss of generality. c.) shows the resulting factor graph that is actually used.

table density. The external field density is implemented as a runtime-reprogrammable

SRAM, An XORShift pseudo-random number generator (section 3.4) provides the needed

entropy.
This bears repeating. The lookup-table density allows for run-time reconfiguration, and

thus we could potentially build an ASIC capable of performing inference in an arbitrary

lattice-structured factor graph. While the external field density (also encoded as an LUT)

can be easily updated with single-frame latency, configuring the LUT pairwise density can

take several frame cycles.
To perform Gibbs sampling on its region of the factor graph, the gibbs tile sequentially

iterates through sites, looking up the relevant adjacent state bits and then having the Gibbs

Core Sampler produce a sample from the appropriately-conditioned distribution (algorithm

Algorithm 2 Gibbs Tile Operation

for all v in VirtualizedSet do
n +-- LOOKUPNEIGHBORS(v)
offset - COMPUTEOFFSET(v)
newv +- GIBBSCORESAMPLE(ni, offset)

v +- newv

end for

5.3.2 Pixel State Controller

The pixel state controller (PSC in figure 5-6) coordinates sampling over a virtualized region

of per-pixel latent state, storing the latent state in RAM internal to the PSC. The PSC

drives the Gibbs core, and stores the resulting sampled value.

Most importantly, the PSC coordinates the state virtualization, sequentially scanning

through "active" states one pixel at a time, looking up the neighboring latent states, and

then presenting them in a unified way to the gibbs unit.

The lattice structure of the factor graph results in adjacent tiles needing to see the

"edge" latent pixels of their neighboring tiles. The PSC contains dual-ported edge RAMS

that store buffered copies of this particlar tile's edge state for interruption-free lookup by

neighboring tiles (labeled "Adjacent state IO" in figure 5-5).
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Figure 5-5: Gibbs tile, consisting of the pixel state controller, the Gibbs unit with local
potential density, the external field density lookup table, and the PRNG. The tile commu-
nicates with neighboring tiles via adjacent state IO.

For off-device IO, the internal state variables in the PSC are readable and write-able
through an external port.

5.3.3 External Field Density RAM

We encode the per-pixel external field density as a lookup table in a dense SRAM. The
PSC selects the relevant region of this RAM that corresponds to the lookup table for the
particular active site.

5.3.4 Gibbs Core

Algorithm 3 Gibbs Core Sampling algorithm

for x = 0 to K do
extfscore +- extfram(offset + x)
lpscore +- density(neighborvals, x)
totalscore <- extfscore + lpscore
multinomial-sampler.add (totalscore)

end for
return multinomial-sampler.sample()

Once the PSC has selected an active site xjej and looked up the relevant neighboring

values, the Gibbs Core Sampler computes the full conditional score for all values of xij (algo-
rithm 3). For each of those values xk we compute Si,, (xk) = fE (xk) +ZxEneighbors fLP(xk X)

The Multinomial sampler (section 3.3) normalizes and samples from the resulting score ta-
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Figure 5-6: Pixel state controller behavior. At time t = n, the PSC centered on node 11
presents the neighborhood state values to the downstream core. At subsequent times, the

active neighborhood shifts to the right.

ble. The Gibbs Core can also temper the resulting scores, allowing for annealing and

tempering MCMC operations.

5.3.5 Latent Pairwise densities for specific models

The latent pairwise density is a pipelined, fixed-latency arithmetic primitive that performs

Ex'eN fLP(xk x'). The LP density module has configuration registers which enable the

setting of specific constants within the density. Each input has an optional enable which

selectively includes that term in the resulting computation.

5.3.6 Configuration Parameters

The stocahstic video processor is parametrized to allow the exploration of design tradeoffs

and to generate application-specific engines targeted for certain problem domains.

Figure 5-8 shows the relevant parameters - we can vary the number of Gibbs tiles in

either dimension, the number of sites within a tile, and various internal precision calculations

within a tile.

Tile Efficiency

Gibbs sampling a site is O(K), where each site can take on K possible values. For the stereo

circuit described below, for example, there are K = 32 discrete depth values. Since we must

evaluate each possible state value before discretely sampling, we must take at least K ticks.

The sampling step then needs E[K] ticks to sample a value, suggesting a lower-bound on

K - E[K, or ~ 1.5K ticks per site.

Figure 5-9 shows empirically-measured tile performance for a 8x8 tile as the number of

possible state values increases. Since there is constant startup and handshaking overhead,
low-state-value variables tend to be more inefficient.
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Figure 5-7: Gibbs core enumerates through possible values for this site's latent state vari-
able, setting X to each value and evaluating the LP density. The score from the LP density
and the external field lookup table are summed. The multinomial sampler takes these
unnormalized scores and produces a sampled state value.
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Factor Calc: (mn)
External Field: (m,n)
Gibbs Norm: (mn)
Gibbs Exp: q
Number of state values: k

a. Entire MRF Engine b. Gibbs Tile Sites c. Gibbs TIle Intemals

Figure 5-8: Stochastic Video Processor parameters. a.) Tiles H and Tiles W control the
height and width of the engine, in tiles. b.) Each Gibbs Tile samples GT H by GT W sites.

Within the tile, (in, n), q)-bit-precision computations are performed, with each variable
taking on k possible values.
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Figure 5-9: Performance overhead of architecture per state variable value. As the number
of possible discrete states per variable increases, we approach the expected limit of 1.5 ticks
per possible value (black dashed line).

Table 5.1: Resource utilization and performance for a 4-state 20x20 compiled Potts model.

Configuration Performance Resources

Vars Bits Scans/sec Clock (MHz) Slice FFs Slice LUTs BRAMS

400 5 1468535 125.0 76917 55710 280

5.4 Comparison to explicit compilation

In chapter 4, the compiler generated a fully space-parallel Ising models.. We can generate
an equivalent fixed-function lattice factor graph engine 2 for k-state Potts models (Wu 1982)
and measure performance, in terms of samples per second and silicon resources used.

To synthesize the engine with the Potts latent pariwise potential, we create HDL rep-
resenting fLp(x, x') and the module is replicated and synthesized.

The compiler can only fit a 400-node 4-state Potts model in our target Virtex-6 LX240
FPGA, but achieves 1.45 million full gibbs-scans per second with 5-bit precision (table 5.1).

We can synthesize a variety of Potts lattice factor graph engines for comparison, all

resulting in a 16,384-node MRF (Table 5.2). We can vary the number of variables per

tile - more state values per tile results in an engine that consumes fewer FPGA resources,
but only scans at 13k scans/second. Or, we can use more FPGA resources, and a larger

number of smaller tiles to sample at up to 55k scans per second. Note that while the

compiler-generated factor graph is 25 times faster than the lattice engine, the lattice engine
is solving a model 40 times larger.

2 Although the Lattice Factor Graph engine comes along with external field support.
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Table 5.2: Resource utilization and performance for a 4-state 128x128 Potts Lattice Factor

Graph circuit.

Configuration (total vars=16384) Performance Resources

Vars/Tile Tiles Bits Scans/sec MHz Slice FFs Slice LUTs BRAMS

256 64 (6,2),8 13673 125.0 29559 35265 96
256 64 (8,4),12 13667 125.0 34231 44293 96
128 128 (6,2),8 27243 125.0 53936 64039 160
128 128 (8,4),12 27225 125.0 63280 82091 160
128 128 (6,2),8 27228 125.0 53952 64296 160
128 128 (8,4),12 27232 125.0 63296 82348 160
64 256 (6,2),8 54074 125.0 102457 120546 288
64 256 (8,4),12 54060 125.0 121145 156646 288

Table 5.3: Resource utilization and performance for a 32-state 128x128 Lookup-table MRF
circuit.

Configuration Performance Resources

Vars/Tile Tiles bits Scans/sec Clock (MHz) Slice FFs Slice LUTs BRAMS

128 128 (4,2),6 14468 125.0 55874 352 69758
128 128 (6,2),8 14389 125.0 59714 352 78848
128 128 (8,2),10 14364 125.0 64066 352 91010
128 128 (6,4),8 12266 125.0 62402 352 88322
128 128 (8,4),12 12248 125.0 67266 352 100228

5.5 Stochastic Video Processor

The virtualized circuit engine can already be loaded with data and the external field con-
figurations at runtime. Here I extend the runtime reconfigurability to include all factors in
the model, replacing the above fixed-function pairwise factors with a generic lookup table.

5.5.1 Resources and Speed

5.6 Depth estimation for Stereo Vision

The primate visual system uses stereopsis to estimate object depth, exploiting the image
difference between the right and left eyes. Objects that are very close to the observer appear
to be located at different horizontal positions on the eyes. Farther-away objects differ less
in their separation (or disparity) between the eyes, with the far background identical for
both eyes (figure 5-10).

The MRF model from Tappen and Freeman (2003) infers disparity, and thus distance
from the camera, using a low-level vision markov random field. The latent variables xij are
the disparity between the left and the right image; the larger the value xj, the greater the
separation of the object between the left and right frames, and thus the closer the image is
to the cameras.
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Left Camera Right Camera

Figure 5-10: Stereo geometry calculations. There is substantial overlap between left and
right camera views. Closer objects (blue) appear to shift more between adjacent frames
than objects that are further away (red).

Thus we must define two functions. The first is the latent pairwise factor, fLp(x, x')
between two adjacent nodes. Tappen and Freeman use a Potts-model-style factor, where:

fAp(x, X') = 0 if X X (5.2)p p(AI) otherwise

where pj(AI) is a function of AlIx - x'I,

P IW) P X s if AI<T

s otherwise

where T is a threshold, s is the penalty for violating the smoothness constraint and
P extra-penalizes small smootness violations. The intuition here is simple: objects are in
general a fixed distance away from the camera, and thus the disparity is in general constant;
abrupt jumps in disparity are to be expected, as there are different objects in the scene.
Smoothly-varying disparities, however (as once might expect from a sphere) are uncommon
and should be penalized accordingly.

The external field density Fe(xi, yi,j) computes the Birchfield-Tomasi dissimilarity
(Birchfield and Tomasi 1998), a smoothed between-pixel distance measure that is robust
against aliasing.

We use three rectified, intensity-calibrated image pairs from the stereo benchmark
dataset created by Scharstein and Szeliski (Scharstein, Szeliski, and Zabih 2001). These
images have known ground truth depth maps to enable evaluation of our MRF engine at
both 8.4 and 6.2 bit precisions. The results (figures 5-11, 5-12, 5-13) are shown for the full
64-bit software engine as well as 8- and 12-bit MRF engines.

The stochastic video processor finds a total score almost as good as the version computed
using Gibbs sampling using IEEE-754 64-bit floating point on a 2.8GHz Intel Xeon, literally
three orders of magnitude faster. This is in spite of the clock rate of the video processor
being only 125 MHz. For most examples,the quality of the 12-bit solution is nearly as good
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Figure 5-11: Middlebury "sawtooth" example stereo depth dataset. Top row is the ground
truth disparity map, and subsequent rows are the empirical mean mean of 10 full annealing
sweeps for the double-precision software, and 12-bit and 8-bit hardware, circuits.
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(a) Ground Truth (b) Left Image
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Figure 5-12: Middlebury "Tsukuba" example
truth disparity map, and subsequent rows are
sweeps for the double-precision software, and

stereo depth dataset. Top row is the ground
the empirical mean mean of 10 full annealing
12-bit and 8-bit hardware, circuits.
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(a) Ground Truth (b) Left Image

(c) software, 64-bit floating (d) hardware, 12 bits (e) hardware, 8 bits
point
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Figure 5-13: Middlebury "Bowling2" example stereo depth dataset. Top row is the ground
truth disparity map, and subsequent rows are the empirical mean mean of 10 full annealing
sweeps for the double-precision software, and 12-bit and 8-bit hardware, circuits.
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Figure 5-14: Optical flow uses the local pixel differences between frame n and n + 1 to
compute a dense flow field, indicating the direction and magnitude of each pixel's interframe
motion. In the above, flow vector direction is indicated by color, and flow magnitude is
indicated by saturation. Stationary objects are thus white.

as the floating-point version, although the limited dynamic range of the 8-bit version results
in some areas (like the center of the bowling ball) failing to find ground truth.

5.7 Dense Optical Flow for Motion Estimation

The visual system is also required to estimate the motion of objects in the visual scene.This
can be accomplished by computing the optical flow field, associating with each pixel a flow
vector indicating the relative motion between the frame at time t and t + 1. The optical
flow field also helps in parsing the 3D structure of the environment, estimating object
boundaries, and computing the motion of the sensor. While Verri and Poggio (Verri and
T. Poggio 1989) showed that the optical flow field is not the same as the true 2-D projected
motion field, it is often close enough for computer vision applications.

Markov random fields have been used successfully to estimate discontinuous optical
flow (Heitz and Bouthemy 1993). A MRF for optical flow can be computed as follows: we
discretize the possible flow vectors (in our case, k E 0... 31) as the latent state variable
values. Let flow vector value fk indicates that pixel xzi~ in frame t has moved to location
(i + Fx, j + F') at time t + 1. To compute the external field, we compare the neighborhood
around source pixel x in frame t with all k neighborhoods in frame t + 1.

fAP(xiy, y)= -( i' - ij + .' - iI) (5.4)

The associated latent pairwise potential is simply the Manhattan distance between the
two latent state values 5.4. The range of motion is limited to the 32 nearest flow vectors
surrounding the target point.

We compare inference time and posterior sample quality for three real-world datasets,
captured in an office environment using a Prosilica GC650c gigabit ethernet color-CMOS
camera under uncontrolled lighting conditions (figures 5-15, 5-16, 5-17). Adjacent frames
were taken 10 ms apart.

High-quality flow fields were obtained with as few as 300 gibbs scans per frame, giving
a maximum frame rate of 32 fps. The dynamic ranges encountered in the optical flow
calculations resulted in the 6.2 engine producing very poor quality results; in this case,
dense optical flow is a problem that needs the 8.4 engine.
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Figure 5-15: Optical flow results on the "bookswing" data
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Figure 5-16: Optical flow results on the "blackcar" data
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Figure 5-17: Optical flow results on the "eric" data
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5.8 Conclusion

I've shown how virtualization of state and inference elements in a stochastic circuit gives
rise to more resource-efficient circuits for models with homogeneity and large amounts of
state. This makes it possible to perform Bayesian inference on low-level vision problems in
real-time with limited silicon resources.

The homogeneity present in the original model for fEF is eliminated by the transfor-
mation outlined in section 5.3 The parametrized fLE densities of the static circuit could
be configured on a site-by-site basis, again with the configuration information living in the
PSC (and thus runtime-reconfigurable).

The overall architecture of virtualizing over a region of the graph, and then selectively
enabling parts of the resulting density calculation, suggests an engine for graphs with a
more general topology. Each tile would be responsible for performing inference on some
subregion of the graph, communicating with its neighbors, via message-passing the sampled
state values, and selectively enabling and disabling the relevant densities.

Currently the engine described performs inference at every latent state site, making
some applications (such as problems of filling-in missing regions (Scharstein, Szeliski, and
Zabih 2001)) impossible. It would be easy to add an additional configuration bit at each
site in the Pixel State Controller to selectively enable inference on a per-pixel basis.
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Chapter 6

Clustering, Dirichlet Process
Mixture Models, and Dynamic
Structure

Both human and other cognitive systems can infer underlying causes in data through iden-

tifying hidden "groupings" or clusterings of the data. These systems can identify the true

number of clusters in the underlying data, while simultaneously allowing for cluster refine-

ment in the presence of additional data. We'll show how a particular class of probabilistic

model captures exactly this intuition, the nonparametric Dirichlet process mixture model.

Up to this point, all of our stochastic architectures have closely followed the statis-

tical nature of the underlying probabilistic model. The Dirichlet Process mixture model

exhibits substantially more dynamic structure. By using stochastic queues and storing

drastically-reduced quantities of data (the "sufficient statistics"), it's possible to construct

a more time-and-area-efficient stochastic circuit. There is a nice intuition - systems should

remember summeries of the observed data, not the data in totality.

The stochastic clustering engine enables real-time clustering of large numbers of data-

points with a very large number of features, while closely exploiting the conditional inde-

pendence of the underlying model. Again, we see that low bit precision and conditional

independence provide considerable architectural wins.

The outline of this section closely follows the others; we will describe the computa-

tional problem; we will describe the probabilistic model; and then we will focus on the

implementation.

6.1 Clustering as a cogntivie primitive

Discovering how humans categorize the world has fascinated both neuroscientists and cogni-

tive scientists since the beginning. People form categories with data without direct supervi-

sion, and use this to infer the properties of previously-unseen objects (Joshua B Tenenbaum

et al. 2011). Neuroscientists have identified category learning occuring across multiple

modalities in multiple higher-order brain areas, including prefrontal and parietal cortex,
basal ganglial structures, and even in higher-order sensory corticies (Seger and E. K. Miller

2010).
To explain the structure of human thought as a solution to computatioanl problems

present in the environment, cognitive scientists have proposed solutions that take the form

79



of probabilistic mixture models. Anderson (Anderson 1991) introduced a Rational Model of
Categorization (RMC) in an attempt to explain how humans learn the number of underlying
clusters representing each category.

Radford Neal (Neal 1998) was the first to recognize that RMC was nearly identitical to
a Bayesian nonparametric mixture model known as the Dirichlet process mixture model, in
which a probability model is specified over a potentially infinite number of clusters. While
the DPMM had been celebrated in statistics for quite some time, Griffiths points out that in
some sense Anderson "thus independently discovered one of the most celebrated models in
nonparametric bayesian statistics, deriving this distribution from first principles" (Griffiths,
Sanborn, et al. 2008).

Beyond this, thanks to the composable nature of probabilistic modeling (see 2), the
dirichlet process is an effective component in probabilistic models of more complicated
cogntivie processes (Joshua B Tenenbaum et al. 2011). As we examine the relationship
between the probabilistic model, the clustering beahvior, and the stochastic architectures
it suggests, it's good to remember that like an ALU, the clustering architecture we present
here can serve as a dedicated component in more complex inference systems.

6.2 Dirichlet Process Mixture Model

Probabilistically we view the "clustering" problem using a mixture model (Bishop 2006).
Mixture models assume there are some number of hidden (latent) causes of our data, each
cause having some distinct properties. When we observe the data, we don't know which
cause generated the data. When clustering we assume each cluster came from its own
hidden cause. We will initially describe the model when the number of hidden causes is
known, and then show how we extend it to the unknown case via the Dirichlet process.

The generative process for a mixture model is as follows. Assume there are K possible
sources of data, each source having some associated set of parameters 9 k. That is, data from
source k is distributed as xi ~ F(k), where F(-) is some known parametric distribution.

Each data point xi is generated by first picking one of these sources with probability
7rk (Zk 7k = 1) and then drawing xi - F(0k), where F is often termed the "likelihood".
The {k} are called mixture weights. Note that each xi is drawn independently. Figure
6-1 shows an example of this generative process for three clusters of data from N(pk, 1)
distributions.

This model easily extends to the multidimensional case, where each dimension is an
independent "feature". That is, D-dimensional data vector xi is generated from cluster k
such that the likelihood is

D

P(xi {Ok}) H P(xfl ) (6.1)
d=1

We can imagine there exists a vector c keeping track of the source of xi - if xi is drawn
from cluster k, ci = k. Thus "clustering" a dataset is attempting to compute the cluster
assignment vector c.

X ~ P(XIc, {OK})P(ct{ik}) (6.2)
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p1 = -3.0

7r1= 0.5

P2 = 0-0

7r2 = 0.15

P3 = 3.0

= 0.35

- - - p(yi D7r }, {ak})

Sampled Data

Figure 6-1: A Gaussian mixture model, illustrating the generative process for mixture model
data. There are three latent classes from which the data are generated, with the first class
generating a datapoint with 7r, = 0.5. The total probability of a data point y is the sum
of the source probabilities weighted by their mixture weights. Samples from the resulting
distribution are shown below.
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6.2.1 Mixing weight prior

If we don't know the mixing weights {7} ahead of time, we can assign them a prior
distribution.

P(XIc, {Ok})P(C {7k})P({k}) (6.3)

The derivation below is closely copied from (Griffiths and Ghahramani 2011). A natural
fit for a prior over the mixing weights is the symmetric Dirichlet prior with concentration
parameter *:

KK

F(a) K
p(7ri, - - l , ra) ~ Dirichlet(a/K, ..., a/K) =( /-1 (6.4)

17(alK) =1

Given a particular assignment vector c, we can integrate over all possible values of {wk}
to arrive at

N

P(cla) = / P(c 17r)d7r (6.5)
- K i=1

rK 7rMk+ak-1
JA k= 1 rk± d7r (6.6)

A D(al, ..., aK)

_ D 2,m K--g) (6.7)
D(a 0,--, )

M= I(mk+a) F1(a)
( QL)K F(N a) (6.8)

where we are using the shorthand m -= 6(ci = k) is the number of objects assigned
to class k.

Note that in this equation above, individual class assignments are no longer independent,
but what they are is exchangable - the probability of a particular assignment vector is the
same as any other permutation of the assignment vector.

6.2.2 Dirichlet Process Prior

In all the examples above, we have assumed the number of latent classes, K, is fixed.
Through various derivations outside the scope of this text, we can show that one infinite limit
of the above dirichlet prior is the Dirichlet Process, also known as the Chinese Restaurant
Process.

The Chinese Restaurant Process is named for the apparantly-infinite seating capacity
of many Chinese restaurants, and describes a particular algorithm for assigning mixing
weights. The stochastic process defines a distribution of customer seatings at a restaurant
with an infinite number of tables (Ferguson 1973)

In the CRP, N customers sit down, with the first customer taking a seat at the first
table. The ith customer chooses a table at random, with
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7 3 5 9 5 3

1 01 9 02 8 03 ) aS 01, 02 03 Sum
6 , , & 2 6 , 4

2 8 6 8 6 4 7
(a) Assignment from the CRP (b) Equally-likely assignment from the

CRP due to exchangability

Figure 6-2: Two draws from the CRP with equal probability. Note that only the total
number of customers at each table, and not their identity, affects the probability of the
distribution. With each table (cluster) is associated some latent parameter Oi.

P( occupied table k~previous customers) .fk (6.9)
a + i - 1az-

P( next unoccupied tablelprevious customers) a (6.10)+z-
(6.11)

where mk is the number of customers sitting at table k. A crucial feature of the CRP
is that the resulting distribution of table assignments is exchangable (Schervish 1996) -
the assignment vector is invariant to any permutation of the labels. This means that the
probability of particular table seating arrangement is the same regardless of the order the
customers arrived in. Thus, for customer i, the precise arrival ordering of customers 1
through i - 1 does not affect p(ci = k), only the total number of customers at each table
does.

For a CRP mixture model, each table k corresponds to a mixture component, and has
associated with it a set of cluster parameters OK.

6.2.3 Conjugacy

The 0 k are all often drawn from some base prior, or hyperprior, distribution. That is,
the generative process has an additional step of first drawing K 0 k values from a prior
distribution.

P(Xc, {k})P({k})P(c{7rk}) (6.12)

If a prior distribution and the likelihood exhibit conjugacy (Bishop 2006), then the
posterior distribution on the parameter of interest (in this case, the Ok) takes the same
functional form as the prior. Important quantities of interest, such as the posterior dis-
tribution for P(OkIfyi}), and the posterior predictive distribution p(y*J{yi}) can then be
computed based upon a reduced representation of the data, the summary statistics.

The Bernoulli distribution p(x = 110) = Ox(1 - 0)1-x is the distribution of a biased
coin with heads probability 0. A conjugate prior for 0, the probability that x = 1, is the
two-parameter beta distribution,

p(01a, 0) - (a+ 0 0-1( 1 - )0-1 (6.13)
F(a)F(0)

If we use the Beta distribution as the prior on Bernoulli(0), conjugacy results in the
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Input
Data

Clustered
Data

Cluster
Parameter

Vectors

Figure 6-3: An example of clustering via a 10-dimensional binary mixture model. The input
data is at left - each row is a data point in the 10-dimensional binary space. The resulting
discovered clusters (middle) are associated with latent "parameter vectors", one for each
cluster, which are estimated from the data.
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Figure 6-4: The two-parameter Beta distribution, the prior likelihood for the conjugate
Beta-Bernoulli data model

posterior after observing x 1 as:

p(Ojx = 1, a, 3) - F( + 3 + 1) 01+a-1(I _ 0)0-1 (6.14)
F(a + 1)F(8)

The observations yi are drawn independently, and as a result, if m are the number of
datapoints with yi = 1 in the dataset and n are the number of datapoints with yi = 0 then
we can see that

p(O1 m,n,Qa,) = F(a 0 m+ m + n) 6mn+a-1(-i _ )n+-1 (6.15)
.r(a + m)r(p + n)

A more detailed derivation can be found in (Bishop 2006).

6.2.4 Gibbs Sampling

Using a conjugate likelihood model with known parameters and the CRP as a prior on class
assignments, we are thus interested in sampling from the posterior distribution on class
assignments,

P(cIX) Oc P(Xjc, {6k})P({Ok})P(cla) (6.16)

The combination of conjugacy and exchangability allows us to exactly sample from
the resulting conditional distribution on cluster assignments. As we've shown earlier in
section 2.4.2, this lets us Gibbs sample (Rasmussen 2000).

Let c-i be the assignments of all objects except for the object of current interest, ci.
Thus

P(ci = kjc-i,X) oc P(Xlc)P(ci = klc-i) (6.17)
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- ror H 1, T='O H-2, T-OH- , = H=4, T= H-5, T= H=6, T=

prior H=O, T=1 H=0, T=2- H=,T3H=0, T=4 H=', T='5 - H=', T='6

prior =1, T-0 H=1, T=1 H=2, T= 1- H=2, T=2 H=3, T=2 H =3, T-3

prior H=1, T=O- H=2, T=O- H=3, T=- H=4 T= JH=5, T=0 H=6, T=

Figure 6-5: Sequential updates to the Beta-Bernoulli conjugate data model. Starting with
no observed data and a prior distribution (left), additional observations shift the posterior
distribution of 6 in an intuitive way. Note on the last row that, even if the prior is wildly
biased, sufficient data "overwhelms" the prior's effect on the posterior distribution.

The CRP above readily provides P(ci = klci),

P(ci = occupied classkc-i) = m-i (6.18)

P(ci = newclassc-i) = (6.19)

(6.20)

Via conjugacy above, we can easily compute P(ilX_i, c). Thus the gibbs sampling
algorithm for the dirichlet-process mixture model with conjugate likelihood is as follows:

6.3 Architecture

Here we present a stochastic architecture for efficient data streaming and sampling in the
Dirichlet-process mixture model for binary (Bernoulli-distributed) data and a conjugate
Beta distribution prior. There are two features which make this system stand out from our
previous stochastic architectures:

First, the architecture is dynamic -- this is the first case where the underlying number
of random variables can change dynamically as inference occurs. This is in contrast to 3,
where every random variable had an equivalent stochastic circuit element, or 5, where every
random variable was explictly known ahead of time, even though some were virtualized.

Second, this is the first example of an architecture where the data is streamed through
the core system. Everything we've discussed up to this point has required that all data
be present in the circuit, at once for inference to occur. Here, we relax that assumption,
instead streaming a row of data at a time through the system, thus allowing for far larger
datasets, enabling "big-data" style applications.
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Figure 6-6: Stochastic circuit for inference in a Dirichlet-Process Mixture Model. Input
data is streamed through (upper-left), and a distribution on group assignment is computed
for each row by the multi-feature module. A sample is drawn from that distribution, the
row is inserted in that group, and the new assigned group is streamed out.

Terminology

To that end, we will use HP when referring to the hyperparameters for the data model (for
the Beta-Bernoulli data model, HP = (a, a)), and SS when referring to the sufficient statis-
tics (for the Beta-Bernoulli model, SS = (m, n)). Note that our model is multidimensional
- here we describe the conjugate likelyhood for a single feature.

The conjugacy of the likelihood means that we only need to store the sufficient statistics
for a group, allowing us to cluster very large amounts of data using relatively few on-device
state bits. Sufficient statistics are stored in constant-time-access SRAM on-device. The
finiteness of this RAM means that we can only cluster datasets with up to KMAX clusters,
but this is rarely a problem in practice - while the Dirichlet process mixture model accom-
modates a potentially infinite number of latent clusters, most real-world datasets have far
fewer.

Overall operation is as follows - data is streamed in one row at a time. We sample an
assignment from that new row based on previously seen data, by Gibbs sampling all possible
latent group assignments. This sampling, as well as the dynamic creation and destruction
of new latent groups, is handled by the Group Manager. A multi-feature module stores the
sufficient statistics for all groups and computes the P(ci = kI{yi}, {HPs} necessary for
the resulting sampling step. Once a row's group assignment has ben sampled, the sufficient
statistics for that group are updated, and the group assignment is streamed out of the
circuit.
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Data: YO y777 y2 All features _ _
evaluated N

Evaluate: y I ss ,hp0 ) p(y ss hp1 ) p(y2 I ss2. hp2) simultaneously I ssN' hpN)

Reduce: 4-

Space-parallel adder
tree performs summation

p(y I ss, hp)

Figure 6-7: Schematic of feature-parallel evaluation of the cluster assignment probability

for a given feature; all features are evaluated simultaneously, and the results are summed
in parallel via an adder tree.

6.3.1 Parallelism

Conditional independence allows us to compute cluster assignments in parallel. The multi-
feature module computes the probability that the current row yj was generated by a par-
ticular cluster k for all features in parallel. The resulting scores are simply added via a
pipelined adder tree.

6.3.2 Component Models

To evaluate the probability of a data point being generated by a particular group, we need to
compute p(y * ISS, HP). Thus we must store those sufficient statistics someplace stateful.
We must also implement component-model-specific hardware to update those sufficient
statistics when a data point is either added to or removed from a group.

Figure 6-9 shows the interface for the sufficient-statistics mutation module "SSMutate"
and the posterior predictive evaluation module "PredScore".

SSMutate is heavily pipelined (hence the START and DONE signals) and returns the
updated values on NEWSS based on whether the data point is being added to the group
(ADD = 1) or removed from the group (ADD = 0).

PredScore takes in the current values for the sufficient statis (SUFFSTATS and the
hyperparameters (HYPERS) and returns log P(y * SS, HP). It is also heavily pipelined,
with one tick per sample throughput.

6.3.3 Beta Bernoulli Component Model

Having shown above that the posterior predictive p(x = 1 D, HP) for a beta bernoulli
component model is

p(x = 1{xi}, a, ) = + (6.21)
a +,3 + m + n

to compute the log score we must compute

log p(x = II{xi}, a, /) = log(m + a) - log(a + 3 + m + n) (6.22)

This requires an internal approximation to the log function, which we do via linear
interpolation. The resulting approximation error is shown in Figure 6-10, which stays very
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Figure 6-8: Feature Parallel evaluation architecture: A common group is selected across
all features, and the posterior predictive is computed for each datum using its associated
feature. As the features are independent, and the probabilities are in log 2 space, a simple
pipelined adder tree is used to accumulate the total score.

I sSUFFSTATS I

NEWSS W S

DONE DATUM

START

SS Mutate

FFSTATS HYPERS

L
LOGSCORE

DONE

PredScore

Figure 6-9: Every component model requires the implementation of two modules, a "SSMu-
tate" module to compute updates to sufficient statistics based on the addition or removal of
a datum to a group, and a "PredScore" module to compute the probability of a datapoint
being generated by a particular group.

89

DATUM

START
ADD

Feature 0 1 Featu re 1 Feature N-1
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- hardware, tails=10
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-10-
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Figure 6-10: Beta Bernoulli posterior predictive hardware approximation results. The
dashed line is the exact, floating point result, whereas the solid line is the answer gen-
erated by the PostPred module. The results are for P(x = 11xi), and are shown as we
systematically vary the number of observed heads from 1 to 1000, for three values of ob-
served tails.

small even as we vary the sufficient statistics over a wide range.

6.3.4 Multi-Feature Module

6.3.5 Group Manager

The group manager is responsible for tracking which entries in sufficient-statistics RAM are
in use, and enabling the dynamic creation and deletion of groups as the inference process
dictates.

Even if the multi-feature module is aggressively pipelined to allow for single-cycle
throughput, the sufficient statistics must be delivered rapidly enough such that the score
can be evaluated with no gaps. Thus, the group manager must be able to burst out a list
of all addresses of groups currently in use.

The group manager does this (figure 6-11) by keeping two stacks: an "available" stack
of addresses not in use, a "used" stack of addresses currently in use, and a look-up table
mapping between addresses and locations in the "used" stack. Thus creating a new group
is 0(1): pop an address A from the available stack, push A onto the used stack, and write
the current "used" stack pointer at A in the lookup table. Group deletion is also 0(1): to
delete group A, look up its location in the used stack via the look-up table; copy the top
entry from the used stack over that address, updating it's entry in the LUT along the way.
Then push A onto the available stack. Bursting is O(K), as we simply read out the entries

90



Table 6.1: Command word bits - see text for examples of common settings

Bits Name Description

0 REM Remove the current data point from the group in-
dicated by GRPIN

1 SAMP Perform a "sampling" step, that is, determine
which group we should assign this data point to

2 ADD Add this datapoint to a group (generally after
sampling)

4:3 GROUPSEL When we add the group, which group source do
we use, the input (= 0) (GRPIN) or the one you
just sampled (= 1) or the new one we generated
(= 2)

5 DLATCH Latch the data - make the data in the shadow
register set "live" . Generally this is set to 1.

6 NEWG Attempt to create a new group: this should always
be 1 when sampling, but otherwise can be set to 1
to attempt to assign (force) a datapoint to a new
group

in the used stack.

6.3.6 Streaming Inference

The streaming interface (Figure 6-12) to the clustering circuit enables rapid clustering
without necessitating the circuit keep all of the data locally; rather the only state stored on
the device are the sufficient statistics.

Data is written in a bit-packed format, and is pipelined - the next row of data can be
written while the circuit is performing inference on a current row. Hyperparameters and
other per-feature configuration information can be written via the feature-control interface.

Inference is controlled by asserting GO with a command word and an input group. The
command word serves as an opcode, enabling particular aspects of the circuit to allow for
initialization, inference, data addition and removal, and prediction.

The specific bits of the command word are shown in table 6.1. To add a new datapoint
and pick the right group for that datapoint based on the existing data , we set SAMP= 1,
ADD=1, GROUPSEL=1, DLATCH=z1, NEWG=1. Once DONE is asserted, GRPOUT is
the group assignment of this new datapoint. To perform generic inference without adding

or removing data, set REM=1, SAMP=1, ADD=1, GROUPSEL=1, DLATCH=1, and
NEWG=1. This will remove the datapoint, perform inference (creating new groups as
necessary), and then assign the datapoint to the resulting group.

6.4 Results

We validate the resulting circuits through a series of tests assessing the impact of bit preci-
sion, including explicitly comparing the posterior distribution with an exact enumeration,
testing behavior with synthetic and incremental data. Runtime performance is compared
against theorietical predictions and an optimized software implementation on commodity
hardware.

91



Avaialble Used Used Index Suff Stats
2 0 0
5 1 1
4 2 0 2

1 3 3
0 4 2 4
3 5 1 5
6 6 6
7 7 7

(a) Group manager for tracking sufficient statistics. Available is a stack of unused entries in
sufficient statistics RAM; used is a stack of the in-use sufficient statistics ram locations. The
"used index" enables lookup from a sufficient-statistics location to a location in the used stack,
enabling 0(1) group removal.

Avaialble Used Used index Avalalble Used Used Index
2 0 2 0 35 1 5 1
4 2 0 ADD 4 2 E

4 43 ___ __@ 1 3
0 2 4 2 GROUP 0 4 2
3 5 1 3 5 _1
6 6 _ _ __6__ 6 _ _
7 7 7 7.

(b) Creating a new group. 1. the location for the sufficient statistics is determined from the
available queue, which is 2. pushed onto the "used" stack. That stack position is saved in the
correct location in the "used index".

Avaialble Used Used Index Avaialble Used Used Index
2 0 2 0

Q) 5 1 ___ 4 1
4 2 0 -4 5 @ 2 E)

REMOVE 1 3
4 2 0 4 2

3 5 1 GROUP 3 5
6 6 ___ 6 _ _
7 _J7 7 7

(c) Removing a group. To remove a group (in this case, group 5), we first look up its location in
the "used" stack via the used index. We then 2. remove it from the used stack, 3. push it back
onto the available stack, and move the top of the used stack down to the location previously
held by 5. This necessitates 4. an update to the used index.

Figure 6-11: The group manager, which provides dynamic 0(1) creation, 0(1) deletion,
and O(K) bursting of group addresses.
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Figure 6-12: Interface for the Dirichlet Process Mixture Model Stochastic Circuit. Data is
loaded asychronously via the data interface, and feature hyperparameters are set via feature

control. Inference is controlled via a 7-bit command word.

6.4.1 Resource Utilization

Table 6.2 shows the resource utilization for the hardware designs synthesized to measure

KL, below. Table 6.3 shows the resource utilization for the 256 feature circuit used in all
other experiments. The internal score calculation is expressed in our standard m.n fixed
point format, and is listed under the "precision" column. The number of bits used by the
Gibbs sampler internally for sampling is Q. Each of these circuits can handle 1024 possible

groupings and a maximum 216 datapoints per group, and runs at 125 MHz.

6.4.2 Explicit posterior samples

The sampling system embodied in our circuit should produce samples from the distribution
P(clxi, HPs). As we've done in previous chapters, here we compare the distributions from

the sampler and the true known distribution.

In the case of our Dirichlet process mixture model, the size of the posterior space grows
very quickly. The number of clusters possible in a dataset with n rows follows the Bell
Numbers (Bell Number - from Wolfram Math World). Thus explicit enumeration and scor-
ing of this dataset quickly becomes impracticle in the large data limit. Here we compare
with n = 10.

We randomly generate ten 16-feature datasets, and for each firmware bit precision we

evaluate the KL between the true posterior distribution and the result of 100000 samples,
with a sample taken after every 100 iterations of the core Gibbs steps.

6.4.3 Basic Inference

Recovering Ground Truth

We create several synthetic datasets with known ground truth, and vary the number of true
underlying groups and the number of rows per group. We initialize the data to a single
group, as this requires the engine to do the most work to break symmetry and find a robust
clustering. We set the hyperparameters to match their ground truth settings - for the Beta

prior to be a = 0.1, =_ 0.1
To measure the similarity between a found clustering and the ground truth, we use

the adjusted Rand index (ARI, (Rand 1971)). ARI ranges from 0 to 1.0, with 1.0 being
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Table 6.2: Resource utilization for 16-feature clustering circuit, maximum 1024 clusters,
maximum 216 datapoints per cluster.

Resources

Features Precision Q bits Slice FFs Slice LUTs BRAMS

16 4.2 4 17890 13660 56
16 4.4 4 18354 14929 56
16 4.4 6 18368 14940 56
16 4.4 8 18382 14955 56
16 6.2 4 18188 14041 56
16 6.2 6 18190 14048 56
16 6.4 4 18662 15581 56
16 6.4 6 18667 15465 56
16 6.4 8 18681 15480 56
16 6.4 10 18695 15500 56
16 6.6 8 19170 16946 56
16 6.6 10 19184 16970 56
16 6.6 12 19200 16988 56
16 8.2 6 18498 14327 56
16 8.2 8 18508 14340 56
16 8.4 6 18984 15861 56
16 8.4 8 18989 15762 56
16 8.4 10 19003 15780 56
16 8.4 12 19019 15801 56
16 8.6 8 19478 17215 56
16 8.6 10 19492 17240 56
16 8.6 12 19508 17258 56

Table 6.3: Resource utilization for 256-feature clustering circuit, maximum 1024 clusters,
216 datapoints per cluster.

Resources

Features Precision Q bits Slice FFs Slice LUTs BRAMS

256 6.4 6 77332 121128 296
256 6.4 8 77346 121147 296
256 6.4 10 77360 121162 296
256 6.6 8 84548 142893 296
256 6.6 10 84562 142917 296
256 6.6 12 84578 142935 296
256 8.4 8 81982 125040 296
256 8.4 10 81996 125064 296
256 8.4 12 82012 125086 296
256 8.6 8 89197 146778 296
256 8.6 10 89211 146812 296
256 8.6 12 89227 146829 296
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Figure 6-13: Kullback-Liebler divergence between true, explictly enumerated distribution
and collection of posterior samples.

identical clusterings. For each group/row configuration, we create ten data sets, and perform
inference on them. The results are plotted in Figure 6-14.

As we can see from the figure, synthetic datasets with fewer numbers of datapoints per
group are in some sense "harder" to cluster - a stable clustering equivalent to ground truth
takes many more sweeps.

Incremental addition of data

The streaming interface enables the incremental addition of data and continual reevaluation
of the clustering of existing data. The nonparametric mixture model always places non-zero
probability mass on a new datapoint belonging to a new group. To test if our circuit
correctly recapitulates this behavior, we generated a series of 40 datapoints for each of
10 groups, and then added them one row at a time and observed the resulting clustering.
Figure (6-15 shows the result - the circuit closely tracks the true number of groups in the
data, although expresses uncertainty for each new datapoint.

6.4.4 Performance vs software

We can directly compare the time necessary to sample a new assignment for a row, given
the existing data and group structure. This is the fundamental operation that the model
performs. For the 256-feature circuit, we create a variety of synthetic datasets and dis-
able the final mutation step, such that the number of groups remains constant throughout
inference. The time taken is the same, however the final write-enable has been disabled.

We can compare this with Gibbs sampling performance with a custom beta-Bernoulli
DP mixture model implemented by hand in optimized C++.

We expect a linear relationship between the time required for a row sample and the
number of latent groups, which we see in Figure 6-16. By examining the slope, we can
compute the marginal time necessary for a row operation. The circuit takes 7.4 ns per
operation, whereas the software implementation takes 15.3 ps on a 2.8GHz Intel Xeon

CPU. For large datasets which fully take advantage of the circuits extensive pipelining, this
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Test figure
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Figure 6-14: Recovery of ground truth for all-in-one-group initialization, across various
numbers of true groups in data and rows per group. The adjusted Rand index (see text)
measures cluster similiarty - an ARI of 1.0 means recovered clusters are identical to ground
truth.
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Recovery of correct group number with added data
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Figure 6-15: Adding new datapoints to the engine. Every set of 40 datapoints belongs to a
new group (true group count is in blue). The model correctly estimates the number of latent
groups in the data. Jitter has been added to the y-axis to enable density visualization.
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Performance comparison microbenchmark
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Figure 6-16: Comparison of performance between the stochastic circuit and a hand-optmized
mixture model performing the same operations on a desktop computer. Here, we measure
the time necessary to compute the group assignment distribution for a single row. The
slope of each line is the time necessary to evaluate the probability of the row being assigned
to the particular group.

suggests a two-thousand-fold speed increase - 250x from from parallelism, and another 8
from dedicated hardware.

We can compare the performance of the circuit to the simulated performance with PCI-E
overhead removed (figure 6-17). The two slopes are in close agreement, however we can see
that the PCI-E overhead adds 4 ps per row.

6.5 Perceptually-plausible clustering of handwritten digits

For example, humans are good at recognizing handwritten digits, even when they are drawn
in a variety of styles. Here we use a database of handwritten digits to demonstrate percep-
tual clustering, which produces human-interpretable results even at low bit-precision.

The MNIST hand-written digit database (Lecun et al. 1998) consists of size-normalized
and centered 20 by 20-pixel binarized images of hand-written digits. They are often used as
a benchmark for supervised learning methods. The original dataset consists of 60k labeled
training images and 10k labeled test images.

We use 20k images from the training set (2000 per digit) and 1000 images from the test
dataset (100 per digit). We downsample each 20x20 image to 16x16 and treat them as flat

(one-dimensional) binary vectors.
This encoding throws away much of the spatial information in the image; that is, our

model has now knowledge of pixel locality - feature F 33 might be for a pixel at (3, 4)

and feature F 34 for a pixel at (4, 4), but the model does not exploit this relationship. As
an additional consequence, our performance would be exactly the same were the pixels
randomly permuted.
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Figure 6-17: The circuit's performance in actual hardware, including PCI-E bus and host
control overhead, is very close to the theoretical performance from VHDL simulation of the
circuit without complex inferface hardware.

Clustering

We use both (8.6), 12-bit and (6, 4), 10-bit circuits on the original MNIST dataset. We
perform 4 gibbs scans for each new row added, and can see how, in the presence of more
data the circuit finds more plausible clusters (Figure 6-18). All hyperparameters were set
to 1.0.

We organize the clusters by their "most common true class" in figure 6-19. The different
"styles" of each digit are readily apparent, as is the perceptual ambiguity of certain styles
of digits (8 and 3, for example).

Prediction

While we've spent the entire time discussing clustering in an unsupervised context, when
we know ground truth for each data point, it's possible to use the system to make super-
vised predictions. Our streaming CRP interface let's us evaluate the probability of cluster
assignment for any new test row. We then compute in-class vs out-of-class ROC curves for
each of 1000 test rows, taking 100 samples per row.

The ROC curves show good performance in this prediction task (figure 6-20, and high-
light the expected challenges in disambiguating simialr digits (such as 3 and 8).

6.6 Future Directions

I have constructed a stochastic circuit with dynamic structure for Dirichlet-process mixture
model clustering, along the way showing substantial performance gains even in spite of
fairly extreme arithmetic functional approximation.

99



Groups found as rows are added
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Figure 6-19: The clusters found in 20000 example digits, organized by the most common
class present in that cluster. Various different "styles" of writing each digit are found. Bars
at right indicate (green) the fraction of the cluster made up by the most common digit,
(blue) the fraction in the second-most-common digit, and (red) the remaining digits in the
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ROC using binary classification via CRP Mixture Model
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Figure 6-20: ROC curves for posterior predictive-based classification of test digits from the

MNIST dataset for two different circit bit precision. Classification becomes more perfect as

the line gets closer to the upper-left axes.

precision Digits

m n q 0 1 2 3 4 5 6 7 8 9

6 4 6 0.993 0.996 0.985 0.979 0.988 0.976 0.991 0.992 0.974 0.985
6 4 8 0.994 0.996 0.988 0.983 0.984 0.976 0.993 0.993 0.974 0.982
6 4 10 0.995 0.996 0.988 0.972 0.982 0.980 0.993 0.994 0.966 0.984
6 6 8 0.994 0.996 0.987 0.980 0.987 0.973 0.993 0.994 0.972 0.983
6 6 12 0.995 0.995 0.988 0.984 0.989 0.977 0.992 0.994 0.973 0.985
8 4 8 0.994 0.996 0.986 0.977 0.988 0.976 0.993 0.993 0.977 0.986
8 4 10 0.994 0.995 0.990 0.980 0.983 0.974 0.993 0.994 0.972 0.980
8 4 12 0.994 0.996 0.990 0.972 0.988 0.977 0.992 0.995 0.974 0.982
8 6 8 0.994 0.997 0.988 0.984 0.988 0.981 0.994 0.994 0.981 0.987
8 6 10 0.995 0.995 0.989 0.978 0.986 0.976 0.994 0.995 0.972 0.986
8 6 12 0.995 0.997 0.988 0.984 0.983 0.976 0.994 0.994 0.975 0.985

Table 6.4: Area under the curve for the inclass-outclass ROCs.

6.6.1 Architectural Improvements

The circuit presented here can potentially expand to models with thousands of features -
the only limit as currently constructed is the depth of the pipelined adder-tree.

As I've shown repeatedly, conditional independence gives rise to opportunities for par-

allelism. Here, the features are conditionally independent, and thus we can score them in

parallel with minimal overhead. But the posterior predictive P(ci = klyi) for a given group

is conditionally independent of all other groups. This would allow computation P(ci = k)
for all k in parallel as well, giving us an architecture whose parallelism would scale with the

underlying latent conditional independence of the data.

6.6.2 Model and Inference

While we focus on the Beta-Bernoulli conjugate model class, we can obviously extend the

circuits to other conjugate models, such as the Normal-Inverse-Gamma model for real-valued

data, by replacing the SSMutate and PredScore modules. Heterogeneous collections of
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features are also possible.
Right now, our inference scheme requires externally setting the hyperparameters. We've

determined internally (unpublished) that hyperparameter inference is often the key to ex-
tracting best-in-class performance from probabilistic models, and can even accelerate the
mixing times of the underlying Markov chains. It would be reasonable to add additional
state-controller logic to implement various forms of hyperparameter inference, such as slice
sampling for both the CRP and per-feature hyperparameters.

As we mentioned above, it would also be possible to incorporate this circuit as part of
a larger, more complex probabilistic model - a dirichlet process "coprocessor", if you will,
for models dependent on the hierarhcial dirichlet process.

And finally, for some applications, the inductive bias of the dirichlet process is not
appropriate (J. W. Miller and Harrison 2012), in particular where we have very strong
priors on the true (but still unknown) number of clusters. Recent work (J. W. Miller
and Harrison 2012) on "Mixtures of Finite Mixture" suggests a more reasonable modeling
approach in this case, although the exact architectural connections are a subject for further
research.
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Chapter 7

Conclusion and Future Directions

"Thus the nervous system appears to be using a radically different system of

notation from the ones we are familiar with in ordinary arithmetics and mathe-

matics: instead of the precise systems of markers where the position - and pres-

ence or absence - of every marker counts decisively in determining the meaning
of the message, we have here a system of notations in which the meaning is

conveyed by the statistical properties of the message. We have seen how this

leads to a lower level of arithmetical precision but to a higher level of logical

reliability: a deterioration in algorithmics has been traded for an improvement

in logics." - von Neumann, 1956

We have covered a lot of ground while exploring the viability of stochastic architectures

for probabilistic computation.
First, we outlined the composition and abstraction laws that arise when working with

the probability calculus, and how migration from a universe of deterministic evaluation

to one of stochastic sampling preserves the ability to engineer while giving considerable

performance improvements.
Then we showed that this stochastic architectural approach was both well-defined an

advantageous enough that we could build an automatic compiler - transforming graphical

models into natively stochastic circuits to solve problems of inductive reasoning.

We then solved various problems of visual perception, in the process demonstrating how
we could virtaulize portions of stochastic circuits, enabling the re-use of stochastic elements

and scaling to thousands of random variables.Finally, we showed how dynamic architectures
for stochastic inference could solve problems of clustering and categoriztaion.

7.1 Related Work

Having presented a wide variety of stochastic architectures, it is now useful to revisit some

of the previous work done on building more brain-like computing systems and shifts in

computer architecture.

7.1.1 The digital signal processor

The rise of the digital signal processor provides a good background from which to compare
our own work and other work in neuromorphic-style computation. The rise of digital signal

103



processing began in the middle part of the last century as it became desirable to imple-
ment more and more of a signal-processing chain digitally. At the time, existing embedded
hardware was ill-suited for the streaming data volumes and multiply-accumulate operations
necessary to perform tasks like filtering. Chips slowly arrived capable of performing partic-
ular tasks, such as TI's TMS5100 for linear-predictive coding and speech synthesis (made
famous by the company's "Speak and Spell" product). TI's TMS32010 introduced many of
the standard features of DSPs going forward, including a Harvard architecture and custom
instructions including fast mutliply-accumulate (accelerating convolution).

I would argue that generic DSPs thrived because

" there was already extensive theoretical work on how to solve real world problems with
digital signal processing.

" fabricating custom ASICs, even for high-volume consumer products, was just too
expensive

" dedicated signal processing hardware enabled vendors to innovate at the algorithm,
not circuit, level.

7.1.2 Existing Neuromorphic work

Early attempts in the 1980s to build hardware that worked more like the brain focused
on developing ASICS with computing units similar to neurons. Carver Mead and oth-
ers attempted this by operating various CMOS amplifier elements in the ultra-low power,
subthreshold regime (Lyon and Mead 1988; Hutchinson, Koch, and Mead 1988). In one
example circuit, they even worked with optical flow, casting it as an energy-minimization
problem with smoothness constraints on top of low-power analog VLSI (Hutchinson, Koch,
and Mead 1988).

While these circuits worked, they didn't point towards a larger set of design idioms
for building more complex circuits. Ultimately, it was not clear how they would abstract
or compose. This, coupled with their nascent programmability and the incredible costs of
ASICs at the time, resulted in them staying a research project.

Work at the beginning of the last decade (Hahnloser et al. 2000) started to try and
combine digital and analog approaches in silico to capture both the multistability and
smoothly-varying properties of cortical networks. Around this time greater experimentation
with spiking neural networks and spike-based computation began (Fusi et al. 2000), but
with a focus more on capturing the physiological properties of neural systems, rather then
creating a viable engineering substrate.

That said, there continues to be considerable research interest in neuromorphic-style
computation on low-power analog VLSI substrates. Groups have been experimenting with
low-power subthreshold probabilsitic CMOS (Chakrapani, George, and B. Marr 2008) which
operates in the sub-threshold regime and can probabilistically give the "correct" answers
to deterministic queries. They have subsequently built up low-power PCMOS circuits for
tasks like h.264 decoding, with 4-10x power savings over traditional designs. It's important
to note that, while the substrates themselves are more stochastic than engineers are used
to, the goal of these efforts have been still to approximately execute existing, deterministic
algorithms.

104



7.1.3 Analog computation

A more promising approach was outlined by Vigoda in 2003 (Vigoda 2003). They showed
how continuous-time low-power analog circuits could perform various message-passing algo-
rithms in binary factor graphs. There are many problems that can be solved as binary factor
graphs, including the toy Ising model we presented in this thesis, as well as many schemes
for encoding and decoding low-density parity check codes. To our knowledge, this line of
work has resulted in the only commercially-viable line of probability processing, ultimately
resulting in Vigoda's company Lyric Semiconductor being acquired by Analog Devices.

While the work presented in this thesis extends, both conceptually and in the examples
given, beyond the binary factor-graph case currently covered by continuous time analog
probabilistic logic, it remains to be seen if there will be similar commercial impact.

7.2 Future directions

There are still a lot of unanswered research questions at the interface of stochasticity and
computation.

7.2.1 Other Substrates

For starters, we've focused entirely on stochastic digital logic - using the existing advances
in CMOS to prove the viability of stochastic architectures. The development of analog,
molecular, biological, and quantum substrates for computation have all been plagued by the
existence of stochastic behavior. Existing work has largely focused on adding redundancy
to these systems to reduce the probability of error in these very noisy systems. Is it instead
possible to exploit the stochastic nature of these systems?

7.2.2 Other Monte Carlo Schemes

We've also spent the majority of our time focusing on a handful of MCMC techniques.
There are many additional MCMC methods, all with different trade-offs for parallelization
and bit precision.

Sequential Monte Carlo methods, such as particle filtering (Gordon, Salmond, and Smith
1993; Chen 2003) are also parallelizable and stochastic. Particle filters can be used to
effectively solve nonlinear state-space models where we model some latent state xt at time
t in a Markovian fashion:

Xt ~ pXxtlxt_1) (7.1)

Yt ~ P(Ytkxt) (7.2)

An ensemble of samples for P(xt), called "particles", are kept around and updated and
reweighted sequentially with each new timestep. Particle filtering lacks the asymptotic
guarantees of MCMC, but has the advantage of being constant-time and constant-space
as it merely solves the filtering problem - estimating p(xt xl:t_1, Yi:t). One can think of
particle filtering as the mating of a particular inference strategy and query (that is, a
desire to solve the filtering problem) with the structure of a particular probabilistic model

(sequential state-space models).
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Based on our circuit designs, it should be possible to perform the resampling step of a
particle filter using our multinomial Gibbs units, and sample new particles with custom-
designed sampling circuits in a densely parallel fashion. The tradeoffs between serial and
parallel evaluation need to be explored.

Approximate Bayesian Computation (ABC) is another Monte Carlo technique for per-
forming Bayesian inference in models where computing the likelihood p(ylx) is intractable -
only forward simulation is viable (Bartlett 1963; Marin et al. 2011). Our stochastic sampling
approach is a very natural fit for ABC methods, as we can build circuits to run massive,
nested forward simulations in parallel. This area is still entirely unexplored, and remains a
subject for future research.

7.2.3 The Neural connection

We've also sidestepped the issue of the exact relationship between probabilistic inference,
MCMC, and neural systems. Recent results, including some by us, have shown that one
can build sampling systems out of biophysically-realistic neurons (Mansinghka and Jonas,
in submission). The implementation details and properties of sampling neural systems can
be an entire PhD in itself.

Many researchers are increasingly thinking this way. Mounting evidence supports the
"Bayesian Brain" hypothesis, as we've referenced throughout this document. Computa-
tional neuroscientists are attempting (Pouget et al. 2013) to build physiologically-realistic
models of how neurons might perform this probabilistic inference. Sampling approaches do
make an appearance, hinting at a possible connection between our stochastic sampling archi-
tectures and neural systems. Suggestions include spikes representing samples from binary
distributions and membrane voltages representing samples from real-valued distributions
(Fiser et al. 2010; Lee and Mumford 2003; Hoyer and Hyvarinen 2003).

7.3 Conclusion

There's ample ground for future work - in both advancing our circuit abstraction, build-
ing more scalable systems for inference, and discovering new substrates on which to build
probabilistic computing systems. We're still quite far off from the energy efficiency and
computational power of the brain, but we hope that the work contained herein represents
an important first step.
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